diff --git a/use-cases/computer_vision/2-metastases-detection-lineage-registry.ipynb b/use-cases/computer_vision/2-metastases-detection-lineage-registry.ipynb deleted file mode 100644 index 1da3ebd915..0000000000 --- a/use-cases/computer_vision/2-metastases-detection-lineage-registry.ipynb +++ /dev/null @@ -1,367 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Computer Vision for Medical Imaging: Part 2. Model Lineage and Model Registry\n", - "This notebook is part 2 of a 4-part series of techniques and services offer by SageMaker to build a model which predicts if an image of cells contains cancer. This notebook gives an overview of how to track model lineage, how to create a model registry, and how to store models into the registry." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Dataset\n", - "The dataset for this demo comes from the [Camelyon16 Challenge](https://camelyon16.grand-challenge.org/) made available under the CC0 licencse. The raw data provided by the challenge has been processed into 96x96 pixel tiles by [Bas Veeling](https://github.com/basveeling/pcam) and also made available under the CC0 license. For detailed information on each dataset please see the papers below:\n", - "* Ehteshami Bejnordi et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA: The Journal of the American Medical Association, 318(22), 2199–2210. [doi:jama.2017.14585](https://doi.org/10.1001/jama.2017.14585)\n", - "* B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling. \"Rotation Equivariant CNNs for Digital Pathology\". [arXiv:1806.03962](http://arxiv.org/abs/1806.03962)\n", - "\n", - "The tiled dataset from Bas Veeling is over 6GB of data. In order to easily run this demo, the dataset has been pruned to the first 14,000 images of the tiled dataset and comes included in the repo with this notebook for convenience." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Update Sagemaker SDK and Boto3\n", - "\n", - "
\n", - "NOTE You may get an error from pip's dependency resolver; you can ignore this error.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store -r\n", - "%store" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import Libraries" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import boto3\n", - "import sagemaker\n", - "import numpy as np\n", - "import cv2\n", - "\n", - "from inference_specification import InferenceSpecification" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Configure Boto3 Clients and Sessions" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "region = \"us-west-2\" # Change region as needed\n", - "boto3.setup_default_session(region_name=region)\n", - "boto_session = boto3.Session(region_name=region)\n", - "\n", - "s3_client = boto3.client(\"s3\", region_name=region)\n", - "\n", - "sagemaker_boto_client = boto_session.client(\"sagemaker\")\n", - "sagemaker_session = sagemaker.session.Session(\n", - " boto_session=boto_session, sagemaker_client=sagemaker_boto_client\n", - ")\n", - "sagemaker_role = sagemaker.get_execution_role()\n", - "\n", - "bucket = sagemaker.Session().default_bucket()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Examine Lineage\n", - "Though you already know the training job details from the previous notebook, if we were just given the model uri, we could use SageMaker Lineage to retrieve the training job details which produced the model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Data Lineage and Metrics for Best Model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from sagemaker.lineage import context, artifact, association, action" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Training data artifact" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "results = sagemaker.analytics.HyperparameterTuningJobAnalytics(tuning_job_name)\n", - "results_df = results.dataframe()\n", - "best_training_job_summary = results.description()[\"BestTrainingJob\"]\n", - "best_training_job_details = sagemaker_boto_client.describe_training_job(\n", - " TrainingJobName=best_training_job_name\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "data_artifact_list = []\n", - "for data_input in best_training_job_details[\"InputDataConfig\"]:\n", - " channel = data_input[\"ChannelName\"]\n", - " data_s3_uri = data_input[\"DataSource\"][\"S3DataSource\"][\"S3Uri\"]\n", - "\n", - " matching_artifacts = list(\n", - " artifact.Artifact.list(source_uri=data_s3_uri, sagemaker_session=sagemaker_session)\n", - " )\n", - "\n", - " if matching_artifacts:\n", - " data_artifact = matching_artifacts[0]\n", - " print(f\"Using existing artifact: {data_artifact.artifact_arn}\")\n", - " else:\n", - " data_artifact = artifact.Artifact.create(\n", - " artifact_name=channel,\n", - " source_uri=data_s3_uri,\n", - " artifact_type=\"DataSet\",\n", - " sagemaker_session=sagemaker_session,\n", - " )\n", - " print(f\"Create artifact {data_artifact.artifact_arn}: SUCCESSFUL\")\n", - " data_artifact_list.append(data_artifact)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Model artifact" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "trained_model_s3_uri = best_training_job_details[\"ModelArtifacts\"][\"S3ModelArtifacts\"]\n", - "\n", - "matching_artifacts = list(\n", - " artifact.Artifact.list(source_uri=trained_model_s3_uri, sagemaker_session=sagemaker_session)\n", - ")\n", - "\n", - "if matching_artifacts:\n", - " model_artifact = matching_artifacts[0]\n", - " print(f\"Using existing artifact: {model_artifact.artifact_arn}\")\n", - "else:\n", - " model_artifact = artifact.Artifact.create(\n", - " artifact_name=\"TrainedModel\",\n", - " source_uri=trained_model_s3_uri,\n", - " artifact_type=\"Model\",\n", - " sagemaker_session=sagemaker_session,\n", - " )\n", - " print(f\"Create artifact {model_artifact.artifact_arn}: SUCCESSFUL\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Set artifact associations" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "trial_component = sagemaker_boto_client.describe_trial_component(\n", - " TrialComponentName=best_training_job_summary[\"TrainingJobName\"] + \"-aws-training-job\"\n", - ")\n", - "trial_component_arn = trial_component[\"TrialComponentArn\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Store artifacts" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "artifact_list = data_artifact_list + [model_artifact]\n", - "\n", - "for artif in artifact_list:\n", - " if artif.artifact_type == \"DataSet\":\n", - " assoc = \"ContributedTo\"\n", - " else:\n", - " assoc = \"Produced\"\n", - " try:\n", - " association.Association.create(\n", - " source_arn=artif.artifact_arn,\n", - " destination_arn=trial_component_arn,\n", - " association_type=assoc,\n", - " sagemaker_session=sagemaker_session,\n", - " )\n", - " print(f\"Association with {artif.artifact_type}: SUCCESSFUL\")\n", - " except:\n", - " print(f\"Association already exists with {artif.artifact_type}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model Registry" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "mpg_name = prefix\n", - "\n", - "model_packages = sagemaker_boto_client.list_model_packages(ModelPackageGroupName=mpg_name)[\n", - " \"ModelPackageSummaryList\"\n", - "]\n", - "\n", - "if model_packages:\n", - " print(f\"Using existing Model Package Group: {mpg_name}\")\n", - "else:\n", - " mpg_input_dict = {\n", - " \"ModelPackageGroupName\": mpg_name,\n", - " \"ModelPackageGroupDescription\": \"Cancer metastasis detection\",\n", - " }\n", - "\n", - " mpg_response = sagemaker_boto_client.create_model_package_group(**mpg_input_dict)\n", - " print(f\"Create Model Package Group {mpg_name}: SUCCESSFUL\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store mpg_name" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "training_jobs = results_df[\"TrainingJobName\"]\n", - "\n", - "for job_name in training_jobs:\n", - " job_data = sagemaker_boto_client.describe_training_job(TrainingJobName=job_name)\n", - " model_uri = job_data.get(\"ModelArtifacts\", {}).get(\"S3ModelArtifacts\")\n", - " training_image = job_data[\"AlgorithmSpecification\"][\"TrainingImage\"]\n", - "\n", - " mp_inference_spec = InferenceSpecification().get_inference_specification_dict(\n", - " ecr_image=training_image,\n", - " supports_gpu=False,\n", - " supported_content_types=[\"text/csv\"],\n", - " supported_mime_types=[\"text/csv\"],\n", - " )\n", - "\n", - " mp_inference_spec[\"InferenceSpecification\"][\"Containers\"][0][\"ModelDataUrl\"] = model_uri\n", - " mp_input_dict = {\n", - " \"ModelPackageGroupName\": mpg_name,\n", - " \"ModelPackageDescription\": \"SageMaker Image Classifier\",\n", - " \"ModelApprovalStatus\": \"PendingManualApproval\",\n", - " }\n", - "\n", - " mp_input_dict.update(mp_inference_spec)\n", - " mp_response = sagemaker_boto_client.create_model_package(**mp_input_dict)\n", - "\n", - "model_packages = sagemaker_boto_client.list_model_packages(\n", - " ModelPackageGroupName=mpg_name, MaxResults=6\n", - ")[\"ModelPackageSummaryList\"]\n", - "model_packages" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store model_packages" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "instance_type": "ml.t3.medium", - "kernelspec": { - "display_name": "conda_mxnet_p36", - "language": "python", - "name": "conda_mxnet_p36" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/use-cases/computer_vision/3-metastases-detection-deploy-predict.ipynb b/use-cases/computer_vision/3-metastases-detection-deploy-predict.ipynb deleted file mode 100644 index d51ffb0892..0000000000 --- a/use-cases/computer_vision/3-metastases-detection-deploy-predict.ipynb +++ /dev/null @@ -1,402 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Computer Vision for Medical Imaging: Part 3. Deploy Model & Make Predictions\n", - "This notebook is part 3 of a 4-part series of techniques and services offer by SageMaker to build a model which predicts if an image of cells contains cancer. This notebook demonstrates how to use SageMaker to deploy a model and how to make predictions using the deployed model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Dataset\n", - "The dataset for this demo comes from the [Camelyon16 Challenge](https://camelyon16.grand-challenge.org/) made available under the CC0 licencse. The raw data provided by the challenge has been processed into 96x96 pixel tiles by [Bas Veeling](https://github.com/basveeling/pcam) and also made available under the CC0 license. For detailed information on each dataset please see the papers below:\n", - "* Ehteshami Bejnordi et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA: The Journal of the American Medical Association, 318(22), 2199–2210. [doi:jama.2017.14585](https://doi.org/10.1001/jama.2017.14585)\n", - "* B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling. \"Rotation Equivariant CNNs for Digital Pathology\". [arXiv:1806.03962](http://arxiv.org/abs/1806.03962)\n", - "\n", - "The tiled dataset from Bas Veeling is over 6GB of data. In order to easily run this demo, the dataset has been pruned to the first 14,000 images of the tiled dataset and comes included in the repo with this notebook for convenience." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Update Sagemaker SDK and Boto3\n", - "\n", - "
\n", - "NOTE You may get an error from pip's dependency resolver; you can ignore this error.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store -r\n", - "%store" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import Libraries" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import boto3\n", - "import sagemaker\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import zipfile\n", - "import h5py\n", - "import cv2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Configure Boto3 Clients and Sessions" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "region = \"us-west-2\" # Change region as needed\n", - "boto3.setup_default_session(region_name=region)\n", - "boto_session = boto3.Session(region_name=region)\n", - "\n", - "s3_client = boto3.client(\"s3\", region_name=region)\n", - "\n", - "sagemaker_boto_client = boto_session.client(\"sagemaker\")\n", - "sagemaker_session = sagemaker.session.Session(\n", - " boto_session=boto_session, sagemaker_client=sagemaker_boto_client\n", - ")\n", - "sagemaker_role = sagemaker.get_execution_role()\n", - "\n", - "bucket = sagemaker.Session().default_bucket()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create Model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "results = sagemaker.analytics.HyperparameterTuningJobAnalytics(tuning_job_name)\n", - "results_df = results.dataframe()\n", - "best_training_job_summary = results.description()[\"BestTrainingJob\"]\n", - "best_training_job_details = sagemaker_boto_client.describe_training_job(\n", - " TrainingJobName=best_training_job_name\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model_name = \"metastasis-detection\"\n", - "model_matches = sagemaker_boto_client.list_models(NameContains=model_name)[\"Models\"]\n", - "training_image = sagemaker.image_uris.retrieve(\"image-classification\", region)\n", - "\n", - "if not model_matches:\n", - " print(f\"Creating model {model_name}\")\n", - " sagemaker_session.create_model_from_job(\n", - " name=model_name,\n", - " training_job_name=best_training_job_summary[\"TrainingJobName\"],\n", - " role=sagemaker_role,\n", - " image_uri=training_image,\n", - " )\n", - "else:\n", - " print(f\"Model {model_name} already exists.\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Deploy Model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "training_jobs = results_df[\"TrainingJobName\"]\n", - "best_model_index = np.where(training_jobs.values == best_training_job_summary[\"TrainingJobName\"])[\n", - " 0\n", - "][0]\n", - "best_model_info = sagemaker_boto_client.describe_model_package(\n", - " ModelPackageName=model_packages[best_model_index][\"ModelPackageArn\"]\n", - ")\n", - "best_model_container = best_model_info.get(\"InferenceSpecification\").get(\"Containers\")[0]\n", - "deploy_instance_type = best_model_info.get(\"InferenceSpecification\").get(\n", - " \"SupportedRealtimeInferenceInstanceTypes\"\n", - ")[0]\n", - "\n", - "best_model = sagemaker.Model(\n", - " image_uri=best_model_container.get(\"Image\"),\n", - " model_data=best_model_container.get(\"ModelDataUrl\"),\n", - " role=sagemaker.get_execution_role(),\n", - " name=mpg_name,\n", - ")\n", - "\n", - "best_model.deploy(\n", - " initial_instance_count=1, instance_type=deploy_instance_type, endpoint_name=mpg_name\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store deploy_instance_type" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Inference\n", - "Finally, the we can now validate the model for use. You can obtain the endpoint from the client library using the result from previous operations, and generate classifications from the trained model using that endpoint." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "\n", - "with h5py.File(\"data/camelyon16_tiles.h5\", \"r\") as hf:\n", - " X = hf[\"x\"][()]\n", - " y = hf[\"y\"][()]\n", - "\n", - "X_numpy = X[:]\n", - "y_numpy = y[:]\n", - "\n", - "X_train, X_test, y_train, y_test = train_test_split(\n", - " X_numpy, y_numpy, test_size=1000, random_state=0\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9SaxtaZbnCf2+djenud3rrHH3cPeIyMioTCqigCJVEqIGUJSQSoxgVKoBzZQJMAEhEIIxCCFmCKRkhKgBEqRANYCalBBUZqpU4UREhrdhbmavu/eee5rdfR2D9Z3zzKMiPTMtyApHvG129OzZvffcffbe37fW+q///79UKYWPx8fj4/Gbd+i/7hP4eHw8Ph5/+fFxcX48Ph6/ocfHxfnx+Hj8hh4fF+fH4+PxG3p8XJwfj4/Hb+jxcXF+PD4ev6HHx8X5/0OHUur/rpT6b/zH/bMfj7+e4+Pi/Gs4lFI/V0r95/+6z+Mfdyil/pZS6v+qlHqvlPrYCP9rOj4uzo/HX3YE4H8P/Nf/uk/k/5+Pj4vzN+hQSt0opf5PSql3SqnH+t+f/4Vv+6FS6v+plHpSSv0flVK33/j5v6OU+veUUjul1H+glPpXv815lFL+tJTyvwZ+9O0/zcfjr3p8XJy/WYcG/jfA94DvAiPwv/wL3/NvAf814FMgAv8LAKXUZ8D/GfifALfAfwf4t5VSz//iL1FKfbcu4O/+c/ocH4//LxwfF+dv0FFKuS+l/NullKGUcgD+p8B/7i98298tpfxRKeUE/A+A/6pSygD/JvD3Sil/r5SSSyn/DvDvA/+lv+T3/Hkp5bqU8uf/nD/Sx+OvcNi/7hP4eHw4lFI98D8D/nXgpv7vjVLKlFJS/fsX3/iRXwAOeIZE2/+KUurf+MbXHfB/++d71h+Pf17Hx8X5m3X8t4G/AfxnSimvlVJ/APxDQH3je77zjf/+LgLevEcW7d8tpfw3/2M614/HP+fjY1r713c4pVT7jZcFNkiduatAz//wL/m5f1Mp9fs1yv6Pgf9Djar/O+DfUEr9F5VSpr7nv/qXAEr/xEPJ0QK+/r1VSjXf9oN+PL7d8XFx/vUdfw9ZiOfX/wj4nwMdEgn/H8D/5S/5ub8L/G+B10AL/LcASilfAP9l4L8HvEMi6X+Xv+QeV0Do+GsAoe/VczqjtSPwp/9sH+/j8Vc91Eex9cfj4/GbeXyMnB+Pj8dv6PFxcX48Ph6/ocfHxfnx+Hj8hh4fF+fH4+PxG3r82j7nv/WDf70opdj0PW3jeX53x6sXL+i7lme315RS2D8+EsPCZrOm6xpSSYQc2Vxt+OHf+G2sdzwdj8xh4fW7t9w/PPCd3/99/vBf+y8wHY786b/77/H07j0//Uc/4eH9PZ+8+IRPX3zKNIw8vXtgWRYOT0+kENm0LZ1zbDYbbm9vKQVSysQYeff+nmmaaNsVvmk5TRMPxwPzsvBwPBBSImpN1ops5M9xmdkdD2QK2lmUqntVKSzTzDyONM5xs9ngrGXTrXDG8Hj/wHF/AGegdThjWDmPt5YX2ytWbctm1bHpW47DgTf3X7ParPmDf+U/xdXdNapzqMbQbdb0VxuOhyNf/uKXTKeR3RdvWYaJrWrocJQpUk6Btul48eITcoEf/eTPeLfbEa0hWk0ymmQNVmu2xuK0RimFUgptHcY59ocDf/7FF4QQCCmRcyGlQk6ZnDMxZhQKa4xcg5wB2G63rNdrNpsNL168YL/f8/f/wT/gNAy8+vQVm82aw3DicDqijMZ6D0AqiVIyYwosOdbrCm3T8uLuDkrh3es3TKcRg8IAjWtYdR1GKbzWaKVovcdoA7lAKZRcKDnTdR2//Ts/ZLXqGaeJEAJd37ParJnmifuHB0KMhLAQU+Lt27fsdjturq/59JOX9F3HqxcvcNZRYqTkxO7xkf3uiZQSKSVQoI0FBUMILDEyx8gYAkU+DtpottstzvpLM9pbS+s8TdNwd3uLNZp5nkkpcv/wwO5pR8qJlAIA//1/53/1zT72P93ivCC5lx9VlFL4VXz3w9+UUpzPuhT5+ZILhUIpBYVC14tOLpAzKSVyfRCUUmglX9dao7SWP9WH/9b1wcs5UwrknMn1PJVSKK1QWtfnK9fvq79fgVaKzOU0P5x9gaIK6hv/4/xz8vrwWc/nV9SHa6q/cX5aKb7xJbTSKK0wRqO1QVuDMgZdX8ZarPfYENHWyGes/xQgl0yhoLRG1etfcqag5YzqOeacKTqTc70XcmKobC7X+C/c4PpzhVIy1M1JKUVRCsWvsh/Oz4PWGmP0r1yjX3lMvnFlSynk8qvX9XKvzvergCq/es0u51Eud0MeKgrnEzt/5pQSMcb/yCvFSDo/A/UEC+Xy9RCi3PcUoX5f/pXuharP7ofnTP7MHz5hUaSU0TrJaRVIShF1wsRICIGcNSGGy6I/n9PlvP4xx69dnHOIaKUpGLRtSAWmKeCcR3rmmRASyxLYKoVznhwgx0CKiXGYsS4RZvl73/UYY9n4FvW4Jzw+8v7r1+zuHygZVv2a9XrNdruldQ06FpZ5QWWIIfL85opt3zPPM4+7XX0wZMMw1tCZnrbr8W3H03Di/v6eJUZOYaEoxbq/xncdh3limidSjOSU6oWOshhkVyHOC3Fe0Kmw2AlcgqbDGMVmtabzDVMODGGmsZabqyta77nbbul9g1GZkhPWaDarFdvtFS9fvODm+R32eoXuG0zfYdc92xC5evUp0+HIz/J/wPHdI3ZKmDkznEaeDgeUNmy2G1CKnCLDcILSonRDiInTsKBRFG0xSpHPG1LdAEIIaK0w1hJSpJTEvMws83LJPrxzNJsrjDGoomUd1N93fhmteP7slmnuSTmx3+8IMaJKRhWFrizDUjIpF+Zx5DSNWGOwxoJxNNahlWbTr/HakpdAChFjDFrXDdwYFIqQIjFFWZgZjDW0bYN2jtM0MafIu3fv2B8O+Lah7VqWsLA77Mk5y4YGxJRwXcdxmjj84hd4a/nq7RucMXgj14wCqhTZfKyllMK8LMSc2Q8npmUm5MySZLOMpaCU4jRPcr7nfaOALmCMoW0atK7PFYVlWQhhoVDI5S/ZMP9pF2dKmaIBpdHGUooixERKpe6yhZQzMSZAYS83HnIuhBAoFFLM5Fxw1mOdp9EWTiPpMHDcHzgejig03je0vqVrWkxRhL7DGMM4jBgTZeFu1jw+PjI8jpRcANmBnfNoY3CNx3lPAU7DQIiRhYyqEappGoaw/EeiKnUnlGifSTGRYyKjiCFikB1eo2iahtY3sAxMccEaQ9919E0jf3pPijMpzJKaNQ1d17LdbLjabnE3V5h1B20DfUsBNncw7Y88/PgXMM7kPEMK5FKY5okYI03boLQml8yyzBhvMdmRYmCZRhQKowwaRayfT2mJ2ufrpGtWUUohxsASFlJMpBjRClnA9YFWINGsXpOSM1or1use5wy7/RPzPFPq9ylKjfXykKuSSUtgmWaKtWgnEd8ojTWWxntUKSwZSso1I/kL2U9M5JQlKhfQGLS1KKOZa4r+uN/z8PiA9x7fepYYOJxOZArOOYzWeO+xzjGeTux3O7RWHE5HuXe+wVlLW+/r+WdyziwpEWJkmCfGeSKWQiqQSibUbGSOQbKA80OUMznKOZua6UlWpQDJ4M6R/Fsvzn61RmuNb1us86QCwzRhrOFpf4BSmKdADLI4tbJ417BW4JsGUiGrgtUGrTT705HjMHDYn3jz+i3jMDINI0opbrbXtE2L947D4cA8zux2T8QQSTEBkh5lCjFnUl1Ykqso4rLIBXINpmlRRtP2HTZnfL3Z1loKha7r0I1nmCZyKcQkUSTnLGl4KVilMU0rN803eGup1/ayQ3auQV9pGudwSmEKOK1xRnN6OrHb3dOvem6eX3N1dYXVWiKAtdB4eZN5lpu5RPQ48fzmlo1yPKl3nOIT/brn2bNb2rbl7dvXNbVKdG3DHAOnQ6jRZUGjCdahUYRzSldkY2zalqura5TWrFYdOWdWq55pmgnzwjROOOdom/pgxkTJBWcU3hn6rmG76QkhcDo2aFVIqcc7yxICS1zQWuGNlmu6SFay6Tv6rr1kuq21lJrihWkizHN9LRgFhQaF1HIKJWWP4hJ5tTUkBZTMaZ4AGMPCnCIpKmJAng0jG0yuufKcMyEGAgXlpI4MOQneEDUxF7R1OECXQgIykOoLY1DW4rTBGU0qBRMTuRQ5x5I/PD8pU2JCq3Mpo+kaj3O2vpyk4znxzbLwn2lxrjZbtNI0bY91DSlHTtMESvH4dEAD07RQcqIUjdaWxhh84yQtqDuidRaUYh5mHt7dMwwDj09PAHjX4pzj5uaG2+sbhsOJ/f7AOIw8Pu4oSXZareWmp/qKuVxSBYAQA6WA63qanNHW0K1XpJJR1oLW4CwF6PuebdNwPJ0IITDPM8s0kUOsaS1YpXGNw1lL1zQ4Y9BIzafPi9M3bPuNPJRKY0rBaoUzhuF04s3Xr3n12St+cPN9rq6vsFpSH5yFpoGwwDxRQiSfRnTMvLp7Rt7c8OdDYD4MrDcreu1IIfP1668IMVJypO9axuOB4+lIohBVQStNqKnosiyyAEJgCYErpVj1Hd57TL0fp9OJeZ4ZTyPHwxGtNW0FdEJd2M5qGm/pO8/V1ZplmdnvG7TKaFUI0XM8nShDqIvTkHJiCIGcItfbK5quZ1kW5nkWAGYJxFII48g8TSzzQgwBa+rmpVRNa6EoLoCdb1tQikQR4HEaKKVwCjNTjuhYsOea1BhJyet7xJQoWRaR8g5KEZAwZwoKqzMuNTSloACnlNSOdXEqbQRc8x7TeFIu6BhJKTEMJ0IokoGkREkZUkYpsEVjjGHlLL5r6fuerutIScCqX8fQ+7WLUykNShFjYiZQUiDHgAYO+wNGK8iSjpwBIK01zhn5uSWQS+YwDoIS5sRmtUahmKYZkHTUWkdJmXmamcaJYRhYpoWcJDoaLSnZ4XhknkdOxxNLCBLVm6aiklBQuKbBNg7jLNpoUpS6IQM5LBSlscuCmWfGaSKGKOnfOeXLArgYbepuLSioMQZvLc5avLGCahqNMgpVCikEVE5Sw+aM0QrvLI1zkioZyzxNqKPG756wJTMNR8bjgRITeVrQBTo8KsMyz4QlUJZIiZGUBMZSCvquw1jHQiaSWVJkWBZQXD6LtRbrHNY5fEqs1yu6rsM5hzKSMi7GELXGGo2z9gJkSTqm0MpgzQfwJywzodZMKUacNVhrCGFhniRt0/Lg0LcNKTta7/HWoXKBlC8blCpIeqsNWIsGnHNYYzA1wygX0EjL52gaSTHHsQJ86pL5FJRkCmFBG4M1DurPA1LrxQglo7KknLa+tzEGY6yk0vVZjhWolNeH0ifnDDHVZ0TXfeAciAqFTEaR6x5xAUhTJsVIWBa0UqQYWf4qixMlaOAwTagykWMgx4XxZJmPI85Zbq83dE0jFylmOufou44YA/vjnmEc+NEf/zEPj4/8/t/+W/zwd3+Hw+GAVoZSZBEopQlzYBeeOOz2HHZ7SpK8XcABi0Lx1ddfczzsBd20lrbt2LQt1jm0dWit6Tcb2n5FM5ww3jOnkd1hzxIjIWdSBUmUsTUSCwpnlEZbd4HsBShwOGtorMNZR9+0NL5hvVrRtS0xBeYwEsPCcRwIQLraUrzHG8emW7Ht11yt1njXcLjfcdzv6acRt2p58+4tX77+GkpBlYKzjk9uX9G5hv3jjtPhQAmZMglYpdE4a3j2/A6lNe2uY7XvOAwDbx8eiDkTUgSl2Ww2NE1TkVXDarXi9vYGYwy5PnhhmojLQnEOugYqskoB7y0K8I2j8ZaSE8fDnmWZGY5HYgxcX9/QdS2kSBgHiXjI9V1tt/Lg2wZtLIsyNErqL5Mhl4LXBqzDW3kMfdPQeC+gl6wEVN0c275jc7Vl97TnYbcTnENLhZtyBq0lC1oWvPes62dXWp7h07hnv99jlcJpjbWGVdfLBuQbGictp/Min+aFXARPkbRVUNsUIiVmjDUSyQ1kn4k6oTKEVEhEck4UBWgFGeISBMldIpMZiDFKvf5tF2dMgrypMxT+DTheQACFNbJQtPrAZzijnmEJxBCxxtK2Ur8ZJbVESZK+eN9cFmdagkTPaZaemzIUqIATzIukoK3WWO+wztYIaQR4Kpk5BMo0MS2L1BhRbtgSApFCrp9DpSxASW192IrOcYnWsoObeoOl4FeXGl7aPtIXLMlgKiBQssDtuoIQSinmaZZ0qkgbRTtLSpH5eGIZRgE6lEbZwjJO6FivXYwQBfXVSmONbEDWWpQxNN7Tti0hJdqmIaREWuKHiHN5yTnnnC7nrbSWrMBaua/ZSx0UJbXP6dxXrK2KsDCOAzEElJIMyZoP7+FqPV/q8+KsxRhDUYL6Wq3BOkBaMTkryU50ffCRZ+wCYtVzbJx85qaRTdgYc8nSciqUc4+mRrxztKO2nHS9b9Ki0x/QYGUuv4dzyyolopKNUKJyvmRv5/eQVFm2ynO5aLQBo3DGgs2oAsXUDOb8DNXnrlQQNackgeDb1pz7/ZPkzbX32HlP33a03nO1WUnr4PaGvhWU0mgDBcISGceZ3eMTpRT+8A//kH7VE1NmnhYOT0fevn1H13V8+uozvG/4yY9/wv39A8fDkcP+QNd23F3fUUrhfrcjLoFpOBFS4mbV89nnn0sEdY6UM+8fdozzRIiJmDJPhwNv398zLTPvd4/ElDC+QVuLzhZtMs57+raV6FI3F2mvZIxSAgppXQEtRUiBskg6FWOUWqxtScaiU6ooXWI8DnjreH73nBIzf/xHP8I6y9XdNa5xdNsVrm0YlxmzZLQ2eOfQSXF4/8SxwP5hx3AaUAlUQiL2Zo2xlpglwq3WK2zjWK1X9H3HuCx89f6ROUqqviyL3PySiTFIqu09t9fXNM6x6Xu8td9YgIHj8Vj/PFS0PRKWkX3t8VlnBXF2jq5rcd6y7jtIV8zzwuF4QGvNqmlxzjOOCyEEWu/wfX/Z2FNKlJiYjZGaPyzEsjCkhHWW1XqNbxo++fRTNpuNZDm5MM+BppYyS4qXds8ZAo0hoVUiLQllFcZ4jDFs11sa6wWRVlKynckaOSaWmFnyJPXiZQOWIKCNlE9dY6WU0YYYI8MogFTfdOjGEKwnxUhcFpZpltrVnDeALP/WMkobzdo1/DrI9tdHzhgETjcG6q7hnMN7R9u2tN7RNg1N02DPBXwul6bwPM9orbm5vub27o6H3Y7d/kCKiXkScMA5j/deUolpYppm5nnBGic7ai7M88KyzLXuktpktVqhtBY0LUbmuDBOE8M0M80zp3FknCWCTouwRBojEa7Uly2l9tY0TguAEAskEkYpjNKYc6RRSqKiysQUUUFhjUIrD1rjjKVo2WVTSjhjcM4xTgP7pz3GGVzj8LGhKHAhEEuuAFPB2Io6h4WSMmEJpJBqz0w2Dm2lNspIXWuNoShfo0bGTBbnjwJg1HBZciZnaZXM8wRINARpm9hKprDGoBFUVL5e6s8pqJ9pWRbatsXc3Ei7wZyzDoniJWc00m461+tGQaztE+8kcub6fc5YsslEHWvmpSoD6BypFG3bslqtmJdwwRnO6SqJS+15ecTPNd433kchUU01bW0PVTJF/X5pqcnGmoOwmUopghgbDeqcJRrQQiDJKVNiBnXGJyzaFZLWmAIqCbDkjUGpQkrx0tdMuWCMllr8LzIv/mkXZ9d4lILGCgByc7Xh7uaadd/z8u5O6rHzA18ScZmYp0RKkXEaOR0OGGsYDie6pqVxnud3zwS2txYKHA575rnBO8/NzQ0xJA77E8fjwPH4C4HV0SgFq76jcWuurm9Yb7bElNifTszzwvF4Yn88cBwnxnkm5oxqHEYVtLeoqAhZIohV4LQi5VSb85qsEwpVWwgZbQRQMsbI7qk0aE1W0tcKKTLNI/unHVqB1bKYbW/kwrctq64FrTmeTgKwZIWOkMZICbVHnBPFOTzyO0oCshISAJIad74D4P5xJxtk0wixIEZCiljreP7sOVOILNoxLsvlAcvnFKpkSIUwzbx/905aW/s94zBIC8VLa0dSPQE5nMuVpSMLwHlB4UGRM1J+KAHurPV0ncZoSTvJirhEGtfQODlfU1sjyzyRc6FtPU3rubm9llq4RseYIsdhYDid+PlPf4bzDqUlDT0eT4RFAKm8CPpaVAYUThuu1huMMbLZFsUyTIASQM84WZFGNq0YwqXOVgUBkqzhQ6asLp9/mmeWEITYBpX+mNBagpJWCpRBa7Be47WsmVXXCgkh1Q2ggoZt27JZr2sP+lsszsbLl1svLYX1uuP6asN2veb58zus1oRxouRUU6ck0Pw4Ms8z0zRirWWeBDLv1xvavueh6wSlK4VxGIkxYa1ltVrx5PcATNPE09MepTTXV1c03uObhs26Z7US5HGaF3I6EGJknEdO48BxGBnmGW0tpmlQxaKsFUQ1Z0rKKKMxxUjBnxK6PsQKQdxUKWBKBaOELaLPkQiIWRrjOQTiPGGNYdN3OGvJpZVI5Dxt1xNCxGr5eV00KkOe5cFKJcsmkhT4DLpGgIr/KzTWeLp+xbIsPD4+kkthAzjvCTFKRtBID7OLiVMuTEu40CLPizPMM8PhQIyZ/TiRc+bh4YHj8UjXNmxWK5xz9Ju1gDZGk7P5BvVRakRdubelFEJIUp+ruokZQ+NbcsqMo9zXrvV452WjoLbBlkAphabvMFZS2K7vZGHGxDCOFZmfORwOpJzxTYtvhP0TK7MrpVSJKFwQ6rZ1FxpoKRCWhZylt22tA6MoTtLqHAKl5NoaUxW1/UDAOB+5ovG5PkMxZUl5jZMUuf5jtPxObaUn6q1lu90I+pyzdAKKLNKu67i5vvr2kfP2aiMfvAjzo3WWvvG03uKMMD9LjsQaSUpOLPPMOIyCGtafk17iRFGwhIVxGITelSLH4xFrnaQJuVxqCOscq9Ua7z2ff/YZq1XPtm/pGoc2hnfv33MaRr5684Zxnng6HBmm+QKrZ5BooRWr9UoQWevQ2ly4jc4KqKSUQlNrlrgQo6Tl4zgKGGGdpICV92pqil/ODwlgYySWgp1mQpJ0J6ZICoG2X1XmjauYq6RwlEwpCRVhPgrTZgmBmBLTNLMskZROjLOk5cMwAArbtGSthTxdMlNYeDrsiUV4skK5yxd+aYyBuASWJcj5RkETc5S0OafMsgSoQJ0ykk5631y4pDlnIcyXwuPTXrKMCrw46/DO4b1nu1qDFa5QzqUi3XVB19TwzFM1VsqlcRgYhqE29MtlAaZzLZwShZmYPpBPlFJ45y7cW4Cmaei6vgJgEvHOm8SZGZUpJK2IqTBGYUeVCs7Yc5oviJM8+9TFV+vTlIWWaI30zkuG0zhgFiPRMWfJpJRisfbCqSZLCXNOwZVWDFNTWUPfYnG+fH5HKZlpGAhLYNV6Nn1L33q8URUxW4hhZh4nlmWWZvM4cqbHK2BZZsZhkN6m0RwPeyiZFEQJoLWlaztBDpHF6b2naVpW/Yrf+d3f5frqCqcLRhXe39/zxZdfsT8c+PmXXzAvC1O9maX2ZosSipUymu31FdoYVustvmnY7/ccDgdBmp2Ti1/RtLkIk0R6rqP0sSrK1/Ut1loa30j9VAoqF0wpsAiNLyMkhGmZOZ5OdE3DzWYryC/UmuxMbM8oNDlkhnEgpsTT8UAIEWVNpagNjNN8oRZqY7BdR9LSe0QV0jwxx0BRmqwdIL3psATpSy7SM53GSRDJyoZKQeD9HGUzKHWhGm3ou5WATzUCL2GhjCMhBN69f0+s6T9FlCZt03J9dcXdzTOJQLapTCswNV3WWkumUhfo+b0fn3YcjkdKXQopZ0JcqlpGsoMlRAqTvI8RMYT39pJ2llJYrVZsNleX5zelhNyaRYQKlfkTNCwqcQwzMQTCPJNjQiswSMqaU7rc+zPW8gEpBu882ltSyiynM4FeMiprtGAOxhAqEHemNjpjscaSKZgaGL7V4lz3Hblk0jKTwoIxGufspSmtKML+KZmwzFKraEkvzvWLdZZcwYRYd8GpEqGxmqZtMcZe0g7v3CWFlKNUNkUgCKue/eHA09MTx7ppxIpOniH5rCr5WAmB2rdtRXZlJ3POCeJXo2WuYIDUIUK0PisGzpC+pLfu0tw3ztV+YRSgUGuyUswpEnPCWI0vDrTGOC+Ls/ZQU5L2iFJIv1cpUJmClAZLiAJEac0SE6dplnqlLk5/EtRadpRyaY+gDcp3oLSQIUqpEd9CLkTrSCgiy6VdhP2wcIwx8tmslYhVgaOilNy3eZZFWSPJuUEfYkKpwDBO7I9HnPM0vhGQpAhF7QyUfTPdTknIFedSSCiWTlogWogsZ2RXVcCOuknV/pMwhkIi58Q0L2g7XAglJUsqrYwmU2r0z0xLuZBiUslkBcXUdkp9f+ENKVlYWgsYd2a9lYKyWthLqtL1CpwVM0XJNUsUpsqvVqWWTY1c78wHpcy3WpyfvXouF3MeSfNI6wyrVYszRpgWSrFZ9ZSuJadADDPGeNrWo5TG1DQwxIX9PvLw+MjT0x7XNKz6Nc57rq5vcM7TdSucdRz3B15//ZqcJKVJIbB/2hGXmdPxwDyNvHv/ni+/+ko4sUn4kVFBVlIf5IL04KzBtS3XtzdY54iVRN12HU3TsMwLp8OJGCLD6SS7dJB6jYrWWWMEobSW1WYjC7uSqKdx5BiPWKVonSUrxX4cyDXytasV+IZmLXWHCkLtOj49MQ0jbdvR9S1KZVLRxKwY58hpnPBonLbsx5k3j9IKCjGilGI3DtKsr7FGtvOMtY719hZr6zkag7cO4xuiizgljfowL+SYaZr2opgopdA2LauN8Knv7+8Zpwnfdfim4ThMvHn/gFaK1XqNVZphGAgpEuaF01Rf40zf9/z2D3+Hvl+R5pESpNwINWWfq/BAUvjI09OOd+/vabuW9WZblScdBTiejoQQcF4CQ6oRV2lJQ9GaaVyYp5nDOKB29xhjabte2mCNRLgQZBMf4szTMAkYGBdBuZ30Pc/Kl6ITmUrEbxqsNrRdh6+c2JwFjyhGovGSQwXFLNYZMPIKKXI6nGqGkVEUrrdXKKuxZLJR3z6t9c6RlMbWRr2pD+s5f6fm0Ch1ae6e/7+xhr7vpT2REylLH22eZ7SR6OusKBOc89iLEkKh684jaFmh5HThic5LYKrUu1wKpVKulJbocSbHl3PEq/IfYwzLEiqFi0t7IIQgqU29eWf2jD7XGfqDltRaIS2f308bQRDR+qIRjUkiQkjpV14VY6qAUrnUT7n2LOspVXlHVZWEwBIlgsVa8ylFpSMWOUclFMqSIzYX+pTA2F9R25wBHuedwPs1JTeVmndW5xj7Aew5t8fPmUOpNbRW8v0Yoaid210lF1CRcZ5R2jAvi6iDYoSz3vKckZRf1cpqbWraaD/Ui1QdZUVTv/l5zp/pjNzkUlHvet62FHRYMMaA+9DOiVmympDCB+J53YSLvFWNenzjuknENNbI9YmQS7q0Vwrnc6y1OYqMvkh6hND3Qa0j0O75uar3+9ssToMGVfDO0zYtXdPRt319sOVBHqvCG6VZrVaM48jxeOT6+prf/u3fxlrLF1/+kv3hgLVO+qRO+KltbYRba3l42DEMI6fjHqXAWakpGu9x1uKsxjl3AXzGeUEZTdM2GGtwXY82hv14Ik4jxhqatsU30n8LIXB/f8/xeLpIpGIITMNY6y9B/oyW1pCpEfIs7j5T4Lquu9wM6z3takXJhSmESzRIMbI7nYgpczgNDEN1VFhvsNowLDNLisRpYo7pQxpUMt32CtOv+Or9W+7fPILRmL4VgsMs6GkohRSitKeahrDMzMOMsXC12dK2Lcss9VSJiawUzonmlFJY971sIJW4LQ9/JgP7pyeKUvi2pVmt8G2LbxqmENBWaqzd8SjpZsw1KtQeZcqMSyTkgT/58U9w1nLVe/paG57F1dpaDAarQGfDb/3g+/y2/V1Ow4nHpx0hBPb7p5rii1tASJE0Z7kvraiOdOUIx5yYY0AbKWMCmTBLemuj1KnndHopkUIg50ScF9nYKnfbVcIJKaNKxirDdr2qWYjFaM0pDEzDiK+EHAosFFJOLHNkzoWubWmcRFF/vZWFmWWBbjdbNqs1bSvStG9dc36AiM8kcClmS84ivoV6gyO6Fs3TNNX+j+b6+hrrHG/ev0OfTh+oUxfql77QvGJYGIcTMSy1lBB0VBDSsxZRmvBU1MzUWlBbi/ce7SxmqfrCGjFVVbOUnBnHqTJgKooZIss8c2legWgOa31jqrLh/HIVkRRlCNXFwEkEXiQqpCL83TmES5TRQOs9jfV45y7RsMRIzlI7KSNUReM8zhrmGNgdDrR9R99u0Dmjz60RpE+HquoNpeV9AO9lU5EWwjmeg7OVhaTVhWgwTBPLslxod0sIjEdB1dddJwuzbXFNg28aqUVLRX3L+ZpVsEMpEpIVpBAJu51QGtMaVq3Us9aiMfgaHVXNyLbbLdurK+4fHjiNgwBCVU2T6+csRRaALvaDW4RSUksWoW5Ss66MZEWAED20ukTsRJK+aL3+pfY4JQpaUPrsL4HRqgoXpEw7t1hSjBRrK6GFS2mRLzW1qwFSVQwFQWuRFpgQ/O3luf5Wi3O/PwriZhzr9RVaW6ZpwTnLenN1sQoJYeHMUFyhUMbSr9ecxgkbAt43bDZbHh53TNPEdrPhxfPnWOuIy0IANus1fdtdiABSs8qOOxwPDMcDynps49lcXfHqk08pqlBqKrbESI6RJcqDsywLp8MBZTSn44lcCsPpKD22nAVlVYKsKiMNbK00m/WGrlLPmkb4piEEaZLHRFgWQAgHCSXvg6pSq0KpciRTGS4F9WERRNlQwjSTQqTxApxoK+TrVDKPhz3TMvPwtGdcFkzboq3DakXb93KdawsjLYH97glnNFfrDd55joc90zhKXy5lEgJCxbiwzLLjv3rxAu8805uJYTxJRuM93js2V1thdT17Rtv3bK6uWG83XN9c4xrP8TTw1ddfC5NrkpaH8w1N08oDGgV4OY5DlRIunEYB4Lq+k43upOrmKyyjTSXLr7cbPtOfM44jxlnmeWEOgZjleTin/KUu1iUI6uycZbNe1VVSU8ma4l5Ao1R5u0WI90kU01JzIgHgultztdlgtMFb2Uy2my1GG07HI/M04zNsXYNGk8ZJypWY8UWDNSinJKOpQcfXHnmpOEZeFsaUic6RlvnbL87TcZAdxDhWfXNZnMZY+n5NKYV5nuXC1SpFW4urlL5pntFB45xntZLG8DLPGG24u72jFNjtdqSU2Ww2EpWWhWkY6uJ0xBjFbiQE1je3NG3Lar3h2fPn0vsLCzEnpklcD0LdDUMIlGG4oH25FKZJ0MazWFpXWpdWitZJ6nKzvWK9Wl/qyxilF3v2LYohYiuBX0vBIRQ252tmIETzXPtnOUameUKBtGaK8CtLyrSt6PusczRaE2Pk7eM9p2GopmiRrtRr6gTRNlpBFB7v4/t7TocDm9WK9dU1WimG00lurNa1ES9N73nOHGKk73u+953vsN1seP32DdM00rZIqqg1vpOW1s3tLf1qxbMXL7i5u2W92aCtZbd74jSMaHMkJqmFXePp1ytSTNKuWRLDJG2XlCaGSfCHrfqA2mqtWa9WeO8viGq/WtGvVozTyJIi0zwzL3MFwjQoTUyRaZoE+a/gnbMG588C5vyhZlYfamfpKUvdLwR7aZmUfG73aK7anpfXtzTes+q7ukiFQBFPI3OI+CLZTS6FPImqRCdBdp0VPKJxjSzOSus8eyGVnMkhMs0LwRhSNQj41pETpGEqD9fM6TTS9y3TsmC0JqVIyZklzMQY5ELV4t55j1aKw0HE0yUXGudFVaEkHdJKYOXT8cgJoUG9eP6cGBPjNF94oWGZeXh4hP2RcZo4ngYRGZd8aVZfGCMVXclJivRzepQq6dgZqXlLERj8vFBV4XJBz+2WWCVWkv4USWmqoqWkjD+DYClRMmDqDl8ROqM1rhVOp6mYQKytDm0NRauqppnF3S0E5hhIOV2AEBDi+6efvMJZSxwnUgjYDA2aVd9zs9miKmhTitislMqM6bqW0+nE2zdvyCnx8PhACEKKX6/XbLZbbu+eYb2nv9pKLVfztV9BE4voSa2zeO9wXkQHWqtKoyuCVlLwrUcbBSaz5ITNibkCQvMs7QXrHUUrdoc9RSlubm749NNPCSGgtGacJt6/fy8EhQqcGaUwndSQqoiWk8r9HsaReRo+gFla4SvV8ayIMSXja1tDyAVK2j7WcLXZsl1vhDhwTr0rgHi73rBtWqZpZhyljjVVvB9TbXPZChIqdUlZhfGVa+kkQSMtC865Cuj949ffr12cb9/dAyKlyaVIa8JZmsZzdSV6wRcvntP4hqenPafhyPXVFc/vepxv6LoVlMIwTOwed+SUWfUrWt9Ivo7sWKnA48MDwzjw6uUnfP79H3A4Hvjyq6+FfRSExHB/vOcwLZLa1P6T8XKBzjD9mdRdUiEVATzmcbw0pEtBeKBNBVlSlRfVReqM1GZtI1FNSOzSjB8n0W6eF403hs76CgTNgsvVB6V2zEQH2rZyo2o6ulhJB7XRFA2hJIZJBOSnaWCYJ2Fcnf8phb7v+b3f/Rv0Xcfh/pFlHLlu1+xXW9rGc71aUSiMy0jKEu2XeeHm5opPXr3iq6+/5ic//jNKKfzyyxXr9Zq27bi7u+P5y5d8/t3vsNpsePG975JL4Wd/9uPqtfNBCnhm5rRtQy7SEkGJpUjKsfJ+Hdpp+twRo2OaTsxxQaWAiaJQOe6FlmkaT6KwvH/Lu4d7/tb6b/FbP/wBFHjx4gXjOPInf/zHvHv7jiUIoUJXAXlOidZJP7ZU0nyeZh6OJ9nQFBhr2Xa9kEZq+6tTipXWNN5zfX2N946+X+G9k821FJZl5ng8EFNkHiZUgc9unwm99GnPw8Mj1nvW2y1Kq8umk5F6d55nTpUFl88ocqV8zuPENA5451GVzfWtFqf3DQWp36h+KTEmShF9YtM09KsVKWVJQeYgO8skfjTAhZNpjK03WuqFGM5GYKk2pDM5FUIQNcs0z0yzsI5ydSc4w9OX7UaJrEdsE/nQ6I4RtHBZS67qu9qULnAmzwmEb53o72r7xNY093yO6RvuBmchtlEKlETYs+Sq5EiplhQCQgkp++yiIJjAOeUqFyheaVG+GKPFKa8yf1wlOlhr5fOUQt91rPsV8TSgajqnlRLgpRIR2qYhFSs1bs5S1zYNXU2hz04JUqs5SautSKDmZeZ0OJJy4vHhgd3jAyElxnni4eHx0vssJQt63ffCmz3fjHq/VaykiMqCwQBGsyS5nqpGlyUIQd9UYGi32/H27VsRReSC0Zq+69luNgLkVRcBWwXUjXMkbapIwTCteq7X6wswZ4xl1bQ0rSxO5xydNmyqiuZqs7lkceVCHxUe7TLPH+57EWcKo8TBwFpbN/BGatqgibWdo2qmI8GgLk6+0Z6qj642Glf1vt9qcb785DNKzjw9PTFOU2V0RI6HE+9//g7nHEsQV7wQZrFeWALjMPPs2cLnn30H7xz9SurT0/EE5YkwRw41ZZ4GcZaTXVmze3riOA6Shr17d7GXUNrQdCtKI6oF+X9Sz5ZSmJghFeZx4jQOUjN6qQPPvjgpxlpjKEiZpm25ubquPrGS5rS+xSjNMoniX6Jt9citCGDXtzRNS2MMvXHkkpmtCL6t99WKcmGJUp97a8k5M9QaKeVEqXWW8Za267i5u2OaZ97ev2eYBq6vb+jXK5awMBwPpHDH85s7rrZb1LxwRHPQ95SwkJUi+4jzjrvbG1RFwYdh4OrqiqurLTknfvd3f7dqPEXwfHN7w/Pnz5mWma+//pKC4mc/+xnTPPPHf/zHPDzci6tE13M4Hnj77h3WeV68ekXXNLx8/py2bTkNI8M4kFKlPs4z+6cHcgqsNmtc2zAMA0/Hg7jdbTdQCg9PT8QQhDiPYholjb27ueEP/va/yGrV88nLl7y8u+MXv/gF4+GIQ9EaA8biKtaxXm9o25YX2y3fefacEILwkJViXYkj58jZO8umFceF65sbSin84he/4OnpSbAEI+DP+/v3KBR9L2SGr774gmUObLZbrq6vaduGzWYtPfZpFKwjLBdQ8jCc5Lmp25Zogrmkw92q5/b5MyHFf5vF2TRNFdg6bF1AQkTODMOItYHj6SQnyJnkHhmn6UL1Ep2ntEHOLxC7yW+mozmdkd/AkuQ95nkmBKF45VLV99WaIuYspsyVM2lqhDLfoKK5WpTb2k+KtbVxjmRGS+9UV6X6WQFfam0ZlvAr1+Nifo26iLCtEfJz0rI4XSUnlKTJZ+U9XHbPb5o7n9s11lp8tXrRInMQwoezxBjqppKlrKhSuw+7+jeNoQvGWKEOOkd0TiRQSoQEsomGamcp0dk3nmmZpQWWMyGmqgjasd+LvYtfFk7DwDSONDVzOBufiVlVIsRQjZUlhXPOkpJQJq13qFlfEFRthI2Tal/YKkNWitMw8P7dO8iZYThhrcFrg/ONiBTq/T0L46kPtreWxjpK26Lqe6p6nTvvLowp7z1NbSmdPZNybYHEWOVj+YNg4GxwfhbXz9NEv+oR4LjWi4oLQeJscJ1Sqhax0t5R6iwp09W6RPqxzjuhUH6bxXl+gLqK4IkYWpzdfNOQc+KXX36Js5bvfOdznt09I8XANE0c9ge++uprvPcc93uWZcHZhmfPXuK9Z5wDYQm8v39PiPGD07bWFK2YlsCSC0tKPFYyuO03mKa9pAffNPjy3pNL5sWLFxQlZOzVeiWtmSIpyzRNxBg4HQeG0yAE5JjICPJXSqnaUX25yLouYOpGUirqCwplLa2XmjMv4tFbdHWQS0mMpFJ9iFKSV5b3PBMo1us12hjGcRAFRQW1do+PPO2eLhtNjolpGDkozU9/+lPefP01eQlgLBlY4kJW8lCbCsptt1uWZeGXv/wl1lo++fRTSsmSIqaE9U7YVuMkOskYRVEUA43zXF9dc3t3y/bquj4N+uIKoCqJfTwemE8Dy3DCWnFFWPcdV+s1KSfePO3YDSd803B3d/fBCiV/oFH2vqFxHmcMRmnG08CP/sM/om0ant3csup6SIlXL15ICXF2vatE/hlFqdY2vXXomBhqMDExYpVm7RzrVc80Tdw/3AuV78eDlAt9z/X1FeMk3rTaaZ6/eI4xlvV6jdGGrhMzc2OFQjhMI/Pbt+RSeBrk2p151cfhxGEU1FzXTSApebZSydIP1uIGifmWi/OMFJ7z8lR3GFt7QMuS2T8Jo+eTTz6haVumMTOPiXle2B8OOOeYh/Hi6L1areuDHpmXhcNpYFkW7NkLSAlfMsRULTAz47IwLwvrthfLFF0wmA+Nba0v1hW+qYV/17HdbqFINE85MY4jYQlo7glzwGhTDa0K8dzwLrIdXihtRn4PfPCnOVv5RyDXhv455SVJ01xlQXdVHTtBbWmcEc8zycJXA+xz073U3ys613hxAjiznOZp4v7+ntevX9M3LZ1vKmIolLJlWbBFSBnGGIYqx1pvNjx78eJCtwwxVt5zFN/ZJbAsC8MwkFK6GGVvNxtub67xvqHvVtI+q/NHng77amsp6RzG0HhXdZUNBcV+nng8HS9uCSEEsc0sRYzZlKLvevoK0FF7yW9ev5bolgtpE2i8Z7Nak0JgGgf53tqqivOCSrlmAg1RKdSZmpczOicao+mcY55GToNshO/evQHgBz/4AZtuwxQWYooC4vUt1ops8ey80NYSK0T5vUMMxJTZn04sMRDIxCLkjilIm8TWVFZlITcItbSSqoyW17dZnPMkFoTTPNWZDwmlRMH+4sVzYgjsD0+UnNls1qxXPVebNfbVK7x3rPoVUDjFI/MsqhZx25OHc14Cp2FkCYFtc41tW97e3/P2/fvKl5W+1pwLARFYAfRdT9t3wjaysjhO1YM2xojSimkYGY6nqqeT9He72eJvPcu88Hi/40LP1JputRJuZRE6+bIszNNEKplhni6AEwi1r+17eu9Ydy0pZZQV8bZ1slkUVS59tjOJ/3x+xNqEd56mnSvq7KrxlLyaCmA0Z5FxTPzkZz/FWcuXr7/m7cMDVgvvufGedd/TNg22tTTlg8nYXBX8wzhy//BIKUX6xstCW60yzyQL58R+JucsvGjESiRMM61r2PS9IMwVxPj8s09RWomzYdW/PjzeE0Lg8LSTTTEEvJEF660lOY9TmhQCx/2BJUSS9eCrpYgW/va66/HW0TQeYySTmdJYrVjBWsN2uxHrj9o6c42laRyFxGrVXxhSMQZ2u0fGcZAFmCO+cXznt74n/kJXV7jGo83ZG1nS0lQy+Vhqa0UcMTAGbRNLTDJAKcrgrpCTuMFToNI/xbJVNqBSuxPn57ooRcq16frtFudALpnj6SRE5upY3XYNq3Vfb6oixsBmvWK96utOe1sZLEttRKeLn9CZEmeMYQ6B0ygLf3NrsG3P4+EX/OlPf0rTdlzf3lKAqUCujBxQ9P2K58+fC+kZiWTDMIh9RU1HLx/QWvq+p21bPvvkU25vb3m8f7y4soGkx10nox8qmg6nE3OQ95snYYJY46ptiadb9fRNw6oXg+BipA48jxE4t0GkjgsXVUaoKV0BWZxdh/NO1BNngYHWF6tP5xt80xJi5Cc//SkAv/z6a3FFSCKVWvU9t9c3rPue66uVmJGFcEFEQ4zkcSQ/PBCjTNya5/lyXXxFdL8pXGjqdK8QAmGc0avCtroluEaMqe+eP6Nf9bL7a83XX3/FP/z7f5/9fs+bpx2nYSBmhTeOxnm6VjCM1ljCsnB8eCKME7nytc+1vHeOTRXan3uQoksNaCWu8s5Z+l4YZXMNHs47fGNBedbrFTHGSjwRsX/OubJ4DF01ifPeX3i3uoJ6KYsXMAnGeUKh2G6vaJtOInnMZOaKv4jRgMjPzg00hXH+AwWU82WtrZPaC485/8owrH+mxem9rTswgEhetFaXmRrWGvq+IyWhrE3TRNe2FaQQaU+sbnY5CyOm67pLSpuSuBOkAk+HI4dpZn88yXySnMUoGVgqCeD8fvM8czqd6oWsrgXDKEOPlKpmUbVIT4mx6j7fv39PCIFxHHHeQRGn+JRFAGyMJlVP1SWEqnoX5Z2AUCJPG6YRe3QQF3wddbecHeer/b5RFmUUhFC/9mGHPDeq2058ZDKSji7zTKoTxc691MbIg+S8Z1oWMUKLgTlFWcTOk41myhEbRbVjlMxTOaflTdNUjWeVhrUd1jm2my19jYbWiKwqhApkVPbT2QC6JPHcKSkzTSNKK4mKrb/gBA8P99JTjoG2kZF4eU4QxQF9Oo1iNFb7zo3z2JWujvoWZyytr7zT+lDHFFmCaFKbphGFUoxIg1X+wChU1mJBohW29Vy7G3IuzLOwiZZ5Fsyg9sidsR/aJUIhwjvH9dWVsHx8Q0qR/e6JnDPeOvq2Yxxnqe9TRivJBJ2xUBSh8qqzNljKhdyCElBQKapxXGWmFVC/ZpbRr12cm3VHypnTcGAioZXF6jrsxkhP8O7mWnaFnNk9PNA6R7lLl4izVP/YnDPr9YZnz56ze3pi99XXzDHhuhXZLPziy6942u8Zw0JShpQK01HaLbmmwf0SsGq60AbPCv2c8qVW6nthxJxnisQQeXrckYukvk0rEaJfdWIMdjiKfUoMNY0WG4pvCoNTXZwhBUiK97tH9sOJTdswrfoqQpeoaqrbvFNONrVxZJhGWeB1gTovLKnr6xteffIJx9OJL776UiJNjJVyKCDWtmm4ff6MnDNP48C8LDyNA4dlZr1Zs1qvSBR2YSZoOJxOMjyoitvv7u64ubkjxMhpHCnAzc0txlqePXvGdruVGnoR+5hpGImpiHu5kppZFyghMh0Hck7snh6rjUiSKqqmbSEGxmkEVbjZbgCFeTxhTgun45GnvZhSH572aK149UrmZFpja9+0E+UMVPMtmOaZEBZePH/Oi+fPGIeRh4d7yUtM7Xk7ofYVp8lO0XU9z54/x2jNPC+yyPZ7huFICpm4CKB02O2hFGwj9fl6tebZ3bNK3+sZhpE/Of4x0ziy7nrurq55F+55HCZSLngtNM7kIOrElGSwklbCDJM1XwkRFfltvKtkehnW9a0X57n+WK06EfPWISzUlgOqmgUrETcLa01cD3KNcmfEU0AlfWnHLDXFA9lSYsosMZJKEXSz+oOiFNbqi6uBWFRKKntOhVSF9s+/x2jzQXluyoeRdpy9V6XvVQpY5yiUSrLXxBwqBM5FJ6owAu7oOi+yNvFTFgCgZCGjn2dyiKK/GhdXgEspUZDIDvpBi0j9+9mwOKbEEoO43GtbIXdJvcpUxw8UoS3Gkgk1Quac8VnkdLr2f42Vdok2BpVkOpxSYKp0DyrIF2IdTRclZUtZ1CVQW2RUO1NBR5d5/rA4i4Ac55coND6wys4cY3KpxndKen5a1VaUGFKLMbVETVGPSAQXRZHcB+c98yLC7Vwyuj4XSitMTUnnEDDOEnP6EFWVwbeerHpySCQr6HwMQZ63XCgqXzbPfLEmDZeRETGIzUuYF5EXUirRQup+AJMzSRWxOjm3V0qpAu6awlYaX0mJMP8VuLWff+cTSik8f3F7SSfnmh6cxqEKdkXNcebTphR5/forWcCVDrFer9EbWcSPux0Pj8I2SbI6pFFrDMo5VDGYnDHe4fsVxln61Urs78eADVEWR0yX1EzXDUIubKqsjMoaqvxRAOt9Vdm3tF3HNM00XSfpqJfZGo+7J4Yz3S8nlPowKVrr8wZTU8bGQZ16lWJAJWT6VLVE7JqWBHVwEHS5v5AQJLOYOdS2xmqzIanC03jg3e6em6tb1m1L07WsNxtCDByXEZUCQWXGHEnTyKnEC9NIGYNvWtarNdvrq+omUBdOUUyz8KFvbkVF8vS0592798LIGgZZlJVZtNSFuK6Dd06HI8s01Q1OHnzn5Z4vKYhptbV0fU8IC199/RXDODJOiiXIBnTVrShtz/VqgwKpa4FNv2K9XkkfvPYey/kBPy8EY+jWPcfxyMP+kVIyG7W9gFitszzt9zzcP9A0DacovshdJ75P/WbF9sUdJhbcAsMw8MUvf8l8lszlzHQ6MZ3EGWOehLbXWEe7ctx//Zavfv4FKYkszlgrz45WFCfgTqmk3rM3Ukri11RK/mC36QN4x1IGBna/bvn9E2rOpgHEJyhXRPQyZXmqkbMiobbufmQx9FJKY2rYP6d8YZHhLcsSLjWaMfaCYlEjiNHiJdM0jbA6Viuctah8QtVJ2TkXdH1ArPlgrS+bR7kw/QB8LcDFuUDRNF6oV0AfWomgtaXh3ICuTXrRKX6wWzF1HMI5Izi7IEAdX1OkLi1UnyCBfj/Q9KpBMbHOaDy3cBDgyhor6HSo4xv0BweDM9ekcAYdioywC1VXqkUqJedppc/b98xhuTyA8MF2TSmY54nD8cQ8TYzDAEXKuJLF4DvHKEL3GrlDmCsdU1V2lvtA7i7SaPfO1bZPRbuDpUSNcQ5vXb0p9f5oIXSc+cxnwvhZl4kWjSgFYVM5W/2A8gfngVLtZOoGuFTq5jCchHyiwRXPSq/xjcdZRWO0TL+z9uLQIBiJ0O3meeF0OGKM4fZKPHXHcZThXdZjrEdX61SUqoKGOg1PaekrnIHYnKuxd6X16STmbDkT4l9heO6f/vItl3UDPD4+8Hj/XkSlYcEZw8tnd3StldF3WrFad1ytV9KHjwkZLiXOAaEExjCTLaxurqvGWUOM5AJxiXSrTlDEpmGz3eC94/pqK2qMriEvM2N1dNdWU3QikMWrtdagIQasMTgrIE/fNGgKcTmR50Q2Ce1gZRTr6618QG1JuRCOA2VaZIKxkmE52orAW1e2zRIDS4ysvKczrSC/Vh7O1vvKeQUVMyyRMi7kFEnzDMCrl8/ZbDdkICYhNIjcTKiFDi0Pp8pYb+hXHSlH9jvxmTU5s6q8TFWg9w3XNzdsmhaVF6Zpz9dfHi/MoLMZ9Gcvn5Fy5uHhDfO88O7xgf3xyLQsjHXW5WVobQXhVvFEOzQ01tE3jQwVqtPAitM0WrKe3vX0fc/ds1uW2os8Hk/ECdlAaqov2cx5ZoiQ+z0LaXqi36y4ur2iAEtyZPLZrpDtqwa9TtzaDX+w+n2WJbDf7Ukx0rQF7wqfvLjh1bMbpmlid//AMgy8vX8Q4O/lkXBzizee3kjWRDEoDIfjQXjcMRKSqGy0a0jA14cjJRee5pmpZDZtw9XVNc572jomYtjtmOckg6wQVwtV2UxtdRocxpGYoqT0Voj7IUfOYvh/5sX55f2T3OBqu39//8TbN+/RpWDJtN7z7OaG805nVGHVep7dXpGzMGlSShynCueXyJICRSua1YqcC0vMJCV+NCllGmO57nu6tuFmvaJxjtvVGucss9eE4DicFDEvMmVKJTIwxnpxYyDGhMNQnMNpi7ZSH+RxlnEH0aKTx7uGVdcJIwgBg3bOMdZUHfTlQqNUteavdV9OUBRe+zqsRmq9vpVZnikukurGTAmRkiIlBJRW3Gw3vHj1kqfjgYenndQixqGU+AIZxDtJaRnT0DSOYVAMpyOn4wFdMm0lhwP01nG33tA7ByUSliRMnyWwWq9Ybzas1xturrcsIfDFV1+we3rizeMDT8cjU1gYwlzhxOrjWzORQ5rwk2XVdlyzwRlLUgVXDE1uMMXitdTwXddxtb0ixsju6gZvPWlI5CVfxgtSE+1cMiEqUkkUIjksWN2w2XjQigURNCgvbKru2qPazKpvuX72OdM48fOfzIxDwjoh26y6NdvVlt3jjqe3b4njyH53EDKHtrisaH2P6hQhVMQXzTTNkkHExJISvmlYbQVUPJxOxBQZQiAU8W42mzXWe9xmLWXUYU+kXAbtZqXELRBkIeZMObtPVtpnLDDrM1L8LRbn619+iVLQNg3OGuI8s247vD2Thx3b9YbWO6bhwH4aySFgAO89m/WGVDL3j08cTgNzzJf0R07wQ2HeeFdH63U4J7YQy7yQY+IR4c6SFkqK5BDwStQI1nfCuCiKYCL7eCQsswjCbYsGlmGqbB1wyorreki4xnJ7c4NSmmGOoqoZBu7fvReXeOtE6HwGG05ioaEodN7ROIMzkmyWFCkYVt2WvutYlomwzGhVmGZD03m+9/3v4huP8VZYKtNEiJFpWdgdDhyGE6f5SFSR5y+f873v/RYvX33CZrWGUvj+b/0W4zAyVlRX106tMZbGejpr2fRrOmvom46cEqv1hs1mIwixMmSVxfi5wGmU2TSFmt1QamNc7pFWGm8crfMYtAy4RdH5Bm8dyxyI03KZMrZUnaZSopE02rAPB5ZlwlYTr7Odp6HgtaiejsNBNvKQ0Gene8ShYrPZ4tuGru/pbFtVOAbbWr7z3d8ixoRXFqMMXlsa7dBF88mrzxiGAcVbplHQ1eNpYJoiw0kWigxPjjIIt05by1FIN+O9SAOXs7l1zvU9juTXr/HO8bR/IufCfvfEssisnnkJ1VTug1naeayi+N6WixdvqtnJt1qcv/jJT1BKsd2saJuGdd+zXa1Z9x2v7m7xzrHuG4wqPLx5zbs3r5lPAzkErq+uePHsOQDDaeDh/h7jO3S1eHBWlOhhWYSt0rSorUxfFsuLXDmshdPpgKLQUHClgLG01mKNp217UBqrnPAbjyOnKWK9Ym07cooc9wd5UGs/TWdFmiP+yvHy2QuU0jw8HTipkdPhyJuvvqZdreg3G3wFj0oujIcj8zKz2W7oVx29d2KunTNLWtDKsFl3XF9fM40D8zSiVeE4GNabDX/4L/0B682GP/mzf8TrN28Yl5k5LOyenvizn/2M0zjwNOwJOvLZ55/yh3/wh3Rdz2azpWtb9O8Jc2k8CmhxHrI0nAZ2j490znKzuWLV+Ms9XK83bDbbmqVEMJmbrYy3OByP8gArXZlziamKsK0RK5bGODrXirB5WsjK0Lc9jfPs7u8Zhw/eUF3bMo1T1fm+YL32nI4Ty+kk4wlaV0ngtQRoPUYrxmUUskCI6Cx9YrSQwl9cP2d7tf0GqilAo/aW56++K7NbYkVAp4UyLvS+R2XN6TSQAuwPB0KK7PZ7yIqStfjl1uHOWUmEU1HS7HGc2O335Br5BA0W5Hz39MT7+4cP/eMq4si5MAwD8zTRdC39alXBIWmNnWfKliISTLH4jL9u+f36xekq5N3YDxOKvZF0ajgNRGdprAJjcM7Tr1aiPFealDOHw/Hi55OSTBTWhcpPFdBgHEe5SDl/Y7LwmeVf+ZGqXGZSnJk9CtlBfZ1gPJWFmKHzLVfrLZ1vpIeUoCQRX8cQBVCy/kKTM9qA1pc5o5v1htvbWzG16mSWh67tgtY7jJahRaREDgthlpENbeMr8CVO7sYoaT15aZ47Zy8sIe89682afIIxLvi24ebmhnbVER3EHHn+/AXPnz2n5EKYhaCwTDJZOi+BEiO+7cTvCDGsboyuNa+9lDKqSM/w7CwRYiRHaW0YpUWPiigmMoW+9PIwnV3VrbtMDfPO0zUdvipEziBgrpYh0VhSTEQjVL4QItpZ+u1aJspVa06N9MrbrpNhP6s14zRhjWUaBtBKjLmM5n3znvE01lksdQZoBm0s3bgIiaUOtE3zQh5lsz8cxPNHRkicaZm1k5HzBRE+A4VohYlBQMNzGYOAbWftpUwkkGc55cw4yZAkkaZwaa2ZlCrIxIWtpq2os86R9DwS5FtHzpuuR2vN3faa1arHOYu1jjBPfPnFFyLJ+s5nrPqe7eaKzXqNtRrvLCEmfvKzn5NSYn84yrwKW2duhMgwCqjz/v175mWhacVLp6jzoKBYzbSKADtKdq9GS8OZYmiUZet7ilIMh4EQEs83N7y6fSF6ymkiLZkyi2XJNM8sqtDaFrducNZjjBPvHN+Qi+L7v/V9VusNMYlP7BIDp+GIKoVn2y1aK8ZpYB5HeQjmSXSHz79D27W0zkAOOKuxtgGViTlgrWV/eGJaJtbbNZubLV++ecMpzNy2Dc9eviTmzP1uR8qZf+lv/yF/+1/4F/jqy6/4yT/6McNp4PHNWzEoCwFy5u7TFa+ubwTNfP4SXQpNjmiKgHG5kJfIad4zTTO7/V56k0pGBjbasm561p0GI4OIm1UHSsnIxeoJNM8Tq6bj7vqa1jesq2Fz6HpMUZxOR8ZxwChz0ea+fv0GpTU3n7zks89fyXyWIACIzgWrDTdXV+JOVwkA8zzx9qu30mYKgUzhi5/8OVprVmshXOSqGdXasOpFMTKOE8si5dGyLOL94xsykrqHLK2kgiYh1qKFQrESDHwrViZJQVSKWIpMOVfIBuJsdUtoOByPpLxnnmU+DSCaT2MuHFtigJr1pVzNqZ04QcbaRku1V/+tF6e5pCDn0lm4j0mpy858HmArk36lHsu1Kb6cua5VW5eqlOo8bVpes1DOnEdbc3H0zrUfeLalPJtDOyM7fa7qkVDHsi3zwjIHGm2xTs6vpLNpsYYiw5e0RkysnaMo8alBaU7DcElztBHSQanTncU9QOwtrRUbz4VZQLA6/MY5QYdLTsTIxXjaVb+d8/TtXGSWxtnlQBuDaxo2NzfVh0a8edtKg4whMJxODKdB1D0x4ioFzKBqagtaWXTJqCzkjJLFeuU8CCgsC3GROgotYItRStzhrEU7j2t8HRevhKscwqVh7iq5Q38js9HqQwvtLFSW9FNxbvoZa7CNw1hDtkYogVkcIuxZa9k0QnhJiVOqw5hQ6IJMPM8ZpQwKfVEFKaXJQc5hmuYLb1n43hb/jWnoH8y7MylDPE/tRtpcMj9U/Wo0rVnc2cr1rEy5jAVUddx9bQGe+8y6Rt1U0kUskb9xzc6OCGcd7q87fv3w3Cp7Oez3zOPE1c0VXd/hNmvWGzHG/d4Pv1+9VR4YTkfG04nD/qn2seqsC60p1jLMM2EYOY4TD7sDwzTzsH8SZj/QVDmaM2ISJeoDy6braJuG7XrNddMSYmJeZLLwn/z4x8xLYH88scR0MZK2pi4Kpdhc3WCt4eVz8YHRVR0zhcA/+KMfMc8zb969E2uUJV5G64nrGxijaLzn9vaK9XqFeV0oaeF2veLT2xsZ/+4MuiQOexmdcPvsjuvNDdpCVsLdXW/WYvmY0mXqWrfqefbpJ/zt/+zfQWvNu5/8kvFwYh4n/sG///f5+ssv+cmf/pm4Eh4HrDb84PPvcL3d0ClNeDqcreRkcywRSpaHupYOy7Jw9j2DcmG4dNZhV2t819Kt1/TrFZ9853OU1rx7945hGBlOJwGgQmQZB9KsUTFehOZd19B1Dc+e3VUWlPRZ15u1pPXrHrREl3Xfy4Yxi5VqazwGxapfYZWMn4izjIO8vrkGpfj69RsOxyM5wv5pkEFOzlNS4f1xL+WSQjYEBWjHuETe794L6yxVjnTKsmCUkYV+XoCAOsgCuwA/dWSHtLhkeNE8L4SYhC5K+WAeVhVNzjuMd7QhEsLCNIu+VMTuYtESq5bXKDFrF/+Nbxk5z0ruM88xp3yZH+Kco+s7+vWaft0zjEcYxUtlqrQk521Vjgi8HFJkXALjJFYi47yINjAmXAyg61g7ozlPXT6bRhvnxIW862CJJBbyNLHbPzFOM6dBRu81S8CdSQZ6jbOG9jye7vqGqyuB+kOMnOaFt/f3DMPAV69fM89z7YyLkDjmiDWGrm3w1dis7zqaRsbatY1ns+orZVAudFgWliB8TnOe1+IkOp37jXNF6s5G1d16xbPPXmGNQ50CQ3Pgz3/xC969ecv7d+/ZPT6SQiRNC41zeGtYt50Moz27lidJGZWMe5ZIWWl58yyyNOs9UhFLreOtxVbG1GrVs16vubu5RmnNPE5oFDoXTIGxDEwxCodWGyF316lrl9qzih2MNbSdqF2yNRdXvq7vKCmxVBqbLuJAIa4VDmf9ZdL5dnON1oqHxz3DOIteMkSsUxgrz8kwCo3wnIFIdiUtseMwiZ1NEkpoTIK6Km2klDmTUvjgZPBNzEOGBFNJE+qSAabL0KIPUkTrbKWBSo2aS6ZME2cmzMXU+pIFChdZIK5vSd/b1OGe2+2Wpm3ZXl2xurpiHEe+fPcWrTX78UTTOMbxxDIL0V2miGla1QJwPA0sIcpg22lmmgP7qvo3zqGMFZf0GMgYCoKoZlMgaqZlQWnNISwob0klE6wieIverNHVgHgKkeMQKEOh8Q2rWYCE/tjQNB6/WTErhFY2juz3e75880Yc/pSieMcwjJeRcTJZTNO0HusMu6cH5ukEJXNzfcV63eOaOnmskRu+NVtSTkzzxM9/8TPhsTYNjdb4xouLet+TAdc2IiwfRv5f/86/K7VSNhAzf/6zn/OLn/+cEhPrtifqhWFasMD1esPzuzuG/YHheBSZVR1P0HR1Cvb9PWFeiHkhlUjrWq5vhO62WktUK0r6uLkUIgLIPbx7Q6oihnEc2T08sq/+OqteJoet+v6DLpfCEibGKV/0tSojLCcymAhFM1IwOZFCZDicIBda22CUTD6fTiNTJZdMy0IorynA28dHDqdT1VkWIXbMoou9f3gghFBlZSJndFXQPVaxhfCaRf9pSiHGzDhX4oeRZtQ5HW+82MWc09FSysUHudRKTiSAYp0DXCYLOOcukrB0Lkvgkgafl6CMk9QfIve3rTn79QptDNd3t6xWK9q+p1uvGZaZdw8PhBh5t3uoCGVBfUM46pylOHn7p3Gojd6B0zixxMS0CIysrUUj9Wi6QMt1d0GjdGYJEW0CQwzoCk0XA9EbzEqMloPZMRbxv1mWBe89pyhc0tZLXbN9fkfxjsPhwOFwYH848PrhnrP1pHaOMe45jQPeWdrGk5XDeRlkczjsGU6Kq82GzWYlvE0v48WtF+K9b6WN8ebdW96+f0e/WnP37DmuaYRV0rYY39QaFJYQedrv+X//yd9Hac3nn3+Hpmn5+suv+PlPfsr1ZsvLu+dEFDNiZLddrbi9uiIOA4ewSN3vW5yzrNa9cJifHgh5IZZIJmGcZrMRFs/LV68kbavg2mkU861pnnnYPVS088A8L+we3/Nw/8DV9orrzStBmtcCgJwJ8KFa01hraU1HLkrma5JRJqIxTDlDFGua4+MecmHVrrDGctgdZNpbEhFzAfbjTCqFh/1BFlONahIFBc94W/uLfdWkeu9p20RKUeaVAs5KvX/xAsqCcRS4LJKza4Q2Vtp49UhJCC4pSRlwRlpjdaI8Ox6e3TLO82XPhmKX4UvlPHlUXTS7Sutfa1HyT1ycCWm8Pu6fOAwnrPfYpuHp6Yn3j4+klPCNk9RTIQwXrS81mqv9trEa8U5hqeMSzjM8FSgx/FIVXXTO0nqxHDGKOkclMJXMl8sE76mpiZWf8xajWnCGYjWmbfB1JzPeoxQsRSZ2Pe4PFK3Y7w8cjgfGcWSsrtu+omqlNuLOxX/J1a/WGFTr0dbStS23N9ekZeHdwwN91/Hp9TXOWo7HI/OygNas1iKbur9/4HgacG1H1/W0K/H1PR1PxCWgsrg7gBI0NmZ0KXIdSuF0POKN4bNPPxHry5zY7R5JKcq4RSDGINOvxnKhvDV9w8ZtaHwjfertSto63mKMEqvKlFG6sFp1WGeIWUAVbURuFZeZkhPbzZbtViw7hHaXuXt+R9/1HE8nToN45nCea1OtbbRS6CLC+2Gaxf2wChViWEhLAAq+8aiUKSayhMi+Ot4/Hg9C2Pce4x3LEjhWeeBSMtloFgo5RWKAkHOtPaWiC7WFdxEcxHxpk4i/7Qew8ZwahxiZRhlwdY6croJXoxrFDAxQSv9K37ZiQ7Te01Y+8jRNAgJW1dE5gors0v6apPafsDiXIlaSD++fai+yXPo7D487SinYikSeRaTWGXxj6bsO14mZ8tPpxHA6MVf/FWMd3rdCcTLV33aSEeCtbySKFepAmcIyTYw588XjW+6P+7pDtlxdXfPbv/07+NKgWk+ZzCWFPA9fylnE1ipFvnr/jsfDgcNRJlvn2gg21uJTwirErNpKb0trRcqJ42Ev0VFtMAq2mzWffvIJX335S37y5Zfc3tzww9/7Pbq25f1ux26/xzcNN8+e8fjwyBd//gXaWIZJrEGu66iDUAflqgw3m2tBuKtVqM6w6VakZWH3cM+z21t+7/f+E/Rdx3Q88fXrr1m1Dev1irDMjMcTRRWGcpLw6qB3PS+ev+DVy5cVvU41usuMkjgPDNNE27VcX28ISew7Yoxs1j1LCDijaBvLerXm7u72Mh5DKc13v/ddPv/8c572e3ZPT8x1mndMMnIg5yT6X2AcBk77E74qiRSK4ShAk/Ot2IDGhAqB5XTi7cMDp3FkN47MIdCs17SsOJ5OvH0nnO+u6zDWkMioVCAskEU0vVlXR4hFzmMYTkzThHMNbVMn5WXZBM9p6bl2jdPE7unp4pR49qjq25bDQTSpWmsZnqVFCGC0PK+KIq3F7ZawLKK+SknmpGotovol4Iyhaf4KvrVnCHoJ0vqISQr+85SpXAolJlSqvRwFrhgKYj85z8sFEdPGYDJkIx6eUnALiFJK1fhZ0WV661ClyOKssywv8LrRlZwtRfZUXdcA0fQVcUcw1YsmK3lPUZnUJnAu1YqzqgKKOCZkJbMrrVZ03rNqG0GMlVheXl9d0bUNbdOKmr16CdmmZQ4RdKAgUaNpW/pVT4yZm5tBKHFaWgHDaRBupxK1pDGWVdcLWyXly8hzitRxjfd1QtiHOakUsVZsWrHxMLqughZZnLLlsVqvaLtWWjLzJBnJPKG14TScqpWIKDlSzpf+5lItZrQSaVfXtWw2axnLVx0qoDAvs7S8tAAfKKmzjDXoovGmunK0HTpLG2uz2Yrv0+Ek9b3xnAUrZwWPtkIGSEUsQ3SKmBSll1jNzFzJlKJQWV2ul8qFVMxlgJHSWkquM4ZQwScAXVt1Z2DnbIt61seeDbjP7TghQpwn3+lq1VnbRrmO9ShFzNGahllJBhljFGaaVsSoP7Qmz6H22yzOqTJ3TuMkjd4QWYLUBGiHKplpWi5DSKFURznLNEes9VUE7eh7hwtRooK1OCdC7nGUVKd1AjaItWIvY+OLDAQaQmTJSjihXWX3aLGGeP311zWfF0f04+HIeBqx6zX9ZgtAYw0UaLwM7bUgXFtAIQOJwjRRjOH53S2b1Yqr7Ya7myv5XDHirOHTFy9YdZ0MqSlwdXXDb/3u74FWvNntRC5kLevrW+7u7ri9veGTzxI/+OHvMk0TX375FeM48vbr14zjQL/asN5sub6+5jvf+5RS4Msvv+R45JIKrvqeq+0d61WdqRkW+lWPM4b1qmfV9zhn6BqPthq7cijDxcXBVd7r09Oeh/0jKSacewIU7+/fs9/v6bqe9WbNRZKW88Uq01nH1XbL8+fP+f73v08uhWcvnotv0zTys5//7NLfW4I4AQB0fYc2hpU3NLZmMtrifMN6c8U0Tbz9+i2Hp71oZn0jpgFVLrjabMBa3h6fGJaJvBiyN4xhZsmCO6gQMLnOx8lFes5KYbD1nDROA9lWxNjR+o5Vt6lhQTbnc8QEqsNkvFy/s/Pi2SZF7semLq4K7qREDgGVEgZYNQ3Pb2/Fdb8OZi7VVzjHSFq49Ke/dVp79pOVtkK178gZlEYbK6JjwgfA6UyTKpU3W71emmoDcf6a0dWhrnBpxhotLuXWWGxl9JsMSRd0URgk4jrthLxXjYWXaUYpcEbGrC/WEoyo089jCowXXaqpOb9SZ0+X2qrRGm+krdA3LevViu1axsF9WJyW7WZD37Z1rmYCpbBNQ0qZcRI2U9dIJJMwIOSExonNYtu24qmUM8u04N1CqnaYtpoLa7gMVBLKnL0MWi01FZNSXaKLcWLc7JoG6wzNqkEbfTFWO+sUBbSRQcepzuhY5uWCTFtranQxlCyRo+TMeeq0PxMFcmH0Qls7DgPTNGGszC8JUVo3YlHayAg872m9wRpplVjrsM5igrl8nnNWoRBrUqUFk7iQxzkTCNKHlseZ3lmzK6F5mkv0PqubtdIULdpNSvnglCGNePme+n4fTL+r6vUviWq6PqdnFw6tVJ25I5PfVJFN4jymwzsrvOQo/NuzE4ZSdTH8mtX56wcZ7R4rPzCTtUY3RtQG1tE0QgY37kAMEe9sjZJgTZUcIWBP263EWXycUHquY9wNOZ/9YgvN1rHqe1rrsCjpsdUFZJWmoHEJXCVlaFU5ukFGHrz65Jq+XxFuA6kOxR2HgcY3vHz5EmMNu8cd0zTSKU204m17eysj325urkX2VAGlzWbNzdVWrCedw2hF62Vg6n4YGE4nnqaJt8OxDs8NKKQebRrP4+4J89Ofs91sefXyJVZrPv/sM4HZreOhEZQ4zTPj/sDbr76ilMLj+/eMw8DVek3/g+8LqdyI03vMiRIhHsWFrmjQ3nJaRt7vH2jahk8asSUVEfXM027H48Mj4yDiA600z58/Fx/afoW1rvKMhbvar1YYrbm9VlUeJ89Q23SkVBiniV9+IX5HD487xmlkXmQ62rmn13YdP/jhD9laT7/dcnO9IoZEXCKnYeDnf/7nTOPEkiLdumd7teX29prTNBEPRyklAKfEa3blvShwlkBrDC9ubogxXhzpz1Onu7at8zW1jFlUCWdkk3Zti+p6yJCjKEd844WXPUlbTzYES8mF9brnPKkcCvM8cjxAjAu+Ls7zax5kVObZbkWnBCliKazblkUb9od9dZlIotUthZjCt4+cx3HkPIhIaWFWaCUk97brLvWo1pG+bWl81SRW3R4lUYqqBbcnxjPrpnoQUS7OfEaL6bBVwqBQBbQqUBepNMQVOokDoFJFDJxDQqFZNx1X682F4fy02zEfj1gF1+u1mFsfT4RxxCmN14beN9xur+i6lpcvX9K2TaUgwrrvWbUdzlpWnUiVSo6VnifjIk7DILzhujg1UlvHnAnjRJhmlmeB6+1WNoJrmaH5dP/IMsq4iXEcicvMcb+nlMJ0OrHMM23j2a5X4j4XhdCQz/THnKBkVmEltoxhYZwGuhR4Vs275ykwjhOPj0+8fv3momax1l56dN6J/WXJsgEbbWldi3HCTdVGi+F0nUkqKqLA/mnP/nDg4XHHMI4ch4HjID1lX13sQxABvW087XrFPE7EKOPh379/L3M8S8Z5T9M2tF1LOPNQzy0KVV0SKmWTnHFGCA5hWdhnQeGpz5MzRqbHVfT2vIsrpcWfyFrSUmtmJdnJmRl0dvM/Tyjz3ouzY50gJvaaMvDImhpp65iQFCM5JeyZ2FCEoqiRURGqiMF4qeXf2c9C2H/fsubcn04oJT6xThsBUDIkAnkcq6pdAJBu1bNarUhxISyCOI7jSCmZ0zyIke65sZuieMLGxDzIMN3n+QUY8WltnSeHyDKMhBQ4DidRqleKmnjLygPmULRK01lLb90lgjcKdAwoFOPhiRFYhgFiYNU09N6zWq+4Wq/pupartRCbU6qTr4FpmjilxJu3r8UHBrH8/Prrr3n//j1jzhxjHS1YwYN5nvHOYZC68Xg8st/vZZRFHWx72MsAn9Wq5/mzZxVcsHX3NqSoLyCFRprnzok/j3g2ic1JLIX3O5kWfjjsMVrxcP94GSufS+F4ODAcJ7x3vHr1mfQifY/GiKPDHGudlcgx0zUrTCqMwyLypigAzH4/8O7dI+M08ebdPcMw8vb9A8fhJKhzjBLhYyYm+OWXr3k6nJjyyJvdmjAtzOPEeBp597QjLuILqxFzt5QyjWt48ew5IUTWqw3TPGOt5WG3Y1hmxmWp2VZCFcXzzRV5lVmvVzJY6jwpXAtwmHNmv98zLiOrVQ9tg3eebbup1iaujqiPWKMrA0hMybWR4BGjEB5Kpd598uoV3/n0U+Z5Znf/QFgWDkqyx77taBtPY20dKVnbRka6F1prsW+ZZ6wT0PDbL87hJHWZb8QfNUuer1IhxFINkKUB2/YrNldXTOOJmCMpBo7TSAgLw3CS+Ru1WTzOI7vTXgSoWBrnCTmhrME2nq5fsYwj43BiSYHDcJRR6sqANrVYl2jSNJ5GG3pjWTnHqu8EUdVKBrbOM7vdTojR0wJJTJj7vqfre67WK9q2ZdNLD3BeptozLMJYOZ14/eYrUqrzNJGpVK9fvwbnwbe1JytI6ukgyOmqbeibhtPpxH4vrZjHJMOH4ryQYmTV3/LZZ58RY+R0OKKWgjOaVO1VtNYYoFQXPZmCbStaqNjtnzjs9pxOJx4fH0khkEYRlm82Mj81p0SOidZ3vHr5KdaKobNYzRTCLH3NZVkosRBWkRxLXXRi2xFrejdOE0sI7PZPzMvC2/cPHI7H2hKTek8vkWmJfPnVa7rdE/tlz+qhIy2BMC6kEBkPA+RCZ5s6+7QuTt9wXfu9z59LV6DkwrbreXh64nG/Z14WTsOIBVabLcYYbm5uJDBUkr8xhqZrCSHI9O/jEVuplL5Z8ezm9lfI6zEsVW00EcKCptbeRbjJMgZjoJTC7/zg+/zN3/s9jocDP0cxDQMlRBa9sGpb2kaE6KSKSdQuRN+2GGt42j8xzxNKtRdM5FstzrZrAen1jdNIKYqcVe0hnh26E0ZpDsdDjWZSfHvvabtWuI45okLdzQC0WDeCwhuxC8ka5hhoSyKRmeLC4+GJZZrJGpSzkn5lMb5y1eL/7FPbdkLRKyUxzSMgdYO1mtPpQM6RUhIxLXh/xfX1lrbt2Gw3OGtJOUlbIAkaHWJgDgvH8cj97lEc1I0kJIdxZM4Zr6TlYp1j1XVixlW9Yxpr8EZGBtze3qCVYplEVTLmRCkJlOzasjsHYt21jRHTsFQtIEvVCk7ThA51HinU+Zbq0p7IMZKMh5wFhNKWXDRJS01ZMuQEKRZSKmhtsa6RckVXOWBIRFVAG+GwElEktClCOFeapluhrGe9XVDWyTTuikjGaSKkxOF0EsmdWfAnK9zgJUhGdKou6u2Kxnm2qy3rbsUyL4zDVLMrKYHmcaKkzKrr8a5hCQvHYeA8MlJpRd+0eG2JBVQFs4bjSXi3xtC1rTCFqjXrEpbKMRa7mdNwYhhHMZ8LAeeFCnieZyNT5yQwjdPI/cM9Gvj0k1cs8wIpczqehAwSAt5ant3dXebJhFgqXRL6vmO9Xl9m/HzrVsp1lTHtn44cDscLo99qmXuvlL6gn+M0CpBwe82rl8+rG5qghMroi99ozBntHJ2W6Vp9t8JZT9SKwzLhkqcjsRuP/OzrL8gxsW47bN+yDEIXa7yja4T1cnt7Jd4111s2m57jfs/hcGTV97x4fsc4DhyPT1Ai+7ywLCPrdcvnn39G07ast1sxbH7aE2LEOmkLjMvE03HP/f09P/7Fz5mWWWwQgaWOLfTGcLVes1r1fPpKqG3OCnkhx0hJiZcvXvCD738PSuHx4T3zNKPIDCQKiXkRN/pxHmubSeGUzC+JYalMJU0Mkd3uiVyEBBJTYrVe0fU9/WrD9c0tJWbyYaTEdPGVzTqRdMLqhhyFcL7MQrw3xtN1Tb3bMmZgGMWErF2tcK2lVHE3NqNcg82Z0nQSofpVjaDvGd+/Z54n9vuDkL+VwXvH9GYkMMtw2iTO72WKWGV4cXvHqutpbIO3nrgE5lFIAyHUEfUhkHLh+e0dt3d3lSF0Es3nstR+pPTcg9KEohimkYf796Sc67PSYqvoQObqHOXzZimx3r17x/54qD1W6EpP13cXtFlrzUyihMxu98iPf/yP+OyTT/lX/uW/Q8kZpxTv373n4f6ew35P37X8zm//kGEc+dOf/BllyrS6wRfHTbrBei8bT1i+vZ7zzA/0zpKj42wwf7alEMqSLNDzdOJLMxhR05ciQI+qqhSdUrWPlMnS5zmHqiJ9AraMLDFIMV8tEY0x2JjJiA7QNR7bOLnozkirYJ4IaSEXmWExL9NFIVIotJ2AHG3X4ryVhah1VVNIPyoVITkMw8DhcJB6t+6oQgORGtufdYje03mxcPGNR5U6LaNyhlvv6xzNM1Fa0bQNSiGjzi9xkMvQJZmMXS59P6U/tB1yLhVYk8lgxkodprURd3YlZIRipF0Si7rYMsaU0PVhUFpffu+H6Wmp8k4L2RhMNHVQT74Qz2POzKHKp+pme5bXnVNgo5SMujtrF1GkJOm8ygWdoejayqoKoHGa6uKcf4UEMC/LhfiwLHV0RqX/uWwryytR52hcwJlyaa9IeVDq11JRUh7VyHkeSZhirEOoqib1G+CQUohjhpFa/9zCcZWieHV7IwKCLPNJhfQud/aDHllB0XVCn/CqU/krGHw9u7oWUrhtWRaR7Cwhigu29WLUVcfJt15kVNZolnEAChaFtY7u5haUcDlDigzDyOPTk/RQq6D37MlyPJ24fy8DVG/u7lBAU1MMv1KkpPBORs15Z+nWPVrDV2+/hpLo24a2cewOj7x++xUhRI7HAwDf/a3vsNlesV5tcK1MlUolEOLC4XS41FQxRd7dv+frN6+Z5lnGKZSCcy3GWq5vb9lsN1z5hudtz2a94TsvX+C9Z7d7YJ4mbm6uubm+JufEu7dfV9K0MFI++fQlXdcxjhPDaUBZhW0tOhu8kvmjYYnEKN+PEtBkHEZKiXWBZp52ex4f9zhradsWpw03vsNpjXcyQ3Oe57qoCvvT6TKo12gt80Oi3I/D4Vid+MXf5ixSblf9B/NkrRjnmV9+/RXTvIiqv2R2O6kHU84Eigw4thblPdd9j/eG3f0D73Zvccaw6de0vuH2RiLnsiTevHlLirJBaK3pu46iFPePjxyOJx6PB9bv39G0LVdXV5WxI71egkIpGbi1q6M3vBPKkZAIlIyamBf6tkOva6vPmku/NKeI7ztWG+EPn1HaUqrQvmlQTUNftcXWaJYw0fUr/va//J8GrXn7i1+we/MWozXv78Xh4ywLVFnI8tZKX9o4cxFJfKvF2TWN7B4JrLEsZpE2h9K4s71HXZxdKx46lETJ8dJY1kps9LXRuJQIdVc7u6qHlCtTR17nkeFWiw5TJm7J+6AtuhisFSmXskaK+lKYl4kUA85pWu2IOTJOw0VRYIyhX/Vstxucby7N6pzThXmzLPNlgR6PR/aHw2Xupej2pNne1bqhr850XU2znXM4Y4ha0ThH3zbi5DaI6/dZhuYbT7/qK8mj+tkI5USI2FQKmz5bQQtJO6Vv6gkhBolY2WUhZRhLNg1F6Wpi/cFsO1PlT4BrGooSOw5x/5s51bHxsZLhj3U+aKoLDa0oRuR7h0o+OJtbT8vCkuIlumq4CAi8a1i1ntGdZFOvhtdt09D4VuxElsA4zdWCRPqNTSub1FKRfTWOpAKrnOlX/YdhR2cKnOIyKgKtxID6G/S4XAcxJferapFSxO1dCBfqMii5VMabqp/jbBh97qkqVTWaFLpVj/GecbMhDQPzPDMMJxmGVRf5B9+iOp+VSnf8tovz9777W6SceX//wOk0XPquZ+hfa30h9HaNCJKH04nDfncpprWWCc7GiJmuNpYlRsbnn7AsC/ePO0KKxOPA/WmSCVIpMoWR/SS9s9vrK5x3FNeTrZVIN86iRJgGrNF89vIZq3XPer1ive5pvKNtHN55nt3dYYzlsD/x9Lhjs9niNo4UI0vKolu8vxfUcyej607jwHI6sVqv+eEPfiBeppsNttp5WOfoSmGTM52zlGWilMRV37HpGsiJ+/dvZee0mlIkrU8x8v7+Hbv9jsP+yP5pXxegrnRG6QcucySGKFOnD0cRHSRZ4Nc3NzJxK0FOhcY1bDdbLIqYq1ePlXkzSRXSeROaRuldVq7p/f09h/2B/WHP/YOMRfReFu4cqjPd5IjOECvHdRhH3u93zGGhaUVsXbzB9g0hRMI4UuLCcTqRSHx6d8snV7dsdcuzVvSk19utLEAnZnC76ZHjMInG9niUiWpFZto0V1vuNmIAtp9GFlXIT1Ymgm22deK6ePQ+HQ/sDnuatuHZ9rnUinWMo3OOHui6Ft+2Img4nVgqWX8YBjZXW2H0VE7uuaSj9ikBydisyASVguF44B/8w3/I7umJ427HeDhd+MUpZYZpviziAoJqm2+wo77t4vzk2XNBDOeAyTUS6l+dKP3Nxdk4x45COB2lprKifmidOJf5tsP5trZgYZxnVIJxmnjaPzHMc6WtaeI0s9/t6iDVRkgArlC0Yqmo2TKN7B/e463l1Ytbmrahab3Q3axQ31b9ih/+4AcYY/jRj/6E3eOOtk5RznVeyTSOjKcTp8OB3YO0B8SqRNQDn718Rb9asb66xjpXDcgyLga6ZcYbTUmBoiXbMEZcxI/HI77xrDer2jMU6dLxeJAe5PHEYS+tCOs8KWV2u311LwjEkNg/7bl/d183RVP1lBtW/QqjI1olrLF0TYeikE5HobqVjC75Mkk550yoovWsJaI+7vc8PDzwtBfgyxjLps6eCXXshgkzKjiWGKXXOE0cp4ElBJSzYIXZbhpHLGIFUnJhOis3jOWqW9Mbz7bpcc6x3dbfUad9lSKDlI/jyMPTE75p8OueprT0m7Us1vt7puOBrBVqONF48bI9byTzLCPjh2lEW6EcGmtEGI1M6tZKkG3nLXkR0v40TZcZQKVyac+eQRJBdY2yQiCwVbtp6tfneeJP/+g/5Je//KXcsxjr0OPmQtIpwqUBpehXa9q+/1Arf9vF2VpLNpqXd7dcbdaX0eRN01zsPr768kuWZeZv/s7v8vlnn/F0s+Vm3cuO9LQX8nXK6JIoeSJMZ+aGoSwLNmR8go1taZWtdhkrpnlkt16jteL25grrPXsMY4EpLOyPJ9IiNRMl8/btG5bxxO3v/01evXjJYb/n/du3HJ+e+OMf/QiFYpoCfdOiUYRJGtw32ysa61i10ou73myEZ1vHGFxdX/N8e0Xb9Ww3W5zzHE4nxjDSKEPrPN5ZvJYJYsf9XprWSkQAIHNLC0JUADGdiilJLbXbyZ3TllK4oJSNb+g7h68Sp0JBI4Zad3fPZDiUPpDzAV2lSEaBcU5GT+REmmeZp1JT/7NB8nyUdP3+/p79XkYRpJoazknE0bZOel5KJp5OjMvM/iT96kQBI5Y0pMAwj2KVGgNLWmhMw83tDdv1hs41qJCwWWFcQ9t2PLuWEYRni8mUM0UrsIb9NIrrxTQyxMBhmdBGFpnyTjbmxwdBxp2j9U1lVYl52Wq9ksU8TRdTtXMwOetMl+oFdBbmbzYbVquezWaDt040xbWkm6dJUl7j0RpWXUfbtEzjyB/96I9YZvEebroO37aVO27qUK8E0ySKqpoKGyN1rtEyH+Zb25R0TgTR275HacXuac/jbsdms+Gzz8RR+8d/+iMeHx/5O//JP+T3/8Zvc9jteLy75mn3xE//0Z8xT7MgaamQxoUUC8pYtHMQIm5JEKFxLXjFs+fPef7yuSzOp0fZJDoZ0DofR47TzDgHdvs9JUVUDKRY+OrLr9h5x7/4N/8m3/n0M74u8O6LLzkcj3z55VfkXPjB93/Izc0dqsAyTvj1hrvrG7qmYdOvSEvAFNi2PdurK25vbun6jtubOxrvub66xf1/SPvPH1mTLM0P/Jl6lcuIuCplVXX3TItRnAHJmQV3sfyw/ECA//KCwAI7HC4Bssnp7uoukZWV6opQLl9laj8cc79ZBFiDzqlEVBaybmSEu79mduyc5/k9VYWZI+k80mhDV4sQui7A4MPzM6fzmdVmxXKzEv9r30tzwklo0zTPjNPM/nDk4emp+GSle1lVUiouFxtWyzVpk7h7UTq9pXH24sUr2rblAijWSjGNE9ZoVm2D1opxnghhujZyfE4MhXj4/vGeYZQQo34YC1lOhvJDDBgyq3qBq2vORQxyHnoe9zsyYCqLsoY5B4JPnIeew3FfkrU8Ve24e3HHi5tbFqqGKZQNr2bZrXh990rCkVQhNSqZYyeruT/JSGvfX9AkoghbLpcsFgv685mHx/trt7yrG6Z+JJT3YbUWJ9JQpKdV81GA75zDRwkfHudZ+h4hsN1uaJpG+FDOFY3uUhRGpctbN0JeXHYLurZlv9/zt3/7NzJLLXJWV36GGAcom7Qq15HLZELGWdZpurb76SKEpAQ9oopDYHWzolkJ1OvmzUvqvueTLz+jXXVMceKbH76RB6iydMuON5+8ZhonDs8Hme8ZgwGMq6jqltkEhmHCKC90shjpz2ceHzWZjw0UV0l+RkgnhnG6IjdVTjgjIUpNXdHUMrYY+wHrKl5/8QXt846H+0fmeRbHiykEhrJj+dmToyhqtNb0pxPzNHF3e8vrV6+pqorFYonSmuF04pwyYZqptaWpNIvGkkmczxIsq7WRhQP0/SCZIBeYVxbnPVncEq4YCEDKJ6U0tuhdQTHPvvx/yAceIzEmjqcjUykx8+WUjJFojAi9tSYEAVJllCSFx8hYFuc4+zIyUXLSFneOKm4jbQ3GOox1KC1xDRcBvNyn5BSIIRKQ0YVSkjBWdR3bzYZPP/mE13cveEXFOgtb9nQ6M00jp9NRStdiK3POUTcivxPvLdeFawtqUistmZkhoksQRfSRoIP4iIvbxBZlTwzxo7ulqJcE3GVYlIQ5ozVJ62s2aE6JaRzp6pr1ci2jmCyBXFXtsE68oMH762u+MIT0j0ZgspNydSYplfFeRl5t01I5WcS2dJJ/0uKctbgfbFOjK8vnrz7l1SevsU1Lc7NlnkaqTcX+6Ynf/sM/8Hf/49/ypz/7Of/yL/6KF5s7/uQXX+LHmb/+//2vfHj3Ae0sGkPTdKw2N0yzhygYk/vdI/M48cPxwPD1xGa75suffykkvUULWjF8/46HpyeG45FpmqitdGAba3m5XbFsatIceP/DW+7efMK//Vf/mod37/jw/XtOux1t1dJWjfjVizPgeDigteZnX3xJzpn97pn+fOaLzz7nT3/xJ6JW8Z6h7/nr//3/4Pn5mZcvX7Hd3LBatby4W3E8Hvnl3/+Syc+8+eQTbu9uuX965P37D9duqzaGpmsFTaENzlYsF2vAlTg9yYe5fLb9eWR/OJYHzn1EXqTEw/MTIBAzVwm5YJ7m4vyXe/sl7jApSQbvp4nnglA5nM9MhVLYNjWSi2muAnJjDHXXSc7lPJGGS/f1UppJrMJwPjH7SbJSlWG9FELE65ev+G/+63/HZ598wm0yLLPi7//+H/jf/te/ZpgG5ihSzs++/JLFcknbtWzZchp62q7DBjFWo6BdSGjQYbfnsN+TYqQyDqsNfpxRMbNomkJElPlziGJMUErRFii0Dx4fA8vlhpu7F+z3B969e0caR5paTs3+dOJ4OnOzWPOzT7/AGM3pdCTGUKImNbv9jqenZ/w0S5WTM3XbXP2scwzX+W3WkkwXc2Z/ODKNE59/+hnb1UYWtdZ/bG3+8cVpm0qkcm0t+I9VS7tZYpqGatWiasP61S260thvf4dXgaASSWeUM7SLVnaluhLFUNKQkNPQVeQsYxZf+C7TPDH6iWEecWPFeewJRGxrr9jMDNduGOqjP7Mu6BIhDZxZzVMRR4h8KzbSjNDaSNZlOQliaXFf0qZNaeM3bUPXtYQQCUEcCylGYghXYbzisjuq67Bdl4VB2XHLBPtqvcs5oo0qSdtCQdBlAaLUtSMOSgbp+jKrk/cNSjhrjqCR7NTSAEpZJH1aGWwFRhnBkkLRRRchQ+YqArFFRqnQ5aUU0kQudrHyfZffCcqYQdKj5PNUWqohV9NWjYjPlcQTphTxUYJwlZH3OMSA8jN931/L/FhGVpf5ZConT+UqKRcvJ6PSqOL5rayMrpyxVOYj9FpGNqacnHKaxhQFul1OO1WENKY0f7Qq8YRFzGCKbtxqjcrCUrZW0udSStfqR4I4P66wzEVQYyTGwrrrPVQrVaqlC+HvP6Nb+/LPv0RpzWq9loTlzQq9XaIrB8sKi+P18s+4mSb2ekTfNmyaBQczkozhplFkY2lfrFjHkePzmfNhoNILqq5BVY5uXBGt5unrE999eIdpHLZ23J/2/PA3j1hnefXJS6qmZoia9c0GozPJT+iUmKYZA2w2G15ut8zTxDe//4bT4cjwvCfFzGdvPiW9eoOr25LEXKxrudDU5pmH777FB8/dzQ3Lhfx+tq0Yjyc+3H9gGAbaruGFvsM5wzQPqHMELVK527uXpJTQxjJNF4hZVXi1dZH9BVIKhDgRs1DMUZqcwM/SuVNKFqIp1ryu6+QeVWaSKSWGsSfEwHq9YrlcsD8c6GdR2DzvxC20XK+o2kaiF7TGJ0AbtHG4ugXj6BZiZZtnzzTOci8u6d3D4BmnyPk0MfQe7yM6ywjAD9KB1FFTa2H5LtqGrmnZNEtsUPzmb/6et199gxkH9CzRh5tXN2VmK2X2f/zl30gUR9vi6prJe2624tU89QOZzLLphKy3VixNQ1NVrBfCB9JllzFFu+aDx08CJ1svlzJTLqow40wJDsoyGeh7EQcAzkhoktMlUSBEjs97jJFrTkoJVgtUXQt8rSh+jDWowqEiChkQbTBODgqFYrkQuoLTlmmc+PTNJ3z65lOGc8/z09O1SfiPXpztjWSDdJu1vIFdg2pLGGItJU7TrHEhsH59x/b4jMswp4hXkWQLDaCpqLoGTgMhR7IS3k9ScucxzjIFz2nsaWyHahzDPPN0esY6i2qlJKTe4KqutMkthFAyQZKE7LQt/nziXDybO+NwrmLRrVDGEBJX5H68euwSc/AcTkfmeWa9XonqRF+E0YHzIOlRxliaRhWqg9iLpmkiZ0kBv6D2Y5SdVSmD0eJlTSkzzbF4B2Oxh4FxphgKBOCtr3jRkvJd7mQgp3pMkZiCLIympukahnGQIXzOVydHHSImJnIpnTJIWVoQkDojVAJbEUIm4+U0VHKihyDaX+8jwV+8h1okchciASIOqV3Fol3QVrWIUzLsnp45H46k/gTzxOZmy4sXLwQs4YWC9/QsY6vVZiOkQq2FlaQ0zogzyBlLpS3ZVegWuqbhbrNBoyTAqHg6cxL3zZxSGfHJPdAUXIktUryQs6Sfh0tUn2xG4h+WwCYyEmeoNX6SOWVsaqKxP1pM4jlNSiqcpHIRZahiObMiWkBS6Hzb4YwVN1TTEuYSdZF+orb27hefSN2+kPa0cgacJWtNsHIs+yDQ4vWnd/ys1Zwen9m/vaeuFWYjQTfL13dEo5miYo4Ku2yJVuNTYogzfZillW8tYwyM/ZGkoV4vUUZx8COns6dVDZWumUNx3oeA8R6r9TV7xVlHs7Lc3Nzy+pNPRdR+OOFDZJw9vjywSWum2XMezgJyaiqapmLOkd35yPl3A7//7hvC7OkPJ8iZpq4xzrLeblktV/h5YhwHpnni6emJmBLLtczlfIiidnFVafpkspLouVZiUBinWZisWZKzUs74stmILS5yOB55++49KUn7P5fyUBvFFEZC8uyOe879iRQyrqrFIxkS/XmkakWF02iLqRrGaeZ5d2IcPZWbUdoRSjcRwHuZ54WimplHaZhVtmK5WBao2lDgV3JiLeoFi6qTuXbWxMnzw++/J6VI12gqp5l3ib7E1qssGurD+Ug/9EQk+VmQOHJ9GEdxjuRpFtZv1lRo9ByZD2fBxiyWGK15fHjgfDpKzk2WrNSh72WRBLnTm8qirWbuJ56OPaGYqxVKDO/TRG0sdze3tHVNfzyjVGYqnuQUI9Y5+nlgmkaxIHov+uHCIO6HgXGeaNuO6xoOCY1ivVpTlUyhp/sHUaDtDlfC3z96ca7e3H1sR1t7vb+IiEC4LmOeiDnQvVizuFmSNdzffyA4hVnWOGVob9bEBKfzRDPM2LYhGU3UmSkGphBISoExzElCbG1T0S2WZJU5h4EUQNczxsUrfFiVOLtgYoGPBZpa5HSr9Yq7uxeM48jD47M49odJTMFVja5qzn3P+8cHjNHcvbihrit8ToShl+bAbofVWk4E67hzt9i6YrFecnf3guPhIGII73na7cTpUVUoYwlRbFkZQSiipGsqFEEDaGI8cDyei4RM7r/9OFzTp3LODMPA8XwqTQ45IRerjqoI/m1lORczusqaxrUYZSSl2c+YqsZoUbRIENNASjDPgckHjJfgI6W1eE2DiAguHXExGkvpt1qsZFFm5PRG7ldt1dC4RrhNWeHnyMP7e6Zx4vbVktW6ZYpSGRkt0s8YI/3YM85iMbNmFO32LNrh6KOcoEqTfaR1jeiFfcSHAV3XdNuayjkeQ2Q69ygrWttUMlLQoGNAGU1jWkxVMwfPbn8QQQFyXZynCZ8y3XbLerWito5xGJDMman4OsVd5VMQtm8xYV8skFkpxmnieD4RU5a7ZoI4eZyxvHnxms1qQ78/ctjvOZ/OnMtn/5MWp6tkSHrBA147S0Vdk3OiwpJQPD88cX7ec3j/SDrNZOVhCCijqLKmMZbWVbR1BTmyPzwx+0BInqwzVeNYLDpMCugUBI0YDaiMiRLQ21rLqjaMKpJ8j875SpeLKTPNgXMWYl+1P9Ddvy/U7ohxijqJJrdZVNRdR1tDSkuMMbx+eUdVVfSns9AMrMQOXBanUhL7PvRnnFL44cwwThzPvRDmm7owZybiKaI0bNaSKJ2L7nQepzLzko7tPI2Mxf84Fi7wHEVMPpXUrBACc8qgDKZbAplhDoxTYLUeWfUzcc5UqpJ7bZjQaOqmFahYW9NYI8L5o4j7Uw6gMlOYiSMCC9PiE03EUhFJF9YpYShVWmNDICtYd628Hi/id+MsppI4iggkLUQLlKZpFtSNxApmhVRI2uBT5hADp3km51k2/SQJ25cWt84Kfz5SzSNtVdNWokJbti3OB6bHt2ileDg/cwqDZL778u1KGmjLWgwSGAvasO1WLF/XMloq7KBxHAV8RuLkR8boGYOELeUgo5rNYkvbdoxhIvuJsU88HY74FMnWkrUSUUMI1EmaSlZpuqbGaQN+wp+PpDCgCTibaFrFHzk4/xOWsTIPkg7f5R6lyDESJzHMtqYCDL/75gPf/Oo35DGQzxM5zeRjQDlNmw3aVAx1Q1h0HM89948P+JiYYybrSLtoWfs1VYiMQfgzIcgH5ZJ03ta24q4znEwgTAecdjSLDXVdMYfIeZQYwLOGMchczzlD1zhspVhYDdmx3rastyv63tG6hHUVn33+GVVd883vv+NhmsQvah1WSyBtDJ53P3wvcOTdI4u2JRtLNA5jDO1iAWSOpyPzPPHyxQvubu+K08MTfGA8nwkhYmyFNoZ+6EVtNM88nSRoGFuRtWJ/7jkXvqwxYrvbrteonHl8+wNjf6br1izrEVKiNeKxPI8Cl97ebtmsN9hyap58z/HpkX6aiNGDzpx9TwgDpnYCwOIShBQJ8wBzYNEtWbWt7MuzxzhLu1mDUTwWyaWtHbZryDFJyrNW1N0CFyOL1YblesEcAqP3JK3wRjGlxL337MaRfp4Y/VyUNa50NS0KBbteXl9d09YVy8WC1+4FKmT6RyFU5IKxTBfMCBJVWVUV1XYj1kfryMryerPhy1cbpnni+8cP9PPEh5NgUGYVGcdT6V0LCbFCusEvuo7t3QvO40Aee3bjxA8PTwzzSLQyNnGFa9uGgMri970rCWpq7BnHM5AxKlO5yGL50Tj/j16csnUUZ1pJHBO/Zr5+Kc01fXk492ifpRGRLi1msTt5H65Aq4ueMaSMT9K500Uob3LGJBkyq/JLZKQ7drmsV7ZitVhJR7OI6VGalCHK5U3QFymhoyg0MoKMMBfPJJdYv1usq1hut9IgKUlcubTVY8rMTKQYBUbctJKwfHE0IAP6mGS7D+W0m6a57MhSEoUQCEW2BxIedPkdfCzJ0Bc/ZtIf2+w/suxcfIF106DJ1HUtDvsQiKGAsaw0gC6Oh0wiJQnXCd4Tg5ASk0KMA6WR4ucZDVgBNJFiIEWJZFy0rTh3ghflZRmuW2upUizwsyTPg/pISFdZZIjOuhJCJAkCMSdiEPP1ZSyli9vpkmlCcXCQU7kb/sgzXJ5LuasXYkRMxWEk4oCcMkrJM2eK/M8YQ1Mn+uREhlg+v0u2ZkwCU9NKfQTNWRmNpXJI9cPAc2lkXebXtq7Ed6zle1LOnE891AnVrXDW0VYOZzTTNDL5SUZ2bVteyE9YnBK2LrOqlGJ5AyU/JBerVw6RHCKn/YGHD/e0pmJhakJK4BzJWM7DwPFw4P39Az98/45pnjkNozzUSheOKtR1RUIRU5ZOm6tE7F03kqBVKWJIbNZb/umf/gVh9gync4mONyTEhUAIYkVShpAVwzhjjGK7XdM2NdZWpJhZrbf86etPMXWNvbkjAd//8B7De0KIjBfnyyyBSC9u72iqinka8fNMNIZsRBM7FC5PP0zM80jOz/T9cHkjpbkyyQjCuCgBr87y8uVL1OMT07ffCSIjJemoAk2RTypNgXoJH+fN61dYpbjbbtisV0zDyNmLCKGr2kJfhxA9KSp5X8aB8/lIzIntckU2mg+HHaHv8dPEcD5jjWXVtKiU8eNIGCe6Txs++eQN5/OJp+enohGVfbdrSu6K1oR5ElqeEpZueytXgm7VUjcO1Sumcb7auqZ5JvuAjonGFMp/UQJR5qPkMkYEOufYtB1t3dAW83nSlqAzZz/i55GcuN7hIhDnwMOHe5HtlQ3yabFh3LyUu2ktm1R2kh0zHUd2pyOVsSzqhuqqXKoLzqTn999+w9/+/S9JCuEEtzWbl3e4uib4QIyBfnfg67e/53az5bMXr6i7jp998QXr1ZLvv/uOt+/eUjWGTVP/dPne1fd2Gdr/6BC+aASDFy7MhT5njKWqG6xzAk+iuOR9kI7qJE2ZGFNZnJlYDllxA0j2hC7uFIH4lpZ4yZU0Svi5KisGNZQBv8CvZYh8ASmLoFrpBGgZbRgZCocg5U/btpi6JpThcoySnCyO+uLDK3ET1hTEp/8oq4uF5H1J4w4xlhQsf70G6CIukBFLRmk5PY0x1M6VEq68r1AG6WIjk8WpJA27ZKM2rpLhu3NXp77SCo0GKwN26RMksaJlOaFSFMOvK2ofozQaIGVSEHcI5Xe8xA3UztHUNcHPIuTXQiqnnKBGX/ySsnlTZICXEGRd5IpX21VJ3M4pXZPSjZHNVZXqIOdM9ECJJVRZ4jDq4pdVUEYfQu+7nKCq/JW5CCXy9SQNXk7+aZrpx1HUagayVnLfVUWskfMfND4v/64YL/QJqYi0s1RdLRZC54qXubzGnJmnmeCF/miMpe0WLFcbmk5E+5IIX/10hVAIM5e1CaWEyAJWapqOeZz49qvfcT4cqV3Nn/+TP+dmc8ur21eokNh9eCBOnuPh9CNd5yQlppMmzsWFcekmXt5UygMKGfxECoqkpMs5TZ7+3DOPM8f9IA90eqIpDYPKWvJ+IMzvqSvH7XpZ0rgc1racjnuOxwMhKF6/+pTUD3z/97/mdDrz27/7JT98971Ykmohta9vBVQcYubcj/TngWkcmRUMZVHPhWcT5pEUIuMki9NZS1cG0hpRyOQQICYWVUVb1yy7ltvtmjkEqq5DWSP3sOCxzlJVAi+7u7kRxZUSKp+fJu4fjsJrXbagIKpUyi0llU/OpCTVji4lYH84ykgzeFpt0Fo2MZ0TcRyw2vDFmzd0Vc2nb16zWS+wVpEpQbSmID5myTIVs7LMJF3dkI2Fguc8z4PMdqMQGXPOWDS1tmy6JXXJLzWVK9W74D7mQSxcqpS9t5sNt5ut/KzJCxIkyGtySpO1OImEN5uEI6w1q26BczXVjdDmTUj0PpH9TDh5koLgFEkDzrFYrzFK4iNShsfdDlvK9rDwuKriiy++QFmDW3YkMudJUvRyuVLlnGmalrpu0NZhXMXq5StuX7/GK03Vdpz7M4+7Z1L8iaOUj99YdqRS/2slA2yvCmD46ZnO1NzdveDF7Us+ef0Zw/7I9z88MPUD0zgVGZy05pU2KOsoH7FQAsoAWL5kEH6BU6sk0q4cxY0fQ2SePPMkeY85Q29Ggo/krhOVzeTJwdPUlZDxbCaV03OaA8fjieVyJQnQIfL09i37/YHnhwcO+wOr5YqmEpxH27ZopZnn6YpqmWfPpGBE7iJTGVYTw/WUiiHKnevinje2PHwfkf8X3+klxsE2NcoaxIUYqarSca1riekrOS0qwzwODOOAahpc1ZU7fpATW3+sdH58KpMTYY7lwiLc36gUrgTy5CjQ7/VyyXaxZLVcUFeOGEXkEVJkyMJxzVnueSlI1aBzJttig0qieJqnGR88V7txzleJXeMEdVO1jdDXS58hhciU5H2SxZlZNi3LpsXPM8Msad66lHEitRNvcVM3IgVMcog4W1FXFYtuSdO0zP3IMB8ltCkkKWuVIRupJmxdy/uLAKRlRJVZjYurd3m9XgvGtWvwKXIceqYiF72cJ5Ja5q5yzqrtaJZrVpszYZ5IShGfn0uv4icszktY1eWH5uKWEKUIOG355OVr7roVrmoxtmLen/nqb/+euR85PT7jx4n9446xH3l6euJwPOLqhm5R8CZ1TcqZyQdCTKicMDlfkRDaaNmBjGaMgTnLB5d9xKBZLdeAKilOhpyNIENTZoyZlAO7/Ym+H5nHkdpZQpgJfiaEjPeyOTw9PTMXEcPLly9FhVQyPqtG7FnH552waAYRHsxKMeiPJyc5lYAaJSjFkNAmEVEoZaiaVgjr+eNDOk/CSs1ZcClzLxmitqnYdEs22y2vXr8urgpRv2wWKyrnuH25FdymD3JHjJHzOJBSZlE14lPtlmw6YdieTycRZyeBb+2Hnn4a2bQdb14K3LrSoltdNx21dQznM++GgZgF3hVSoJ96QoFZ1ZUjG02KBoMieo9KiVw0u664QkonCR8Dx2FEpSyZM3NAuYS2WdCi1pK1oSqlqil3zpvFktvVihACYyXsHVvCmfthZCqxHMY5hnHg4f6x4ERlQ81JhBnnk9AwIpmopaxlNmBFcVXXYk8UG11GNw0qybWl73vGYtC2dYVtawxyqDhjBP8ZI23TcLfaslmtWKzWuKrm8f6BeZo5HQ705xP705nTMEoI2E9ZnJrLmVk6aMrIl6gQsMrw5u4VbCKqXUBV883/8Xf87pe/IvmAmhPRBx7vH+nPPc/POw7HE13KtN1CwGB1RVYKpWZ8CJKXmKUzVxeCwnot8ODH04njOGAyJB/R2rJadiilCeHC1tGkBD5n+QBiYEePVpn3b9+Swsyia1l2LYf9kbdv3119dlprAYCt1nL3SMJqdU1LCIFj37Pf7UX+5T2z1owlJiEGDznL76xFCZRiwqRMzCKidrXEO3ABR2nF7GdZnCmQkmeYZyKZ2+VLVuslb9685E/+yS/w3vPw+Egmc/daksZzIc3tn5/5/pvvCMmLxjZGga0pMR+8fPkSay27pyeh2RUB/DiNDCGybls+/fQznJHgYo0Mz1OM8jCdTthK4g4F0HbGp0jd1tTOkpOWKisk4uQlBLeOIt20TkTgxhRE6kw/TIScyT6RffhYnhpFV+5uqdxVDQqD4mZZFmeMTJWMopYrmVGf+oFpmkVHrOBwPLJ7PpDmWWh+AFkTY2Z3PPJhtxNXkhOaIpVFGc1Ga6qmkfu4tbI4U4OKIs4YgiiAxmmiVtCV3B6nDdFYec98oFmsePPqE/F+LgRt8/TwyP55xxykY78/95yKy+gnLU5/HgBF1TSieplmwiSeurmfUFmxrDqMcfTPB+bJs397z/F5j07Q2aZkJ8p9yxp7vct1TYN1lUTbKyVJxtPEpEfGnMRZoBXOaLoCbp6imFenfqS2Tlrv5VSX5CdFiklmZkrhjCLHzCnMKDKGgCZjjKVuWtHHpuJrLNgVHxN5nos7wzCFwNP+gPczT/sD++Ox8JCsGGlVGaWU+6RPiZgpOZsJU+atohDi466sLkLtETTc3N4I5mSzklPzk1csbrfc3N7w6vVr+vOJ09xLmvWqpVt2EmXvKtrtCoxmGAfcYyun+CykwzFMnEeRyK02a5rZczidyd6LSbzQBLq6QSH3WNKPmjc/UrDkS2lamneb7ZbFcsk0jEzjSJg8c+jF5V9JOWlcjbaWlEVVpoIvDaqMtZqMmJsXraie2kY0yrEwfEzK4m4JgaGkZ2uklHXFZ6zIV8eSICo/0g+C9LdEbDAJO1kZI420AojzUeh70yypaxEIgMlQpRJFGTM6C0rTGE2KkcN+T1aSKq5S8Z5a4VZVTnCwp/OJvtcfPchF69uPA8M4i37gpyzO/nEnFLhb6UxNxz2nD4+Mp56n94+4quEX/+xf0C0WPH3zNU9ff8cP33zH+2++p6kampdvkLQPLbt41RC6yGq55ma9pW1bXn3yBmMMHz6853Q6cj6eOClK+ItgMW+X4i3UxtDUM2nynJsjsXTWUGCd+BIPuwOn01nucVVFToHxfIScWC8amsph65bN9obJT5xOB4GR1Q1aa8bgCfNEXTc0zYJxmnn/vGccR756+47T6cSLFy/YFuxliJGkEqHQxKU0j9LBDpHIjNIDPsEd4tKxVqxI43HicD7imoovf/EFi9WKf/Zv/iXbF7d0X76heXUjHXBlePjwnufzI9M4sn61YbNZc/vmUzYvX3F+fub1528Y+p7vf3hLfz7z7W9/x+7hkcN4xh6fqbTjk88+wc+e8O135FOkq2pSG9ksFtytNkzTxPvHd4QYhIWkhTwvHTfIKpO1NOusNXz2+ee8+eQTnh8feX58Yjyd2U2idV4sOyGt1x2mqqUZOF44wjKPvOBNN+sVm82GysniTDEyDwM5RggBUiL6iefHkbqqhJhuFHXlCl0i4/0k8sgMMUVcmT2qkIuVzjNMEz5GTCU0QeWssJz6I1OYMVZL9zlE8DNWadaVyBKVFzZuVQKLx3ni/ocHsoJ2tcI4R1VGQl3Tsug6Ukx8uL9nnia+/f57jscT6+2W5Xoljrs/Mkb5Ty5OXRKD8xyIesKfR6ZTT384cXzeY93A4f4JP3jOz3v6w5E0eyrjcNqisty/mqpGZ8XsAzFK6QdcPZIKacVf/rcrIgGjxF1vjTzM8qWonaVtamLKhCwiBemop+vufpUbKvGOapVZrlZibeoWWFcRkpReCblTqCycnRAjIcNUOKr9KHO5mDNZa1GJpSTlYc7lVCht9/RxcH4ZtcwhYAvpIcZIKF2DkASwXWlF08lpePmqKnshZYLKWGdYbtfUc023WdKsFlSLBts66rmlu1lhGsfWz9TLlqHvJcELi1IizPYpEHOiaVuUUviUJRrDSH6KL7v7ZYSky1gjK7FD+YtogYK/zDJ6CEFOpflC7EsK7700wWyNSqVxVHhBIlYQ2JbSXJO7L7RGVe7juXgvgXJnRYQq5uKrjOQgOuBpnq+fw/V1FCGMgqtfVxuNU+6jefxC3FAiUnFW5tYpCCw9pShNmxAgRMnmqUQq2dQ1KEXXtNgiXwTxpF7USpeZrgQLC4ZUj8W7W36nn7Q4V1rShuf7PXN8ZP/hgcd39+yednzz299DVjz/7h2Na5iOPWEYccrys08+R2UpZrXSfPbmM4w1PD0/S+xBDIwlzIcs4anPz0/0fS+a1ralKiMICbSVO0ZtwBu4WXVY/ZqYMmMQC9b9007KhOQxBrRVKKupbMX29R1tXfNnv/iSu9st0U8EP5O0Ip9PEiR0PpcOnti6juee3fEISguuQ2l04cwEY9iNIwGY+RhlT0oSw5Ay6lKO+UiIg0CdBwlhMNIboR97pjizcCtefvqK1WZFvaxRleL4/MC8+4CtHVVbg4K//C/+CmUUi/W2jB8qqKByHXfrL0gpcfdPvyTFxD87/BvCOPPDr7/m23/4iuFw4rsf3mG14fMvv6CtG54enzkeT5zPPT98/8NVaqhA3DE5E8hkoxiDhPkkICgxI++PR7Rz/PD9D3z3zbdiQyubavzwAWss27uJxXLF7H1xDk1klTFOC4qyqlgtlyy6Tu7ipQusy0ZrncEoAW7Vpbq5gLuOpwM+Ru4f73na7T8uzhA5j3LXrKu2ZMI40Wtrg7JyYs5RCPKL0OCM5na94eXdC8I8MR1PpBAI/SBl7zSTQ2S7WfP6xUtSztdGXbtcXPlQGUHf9P2JeZrZHw7XtICqbZlCYNg/y0gqXnrmP2Fxmiwysjx54jzjzyPjqWc69YzHnpwyx2iYrCPNIsdy7YKua0kxiyJECW6wchW1K7vOVFKJcypJyIgmM0aUlR3UOUtdV4UPqopcMEGWZsdy0RITuJCYfOBxt4cSDqT0x1GCNpqu61i0LevNms1mw+kod8gMYnZW6npi+iidzH4a5eEzhqpu0cbSddLBTeXuEZA7J/8nKV8uJbmGciqnIk4QqHYskQ0xxdJ8EPq3qysSki8zxYkpeapcoyuFdY7VdoVxFtct0NZxyS3XlUE76a3XCxmzsFyTfaLfnbj//h3TNDGGGaeF+N4tF4zjfA1IGsfxo+hElXFPEU+ISkwqgAxgxd48z55hGOj7nnPf40rmKRnGeUarQDvPuBLSFFMkZhmLKYQS4KpK7o2qiAeKVe0ifrnEKVjnpJNaTqeYkiRpe1+aal4kdpmSWhav8lGlJERLoTFGhv8pJwiZEEUTm5MpVAVZwNEYIQPCNTI+55JMUNXiSc4JVZ4v62ypogQIJmQ/f83Vkddgmbz8s5gyPqWfrq31e8FIqDlho2beDzy/fSDOkRfrW1QCi0ElJMdi9mAbLJphHrl/9x7vPT/o71GK6y9GUWNUlahPLrF2MUYRHCtp8LhawmwPpwM+eJ5Oe07jwM3tHV98/pnEnTcdwzQzEVD3j+TjiaBmUvZMPlDVmvXNiuViwTCNfHi45/7+PQ/3H0pUXI0mMxYFk3JOQGR1TbNcQMFioBSDn1Eh0DTikYwhSGw8cLUXKH11yVutJYo8eDF7l7iDaewJfmJzu+HTTz5jvV1jassUJ375m18ScqK9WVAtW+66V7y4XWOcwy4agUipRGRGFyhYThLKo4p+WGkFtQanefWnn9MsF3z32695+8MPBB/ZDQfm5NmfD/R9zxQDtpJSLHiZSc7BQyljY86EAirTxoi/0hqeDwcO/Znn/Z7Je3RtqNoWDczDBCkyzhNm6K8lnCrQtozIC5nATyM7cgmdlZLWKTmBky4xiOXBJwuHN8TAMI0lFcyx2qyIWRan90FGJCiatsYae0WTtHXDarEQnew0il44evoUGfYH3p57jAKrpEu86haiZMrSENpuREg/+5n+dEIbTds2KGeZhoFxmnj3/gNff/012hgWy5VMHDZrjLW8f3xk358w1tK0NX+srv3jCqFhluctiX0nDJ5+f8Yqw6pZiK9v9GX4nsg+QszorEg+ctzvGYbxmr8heitpU1e1oAZtOSHF7S+jjxS83DOdlWCjaWCcRo7nI6ex5/blHbcvtlRNy2K9pR8nfv31Vxz7I8Os0bPcYYNPZALtoqVdtLIwpoHHpyfevX/PcrnkdfcGpSVybg4BV7q2ylpsXZd9TXZ17yW6T7S+RhoVhScDH6V3SskObYyRYXxOUMhsEtozME0D25dbtnc3tIsWXaIS3354x3nseclrNvaWLYF60YiCppGTQ1RV8fozU5bRiFIKq0wZE8goYvliy3K9ZZhGdF0R4sAwT9eHc/QzMUe0NeQIhKKGKTEWIhORu3NKSQDSTuLZL97T8zBIOJVCjAM5kwrpfI4B62cBMVsrVU1Jho4FquzniRiknDZIb2HZNIVl9KNucf4YTxGLx9J7L4L2timLU6HNLJGEGZyTaENdQNCLrmW7WkqeymCZ/cxh5whKMQ0DvfdXW9plATlrcUUM37Ud1sr3zZNgRUmSYh28ZxxG9vsdb9+9FV1uuZq1XUNVNzzud5ImV57vn6yt/eH3PwAyFsgJ+kNP51pJt55EiZKjtNx1uV/GIMPa0+nI49Mj0zyzWCyo2/p6CW7ahtVmTbdY8Onnn1HXNf0gvsj7+/d8+PCeqqpYr1Yyg6wqamd4tWm504lPP/ucu09fUtUN3XrDKkT+zb/71/z8+U/41T/8mq9//3v6U8/u8ZlsIq5SVLVBuRpSplt2LJYLjHOcywN2QUmmWeZ0xhi2hWczDIP4MEsRolOWP5OhLgCni3NCKxkbXXymxEhW0sS6NDNyKWk32y1/+md/iraK7EBHz3q7ogo1rz95w90nr1htN/jkSRFslhM867IstZL6XYYUoBTByO+RvGiDLRZbGbavb/nX/7f/kv3jjl//x19y2h+529yxubth/7TjcDgyz57z6SQuHiXaorpt5H6bMyaJJvQCJZOvTNN22ELE66dJ7tpKk43Au3KKwoW1orWtyv3MlQZQNgaVBTWzqBussSzbRhpKJar90hewzlF3LRauyFSVMialEumXIJcSGCXdeetKapsouFIJGOqcozaaV9sty6pmf9hzOB5pnKOr6oLMFMudsxarLw6VjHUCHNdaUuuqqmK72bJcLpnnmefdTjJnCjZnSglXV5x6iWuIOTL7CfVTT85vvvo9ZMTekzIaxaJaCLpjkDunQZVuu0JrQwiR8/nMfr/n/uEeHwKL1YK2a6V9DKzWK168fslqveKLn31J3dQ8Pj1yOp/59u13fPP2e7quwyNpUd1iQe0sL18saVYNL1694vWnb7B1TbtaobTm9vNXzD7gOscUR+4/3PO0uyfriK01dWMxhXi6XC5ZrlbEKLxZX8gKIWXSLHfR5XrNentznd+pGK5aVZ0SKkYsitpW5U4mZa0tgobKiqAdm8AK08aWeAop6SK3tzf85V/9BaMfef/8Ae01G7VlkQOffv4pn3z5GdEo5ujROqOoUOiiDrksTqlGULJxBCOln48zcQ40VY2tDLef3PFv/9v/O++++4F////993z9m6/4r/71f8nPXt1JpzUGhmlidzgSQrgK7rfO0SwdVoHNqZyARZamA0olum6BWVrmaeZ8OhZbn5AOp3liHuX3XywajJG8EUCse0qBNaicWbQdt9stlXUsOymP+/MJP00lAnCmXXR06yWqBEIpo9EZXBbEiy6WrxAbAHEhGcM0eQnR8oE0TaJ57lpQFfb2jnk5Y3MmjBONq1k0JZ+zUP9cJZWedkZ4us5x09yijbniN5fL5dXwsT8dORyPfPPdd8whcBx7jLPi1lKQcmSaxusd+h+9OHdPe0DwhNZYQvAFqvQRlah0cQloQSr6GJjPc0HUN7iyYxgryb4oaJcdd69e0nUdxsnMyTU1LbDcrNne3lI3De1qSd00vHj5krqpqZYW22iqRQvOiMLDadFE2hqS4/XPPuXPpoHqdy1Pz480bYMPM+M80LoGo+0VZJwJ4ANAyVrUorWEApDyWG14cXtHSolpGEkxCsyqrhlj4hRkPOLn+dq1VcjJgdbSfSwYFkW5TzkneS5NhakrKqdZsqWKM7lXhByo6uqaH+mDdHi9DyW2UH5HW6RjyLlZNr9UZmjICXtRaRiFchpbOzY3W25e3KKMlsCm0hzTRlE1FToYiQ78UQ5oSCXz0nBVjGl0YQ+pjw6ci52L4ubwM4SJFBe40kgSQFouEXtZsKZVLbPs0gCqXIVWcDoIYTHlhNKGlATdQnFAKWOwZZxV15dRSpATOYsYXylFMhqVNc4UcYs1tLXkpA79mRwjlbUsu+6KWTXaUNdVQWBCSIk5BEw5eS/Q6m65wFh7zSmNMVJVokVebzaCNCkjPm0MlZP3zZZN6ictzt/86vcYo/ns08/YrNccdmeen56p64rNeiUE9cqVAFQJiD0fT+x2z6ScuX35UrqlBXp12elfvHnFX/2rf4Ex8hCknFhsNnQb+Gwa8EoaKnXX0C2X/OW/+Ocs1yvO047J99iqIjWWVBly8/F+aI3hX/23/46/+n/8V/z1v/+fOR4eyT5xHA7MfuTVzSuqVjJQmqYDNYnXUxm6ZilvX/kdY4wMxzOb9Zo/+4t/itWG026Hn2fJy6hqns493+/3TNPMYfbF0CzCd50SLpdYeT/JvZOMNorloqNpLIvNGrtc4CpD07wg5sBwfCKECd1V+OjxOTHmgA6eWCx0qXQ2m1rMvrksDABJMskkl+X9NkpE0hZypXCrhl/8xZ/RrZakMfD2/h2n84mkMqZybG63BB/48OGecZyx54Gs9PWEThqZX6OLTrjMO0X+hHU1ORciQoqE85k4nNiu1iya5iMZPSUOxyN+Dqw3K5bLVRmlJJy1LBcrFPB2+oHdbk/btTSt0B4eHx4xznL74k4wMEhnvm5a2m7BNE48Pz8RfGAaZJNxQNCK1lkaZ2jrihdbiW7YPz4RhoFFXdO+eo0pzUhjjIgZUByOJwlnTpnBexH9h0jdNNy9fEnTdCV75sA4TiwWC6qmoV0tmL3n+/fvOfVnmqamahucq2ia9qffOaXxoBmHCWeHaxSC8GbKxTymq+NAaXVt+igyxopelZLD4ZzDOiskPzHvlbJESZCpkjtOt1yIb9DZP/xKFoUlaZiKkbgmgZKHXluxnTVas7nd8vLlC/w4Y4IqQ297xeDrQi+/Eg1yOX+KjSPnLAqVwoJxRj7QylwS1SrsOBaZXuTirdNa5DRaKX7kCLyOW8gi2Db24wmilMLUNSrJg4uSUQEhyKimbBg5SW4Il3IQCnDrwo24PKa5dEaLOAPpcCqr0c7QLju61YLjuGMYBulYFl+m4ePvBAiw+gLH1jKwLwMKLj81laiIK5wbffVhXsYjinwd9kPRpBqLquT0N2XxZy6G6/K9P2oCUTalC2XvMia5+FfruqLrWozWTGOLNx5iwitB62QNphA1lKLM2fPVhFBVFbYSI0a4jMuCjH58GbMlPDGLUMPPMz5GjqcTKDifzwyDpLKn8nlfg5quXUP1B5/dH/vPHye+m5pM5ttvfyDEIMZYbUBbYtGx7g9HUow0bU1VORabFdWyxXvP/ijoP58jKcHd7UtevnpF3TZ8+/03NG3LqzevZbEaQ9aK9XjLTZiYg+c8Dkwp8Pb+A83pQK4TOEntGsaBbtFB56h1ptU12mQRQqrMFz/7nP/+f/jvOT3v+d0vvyJMntcvX7Lu1sz9xO5hh8oQSoL0XB4ueZBzUZWAH3qePrynqSpulkuqtsUW3H4cR+7fvZVOaXlQVosOZx2psG1MKSmNhhg80WoWy5amqai1ZtrtsOsF1c2CQOT+6YnzcY9d1pjG0a6XrO5urmG3OWW6tsE5RwwJP/pyN6pIKlEYf3KfE8c2Pge0UZhFRR1abl/fkVLk4e17vn/3PbWpaKtaAFtzod6VGDsF+CK5m0OgaVpuNlsReqSMjpmhH+iHUU6apr5mspIzenD4STJcrFJCixgFkXmz3QpGdPKMQy/Jak0nWuvDQSByiHfYGCvvs9aCaTEGHwPZS+amc471aikb8jzTVRV+njns9kzjxH634+xnKmtoWxmDffv7r0vzS7FaLXj58jV3L17x/uGBX/7mN0yzZ7gstPJApKLymqeR436PVor3Hz7Q1FW5l1q5Uyrox4Ef3r9j9oFsTUktEGRP349M08MfaJf/UYtTZmiJc98L8bxpaJtWTssEqCwuh+CxlcWpCu0sdWXlgRwNRFV0meBqR7fsyAppKJVTwVgjOY9KYytH1TbEEeLQQ6GjZZXR1qCdZgqB09CTjZZmSTTUOZGVcI5AsVgu+Pzzz9g1HR++ecfIWFQmFc6VcQkFCJzSVe51qQOMFo9gCpGx71ExYlYrGudQhRCXQmQaxxJJX2SG1lJVjjDnIg9UBfmvrrLCyjma0o0M04TyVXHhS3dzGEcqp3AGmpxlsSMdS6BkmFpSFJgy6uNpJpe/wvLJPzpdKTycylJ3De2iJeZIP/ToRrGoJFApKXHLGGOvsXnkdD1BLxJLJV2NK0XBzzPZOVyWMvOSXylhQSLjvBRwqQzlm6ahbTuO8cA0jldzes5CEohBvKXG2auMT12qLaOv99ZLvstFqKAVtI1oYud6lMaSMVLla4UxmhgyQ98TQqBbLq90/fV6ze54lJJ4njiPIyEnCXwyhlDGN9M4yImJOJJccU91XSe/n5Ur2/F4Yg6eermQWXLOV65U3/c/fXEej30pkQx1LahFpTWz9zw8PUkJl0VJch4HBj8KyjHMVHXF3esXgnCoKozRaGd52D3StC3r7QaM4uHpUWRVRnaWUy+Ldn868ne/+nuapuXlZ5+wurkh1YDN7A4nHp52HPuBQKJpGz7xE4tuQV3V0kwgUW9WVNNEUhkfZp6enjgfzsQQubu9xRrH+TzgfcBdsiv9hQYuMK3Zz9x/eE/bNHxyd4ezBj9OhHkm54B1piQUXyBoCVRC6YTSWUqtZoWzYm+r64pXr19xc7el6xqOpyM2eyqbiES0gmbRsn35guV2Q7VoqNtOHvgy29TaiKtDG0wlFr4wCWLU1GJkloUgSqzkI1k7MWpbw83tDSZlnLNM08i6XbBaLCWhTZXckjskpr7oZ3VJ8LLW0tU1CkWYZsZ+IM4TKiXiPHOMQYKZqgqtFZXWLLqOrmulO5opcXwVP//Zz1itVnz/3fe8T4Ue0DSE4DmdTsQQaLqGZtFeS/UQA1OYBbna1VRVRbda0rYt4zTy1de/EzrkLFzd5aLFLBfMQ880FFC0Fwnh9u5GZqFVjdGG4+nE6auveNrvrxmkpq7IOTFMM34cGIdRdMvGsNxs5X0OnhAT4zTJBmIN2llm7+XZzonn0w6fA7frOzarLcZYum5xnZH/oxfnMMoPs9bgKjE+oxQ+RA6HI8Zo2q7GGC15kFF2m348s73Z8vObn9N1HVXbYIxhv9+zPx3Bam6cBQ37o8SuX+6cEVHrn4eBb779juVqCcbQrpYEE4lKBOf7wwk7DPgcaNuGrmsgRVTbYVNEa4dbdNi24SJuOBwPmGywOFbLFTEk2qbFGKHHxyTJzCmn65QihsDufGJuW3KShOQ5R0KYSSliLsP7lPlInyn3YC0qqPV6jbOGpqmoKsf2ZsurVy/RlaYfekya8cqTxMlEVdes1htuXrwQyn4lH5O53o9LnJ2Wu3MMkclPoMFUwMelSU5i4tZZgZWTbLVeooKUvr5wbrq2kXm2z2KctvbKVIopSxRityj2rVJpzJ5pEAyJLgKLcZTTLrZRUs21omkamrqmqaXXIKbmhjevX7Hd3ogBen+Qqqb+WCWEEApB34mgPpc06jQLirKqqJqapjSLdrtnHu/vxTyBRDvcbjZ0TcPzYyP8WgVzkDjIxXqJ0eIYBcXz/sjucBR8KGIK0JVFp8Tc95yHgf585nQ8sew67m5u0ErRHw7EcqIqQEWDzgkfokwzdOB4OnGee5qmY503Uk3VzU9fnFVVQSnFUumiVaWZo7UgCnNKRERapbSiW3asblbc3N3y6c++oG1b8e/ljHbSga2bmkCSe8KLO7Q1DAeZZ53PZw7nHm01f/5Xf8FiuWR7s6VpGnKlyBZevXoj6pDoGef+qpk01soMzjqST8zjEWLki8+/pF/f8uGb95z3J7TT6GIxM6UVXxuZX/kUygA+o8ikHAvKArAarCEpcaX4shllVBHpW+kq1jVjf2b0UvKPQ090FmsV1mnatma9XjEnz5wm+vPEcfeAqS2vf/EZ3WpB0y1QzhWEpczGctGKei8A6tpVsjMXC1dWoj3OMV8fZoW+zuoUQnZvl0tyhHbR0VQVzhpZdFHyKUMoI4GUpWRWimxtaZo4ti82aKWpreV0PPL4/Mzj87NwXq0tZbEAwpaLhk0tkr8QJB5PFe7SMIw4d5bOc9tKQ6bMCY0zojOOgeQ/NhtNZVnYJdZZ2tWCuq5olh1N27LRIpRXRYBvtaZuK5TWNF3LaiOcpnGePj6zOVM5c53JPj0/MYbAaZoJOTNmeb6zuoz7BH9SWVvSxDVd22K67mqB085i6orT+cz7hwem2bNslrRth0qK/W6PsY66+s+Q7zVNQ84S/BJCuPJIdblH5ZzwcZKHR66MrDYbXr55yYtXL/izv/oL6qbmsN8xTxOLzfIqVh7GEVsbXv6Tn+Gahve/+YrjwxPnp5739+9Zbtb81//u39EtOl68ekm36DBdhaosbdvx8sULdvtnfvXbf5A7onFYVwtO09X44cT56RmdFH/x53+OH2b+pw8HHn74gFvW6FoWpjGWjMY5sVWFEq2XciSlgMoih0sKGZY7Q1QKn0Rw348j1lmabktT16xWK5q6JgXP0J8JfuZ0joJZrDVVbVgsF7x4ccfTccdpf+b5sONX3/6OZtny5V/+E1598ilq0QhaNEWm6OVeZcW7OM3CTtKdwVkxPjtnyUR8msjEq+Kpdi1t3cjQMxcK+naDqxpW6zWLTtKcFZkUgoDT5plpFlmmq2pJSXOCYFm0LX/6i59TVzU3K8km/fWvf8PT46PchZ0I8nVRQ223G15vlqJHLZ1+6wTCdT6drneuC9WgqioyCVNZIhKrkMOMqx3OCFd40a2wlWO9XePqisVqRdu0LNYLXry6Q2cwknsodIIQWa6XgFyXTk8C4wpZqIzGOZx19MPAu3fv8DkzIGFXI0UH3rXUjaRXt11HDoGhH3HacPfyBYtGVELOGkzlSmPskXGcGKeR21cvqLuW56cdHz48yAx0LQqj/6zFGWMkp6IOKRrFa4JwFjxH1dS4Wkq2F69esbndYhuhqlVNI+jGusLGyLzf8XzYManEcD5f28zWWZabNS+AbrFgvVlR1bU8oNNE8KNEfCZxrmtj2N7egIKmayV/0wi+UVmLbVt0zOjZgvKM08TpfKapFrD46DS4gKdyGTuksqteUoqNc2gr6o7JB8ZZYstjSnKP06Zoeb2oPnK6VhrWaGpnCj7RCj7EStl46Yhe5r3ZKIZxZBgmpnnE6yw61loUORcWlCRguzK2KeOGJJK7CyJTK3k90ogpu3PKqAKNVhlyGQOlQs+T5piMCWKUxa2K4TkWl0pKWVRVk2ccBuZR0riW3UIi7q2MznQl7qKqZKLmjNDujcI6BTkzjBJeNBbsy2W0EEIQ40C2qFRwnqVR6CpLs+iwlaVdduJZbWpsbQs4THJBTcykmBj8gZgT2hqquqIONW3XohD4l/nRWM1YaSpRFmS4uEwU5b3OV6gZOclYxkoiQFM3gnRVUkVt7m5JIKl1vRwCJITCUQgWIn/8iSfn3d1d6fTBoBAkftMIxrIWFwNnAem+Kgvyk59/wS/+6p9K13XZohR0Trq+WEu2hse//Rv+469/yWK5ZHW7Zb3dSHmwWXLz+af81WoNKZKDIFFO5zPzYcf9wwP744H1ZiWC8WXLX/0X/1IeeqPKPVEkMW61xHYr8jAT3+6Yvef9h3t+/823GFVzs767GmLFuiUPs09SLkvUnkSXN6sldVVzmmb04cjT4cBhf2CMkeVySc6ZfhgYhoFpkLCeZdeyXi+prGFROsSrpcgYm0byKBdqhao0x7HndD6j54n37++JRvP94z2Pxx2vPnnDz/7sF5iyoLU2rNqFJFblfDWppxBQWtAfSos9KuWM1ZaLgoeQhLY8RRhnwjgx9iO+nolBgoHD7AnFhhVSwqeE9l6UQ0bSm7/67W8hZYbTGT/PWK34+ZdfEHJijF6i/FpxriwqGTulmBn9RFULPyoD9x/ufzS/VNfNH7IowppKytqcWG5WLNZLqrqiWy1wlWNze4OrXAnCVYIQbVvZgCKEaeJ8OjFFj60dS2sxbY1bdLKZeTEtWCVggK7tuLm5ISrFrBSRTB8jISeGWSSO8zwyDz2VNmyahrauudtuWHWdfP7zzMsXL/jn//pf8f7+ng/PjzztdjwdjozTTNt2LJYrxOts/q+W3n96cV5OFV0iDC4JwJfdWJedORvZldqupW2l46aMLmGloFSJrastqqrQlZNdtjRqUgy4psU6JwPy7ZowTYyHA5nE7GfGaWIYe4ahp+lEN6mNES9dZSGFizVfpglao7QlB4ilE+xLTMIFNPyHr1Ug1+LWj+XOluT1Gos2Fh8i0+yvX5eT84LBFLKDbGamkAVd0Wdao6/jhFxGNxcpX13VdF0nZfOPUrB9obmJAicX8rwhNW35pblK4Ip2QuatucQ68FFMcGk8iLhC1C3RB6KP1w34D9+Riwghl6ZSJEQR0ysfyFE+l1hOOWMtOYkHmHLnNFr/4e9YRBhGC6LUx+k6Z7yosowRy5urRE6JFll/VVc0bSPlbS0TgEtierp8XpcaTAnx/kJwiMU1oo14Kutcy/gnztK7K8+zc5a2aZhSYvaeH8kfigf14k/imuci0O1KrjJFpF+VMrmqRKbZNDX6VPhH2pRUdwo14ycuzt989WuUUiy7jqYV4S85EXzEzwMg5lNnJCFstV6Rc+Tp/gM+BXbDgaxgdbOhahrW9QsWyxUvf/4Z//b/+d/gnOPuk9c0bUu7XuOa4u53cD6d+fqbr5gnQVDElEgqsli1bG83vPrkFa6pUCqTc5SBO4owSx6IUQ6rLcpa3M0NNmty5QgklFG4yuEqi6sM2QsULCRJnhrH8VraVgWNaaxjdzxz7id2z0fOp56koCrpVRjBiizLHe7Nyxe8fnFH8DPT+UTOifl8Jk0Tz+/f09WOdrOiu1nzs5/9nP/h1R04w83P3uAWLZtP3zDME9Wiodss6fueH77/TpQpL2fRgBpXmj26JMIlchjJJHSxSZEUySfICo0l58hwHOj3J86HE+fjibC6xZmKaDNV1YDSxNIomwte5XA+8fW331I7x81yTWVEDF67iuPxyOHhkaQgFkuYm2eMNQQyDVm00l2HtTXL5RqjjVRE3nPqT/RDL15PLYL2uxd30unuGmxlWd5sWG3XcvUwWaoIp8HAbr8Xx0ph+BhtaF1D9IHD6cDY97iC/FRGmpZ+mhmOMlYTzbXhZrPBaMO3b9/y97/+lbz2Smj03WpBU9c4ahqtWVQVr1Yblm3LJy9esF4uf7SqDF//5tfsjkdyTMXV4nAuXkFywUfmaf5ja/OPL87n/ZO80LrCmEY6tIh8ynsR/17wlVVVUdcVCpgGmXk+75+ky1lbWp1pcqA10Kw6Pvnyc7TWdEXJX606XNtcf7ZPojCap6nInyhNlYqmq+mWHcaZq9ROqUuCs3QqFfkqxlZ1jW4aKBhLlDjjJflYo6NQxmOQEj3G8BHJn0FbEVhPs2cmMEwz4ywxhWLkLdI0relqgYitFwu26zVjfyYNPTGmqyt+PJ/pj0dcK/O11WrN+rM3qMrApiE7Q7NaEXMiachWsh/7fiB4z7Bcin2pElyISNjKKRVyaZCJrzRTxPgltTpnoaH7cRLgc4ke1MrIaMYYdLJYpcQoXoJjJ+8J4UBT1yybttANnWAhY6Q/n0WX7OT0T0ZhoixwkMWEUldRuzEGW0Dcl/wUfjQFUErSz5tWuvuLrqNbdOLjzGJev8gTp3nidD6V6HhJBaMR2PU0z2Icl2pZfmdnpYwvn3m2CTA0TY1Smvf395yPB8bgyU2FKn5MUwQzGWiqikXTsGhblouW9UJ8nsYYducz97sdp74v0kCJ0rhUBSDPaYj/18za/+TivOg0YwqE6FmvFtze3KKkmwCICkYZdUU4qtqgW4edavZJYMTZabxK/N0//JLd//a/sF2v+eT1a2xV4VYLKU2UZFtqJeVQt+j4xZ//KSEEobonIZ9ZY1hsVthWuqhTmiErnBX3gHJykpgLEjtkMTxHITCoMqsV5ITQ3JXWYjpOsUgUxVqWFNdGTCxRBtLxdLTtEmM1rpI/31YV1mi5XxqDjpl+f2AeR+Z+BDJdJcbbfnfgXUrcPzxgf/971i/v+Pm/+EsqGrkPJjBOGEhJQVICkfryC+EEbZdL6qrCKZHEBe95OuzJOZJTkHv+SpppZIPQX6UrmHJi7EfOpx5nKjbrG5qquZbRwzAyB4+qa6HUxUjCy6lW0sLuH58wSrGuW2rrmPyMqyoiwhzSWrNcyP1wkTN1lqxXgybHzPl4Rhe8pFIFrGVsCWBSJWOFYsj2eA/TNGB6UxpBEtYUkif6yG6/4+HxgdvtDTcvXmKNpbUNoTiOQoolF0YRxsB5POMnL+qukDBJEfVM03RslmsxPcwT53Hg/XHPHC95sRFnNJWzdK6itprWGl5sNtxttgwlPa91lrvtRswbT4/MQT6TnBPzFIpJ5Efwsp+2OIGcrovT1Y7t7RajhQmbUuLYn0hkNtstty/uwGlSrVCjpZ465hTIVuNV5tdf/Ya/+fu/4y/+8i/55PNPMV2DW0rEgJ9nkp9L6WFouoYv/uTn5JSYBok5d07ubjJvVIQU8d6LqDtbLOJQMbZI1y6auBQgho/WtnIPMwW5gVKY/oQOoq4x6iLWLyMjyuIMYjq3WvCIzioqJ+bh9XIpjTKtBeCVMuPxLET3YcQaQ7focJVlOJzoTyfGHBlz4LNf/IzP/+wXMiSfxcSurYg+kpIeTtu0fPrppwBUl3t/iqgYmYee3dNDkbLJXVwbh1amKJ3s1TeYc9Em9yPWOFbLNVXVSEK4D0JILygWYx0YiQ4wSqOtnDiPu2cRlC+WdCXD1TgrV54Y0EqzWCxo2oZFhjp9vPvmkOhPMse2zpbgKl3YPR9Dm8qNlxg9KmbmeUQPis4uaFshVByHM+M8cTgdeHp+ZrVc0i06rLbUpkLrWQJ7UyKQ0CTmeWIslPx5kliHKSSiMqyXa+62W6kCu5ZDf+aXX/+WY3/m2J+Z5pnKGZZNRWMdtVY0znC7WvFiu+Xh4YGp76U7v2hIKsuBMovQPpOYZnFCWVucUT91cXaLjgsN/aLYCCGA0VhtRG8ZQxnoiiomkUhZOobtosORaW9W6MrSLBfYuiIpOE0DqrJsNJJM5QwqIu16MpoMl42llALKgLJCAhCGKmDE8RKyDM2tNtdT02T592ENOLG3VXVd7puOnBOr1YqqqhimAWMNUwyiUMnCzck5M/QjoEgeyNDWsqGQQSVIPpUoQk12UlppJ42g2jhM25YsD4tRckr7FOTPOgsp059OYBT1SqInUsoiuzOSDwPS7Lm4MsiiGFJaY6uK5XotjamSgKYQwrk0hYTbOvdnpvPA/YcHDg/i1O+6DmusKIFKrqroPzPEJL9H5kqLI0uJqkymqmuqqha/ovcyqHeOpmnYbDdiak9QZ64dYH3x/4oa75o0ZosI5AL4uuSxVs5hnZjULw0uYyUoqXEGHQKrzZahH6iqSp5PndFREUKkaVpyzBJVGYtTJIYSaSmbdVUoDtM48fT4wGkYOR4OnAeJR4zBUxWSRfae437PbCymmsB77t+/I5fZsEFkj1MKnE8nHh8e2J9PJav1Ir+Uz9N7/9MtY7d3NwJKnkp031yyJ53FmopY7iIpS4ZGLk2UEDPKGDa3N2AN6zd3mKZi+7vfUC0XRANPpz3RZF7q11SVweiMylrSkWMSG6Ipi+vyd6vAKbKSqIWkspiuyYzZk6OnoabSZXFSvq92qLaiWnS0l6+uoa4r2roVY3GODIM0ebQ1jH4WCLGPnA57EfpnGVHYdUVd3Ps6ZaL37A57yJlVU1NbS7VeU61qTG1wrZh6hXCeOY4T/dBTr5e0XYtOmd39A5OfuXt1I3ku0Yu5urLo5rJLyQwvlvGCKh30thPodgyB82FPChGFJvgLIzYxnAcevr/nvDvx1W9+x/5hxzwHNpsbKmWlyedjYQUJVSBqjU+ZCAVUJnrVqq6wStN2C7q64Xg8MM1nXF3RdB3L1YpPP/2Mm+2WVVa0SXE8HXneP19NBiqBySUJoJS1orgKYiLQkpvSNg2uqcuHKXNc2zSSYbPoiGReHw8YlWlcLVEZaEIJdFqv1yy7Bcfdgf50JqZI8LNYActMuK1rKu04HQ98ePuWwXv2Q8/oZ/rTkTkGlpslddvw8PYdH96+pVKG0dUc247fNC1P2y03t3esVmuGeeYw9jze3/P7333F/nwmVzXZGHIWg3ZKIu75ycL3nAtgKWvICT9H+n4U0rbWxFQQ9ykw+ZkpellRlUNpcE7cJrqyaGvolh23dzds1ivauqJ2TnavXPg7meKilx0/JRlPXAzQV6RDzlwxzteNpwyJuToa5Z8pVf4mA2qr9ZWsprLgQlRKOKUJxlFZR+0qYkyMzFepIkgwUSIR00yIk5AHrZHGS5bBesxyzR1jpPdenBAIwr81BVplHNrVZGXwITGOntPhTNKG7ShRChJ5K/KyC7tIXaHZwnaNfFTRSiWhJBhYRZQWk4JKwBRRU0CPHsaJaX9k2O9RIVBbg8UUAoG65lSGGFFeHCRXQHa+iNprnDag5BTKhT2stSqAaEsuocNRG5LWZJUkBFgLClRpGV0orWjqBqUUPnqReDY1ykp+iTIGbQ2Ycn1WihQDKpnrKK+yTu78yqBiKs+OiCrCNMvYZJrx00yaAzrIOCmX5lk0kWDF7TQEz+jn65ePseTeyJhMmoz6OpuNOXOeZtww0qXEwhiCgikGphCYotgRVRZn0AX/ApTK8CeenOOIXFyTRWXNfndmGr9jseh49eqOmALff3jPHGY+2T2wOr+ka9csb9c4Z3BdJSWrFZzjz/7kC7qlY9UteLm9xbmKWhl0SKgQr7FxIEj9qZRK1D8KUIpZXmgOaA3GFvNqMeqiNOEy3/s/xaTVRtNZTaugzZJANT/u8DHSItrX0CypsOgIfd+LG2MlNrn+fJZAm2lHjCfUYsNm8YpkBBuZcmI2lqA10zjyME2E4Jknsav9/MsvadsGvX7FAjgPZ54fjxzHzJwMq5s1d69e00WNXVhMbVApiSBDJVSWKmVMYvgN2aGx0sEMAYNm2a0waOnOZkU+9nA4Up8GVoeR+HTk9Jvf8fz2PZv1Det2KdGEtsLjyVa4r344XzvWILPCECOmrtm+uKN2jul0Yt8fZWaroakrXt3e4JzjcP9A/7xjWrcsOxETRBupq4qbzY3Mawu5cHN7I26nJNkuGIWuHcka6FpU14ARjEoymvPxgJkrulrmz2tb4bo1cQ5XuZ4fPSFEDs8H5mmmP/WM44jzmXaW07ufR3yG2GWUs+zHnkOY6P3I83jGe8+5EC7UaWCaAiloFt1W0uSMIVrLu35gnzLuzRvaruHgR+7nmafgOZMYVMYo2WS1lb6IQMn+M0QIUa6RQipACxoySXMjBokSmOeZ0U/CpI2emoSy5Q5ZMimyklq/6xpub2/oamlBG2OlYs0fE4Evi+mSMiyStNKCDlyd6/I9H934ih+drJfz8zL4juLOUGSskr6lSuVOdcGK/Ki8qqwr7nxN1lztY9K6T6TshYie4vVOLhQ8ad5cSvtcoNl939PmzFCIfc4YrNJywk4etGE4D+K+uJycjaTMyEuRakJ2X1kyIjOU/51IRMTwrY2VO3e5X2WfiP1EGiZyP5L6kXgeCOcBvdhQWUPW0nhSRVwvYiIpcdWlaslChsg5YY2kjg+lAUS+CFXk7mi0ZhokXLipMsaKFzTGQIXMl62xJZpP8CjGOnSOqGxJZKIWV0jWStLJjQKjxP7nZ2mUzR5sxgCVNsxZjPPJy6ktmJKBaZyZpwk/zeioUB7Z9II8JyFG0Io5ReYUmWJkCr6I/8WVE0JCIYIQeW6l25pL6a9TwudMUIo5Z8YQSv9Cuu1azrli5M8icfwj983/5OK84i3KvyQmiWxLKVE7h02SUJy0xLjFcSZPAR2EFzsjaAhdFmlV16y3W0kzrpor0qLUbOU30mAMWmVq5IOaUiDFjI0aUjHb2lpKI10WcookIqp0S/McmIZAHD3j+wP97kgcRozShHnmdDzipyCvT5c3D7kPuJxYLJfcGSVzSe8JITBVMx+DzSGkwDCPcn8obN40SZaIcxbrDJOfOJZczIenRzGZB2l6jONAP55ZxRXbl9tSsol5WWUNWgKG8RF5lbLBtK4i60tpBSgJbdJZY5KGmJl2J0I/cfrwwOndPafnHe9++3v645mcE+vVkvVqxXq5Znc6cf/4wHmcpFJwjhQkpUwlmU1qKNI6xbnv8VbIBNrKhuasRB6czmdyzhzPZ2KMHM9LlsumSAMDm/WGrltSOSdz2xjEkVI36MpSNQI2m7K4gyY/EftAVeR88zjTH49oremPZ6EZ9jN59pxLhk/wgakXs8bpcCLMQcpcxMw+H0eJ91h2KGOIzhK1JpxPnPuB4/nM09OuaH2LKycludaU9DgZg0hy3s12y2KxgJTZPT3z9PjAh3fvOByP1NaSS8K10pppCgxhpK5rum750xtCqXT6RLQk965LarDVpoS/yB2OmOUUilGCUaMkKGetBGmhRPBtbSvfayXlmfgjBZOiNID0tf8TcyYVqZw0hDWZC4Vd+FUiOAil+SE8mBQTcZrx/Uj/9Ey/k5AlCbaNTONEDKnIsi6nr4whTBZx8kLD7AMJiUK01pWOZizidgn3kb/HQsqbr51rZaRjOM0TOQtRIqYkHUAfCMHjvRjTM7KzylC+IEdLchkxIm+U3NusElHEJUNUl7hCVS6MOWVCPzIfes7PB54fn9jdP/L9d98LiT0jKWq1+Czz4cTpdGYqlq4rQa9QBgAu+aVKCd0/R0myVsWJUlUVWmumWVLM9/s9PgSUDsy+uep2QQnLFhimEe9Fi5uVorKKyjbytBWodQieRMQ4g6IiFueMAsIom61FOFTjOHE6ncviHIkhCnM4RKEuaoMPgTCOuKpm4SpM5Zh16YKnfM106fsBQFAtykgSCOkPohkoc/CubVkuFiLm73vOpzPHw4FxHLDaULssKjIUU4yEaZZEMmN/uitliuI4SdNMjoFlU7NqGqrKXacctbXkaOl3e95/8x2mq3llaoxV1KacnGXAnItMQ6sLr/Hj31IZx6QQiWFGGY2pHBmwxmJMxgRFThRMRI+2lnrRopWSEzxnjBI+rQ+JMEz0zwe+/s1vOT3uOe33EKP4/OqKaOTOE2Nimj0hJ5qmobYd6XjkOEl+yEVWprWoPBKUD0vyQ1KMjLO0ykOSyiJpiDoLiEwJ/+fQnxlnX9rz0kjJKWHPPR/uHxnnmd999TX7w4FX8TNu9EtC9vg8kXLE57kI8VMxIBe4lhIolp8Dh/cnpvPE+999y/HxmdgPxPPAcDiBz1gMzWItI4xSWs7zzDhOTCEUDGbCGgdKnEcZ0Ysu25bKip7ZGYPTWu5eWpXUryQVRJQMEYNh9pHzIAgSjSp5p3u6ruXFyxfUdc394z1v79/hakd1bIgpcZrOKKP5/GdfsF5uWG7WrLYbhvMZP0/kKGCznOV5oFQcxljmyXM4yF24sjW2qXBOINFDgPEgc9ZcOVRdyamvNJubW6KxuHpPP5XX8SMETM5ZtLlFMim62lpS0I3hcDhI5MfjA48f7iW+ImUqZaiqulw5FE4ZFt2Sm+WyrIWfsjjDTE6J/nTAjyPVixe0N9srp0UBrbWo6Dg/7ZingeXrl2AbtNPURlQ5mAsIuVSwP/4hJQIyIhSCOQR88BhnpQ9UWuoKVYhriXn0HI57mbO1tdhwtCvVsTRDYsjEfuT0vOO3f/8rDvdPhOczRHHo100tVLkEcwjEEtu+2KyoFx2D96Rn6VJq9dExYYyMUC7RfyLJC4zTSIiBUEzOQWeCLmZhpfA5czid0Xq4npy23NHyWWHe3XM8nqgXNZvHe1zr2C46fJzo/UDMgSlNUrZHhW4b4pUfLPea8TTyw99/y3F34jd/+3fcv3vP0tWsq5o0e7LPWGVZL9c46wgp40tGzDCO0ln0Qdws1mGUJkZ5fXXxqlbWsijOpNY5nDFSAQRP8p5pmCU+sJTdcwjMhbFTV44pRB6en1nHyF/8s7/kxYsX3O8e+P7d9xhnsLXDx8DutMc6y6tPX9F1LavthpvXr7DPz5x3O5IPRf2V8ZPwlGNIha2U2O/2pJR59aqjbTvquuTbTBFvnkV3XFeoMqtVxrC1FrdYYuuaY9+LzHGWzTZH6U04V9HVzXVuXVdSNRhj2O12fLi/52n3zMP7D2XWv8RYy6JuRKyv5Cq4XCy5W65/+skZSpv82io30ga/AHsV0DUdzhpCzsz9wHw843d7bFNhlk4u8kkaDal0NGMUWLFS6kpWEIOuxSiEoVqwJXKvKiOSEFA+MvQDx8OJtossV2twRf+qNKrYos7Pe7773TfsPjwyHs/E2Uu0YLOkbSTFOUaJXheP5iTz1WkiG804TYzjiA+BYb48cLIDBqWBgNLmSrG/ZG2mUh+HGEnTKKyfyqGknSAfdGkmSKNLQMl9PxBT5MP7D/RDz6eff8Ldi1sikajk/mW1MOt11qikMBiSUsR5ZuzPDKcRfx4J/UQYZ+kBYFBGxgxV22EoaEgU4zAwTDN9PxaUI1zHT9fKRpxISv04OECaGsZoCaBK4WOpB6KRtVbi62Mg5UiIiTROoLS4erwM7X3wbG62/PxPfs7pfOJx90iIAecM1hmGoWe3e8I2FXXbEKeZtm5INsJcRBOTJyTPJaPGWodzddFkK4lFOJ3JWcr3OWfCPPHd+/eCeeHi35SG3ul8JvhIymCdk9ly0FeYmg+BbC11KcfHSex15/OZ0+nENE5cPbMpFY2yVA6Nq7Ba4i0b54rF8ScsznEey8Ioig1nxbbjbDFfa17e3AKJtw/veHre0f/wnv6rb6g2S7ovP0E1Ti6GKMIc8H6mH3t2hx3GWm5ubyQesK5xlYiuTbLXuyfIqUrK+GEgnmeeHne8e/ee5WrJsllRNw3NYoG2GsYZRs/7337Lf/h//38Yj2fG+x06wevPfsbd+obWloj1eeZxL17PwzAJ0dso3DzxtHvmeb9jmmeOpx6tNS9eSBk2DCOTntDKXG1JUzlBTWVRRjH5kbn3opbZbCDDWIjxkrkhJm1rDTEEHh6fQGWedg9UjWO1XtLUDVXraJcN1lm6RYNRhio5bLBgHBjLsR95+vod43lkeNgznwb8viccB8BiHNSuZrNalNctSq/np2c+PD7JuCAkcpnhXbq2gJRd2qKV+bhAc7oO06u6klMzpbLxyP3U1SIiH6eJOHsJTRoGFnOg7TqUNezPR5q+5ed/8nP+8l/8BX/zd/+Rb/7Hr8k5sdyucZXj6emefjgyTSPZe2pXcbPeorIizUHGJv3MmCa0EhVY20QWq7UwZ9HMPvLhwween59R2qJMxXA+8/2vfsU4jewPB6Z5Zrlal1QwR1M3WCu4TWOM5LnGyDyOnIaRtqlZLBdkrXna78k58e79Bz58eC+jpaxkbj8HUhI5p82K5WJZCJA1XdP+aMLwj1ycubSBbCEBiCL/I+xXIZwhraByFZW1JB84Pe1ocsTebTCpxqgKlQ0qJFSRheWYivbtQq2THVepPxyL5PJfl5/5UeKVr18XDydZAnzyODGezuwfngjjhMuKykj7Xlg60jBK5VIv2tl0zXykwJrmWVwbF0TLBbYsX5c7qGAalVao9FHwkFIW/2PO5Xvl9eUydlHXqqAMRwog7BI9cD6d2e/2LGJ35eKotoy1rv2hCAFpeu1PjJf81H4i+SABvkkVQvvHEzNqafRcUs9iSoXZyx9ocC+NuotbP6UkJ3WIciqUz03xsWF0AY5fnh9KlaC1vTpTZu+ZpvmaC7raLmkXHcvlgvV6RVZZSBrOSUqXs+QoiNLsIg6hD46ngTB7hn7Azx6jZB4uAgRhIvX9QM75infFOLCZfhw59jL7PJckPGXlni1+S0XlEqHr+HFqXApRYNXldaZieI8xEkoUA4orVvRKoijhyhrpodii8f7J3VpJgVLcbTYsmpbGGObZUxmBLykjrM66cqATq1VHHCb++n/6X1jebvj5+Uy7WnLz2SvqZSs2Jg0pWYIVMLCNCh0Ql74S03KIQRoKzhbl0KVkkgfbuoqu6cSHlxU6gvLyBgyPR4aHJ97/9ht+9zf/QOMq/tU//StW3RKHlS6ejsxaZljL9RozTTyde6bgSQVkfTwe2e12pJJ9ibV4HzEmwGXk4hx13WCc4TzU+KCvZW7MYhGrU5TuM0qG/UgcIAj+ORTtqjYWSCUjM/Hd778jes/r1y/5+S++pFt0rKsGHQ3KBPCKcB7ww8jT99/z1f/+S8Zh5rAf8XNkPo64bLGIAsgqiymnnzGWlCSuz9UVKglPJ/GxWvGz2Nuaui4NwMzcjwQFgSxCfuewSsjudTElaCOGhH4UI7XSDle1NG2Hs3eEMPO023Eeznzz3XeM80S9rLl5dcNnX3zOf/ff/b8kkHa7lkQvP5ND4Ol5x/vvfyg62cxwHvjNP/yWoR/47M2nbLdbKiv+0tPpzPF4pu973r59K3zYstEPMXH0kuC9Pxwkia0Wfm5Mmf1Ryt+cH6mrmhAibdvx+tVLVuslw/lcfMQKj6RjT0MR0qcI1tJUFV3bivTVi7AmhcA8jrR1LTY/MjkFfrJC6OIYaJqGxaJDxzLryel6v5AUalcoe5Hd6cDz/pmQIuenHcTIcrPEaU2ujPj9Ui6SMYNGyWmQKXEichqKLe1Hv3t5dy9uenH8K5GnJQE8kyS0dTz2DMczw/GEbRe0VcOiaVFRErTRF/G8JEbbJOE/l5NEByUt9xDK6SpKjlzYQPLeSOfWFSe+wJDTVSzP5ZQvv76CElHAxxOzCAyuJ1YRVeQM51PP88MzXdMw9SPOGJKPJB1Jc0QlJeOS44lxd+T0tGccPf3JE6JIDfXlLyWbA/njyCDlj6ca5RS9hDjJn7m8VvGGUjS9UmzIPSqGKJEVSNPsAgjPUT6nmJLoV7UI2Nu2YhjB7wOQr6nY3ntyzjRNw+vXr9DW0m4lPc73A9HPnI5npmEk+ogfZX75w3ffcz71LOqOpmpITvoNIjqYmaaZ/f7A8XgUF1FVMc6eQ9FMT17uyq6usc4xj/M1iMj7WWbc0ySBSQXF6Wcv1IcsMY6pVFshSIiyLib0tmvJKTMbL51qrf9gGeZy4v6RtfnHF+eqbYXsprTAoQBlxDUyzjOZzOPhQF05Uo6YqsK6ispYso88/PCew9Oe0+lM1TXYrsG20tquFi260bh1IwAtrUtHNmJzUSbFUkYaQ9KJ5+OZ48Oep8cnPrx7x3a14bZdEe3E4/GdRBPePzM8H8hD5GeffMmi6dguNzR1w/P9I8O5v2JHmrZjc3NLpTRN15G0YvCeuZ9BwWq1KjNM6T6mJDxV8Zwqmqpis1oy1xXTPIrptz8z+1ki5poaa3RxH+iCejH48hBcsCoy4J4xRnN3s6GuHdMw8cN332O15m57w3ga0D5RVRXL5RLnHLv7R/aPzzw+PDHszoQElWuonCIZKQW7tqNbLMgx8rzf4/3M/cMjwzRyGEf6eRaRRQqELJ3rhJz8SmUuGUYXFZdWivqioCJDDOQkpMKUpXRTZJyT3Bet5L7qrKOp26K8AmM1ddHUno5H7t+9I6VAjF7KWBLGWWzTUjUty/WJl9serQyVrjkdT+w+7Njv9xBhV1w2IQgM7nkn/YKUMtZVLFcbFssFqe953u9R2pNnLwdBwalqE1FKrjAXcFssG/Z5GDBHy9PzEw8P92glB5O+KM4UrDZr1us1tze3fPrmDc5Zmkogec+756vfcypAs2Ec+Lh9/yMXZ1vVRTCur+J0VQa2Uwhk4Nj3TN7S1OIwN8ZidGlnP+5KyTdgK0ezXlAvWxabNbemQpmM0Q5jqrKDSAivKfo9leThEKKaZh5GDrsD+6dnnu4fUT4xvxnBBHbfv2M4nZn2Z+bzCHPk9c1L2qZh0YotahonDoejuOiNYaM1N9bhlKAxfIqcZkEZgqLrOhGAl+H5hUSorcgZnbUs2hZnjMgRtWaYBpknGk1dVWIQCEEYubaGDHNKzLO/Vgk5RVKYqSqpQLq25fnxPcfDM+vlktP+SJxmbBJ/YBpm6qri8e0HHj48cDqcmM8TWWnqtWhlsxKHT1031HXNNI7XoJ0f3r/j3Pdka0nGys6fEiFnpihNnQuR7tK3lY8nFweeoTJGbH1JNNE5XaopeU4kezMjRm+DNY7KVYV9bDHm0qmHaRzZPT+XPy8L2xpBr9jFEtN1tIsF68WS2tWsuy3H7siruxdYZZhHz+lwYhhGIQOGQD8O5WRDGjxtx3K15gSoQQgF2egiFjHX9LPLPfAC7M5ZgALTPNEPlv3hwP3jgwCza9l8L8ziRbegrRvevH7Dz3/+c9q25XYrzq6vv/k9+/2e9+/fcz6f6Yczj8/PfzTM6I8uzpK8SPSeKSUqK8oeHwPnaWD0mjlOQgJoKionHslusbw2RnKA89NB1EZPzyinWW7W9Icz3WoJSlMvOqr1AtM4FBqtKwBUaRxN80hKia5d8PqNiAxiP7FZrVlUQls7707sH5+Yjj3zaWQ8DUKeS/D8tEMrLRf/C9gqZ3yCqCRleZznK2nce4+1lk1dM4wTQ/9EBqqFLQ2woo4q6VjirBGkhy4JWFZrFLJRXdKuL67MazZlSiU1XH6nizjDlNgD5yqMMqSQ8JPneDjKw40lN4kcwZmKuqpZdAvmEHl63hGSyD20AldZFouyyTiLToKYDGSSsSStSc6QaplBhkHoFVbbaypYjqLbdUbjtKEp802Nkuy/XPSixd+LEvi0UhqjWoyq0FrwNTlHQpylS+0DOTpRS82+6HPlumKVwWoR9pM1fgr0xzMjI+dnUeGcDyemEqcRCsF+vd6ICaDAqesg9jprHSHIOKxrFxhtmYe5iF4CcxHhV86VxSl5NK4IDqbC+5n9LJpaEDF/VjAWaFnK+NlTVxVd07BYLK4Nob5sjONUdOgh4EtZ/JMWpy0nWJhmfM5QAkVjEkVMzjKcVTnTNk1xHGx49fIFOSX8NBK8Z//4RD8MjPPI5CdWNxteffbAerulQhbr+otPMds1qjIYV4kcL0hTYexFp7lebXl5t6A1FWYMLJqOVbPEjxPHhx3vv30rY4R+kuh37cgx8/7Dg4gphhEfoiy4aUIfz3zYHbDOstpuJLkqiGJmtW65ubllvz/w4f293IkqCbuR5zGLSkZJhITOCZUCOsnilKQukdnpos80FM5RWZyXYKAUI2HyH/+cMbhKIguMsaSSgjafeowx1DhSG8khU7saGsirxP585v23P3AaRrq6pnISqrRaLqUqqRxWZZrlguwMUWmSEi2yA4ZpYsyRECOVETmeSWJU1sX4XBlDV9c4UzTMUS79mkIuDII06RYd1lXUdokzLf35yPG0F25PnIXj47ekWBFmL1GNJWiJBJV2VLqSxYllGjzH5yN+8gznkbEfOTztpFMbRaS/XK5Zb27wIVD1ojTypRMdisBCKctqtca5URY2s/z8mGichOY6a2krERoYJ13XYRzox55xmgohMQmbCJgniY+fp4naOmFRzZ7VanUVrhyOR07nM8M4MM4To5+vUYE/aXHmIKld1pWcFJCST8GlgyPZlAnlZ2JO1GPNue/lZCkt6K5uS+A7kITZEvqZQZ/58N1bDs97jn6mXq9o1gvazRKtxUedUkL5JPedkFEmocvJEOeZpw/3zMPE6XBk6sdiNFbkKJ20lLIAi2NiKKKCrDRV05KUiAdykAfTGFPwGq3M6MaBUNQtF3DzZawiKVpCSY8h4KcSblT8oVmLk0NDaZvrMh8s9+kyVrmUkJfs0nT5GUqVdGfJQollcG60pu+H8hpl1/XeSwjPuacfR8ZpEoJAWXBP+/31VEpJksYxmt6H6/uhtADPbIFA166SsVOMEGNx61jBiYA05WQSJeW7s0xhJvS5oDGlLKysyN1i5ZidwwcIPhVqQyDOAT955nGW50wpNJ7zsWfoJw4Pz0wp8fjtdzx9uCdHgZj52WONoa5qLDKpsCVdOpY4x1SuITFLGp73nlmrEgAMbd1If8RFSImuEg6t0Vr+OVxjLcI8E5LA37TS1448pUEJkqLd1CITBBEg+HkmlkyaGD52+q0VwsNPXpy+n9FGs1mv6ZYLHp+fpN62lrqT+2gKkvI7+BmNYpxnhnFg0XZ89uo1TdWybJaQM8/PT+wPe3mzns+cn45889XXJAXNzQrX1nz5p7/gyz/7hRizSzS6pnBV8wQzqGHGhszpsOOrb37JcB54+/W39Mczi6ajrVqGeeCwOxb/5ST+vSLRe/HqFS9evWQYx2vj4Pz0jLWGf/bP/zmfffYZv/3tb/nbv/1bUsqslh2gCGEmngOLxQLXOFROTH3P2PecnndXCZ9MnTOUU7CthFM6Tp4YE4YSHJskg8NYS7NY4KzoQk/5TGUtq+UaaxzDMArl4HiQ0VJCGj1NS1O37A9HfvPV7zgOAx+e9swpUXcdjXN82O14e/+BunasVyvqquL25QtcVfH9+/fsnwdwVhK1rGG5lOSrtmlx1pLGiTR7GmtYVbW4U9LFBC6l83a9Znt3y3kcMI8PkkFSNvRFU7GoGiqTqYyi788Mpz0xBsZzL80hrUkhUdeO2DYMauT4dGQaJ/7Df/if+fbbb+VUc4626bjZ3l030tVSY1yNNo7j6czucChkfgGD95MI8U99L4R5Z0mNyO1e3d4Kv6j0OVbdgmXbSbe2LOan3RPjPHE+CrakbgRcnVKUOTOiBDIoVoslt9utiNqtqMLORaQ/9IJc1UbTrZZoZwl8nHr8oxfnj0HAsjdcwl9S+Uf5wiOQXTxn5uCZvKdy4SoHs9aKdKlu8PVMyFKmETxxCoQcJYMkBPr9gdPznjjPUlYYU3JYFGlMWCMCg3mYmPqB0+HIeB4k7j1LcM8lDt2Xk+Ei5vZRSrZQPHoJZOaYRTCQyRJx13UFFi2yxdrVoBQxxdJdK57K/LEJcvGCaiPoRFViDSWHw17BzRQhg/7R0P7HX5fBtnQMPzYlri4RJNYgBHltRovvUNr5sSSlpevr9cGLUFxlGu9ldpg/Ci9CETLI68tXAcgfulFUUQ6p4uzLZTwgjZPLHdnoS+J2vopJjFJYowpc2+CN3Ncv0fTzNDMNoziJglyRAGIQhvD+6Zn94zN5tcItVzIH94GcxOmEVgVHU5Ct5eSMKZZSVry33ov5Gi3pA6pwi6wxVGVxOmsk6+TSgSVfcbC5IDwv4htVBDOgZFxU0s+dsZKcXhxFc4kFjJfv1RqrZUO2pSL7SYvTldyIw/HIsT+TVGa92YoapvBwVJnvzX2Pn2fqoq6IMdOPMzFmlJMPZ7O+4WZzK8zYSrqEz6cDIQVULYG7wzDxq7/+W0KMTGGS4J31SuaRWi7ncY4SGzB5+v1JgmqajmXdUbuGylYcTz2HfsCHwFjmaFkbsJbHw4Gn84mmadluN8SUGJ+fSmLxzDxOGBTLxQJrLcsCDO6HoVjEREdpmhZb1awWC/70T/4ElMT3GSuZL8v1iqfdjt9/+53odEcPKpKMRuFkgRYjc/AelRPOCMKlbWuaylHXroCIFcvVSjqhTnyuu+OREJ4Zh5H1ZotuJpwPBO85DGf6eaRxlqZyKGuJSjMGSQpHKZ72e05Dj4+RKUTQBmMrlNJMwyS8IKVxSqF0YogJqy66YE3bLiRzE83hcOTU9xyOJzLQrpc4bdEqY0lUGrIzpNqyaGpCCBye9xx2ex6swdjLuKUixcgw9sQYqW3Ln/zsT7m5uWG73eJnz/l8ZhoGPtzfy59pO2xVMfnAMIdC0ZAN62m3Y5w91jq0+4husTGjfYAQGWdPjonY98xVTds2bDdbZqPYG0PUmrZ25Cz3UIKQHCtl5PlsOyrr6Oq2nMKy2MPoebd7W2apVdlsFamkHUy++ekNIdnJpV6POVG1NXXTFM6MXDo0ipxFghZTKjI0GbCHIBHmySSyNlROMhptSWEKMaKdxcdItoBWDPfv2N0/MUwjz4dntNbc3N1IGCu63Ek0VpkiehY2aeVqjDI4U2G0JSOOCO+D/PuzgLu0MZJ7cZ5ZA3fuhXgHL02aGMrdQDp3zjm6VuIPQgzguc6pUvEwCvZyISVsJ0lU27tbtrc3VFXF+w8fyjjlEmOhMToLb+nyc70nZ32tFlxRIInkUATWqv4oZrh0DodhJMWEq2tcltAlkgQuzd5jdEura1Ba+AkpMfY9KWeGaRQpnf//k/anPbYlV3om+Ni0pzP5cKcIRpDMZFZJLUFdDVSrUR/6W9evb6DQpVaVkMqBySQZEXfw6Ux7sqk/LNvbLwUo1BnyhCOYwUu/fs7ZZrZsrfd9XhH3a2OpGzG6xyRGW2VlPJYyRCQ7ZtHdLjDxkEV2OM3yjVLU6TUgSpHXVOkF3CUNuqHQ8mRYY60p/KbA9Xohk7m/uWW32XHY33BzuC3qnws+iIrLe08TAq6qiRnBjiRp1njvGaZRMko6Ta2kE6tzFodTjGSlCLN0bU1K6BipyglKFpmd1Wrt3C5UCIXojq02NFVNXSokXfi4IhGN9JcrKWd2ZQPSWov6rTSKfrErRVeVzPbGQUYQ48ScRF43zCNKK7bbjWRlaEtdtWhtCUHkcdM0kxPMtgYdOT48MI2jkNKdBKKOfiKTqTdFQ+kTu2bLttnwZn8LqszMKJdzROFPKsqTbVfgVDKGCSERQiIrja0akvaoWUoM42pxSyRBboScJUk7yfA658TQD5xOJ8leLKZv72dgKd2X3I+SL3rYU7mKzXaDUop+HBjHgYcitP788MDD5y/4EErqmBWvaRmYhxBKMFRVFnlL5Sy73Y79bkNlhbhvrWHTdkDm+HxkHEfQ4krxUTrRl2min2cG73FaSsoiw2WcPdM0oZRaXTLDdeQ6DFRNw93tvZTWVj7zoRdJWoyZQKIqjhxnFoC2+Fon7/ExMIfAME7MPkpZfx2ws6cJijyM65XIl0xLW9w4ISTx+xpNzpqYFBlLVXUlD7TDVQ0vxwsPj8+M08T5fMIHz6WY15O1VEBSmqw04zzzcjwxB08/jvgYMcGLfNLLyCsYjW7k8DAgc8vK0ZWpg1YiX727vRF1nDNcerdeMbQxq8G8cfJ+NK6mrqoyv5ZR2fKfr6VTa+qq+JSz5OP8zNfPL85FpoQ4/X2OqBAY55HT+SjEc2sl/kyJxUdrIw9eaV2DEtOpMTw8P/Pw8LCqfhZnktKK/c2eppWowE3VFSVMJw/KtS+zqJmQfAmHle7Ytt2KN0/JVPZyFaVOVhpTVQKIjlLXa1cJczV4CKL+GIZB7j8FOj2OI5fLBe/lzqugGKOFBigXNnnTrbNstzuapuHmdg/A+NPIPE+czmemeebp+ZnnpydQiv3Nrdw1/Ovi9N7Q1DV3tzelAxzRWrHZdBwOeyorZWnbNDKiypl5DkyFIIDS+JToJxkPDd4zhoByFqWllZayzKrH/opSiu12i9a6wKUH6rbj5nBTTlc5eaZhErtkSgQU2alVRFCX4XtGMXv5XSY/M04z3ke5kQ8jZjacY0a5cS2FY0zSANJCF4gxSyJ3lsWZCq+qcqJOq6oW62qenj/x+fMnQgzMfhKYWpA+AZUjGSXPgLZM8yxRHiEwB+nc+hAwNkAIECQQymTpFdi6lvlxMU/XVblyWMNhfxCfbuFFpWKQkN5EmWOWrnXlhN4ooU9+vU/mJJt+IlPHFpeSuGe69pcvzjH41Qki+stECgJlskba3n6cIWa6qi75k5KaZa0lAT5GXs5nlFI8n8+cegmsUUYaMTHLi/Y50Qwisq6rCpVAtZ1MbOZA8oGmceimJkU5HVW5dMuoIS1qOLRzuLqm2WxJ48B8ueBjAGtwqrhtSmkWYkTl5fVACJ5h6JmnScZECJ8IiovNGmpVwNTOSfjRLHKxlBLH06nskiP9ONIPPSAdyaqusNbRDyeGYcQYyX4xVgtwWQE5opSQ/ypn6NqGyurV0J2L22Vx0MxFA5qREYarKqoy6tFKyX16FPKC92H9985amqoWsHTT0jateBLLPT0VwHTMWTIyS2dZ3oSS2hajaFnnmXGexXhebGPJB3RM9CkVH7DFumrVESuj1wVrjAgultRrWBxIcuLHDH2ZTS+jjYwqXB7QTgKrtHEYWzHHIGMqJR5kjVrN38ZZnJWysqlrlNYyfgmBunLEVDPOI5wpLiJpnjVtg62WhRex1tI0rSi+RrlaSAuJNRfHF212gvVzSkYRFTRG064NtF+wOC/jWHqTGYwmeilVFdLBVGTGS8+sFO3dHXXT0lY1m3aD1lJShRD48vTMNM+czmeu16s0lIxgLZZu1vZ8pnKOw3bLYbuFXeJ+d4CUideZEAI3u1u2N1spm2d5k/pBTNJjASKbqsY1DU1K7GIinQzXH39gHEey1VSkNQgYZEZoiqJFlCATxxdJ4o5+ll03Cq+17WS80HSNfLhtwxw84zzx5VHuT8fjs5y+155L368RCdaJvMs6x6dPX3h6euT29o6bmwMpCdA65wRZcjVqp4lhJh32dHWFVorz5SIokHkiRGEF9+NI8ELdR2upPqIIIVRGaOzDSI6R5Au5XMndbtt1OOvY7/bstnuGceTpUUZLUubLHDhlZJivNNkYlLWgNdMowUrjPL3mVwbZKFIogngiE5GqbmhKWlvVthhVQpOKULyuW4o0VzbcLHfe6zChxonj5crx2gtUukQluqaSgKC6QVVOhBtNy5xjMTaIdG+hxCutqJ1jUz7rulzbTi8vTOMkkX1tw+gnjucTSkuSu7GWm7s72s1mtYbJbLoihsjzw1MJYtLrgTQMk0wGsoTw9qNUdHWOVDEKGM26X37n9OXkWMS5mUV3KFIuchZFSBaXt1aqDGKbkkQmzo5+Et/eHAJRLRqGQocvd7i5dFRDOZlzcVaQsjx83hcJmVvj06bZczpfJDczJGLOmMqjnYi5U349TVLOmAJUiimWMYgqF3uFsw5bMiWXf6d1cb/LfKMMnHMpY9TqvIgxrkPuy1UyRJf8TqUkbtDaV4GB0uKGWWIhYlAy7shpNSmEKEolEUqPKwpkyTrxhQi4jIby+jmpMqoRYp4wb5fBd6HkGVOICJbsWMcYsTgyJE9Tfo/lBBNubUAHIRIurz2lBdlSSAoKWRXla/G+Lv5Vlv9fS6yDiUk+F2NISc4eiYSQz0jGPsV3Wt57SkPHKiUUQi0dZGNtWeg13WaD86GMd7TEcLiKymih9ZMlxa34eiU4WaqgWNLJTMHruPJnQfofpnyW8zzjfWCcJLFtkWbORau8VJyL8yer8t7Nk+TNDsN6SPyLF+dlGsQ4WjqGSmvJq7SWfdtCzgzXCylGamNxWLbdlrdv3zIMA3/64Qf6YeDz4yPXocfWFbYpYCoyKSq8KkbjccKomU3TodDkCNPgSQve0HtU+oau7jg+n/nxh584Xy78+adP0plDk5RC2QqMlVN8vycrxZu3b6R8LSVEfxV0onHiZ6yc5bDfCbDJOfGxFq1oKPNDkNkbGZSS1C4fIkPpCr5cL4zDwD//8GdOL0c22y2brqNqarb7PaC49Fdiyriq4u7NPTeHG3aHHdM4MowXyEjHTyvmeSLMEynM5Cikgb50WRfi+Pna04+TlJ8p/cUiqSonsRTakLVhU9e8vbktgbayuHRlSJVsPOfnF8Z5ZipCjZxZu/I5RYZ55ni5UjuHKeL3FETwHkpkQ1YSmpRYxPKKqlJ0TmGswzrhPemC/mg2HaaqsVWDLZT9EEp0XxGOhOBJKXL1AU8xLXuPyaawYMVIj7VUXcf+9oa6a1FO5tSig9bFl1oRg8fPM+M48PnTp8LAzVBZLvPI8CTGh/P5jHOOD+8/0HYt9bBBO8d2s2G333M6nvjjn/7EMI6cXqRrvGk3cjCVmShKSdpB1uiqwpDLpODCWDr+v/jkjAjhTIQHeT1N1njwnKUtrtQ6g7TGUFnHpOdyJ/KyeEJAlYu2xAqWVrsSWHMuGR2LtlRr/Uo3WEJ2iiBC4uoEYXi9XgURorUoPK1HGUdSChs6Yf+YEm1UOm2vzv1XELKzMkhf8I9ff8lYnVc/afnf5yx3Vh9C4eL4dZzQLB+OFr9ryiI3DDHJ4LzMyNb0rSzvx1KjLIP0aTaM4ygM1sulzMykrF4G2+mrb/KrM0SV95YiD9xupLM9jb3E75URTchZhBr+FTey4EoWkUlMcY2yW+1u+b94l5ZTUWoslOI1A9WYv6A/CC9Yo01enU7L/S6RV4FEiLEkVyMbTU4kwuqXTVlONdmYhBSotDheUkpl4ijNrNo5fHkt6JJSF8Jr/yFJB3/yXowQRVRjgpOTMKX1JccUGcZxFbP7EKSEXhZbXgoFaZyJ88UCU/GLSvf8Fy/OupULbwpB4L/WCW0vZfqSqnWzP1A5iVho6oa6pE4NQ8/D8xPDOKCtpdtt8Vn0rQvky2jDdrvFKEWeA8TEze0dH779lsZV7JsNfp55eXom55HLpefz5y94H7i5vScpg6m+lHCfSCSVUFnLHAJPT08y7D4fSSmW1GNpme/u7mjrmsNuizGaSmsUsYw3Mv31yul8BmSBLc0LbSxN3dK0LXOMPJ8kQerL4yPzPFM1LbdvK5qmxtZ1oZlbsdxpA0ni7GbvCcFzuZ7FsDsL6XAaAxR3i8qJaRwY+mtRqeTSTJOPzRhD3TSiGR3HYpGS5s08jkQUtYJKQVs53txKjMDpuYyHrAjzXy5XruejXDvmWTawAp9SCrIGHz2n64naucKXdXRtR+UqCBoVjLB7F8FH2Riq2lFVMvJJKGJOjMMgc9ZZJHZhmoWQjzTCl41IYh4Kw7iu2FU3zH7mOlzwCq7zjA6ByzSilBJawpcvstGX61H0AZIYBJx1ZA3JCCplCIJDjYU8Xzknd/K6jMa0ZpwnqR6ygNrOlwtPT8+czme+PD7hvZcOdc5c54k5C/hMPnOFLiKDqmslHNqU96XgNH9xQ8g6tzq2U5GdWWNJWe5DlbW0dUNXPIhNVeOs7Oiz9/RDzzCOVJsWZx1+GksnsDgfnDCInLVEJnKIdF3Hbn+gMpbaCg7C2gpjRIZ3uVxJKJqmpa7H1YeXy++43D9iivhZYucu5zMxRXFqWMumlmZI29Tstp3MUIME9KZCO5jniWHohQxehPvLyWCdDN/nYRSHyzBy7XtC8CWmXlrzS8NDaSNPXfkcZMcWINgwDoLe1KYohaYCbJbFGYOgJwXFKFHyi3dSmhJmZQClUhnkcuqkUtkIlV08p1oppssVlRKqsKE0V4kriJEUg5y7a4Ug3ylFxmKsnmZJIO+0CDsMS4AUmBDlyqnV2ojR1pQ7qtxPZ+/Fsle6zuPkmeblBNOEEBimsWSylofYWqqSV5om6dL7EEFFYpQ8k94OXC4XeT/La/DjRIqJ2lY460RH3EjXdXGs+OIMMla60NpYMQcgG4Uq1Z7WAiw7vghAoO/70pcpGNAUSdFjlcXlIkVI8j5UzqG1wvuZGMSSqL+SSf6LF+dSuuqqIhUo0aKkWaLcvPeEAmI67Pec+ys/ffzI+XoBpJU9TxN5nrGV49DsmGfP0PeSY0kRDe/24nxwFcMwcp49P1wuJUvDsqn28oYpiQHwUS7d2jq0lXGISkkYrCXReNGI3t/douAVgpwil5cXzGFHdXcQLWRdyayquAoeHx/Xtr/WrihDygn9VW5lVpKEVTUdap4Zp5EYi+DAWoZZ0qpiiDy9HAkhUDUNrq4K5GqQAXZVAZl5lhGO0wqrFE3b8ObuHufsmqW52e1xrmKYZsZJBu2ubrhOE0f/UJpJIzl4qqZFmRZiIEyCO6mtwVCtSV5tZelqx+RhDJTyMBUJrRS2WYlwI6HXxbdgWkBmwAKXLhVvEgXZ0I+EibXPIIvytRmYihCkH0YotPmYIsNcgN7WoJTAyFPBwCybkSoWvBBS+UzEfeSs9ByM1myqRgDapWHptWJSikwiRrlK1U27amh9jPKsVDVGG+kbOIdWmnGcGPqB66VnmiaROyrJR1WluhIplBEje06EJS/VKCxGnq+ikqqLGOQXL06Ri0k5pldzcFpJbL6Yk5um5nB7w/F65qePP4mMC5EADuOIj4G75p7Dbs8wDKTZl0GwkBYO+71oFKtKLtnHIz/88U84a/mbv/5rtptNuQtmUpxFOxkFMqatQycJmhmnidH78uA4mqrmzd0dzhpyEMdIfzpxOZ9onaE2RlCFVnbow81hFb6P01S6kWpF9Usgz7I4y+zPWKq6BWU4ns70/VVmvsWZcblKVsqXh0dijHz73Xd02w3DNHLpr1LiWOl+z15mkspadJmlffjwnrquORwOOOfY7W9xVc3xfOF0udL3A9bVuOuFH1+eUFPETz1+Gum0QtW1GLrnCWMtlRUR+iJiaJ2jqxyQMWMJQs6xzBPT6kHNOZKyIasiHLAizk9JQN0piSoplQ5vTpl+nskprHfKlLPkUVGagmRJjr5c1mtDymLzUyhc24hvtEgBfRIBR/rqzutDKtcaYfyqGtxWLG67psMVZEuOkT4lpiRz0FCg3Jumpa4rxmFgGoeycESSd3t7VxRDhmkYy+K8yiJWQl+s2g5jLbHcf5UxZGuIMTOEWXozlTwLAkIXYr4szv/61883hIrG1C5awZREYQHrMT1NYroexkHmY7GEAxkZIagow2qlFdF7rucLCjhsdkIb2O4EXhWivGgnLoW+78UxERWXYZCZlZEEK59SudMYrKuwOUMQ8bJz5URQ4mbXGvw0kYOWUi5LMG9TVzRVJcRuK7s/OWGtoaorKU+rilByHCEVF4QYqcV1IFkq8ywNhDB7UJKpYu2inVSv1rGuLaDjLLmmSwe5PLQKaaAoEBZv5djspDvois5XW6kc8J5xmuiHgX4Y5P2fJoKfidEL6kPVbDct+92WbddSlTFKWrhFMZJIaAVN05C0wo7yIAdSacSUJlrOa9qaLT8nF/JBKB3QWLy95LymSPuSCSMvTrqrWb/yiJckOTRl/q0wWUHRwVpnMU58mivGkxJNmEr7TEqcVedsrcNoU2a4O9qqFoTNMCBkEoMxWVKvs/SWQ/EBW2slmKmgMEmSy6lc0dIW03nKWZRjSqG9l6qg/F5Za5xW5KSK2TGXfBkh/enSkV/IGL9ocY79ICdnVa3w4zDPVEaz2bSQUkl0Tty/uaPbbRnmCYpqo3PyICmt8N7T9wPHx2fe3t/zm1//lqau2W/E8fHjDz/weDytHeFU5mohJz49P1JdHNu2o6kqeXFOWvLNZkO2ltM0kUKUqPtKnA3LPbI/nyBnqlIq1s6y3W+52W3Yd5siZeuFuVM5ttsNm+2GbrNh9oE8SIKYKVwjY52E1KaBaz8wjRPH03llBQkGUnZVlNzHtLHcv6nJwORn8bXGtN6ZU84FK1KhgcPNnt2m493793zz7bcopWSskGGaJ2IaeXl54eFJwFEvx5PoeocrYZ7YNQ2N2/L+/p7v3rxj2zRs21rySmIosXaeOUasVtwe9rhp4Dj1KD8zT4PAvspd0RlNbR2mMtRNRVVXxBQYp4FpGJn6sTw1CpUyyYt3tR8HxtmvC08bSfpGSQkZcxKEjRX+ryvBurpgUpq2xtoKX6L8fAxEVOEXx9JFVyjEKNAum66r6eqW7z58y2G75eOff+Bp8sw5YbJGG8Ga5iy5q9M44YyhqyXBoKkqrNYkH4kJdN1RG0tb1cybDSlnCcNKiaAU2llJrtYaZxRaV0StpBGW4NIP6JypbzS2beR6tcyFf8niTKX+Dt4XCJU0c3K57GelSncwMUwCkIop0nQtIUTGr0pbY+R+KSZdtWZUkv6SDrCOFlhKH75qqwdCeBUJpCSDbBvjOt6xRj6kpKV5kMtQnSSdXFPSlzdNJZHmxoCiuOfT6kzXWhdxvkKb5SEo6pUoAgsBT8ucc4mYo4wQ+IvXkksitFjwfHwt8xag1HoqGbkXd50AlrtNh3HlYyp5HcMwMPtAP8jdZxqF6DbPc1HXifqlrWvpoNfCd5LMGYhG8l5C0qIvVWJjsqGMKspnuuhIU05kLVI5pZVI4rRUUiHJvSoUwqAufYpF+J3KvW4ZvRiQDmYZyYQUvvLJUiYyqtirTPG5FpD30jEvJ29YR2NlbKP0V+Bw1kZMXUk/wXsvkRjLotBqmTyJa0kLUFrEKGa18y1VRgwRhaZ2FWPp/Ke8JMMV+oJSYBQmWLkCLSOYstEtESRWaxrtfvninEfJrL96wW9U1lIbi1GZmBy5DL5Divz06SOn65k3b9/wu9/9jvPlwj/8/h/xfpJSQxtoBHvZuQqbFWn2PJ2l6VMZy/3N7dptHaaRl/OJrCAaeXCHeSZMnqw12ciMrm1bbFVxmSe0taIEKc0dA7L45wmVM05JrOD97Q33NwfpMjcNvnR0Jz/z5t075v2+wKJ2TJMnZYWfPf11Yp4Dp+OJ/jrwcDzx9PhMyqIE0saQo+hStVlSPOXLGM3hcEBbU4KBgQKf0lZGItYaWid3pd/9ze/49XffyvinzDSXLvI//eEPPD0942MiRMlZeX45ERF0ZtPWvHvzhpvNlrvtjv1uS1fVbDvpTFukJHOpJuSMJzMpmKNkrlzHgSnFtaMaYpQ+h20Kp1hiJKbrIIL668DUD2Kv6zYiw4uhAMLld0xZgqq01VRK7prH60mAWUqVhqfCKYe2IkOUa4GMdKqqQvJTHWAIMUikYlwaUYqqSEetUqQgh0lTVWzalnEYePj0kcE6+rqWclRJyRmDRMJ3Tcdht5M57YIgCVHI8ecrcz/RtC33N/dY42SMNs9cgyf4iT5KJeKaimZoZVsufQ4mj0qJuq55+/ZtGRV2Pxug+/MnZ2nZSySBlwe8lJzpq6F5RrIWY07c3N3Sdh1zuZvmIl5QBVAtuZ6C2swpM08SErSAlfJyRwv2K+GxfJghRrnSKEWOGmUNxkk69iJPWwb7RimcLidzuWtKBxTapmG72Ug6lNZ4pGUeilg5FBeKuPyTJHmbWB66xJy/km2Vh0toc3ICywuHRQgNuYxgXOExiYNGPpdycpbdunJyD97uttzc3pJDXHdgETvMnM4nnl9eJPNRaQmE9b6YvY3oeJuWTdfRlIg7Vzyiiow3prw++QwiSygEpTpZBNt5zaMEVlykAKqlslokmqGAvWIqsYol2EkEAqICC0nu+8uYZxl1GWtYBzLl5FyFLuVoWViyOYOz0lJarj+mUBDllKyLV7N0Scv/xSjvXcgQS7br4kuVO3UR2Fgri6nkPC7CDp8lxayqm9LsK8aHnFBFVpmj3MF1EBzqIlOFVzmos466rmldTdu0v3xxLkduUlI7R60JpawYsyKj8dYRtWZWjpQND6ce+4cfSoxfS41jLAyc0QuexPmZ5+Eq2lUrZ9xElJNglkRlWSCigLleTsWtILumrRxVXZPmwHQdCmYSKlPRXy4M40DlHF3byFyu2MI2bUPtHLsYmZTYl9Ig6pum7jDacXo4Ml8mZu8ZZ3ngnTaUuGxiGjhfRRUSUGw3dhWPK6W4HE/FNykSP63VykX1PosP8dxzPp4xRhAXJmTMGHBOc7Pv2HQd26qjNjUvlyOfv3zh0l/4448ih/z46TPXa7/md2ht2NxuaYzhw7ahc443Nzdsuo2MEOaAMa74c2E2M1OEl/7CZZo49T3PlwvXYWCMkLCE4IlRUuTqqmLXddzvRP7XP/cM60NiyKYi1ZlLijy8PP3FmMSX01MrjbaKZITSnzNYLaAxrSQDps4VnW6wylIloRbG0jeolKYuoxBjFBGNrQzJad7c37PbbLk57Lm/vWUaR54+f0Ep+OnhM8/nI0NObN/dMyeNiYaYZRyXc5LnLidO5yuzj8JK1hoQuiQ5YZDfc9KBMc/M80xTGwkkap1sZEXhVNU1bdfK8smCSX1zc0tbS7KYjZE59Dxdrz+7/P4bi7PsLGWXWReo0sxl9UZjSUoTlAE0l37m08NzybSssMqS+pHZy+LzOTPFwNUL7W7hhMq9UEYJ0yzWqFwASPMoIvaoG5KuaLSGCnyIXM4Sc941Nc4Y5nHi/PJC09Socn+6XkX2prQiKZiKRzElSc3OKWGtkGSGS8/l5cxiDjbO0my3ZZcN5OTphzPn6wXXtDTbPXXtOOw38jBNEuyaSvSBUlYWhtaEUMKKRiEYNJUTN0zMqDliVKKzNbu6o7U1Vln8HHh6OfJ0fOYf/vmP9EPPdRxW87azjq5p2Wx2bJ3j2+2GrXMcug1N0zLPnmn2qJRlTAEEZZiJnHzgue95Op74+PAoY7GkSMqQYiCFRKUr9s2WXbvhpt2TYuT8cpRg2raRaAJtyS4zjQNfrlcRiduSGxPlc7XGUhkHWom9NoPWFqdVKSPBYaiUwyqLzQadIHlZIEtlZORySUShrIjG398cuL+/5+bmwJs3bzifTkzXC957ns9H1EUxk6h3W/QMeciFuhgIJfAopcQwlDGcNbhKOviSZ/LKAY5DccwAzhU4WLmDL79jVRCqy5norOWvvv81+92e56cnTi9H/DxzLSFLv2hxuiI6CMYIZj8l4jxDFPyjgpWBYowRvkwW6VQCwiyLw88zIQg0uC6KoOWivYxr4qockrvK6jhXiqZpUEpzmeXkmUYZiMcY8PMkCpZs0MhssWmk9EBJA6OuG3mDS5l0vfZ8/vyZyjo2TY0q5WpOmWmSXZGi/6yUotUajaWuGkJMHA6Zqmloug2bm1tJvBoGgo/0V0muUtpK2ZkEmaG0xke/6lSXkcmi1zRWRgamlOYvxyMxJ/7804/80z/9Xk61EqFeuUpCXJuWtrCEVXk/5xQZk8LMI54sd76U0Dniiwb1PA5ch4Hn84mn05HLMOJzIlBOvCKXszXYpkI5Q9biuU1Z5ttZ61IIy4M+Fymc0oKRwZriyCkBSsVNojKvGmAFGLUmxYUYmUsWauUcSpsS+16vGmLjLJt6S06Zum2KUAJRaMXI9dpzvV746eNHYoziwzRWGjYpgTI0TUUC6rYi5kQ/jcxRKjYfA8SM8nlt0CnFGkcRvOcSJODp9uaGqqrY7bY4Z5kmcSbp4lWVICNRQX16fOR0kbyXeZwY+p6X52d57b9kcVblbhJLlyynhB9HglIEPQmbtojFjatwSqFzIvq53FVl9jWNYnmqK0kRrqx0LXMZKOeciy0qrLKx5UsZTddtsM4yO2KgvAAAcXVJREFUPl/op5HgZ8ZrWukEWity6wC5+202G8q1aPVhKpZSBU6nE/35TNe2vL25k5xMJSKAvrxxC8cVI5YjY43MxZSiamVeudnvuXn7lsv5wt//7d/RX3suF0lEtiU3JqRUZGYKPcnbHVMSqVj5z0ucufvqTvr4+MjnL5/54w9/5j/93d+W00iIft1mg3UVh/2B3XaLn2ehRcTImDwqZuLYY/yMuJE1KgUmpOt97C8czxe+PD/y8PKMz8i9m4RHQp2aTh5qW9fghAzvU+lom1JFKcG1zDEwehlzqFKmKiskhm23o60b5mliHqeVV7sEMqOXRq40n+RKIhuP0YambakqxzCOjNOIqyo22w6l1Nok895zupwJz88EP9P3PV8+fybnzM3NDXVVr1Y55wxNIwl3xgmb9tRfGP3M6XJmuo5F4RQlUsO1MhIrnfIVAHd3y+3tHdvthm+//Zamafjy8MDxdFzJiDEIviWlxPDTx7KmHM5YjscTP/708ZcDvpbFqZuG6Nzq6liaGYrSVlcaZwryT5U2SM4YrSCp1aZjlZYPeRbo05LDQmmMiFwQcRyUOefSHLBGMjbq0qIOvgy8EV9miAEV1No5TYiaSWtN5UoTilKpl907hsQ4z9JJtkWtoVQJOpJ7oikaWZSibuo1gVsbg67ca5u9fK8R9YU4oIvIQF6WDLyXMY3JSaxpSnx+cxA9cs5iqPbBS3xdWnIwVRltBWnhxygwqSwjo6yMyN0qi2vFv1gOJZTRqztomEeGWfhBl74nG0PSIjej+FkpjbnFDL1ktAoUSxbTq6Y3rSOcSlWrTC+nhPczKsvvHEKQkj8Wr2YUUbqod1KJxlvGJuVbqVVGqbQUiqE03ZbQ3mmaXn92SqAUVV3LA+4cpsxOl5HZOA5yoESHNM19GRvK/TCXzJYFBqC1KnEb0gBdqJTLZ/X58xeqquJ4Pol4pjiVUpG3LqOWnDJGaYwSRIwyFq1/4eLclftgtdu9hoEuAoHS0ZTu3OtppxSogvWorMGT8f3A9XqBTRDkRc6cYhQ3el1jjLhTqmLSzikzzRNTfyUlyblompZ9yjhn6fuBS5JskyWWbhoHvJfkM7R4L6dpku7nfoc1sqiXGHByZg6R4+ksetWmkx3SOFxnZWRgHXXb4CrBWdzc3JFy4nBzy3a35el45McvnxjHAT9PxCDKnMpZlLIllj6u70csp4WtHE5VqBRRKYDSUlp5kXpZI3Hr0zTSTyMKMbhrI1TB6+Uq2aJ1i9odyEGcHRaH6WqqTcv+7o6u2zCNnmmcUUpzGq6M08zT8ZmX05lPj5/5+PhA1XY0271UC5UVm1M5GV1b0+131MZSVTVx9tBfhbruxSAei3qoMo66kqri5XwizIHz5MlZrjuUpLqFwxRmSYtWZQcxSqNbvRqarbXiIiGDUWjniGSu47DO1kOI5bP3VE4ECKZy3L998yo4V3rNphnGkf78shreJQ6yIE1ItLWgZ2Yv+aTD9UwuIgyrNV3bsdtuUSh++vGnMvf+e+lpGLmSLMINMYoIx3gojcc4e6IPNE3Dbrf75cL3qizItq7FHVBKvaWUSOXOuGDvxQf4l61vrRR1XRF8tQrnSWltMcupaNbQHNAklVZBwtIsSikVYoEp6EJLJBCjDJJleM6647/uFqzgYwpIOqUlSChCzESTqGxF5hXyG4XtiYkFf6JlXJNRazp2DIGhH1bUity3FIsDNJdZmSpqcKVehQfLH5M9Wt4/lQVElcv7O8/yHmstpekSAyD0wSL3KycnBQjt6pqqbei2W7bbLUoPAtBOucCnxRGyDsLy4j4pJ/qC9Vhi5tUr8UGSm0MRXLz+b6WiWu6b5U4ZU3EKCTpVevLl2VDS6V/+TnmPslRhy7Ow0APyaw6mnNSlL7FQC2Jk8jPBe4muKM/cogunvL9rVVQ8vCssu3Bky8VShBZpeZ6UJKWTVumoLb7fZZSUykGSYiocI1MWZ4mNdHI6zyUhPcwSyyAbg371f/5LF+f9bofWWjD+JeZswW3EUkuPkwi1z1fxNa4Lu6q4ublBa827u3t8CDx8+cLT8zOuqaibRv7MrRDpxlFCj5ZG0ZIYpVCcjmcu556uq+kqR73VbNqG2c8cz2exqIVQ7p9mVSQt+tiq0NWStqSYuc4X+l6aK2EW+85CKFi+hEzXs9vvwFiatlmF5w8PT1z+6Z/5/PiFf/rhjyigqcTLOvaym/swy13TGGxlRfStZJoYouBAcvAk7wtuw5AKkdBYi7EO5xLaWWwlpeIitLGtfKC7pqOtKtLs0VnRuIpvv/sVb97c8v2vf8PtzS0//fCRH/70A9fLlefnBzGCVxXsdtzf3JGzwtYNrtuIKL5ppZQtChg/Tbw8P0uTb/JolADElJI8FaO5XK/M/VVKfmfFEne5CufX1qiS57n4aStbmmGhkxl0koZLU9dsu806r0aJBjnmJOE/s8yVr4XNFJLcXZeKSBRHgruUv0MYtUop2qYtP3/L5puulM2y2Y3zJDF/BQywzFr5evPLC39XnChl1fNq+k68nM5crv06k15PZ2AuURzWCu1Pu0ro8+oXLs62cDm7pqFdFqcryqBSR1st/rt5mgh6fl2cVrIrrbVsNzvRIg4Dp+OxzCBbqroWs7UR3W4sDaFcdh3j5CSbZ0/OnqZ2RYInUjhjREnkg+A317uZ+ktigykQX5XU67C9MGOnacLGuKIml5NzGEdOlwsYwzBNqNLp1dow9AOPj088PT3z8vQkTYp3G6yxzOMMeUlH9oL0UHalDmgoaM+03kWUkvGCUeWeV04OXZpRCimVFuiW0bLzO2sF7VjEHZVzbLdb9ocDt3d33N3dcz5dxemjpewPxbFTOZEvbpoOXVfYwvStqnrd2IwxhBL2GqYZfx0Eet11cu9WSu7rOQvjSUu4U05JIGNLJ1LJ+yaRDbrE2EM2qQgARLNcl81Ua43ScuKFolCaC2FimiZZnKVzTBFKkDNaG4wR76vEKVDCfCW0SGst7qnDvtxBRaOrB70uJvRXclMlTCyl1Bo3svCt1LI4SyMj58z5ci2qqCjNMbU8bSJVTEl4t1aLI2hhcv2ixXm/F/y/1Qq1uA/6vgiTpZHTGE3SltFZYjHVppyprKZr5M2um65oLiObrkUbaYhkisokSmy7aTuufc80zmSV1vJUShSFn0YufqLbbtnd7KkqR0hhbV/7IFQzpZeSbNH06pKtIQ2OJc/SWuHBolTpmqY1dtzUNTdv3uCs5fHlmZfTkS8PX9BK8fL8wvl8JubIzc0Nbdvy/t07lFKcjieu10vJZUnS0bTi80tlpwbxuSqsBPkgjSPrKnb7PZu2o26kwylKmyBDc7/wc2V+4LSMKO5v7/jNt9+zP2z41TffcDhsqQv5Pc4T4+XC1A/EyUOUuyq1It5EWtsQlSIqkRVGH8khFSyIxiRotSM5ReqkmbFxoqzSMZGTx6RMowxd1/Hm3VuBl9VyMjz0PedCecixXE3064O/5H8SZaG9anoL8G3RrJYrkyo+Up01yhSVVVExLT9PMjELdK4o0jabDbeHG3HlRE8Or2bvYRhKs0yaetlotHUiEy0LyJWf40pIEUpGRnJ4ymYrCeaKEIWpKyeoXE2UK2L9HBnHfgWW/8za/PnFeShE6hiF6xm8LwuhzJ+MLnYrTWMNc7kMp5yoCkG7aWp2hx2upBh3bVsE7Zl5nnl4fBbquXVoJ4bWGFOR7Mkp2DQyxPfTgI+etm3WNGEfZubgCGRMCOI9VXqNWSsBCIgyTD7Myjly07HZbHj77h0xRj4/PsgJkTw+RpoSfhq85+V8IobA1Pdr+E7wnm7Xcbi/YbvZcH93x0KC78eeJSxIB1C+7JRWTk+00PGkA6klHgDJQOm2W3bbLdZaJlc2nyA4j9mWzl8Qs4AtAvab/YH/8a//hs2u5d2bW9pOiA/kTJg9cz/gh5E0B8jQdTXGOlIUfMccE0OQDuN1GMtnKI0SkxFSugBiMUBjrNwtYyClgEmZShl2Tcd37wSI9fbtW0zl+IdPH/mpoEaHYVgTubTWdHUji8WLDtZ7XxAmohQTXtDrw79suLqc0LaSU20pL4uwsHy/UgiNFt3sfrcXzW+5qy531nHomX1YfagkI8ngZTKB1hjjcNbR1g2bEhGp1TIOi4XoMK1mgLmEJ50vF4mxKKf0NAlFpC7m+p/7+vmGUCkrBa+4jEgk5VirjC6tZ7U2aqzgQaJ4BHNh2vh5FLNvkLAelFpLs+CLLhQwRfNorYwu1FeMlVzKkyVrRCuD0YJVNFkIgSkhoKdy71AluHGaJzG8lpTpUHbIa98TPn4UiWCJKbe1o+qkBIpIxuf5chE7mEh+1vKsrmVua6xdu9eVc2zalnazpd10pAxzGTtcprE4MMrzlCI5RBFvGEPKiYeHL5yPR2on97S2bjgc9szzzNPzk4QYlzJK2LMbNk1TbFKO2lVYY5n6QZjCV7HCWaXZleBfYiJE8Z/G2csJH6IwaEvEwYJzrEqXUspmuW+11mGUWiMkUhJxeLfp5HSyYkzO4yihwKVhRTFJp3KCjjFLDkwx8C99jEU3C+UawOIuCms2CYCtinOkLEpTRnPWGNqqln+7iGS0oGwoJ7DWqui8FV3bUTep9CvMumQkAHompIxOgE1s6oa2FkyLKiqzGAPEKFGPu50ITRCQdGWF7EAZCfW9iFTu7+/56998/8vRmE1VQmOjJ6csOZk5orPCkDEKKis7We0svrL4AOSILtKnGGbGXnbKMI2Qgiwoa/AzTNPIOE4iaHYyL6tqhzG2jFYyfd8L+uOrD8BoibJzriIrjXOeXORz3ge0Kh3VFCRMJiaaqpZ7YWHMnq8XTj9c5CFsG4yzvD28Z3fYM5WdvvczD09PpBg5bLfUrqKuZXG2XUfbdZKrWTqrTd1wsz/wq++/55tffct1HHk4vtBPI9PnT8RJIgRyRozK3ktYUFURY+QPf/hncgh8/92vePfmDdvthg/ffMP1euF6uYi4uggFuqbhdn/gsN2zacRh09YtzmkeHr9wPZ25vhwhBGpjuD/cEmLk5XiRYXo/Mo8jPiV8kHnh5eUopX1RLt3sd+y2W5wzHLZbefCdNNjev3nDdiPa26aq/qIi+unTR4ZxZI5+vVPmkuTt5xkSeCXRf7kohpbusDTFTOlul80ZSDmuAb7LJq7LFUtpjdMap0XMses2KGAeFuyLxNwrJfN3pQQVAkisgtE0TUPTNMyzpx/Ep/vleGaeZ3IdiM6h93t23YaFrRVjZBp6cgjs2pbDdiNcJSexEA9dS4xRwANacz6dOF8ufP/dr/i//U//dm0Y/YsXZy4RB8tYJJV72SK4XjSFywDaWWG95CxzwkX4m2IgZxkyGCO07mWaIDaTVOrvV2+jUqwfmjghBPDkELeIyKIiKZaGQDlXX8c6MtjOMa/+RFhsfKpAtUqjSCuquiqKkVywm8Ivnf0szQcyCz8Jq9duny73kqmUNF+Pk+TlJUIQv+MCbV6iCHS5E+csyWUymhDvJ0VSGINnnkdSimw2Hc5ZQtkIFhmkeA09MZSPU6kibZylxb+UeFb+rlCQpaH8PjG93vWkH6ZW4QXqNR9EhOJZaIk5rZAy5VnVWnOBYfeDRLTPxVYY/SJAkG+SBCQtZSi8NmJEeKJXAYI4aOT0XkQpSimcs6vbSWmFQWPLlcYVNm4ygVj+jgV+lpDZ+PK8OSuHhcgixaJGFtzrtN8TvF8rkqZuVqVZQuSlu81GKsYgz6TWUm0kramMJpAlw1Mr9tsNm7bm7uZA17ymYP+LF2coZumqsmgtmZEpbZbPH6VEPgqZtrFo3a7qCCn9FColfJSUKVvVbNuWlJBSQb8uTms0VWXLHEseonmWAXxT1zLSqWpaa0kKzsezJGSnUNQo8maHEER9kaHS1SoXI2UsitracsfLIjSoK7Q1dDd7jDVchp4vT1/oh4HL9SoSRCWzypAiKkoJr43CWIN1NSF4vjw+ErxnGkcJAppGLuczx8uZhy9fSjryWe6zZZEppcE6pnHk85cvaBTvbm7X6PMwz0UkPdG0Db8tZdBw7SX3JGv8ODK6C8fnZ1L2xPwWW2BUEsjky8Ns0KYiqYnL0HO6XBhnL3ejlJlTxqcoNjyjabq2zPMSUwE7xyDRFa7MptGZy7CR/650p6/9RRZymYNPGJF7+kD0MzEucYdlkX51YlZ1havt2i1eZ9xZFoEtvKfddidY0EqeC1O8oEK/EHFL5ZygRGMqhAopn2c/MY3i6NmWu33XtjgnTqeqqtGtxt5I1fjd+29khlvutXUROpAzychG8evvfoVzlh9+/IHHhy9oBVZl0JnWKMkmFn4Df/WbX/Hhmw9i+N90v7xbK1IosOoV9Lw0PVJeZM953fWctavsShtTYhfLbpWXmxZljvTV/bEM6Zfde9UbZko2hgjCq3KvGv0snUwWbsvrIH353+XyZpJZJXQLQDrFSFSiCjG6BLcWTWuIkbHoOKdZZrhLS00O8iV1WppUKYu4fJomucPFKKOF0hDw80zw83onLS9/PS2W0VEIUdAV+jVx2ZS5Z4oRlaEtO230xSsYZWC+FH6LWSCnvGZ6LAN7KRHjKhNcQodkflqiCcp9Vjqi8p6n0m2MWeSUCVV6CYbZz0zeFT9nYJ4nztdLGRPJkxGVLS6XuMLhlpHEqxx0eSvyX3yv/648D7o8LwvDaBEGmKLnjShBipSGW1ayqJP66vkqHlTRwryCyhdxpPrq7xAZoyyRhezgyogl87phtE1NXVfUpRdhjAjmczLUzmLKWEgpxbZrubs5vKa2/8zXzy7OKYjsy9X1KksiyYM3DAOZvJYY1jmqpl4X37o2FjVK6Ypdr1ecq2jajsoZbm72DGPF6XxheH5knqXkatuWu9t7XFWxL8P/GoPLmtOl5+PHzyhjcJsWZbS4KIymrWdikPtlU9cCFFbypt8dbmibhpfjsZSKCZ88MVvsPKGM5vH5kYeXpzW+XSPlk3DMZSO4ub3l/du3nIeBh8cnpnHk5fGZFCNtJQ9OfxUr2+hnFIrKSuRDIkt8QQgMl6vAuZVi123X2HKjNPf3d3zz7h3OWbGVWVMiEALHl2eulwvfvPvAu/dv2W12vH/zlqqpyJNY7q6nE6fTiaenFx4fnhA7tWGaPV9enhiGEddusLWIOeYxEDXoRoQYUZdrjbS5RUCxOC3CjI6aMQYsEhqUnMaHzDWI2SGUjJm22dFYxxgTc3yNbTemDOO1LgogMWMfTycZU6xXHP16BdHC7DV5oRjIxtQ2NZWzi9xKytxKFnhYlDnlMBjHoXhhBXRmrQDIF5tX20pZOo1yzZgnGQMtV6G2rtm07aoWMkbh/UjOAWNg29XS6d9KRfHmdi+oz6EnxMCbmx23u5/P5fz/a3GGGNE6r4NWBeSCmFhCdRZ5WdVUuEpOk0Xy5YOUnCoGdFZMc1iRmU3bYrSiaQR69fgkD5wPsrMt3Ne6qui6lspVmAA6KmJMXC5XGT04i6ksTkmUnC3fzsgiUVos2lqpVUzRX6/ltBFLW04ltTorrkPP+XKWcUcZGNfOiSyvHOhN07DfHxh9WLtv/TCQY6IyHdYYvPfk61VsVEhl0TgpyftxInjPPM9cLxeaqmZ/6KhKJo1Wik3XcXNzWF33ID7CkIQC3/dXJIp+w26zkRLNabIPxCyikGma6Iee8/VCTBCS0AL7cWD0Ht0KzCpH6UxnxeqRXNPLl822HPerNE2JvSySyRJaQlRIuHIS4QAZWopmFkpvIP/FXU8bA1GVFDShS3x9mrpyGjnrqBwyGtITCgrTR3jFuXKli6/ASFR8Lv2HlU4Bhf0UBK6mJ4wJJZgol16KuKySlj7FWBLaFlGC1YpUy1hQlzuwiGdkQlG5Mj7cSLZsbBtSCpyMAKW7uqKp3Gv/4pcuzjlEtE6vQa2lyyjRZkXdUcC+sXxouTyIWmu6Yt1q2oaYEvUwSuMDSdXyIaJVpnKG73/1Dd9+80HMwd7TdTKDtNatqpE0FthUlkFvUkJOT2S0m9GplKRDj4qJqgy6N02z5qFoBW/f3PPm7T3nvuenpy+M88yXL18kUm/oYTXOSvju0tl7f/uGrmlAG748PPJ0PHK+DvhZQmM10vnbbTdM48g0jihrqKuKSKKfZ0F3zHN5sETm2LUtN/sDTVXz/lZO9023IcXEy/WFy/mENpq2a1Bac3d3y/39He/ev2O/25FT5sePPxZ6XyKlwOPnB84vJ7bdlpv/8Z7LpeeHT58JKRderThhJj8Xf6lGlTHFsrnKyTMRvUC8LuNIXVW8ffuGuqrZ7bfUhTM8TKP4Vq0pP750pNf7pwTVLmBoGTdIA2r0E9MspoVcmoULEmVJEVjcHAIeLzBmnYpmVwuKU8lGEdIramb2c0GZyF22advSIX0VNvgy43wlS2iCsaQQZWNbwHYpc7m2XK6X0vSRsna/3eCcHAZ1U4BqVdEo60aaRX5CkRn6K59++vEv1tnNL1mcPkZUklwJZQplU4lULhSnRdlnX+VUpbSwxkpcd5kX5pyp64FxGBmnmcv1KjmHZCpr+PDuHW23ESj0NFE3LYeb2/LmCcl7DF7uC1A4o6xvrJpndDKyKIYBHROT1ui6pq0lz8UZib67fXPP3Zt7vjw9MqXA8+mFh3/6wvF8JjnpJhvjpDkA6Cw2oQ8fPnDY73n8/MCXh0eOlyuX6yACjSD+v67bcDjc8Bi+MJ1GKlXTVh0hRc59L4T88np0Rih5TcNht2fbdfzq228kN9OIf/b08sI///EPuMrx5s09Tdvw/fe/5rDfS0rZdsfx5cjHTx9JMeB0JOfI0+Mj12vPd7/5Lb/5q9/x6csXvjy/FPSKDNmXbJO43KOdo9tsCrWhaKfLn/EhMPY9WivevH3Ltvw5paCfJCg4xICyGiVQWbkCpSRp5KmwmJJsrJnXe+7kJ66TxOFZJ9WXLfLBtu2orBPnSkxUVlIBNOU6uFydYiapBFkXtc68PpMZVhP7EscYYxRaZGlgLkFEr5JPubNfrlfmeWYuYVJd23DpO5kiZHlNN/s9TV3x7s0bDodDaSyJvLSpJVBp6CWNr79euZxPr6J/4G9+yeK8DuJ7q9sGm3P5pS2VgsRGLpVlBBKj5BU2TUNdXCzWyk5Ul7nUIn9S6ko/SN3fNA0grXlJkw4oMjkG5nEgZ1aPXJoVOQqs+u7NnZxwdUl2MppMlk7aZkNbN2y7rrTAXxsHRosd6/PnyMv5JHYv71fwkleZoKQcmqaJuqo4bPc0VVOkXuP6vYgnlgxOZ6xAkI2hazvyQczHRimyEqSiUoqpJHrl4iQxJYnMWivNnCDXAMrdqmvF8LtAnIfhitaCLL2eZWaJAucsm6pGkegvPdFHnLaQ5CRqm5aUFXd3kXGSk3CcJiJS+eQMMXiS0kzTKE2taSLOHqsNh+2O3WZD4yqcNlyul7V0jt6vcC+VCw1BZXlfTc2Ctkw5S7gtuVi15P/3CMPXlcUp5aVaE8cMxSy/nOplzKL4SqReKjayZLioMr4DMM5JbMIiZdFinl+kgYsschwnga0V9xVKQN8iUodhnpmDL/JDqajatkFpxel6FW6S71CKNTeIonbT1pKCNMJClPf250RCP7s4H19eZAFtOlwrcrmqaVG0dNut7Kxjv0r7pilS1w37gpZcvJrdZoOzdmWrPj49cT6fyUbi7ACu/cBlGESlYTRhnjiVWdzj0xN+9jTNnsp1tNuWv/6b34pdJ4q07TIMhBjY7bbcHvY0VcW26aStXsTyVSWqm8enR55enhm95zQOTMFLIrQ1nMeR5Gf87Ln6nvvbOz58+IbaVUxTYOyPPD8fOb+8MJeOpLF2ZcMum1Pt7ri/OTDOE+f+jFKw33T4GLlcrkzjiFEGqwyVEQ5QU9UiExwhWdE0O2u4v7uVjm4O+Gni6fGR0+koBmYf2e/2fHj3gbaueXfYY5UijBGTDY2tISQq7bi9uaPbeDY3d8w+8J//8fc8PD2LpjZDVfmV6XQ+HoWDG+VOt9/t+PD2LZuuY99uMFrzx88PfHl4kJLYqCJNlAVjlWzIm65l22wEetV20jxSYorvg9ATsjNkZ9aTU6niBEEYwSnM1LZwd5UuFdpX3dVyT1/mzjrnYlRAaI5alfBcJ3PWEDBGs9lsQSnmQuzo+57L8SQbqtWF9OGwtUH5mRw1x8uFy/mEs3YVYFRNjc+ZfpowCg77PcM0UVXyZ4wRW6O4i+S9nqaZ5+eXlZP8L16cS4kRk2TcW2NxNhTNopQTy46YkdZ0LA6CpU28dHP9KmJ4NaEuEQTA2v1Sy6VeS26GUhKdYMo4xMcZYy1dLaZeHcyrC8BTGLnFS6oX/GQRNJTBjw+iABFxuugic8k+WUQKX3/pcu8kB1L8qvUuHTIR2JcqQaqAQnooP2sx3ObinJE5XFWaVoJzXBpBS6PAaEddGbSS21mIkeyXkZGcFmKJk/vxNE8YZOyCXryHMqtbUrBzGZUYY7DwereEdbQQCtJRUKEBU7Swtpy8EkArg/0UihxO61cROAu5IK8igvW5KHasWJpNi8Ur5lctdSpzsGWuSIwyo1aaqKTvoVVeg3phES/IZ6S0Kn5SmRKkMrbxQa5D5PU3XE/e/NUYKqaEKtc0pdUaBBxzOf3Ma8ktwUWamEvPpZAdmnmWPo0SQ0URA8iX0qv+W/S7v5CE8OHbb+VSPU08PDzRNg1tKwoJ56SrVVXiPWSeiTlzPJ0YSjm8XIqXRXl7e8t+vyeGyHa7JYRQ7D+Z7VZCjOZZTMZVXbEruMlvv3lHCJHf//OPfP7yxN39PW/e3MndMydCjLQvtWho0/LhZlLy5HV3VcxeY1Lmcr3y9PIsbn9rmEPg2l8Z55lsBImSpV2JwRCmgE5yl9JKU7ua2HQMMTAVimDTNFTWinJmKonUIaCMYtd1jPMsp/U8s+vETd/UHW27obZ2pbGnIEGxh/09b+5umOZB8ij9zOlyIuVMVyInvvvu13zz4Vt++PMP/H//9/9IYy2bDJu6RmVFV3f4OfDlywN9IfKHnMlWsj5W5VdZCDlnLuczOWemfpDFaUVK2TUt7968gZx4+PRZutExikzOSLUjp0IqnV3Z4Pw08zJ6aQQluQPOOUrj2xmyUgzTyORniY73C/WufI5RSmVvLN5I17xSMlbadRuxubU1dVUgYBRQ2Cgd2aF4NRfDdte03Oz2MqsdBzKsJ+fsZ7kH+1QWc14ZT6bERWxuDtx/eF/wNEEoC9owxoQfJ+I8o4yl2Qx0wM4c0MYWtExCaYepK2wC1/lfzhBq27bMtQKpYBvm2QvOQ5XwVlWhjUjYZG6Y8OXPhFDiB4papGka2lbSpq15zZlcThNbanQZ4hrx/WlNoyRQyDkBD2sjCz+DoD60zCJXyV5avkt3SomIOmUp0UJRs2AM2eh1Z48xrk58ozOpCKNTTCQdRfy8EAjKCb/s1l+LKXIuf3+WZGVrNNboVXBQNRZXSVRC0zRitv5ahKFeB+ExiRQy5SJKIJV8UMdut+XNmzc8PT0zTiM5GOZpptKisFJai+timiT9OwrFPRvRJa9UBnJprCRCSOsIIv8XlU5T1+X6MjGN4+ucW5fTYJlpq4X3Ix3hFIvjpDz8UxQ6o64dymimwjbSWpeTk1WsoJKcoj6DTsXzSlo9xSYLsHuZwwsOJa0z6fjVqR1CkADdUkrG5bRcGFDl9cbyjKQs4pBMptKulLuWumlWvtByquaYislejP+TD9gQiVmYvD4tgdEabRa9UIlT/CWL88379yjg17/5DdZanp+eeHx4KOWKeOV2uz2Vc5yOR47Hk9h2ygyLbbcyh3Kps6/XK9LGlnKqKoLvp+enEiUoD6z3M6fTC6DEyZEz92/uOLx5I8P9WVK1no8vq2k6xigt9ZjK6ES8d7vdHqONRPjFCKUbGBEcSUIcMdaJkN5Yi6rF+eKso79cmZRCRxFhXI5nhmtPrhxNV4vAep7IwaC2W6zWtPs9beXwYaYfe6zWfPvhQymPNAnFMIw8fvkszQUlesybzYbKWv7pn37Pjz/8kZQjieLON1LC3t7esdls0EoXgDXs9jssCp8yw+S5TNKwOvUDx+sVrEHXNVllLoOEFA3zRCAzBUksU0qLqBzWuad2FtdU2KbC1kITvBRKxBJxGGcJRpK5hl6biEYbrJXFdr5emPsrc/Cch17m386AVvhiuUKp4nNdrhLyvmgUMXsmRECvCwc3xEhdEr+60K6ImpTEaoZWIs/MFuUNOgaMk6g+oxSueIpj8YyGGOlHyQVNWSSbTSdY1ix9Jq7DyHUYy4ZW9NplA6ldRWUNwxz48vzCMHu67Q5rDF8eH0pFKVXGOIma6hejMXf7PVpr3t7fs9ls+IMWnupiw1FKS8J0VZGSQIxEYqVIlUSvZ1PMwbAuokWoQBaYFcD1euVyuQjKsK6JMdAPYT25QXH3/hs2h1uOxyMPDw8MY89LWdSr7CvKd13VYkYuv6N8mBdxvCu15kDmMv5R2mB0XlEszgobVmWJEPQ5o4OMB4Zrz3DtcaqjsdK1juOM0rLbGyX0iMNuw7W/0g+iArq9OUgOzByZQ2Toe87nEwpwlEBVLdyZ/vJCih5tZGRgnWWz26yZKsJzlTETKJq2RadMzDKfHmfPOE+crheeXo5UbcOubcgoxnlmmEtiV5HljfNcDAbV611UIelfzmCcEfqeVhJQPE/SLVcycpu9kARMthgri8sUBhWAHnTR3wr+MqQEszz0skG+il1EwmiLoEAUUyGmdZxCiEW+Z/EFQ6PKprAwefL6s6xQ8xQQhS6x3LN1efaUlg1hmckuv4dBgo200esGMs+zaLcVpRqC6D2kzM1+L1ezGEmXnoymH+R5f3h64Xy5rL/j7L1c6X6mXfvzfs7C1LkWFUwG7u/vRUc5jiileHk5orV4JJumLc0i+ZbdeJFZKYZxXBtMyxxt9r7U4prtbsfd/R1v371jnCZeXl5IOUljygi2RBvFNI88Pz9xuV54epJA2rokEZNEiRK1NIpsIRJkoszjhoHrOApnNSWmomKqrFt34ymMqBqq4nrfbTeQYTxfCLPHWUXxT6+gsLhgLnJpKMRA8BPWaN7c36KNpbs5gNL84c8/crpcGPqBvu9FbmZrcsqcTmec1dTO4KwWUfks5baUwa2c7sby5csDP/30mfPpTH/tsdowV4FsLFiD0Q3Oe2rvicCX52cm7/njw09cx4Fh8MyzvH5XF6G5lju6bWrxvubEeej5+PCA/Ye/k0j44IkKrvOE8lBVNc22ozh+UUpCp5T367OQcqZpW1wtp3BKCZ/jGkM/x4KogVf1DYhFLqdXLaqSzqeMN9QayLsklemlTFRSVmuFlNmLplQexjIrF6D5cu+zRgQjGaQjrJRUREWwsSSuSQqapS1y1eQDKsN+f8N+t2McBq7nCznDw9MzWmv6cSr84gRlvUS17CK/YHHWtVyyz+cz0zhKQtK7d0zTxPHlBV/GIr7YodpuswraYwgMQ7/CutYULuQCvgyAh3EEBe8/vGe72/Pm3Tu+/e47np+feXx6IqVE3YiqwziLMopxGvjy8Inr5crDly+klLg93FJX9TpnC9oQQyIYAVdHFNdh5Hy9chkH+lkAXP08o7Si7aQEfzmdGMYBgwZXUzct7+7vUMBD8Iw5MVmNt6qI+sWjGMJcGEQJpTIpevwk6qg3N2+pmobDu3dkpfjp8xeGvufaX0VrbCy2MUSleBlHFJk3twcq1xFjYPYz1jmatmWz6cTgrS1/+umP/PnPP5bnrUTTtUHCaZ0Yol2MNClx6ns+ffnCabjwn/74d5z6M5v6QF11OFdRtc16/1JK4ZoGZyzD5SKx8NPA48uTjMYKj2csg/n7+1p0wynhvdzf+nEkxlhYxtLR32w2KKW4tdKp7yeJlejHgaFY7mIRtyheG0qpYGOss+UevHg4VYl3KFR7CuGv2LMWySnw1SEhCzeXbvEiiM85y8yyaVZAV0xJyByl6ZiSwMBNsaR1m61sPEEIEze3t9ze3PLl82c+f/zMNHuMldS0aZpL8G9ezQZptZL/gsX58PggnbtRoL193xeSgJyc8stK19Yjl/aURFKXi8gZpdYxQwZm78lZkptjjPjyYbi6pm7qckqKlWt32MviLEh9UV1I/FxVVUx2Wp0yMQQkqFxL1qcWfasud02dBJhsXSUdSGtFGCBzibXUrpwlpSXPUiR/TS1dwm3XYhWEaSSFmWiNkAnKaUlOzNNIfzVUuoPaFpyndGIvp5Oc1pPwXpcur7OOrpOZrFVyH9rutmw3HcN4xYeJyjnubu/Y7rYcDjc0Tct2u2Oz2WCKwdhZR9t1GG04Xq+M88RlGNbKZ9G7bpoNKE1TbXBWkCULuG1pAIGMGLQ12CKfXEpFVUZeyhiJ6EiJafblQZclYEuX18roc/UY6pW/m6mjwxQciFF69eIuJ9OiW81J/JxGiWoq2WILq2vBqi4zzVxi3+PrabicdsuMPVhHmD3G2BX6tUDAc0pEbVh8xCyjNZT4M9Vr+pkpzT+gWN/kJPaFS5tiJCACGm3MekCGoq7TZabLf/3g/PnF+R/+w38ApWhrESAcX154fnqico7ddkdT1/zq229omobT8Uh/FdfJ+XyRH16UFk23wVUV4zQwXnvaTcf93VuRex1l/LA77Nnt99Rdi3aGzX7H93/92/KwyE6atcjOuq7jcDhAhrp6lCi5ccIzrzNJiXlQ+JCo2gvGOUxV09U17TxTjSMOaEtZtJTZm66jaxtaJ+Gzu67hZrvBGk2jMmGeaQwcLVxi5sULNFoXRu3x6ZHpfKRS77ndNjgjToY5eH7/j//Ipe95fn4mpUjb1Nzf39NUNTf7W5y17OoKZw2bVgTST88PjOOV7XbHv/5X/5qbu1s2m10Ra0sYUF037LZ7+ZxDxM+eP/zwAz/+9JHRewYvOSZzjGhl+P7d9zJTVEvEojT4QgigBumUKkgkXFNTtXXJM5ENxdWyWENKZKUFzn0+Y9SC1DRsO6Eqqix9SemIJ7RWmOL+lzjJzK6RDr6MLsRnu9ls14WglKLvr0K/L3PLZQEvc2TKfDMthoxQhOvldB8GSYYT47mmbVu+/eYbmrph27UCK1d6jTxcusXCWkZm7osVsvB1BZAOYZrJKTNcehya4dqLIT7PjIOQG3eHPa6qmKaZYRzotlv2BR37ixbnte9lF00Z5xzDMDAMQxmLtKtrXE4zu0qvJE695FGWnW21/xgr9wmtUYiXMme9xh8o/Yrflx3x1ZaWUKQsCIvXxo0TVGFamoXidLALlIqivwWykfzPEEt+iVZlDCSQplweDKOFxdPUNXXlyijE0LUNyRn6tmEeavwcMdFDFvmgzFYjMVAesE0JuBGZ3OV85tL3wuf96jUuXlVX0KPLpqa1xjmh3Vd1XYQQsvvKfF527BwL+S1DmoWA4GdP8GHVOauchCankHh0VAk2SmuYr4K/PCF0oddpLeV7MTIv0jljLBSFTk6ZrISwt0hLFKzz0yWGgayxtogojCOb17IuRikfjREe1deL01u3jkGWUcjyYL9SHPJ6+i/JYUuA0ZJunorsIBaRhdeeGIUmqJDxoCufRyojlcU2h/rKi5vzGri1iOJzisVexkoOCSmvAPVl5h/CK4B9eUb/xYvzcrmggOHaswTHSACsiHrVWu9nNtsd292OlBOPT09UVcX7b77FWsPQ9/gYaDdbbu5rYpLmTMpCR1Bao6wlacQSVaBfp8sFYzR393cCfM7SDOjajrZpiV3gZr8n+IDTYhlqmo66EsKfpG5nzldp3Qclio8fP37izx9/wlpL0zXlwZjRCr59/4Hb/Z5t13LYiECgtgpnNbe373DW0lhNW2vq68T00guGxRlIEZs8WmV+/d2v+H/8+/+ZP/3pT/y//7f/jUvf8/l4ZI4RVbUo49aGWF03tJsWqy1hXkzbntFo2nbDv/k3/4aqqvjhhx/5+OnTCiJ+fHjm+fkoqdu9kO1cknJrnGc6W7M97NkdbvApcp1HYsrMSdAkS2MsIaOTEDy2zCrbwhxenBrLfDPFSJhnIor9dk9T1/hxZh7l9IjjTFKKKYLXmuBHYvTCSwqBqqq5vbmlqhz73Y7KVetG2/c9p5MILfI444GpCAsAmjL6WFRHYxmfTQVIrkrjx5Rur2zWUg6bBmLJjolIN/nl+CJa6+tVEue6lt1mK6WuNcQQeTm/FMLDVZwzWpOSzL4XCLoq2FWVDjij2W+3NM4RQmQYJzISwaG0WOPmacLPNcEHfnFWytLNCln+uYKOiwAZSsZlSqLEd1YWURELLx/wNI3kIElaTdsyTiPDJNmEaj0x5Wcug+MQBQmZsqhIZP4lbJeFXyRChQqjDJWpMNqy6bY0TVe6roHsPZMPItVDLJnXYeTaD7jKQWGf5hRYUP1NU9O1regileRHajJt29DWFZuu4dLUNCFTuVlw/jlBiqiQ0Dmx2XS8ub/n06dPPD09lkbUSMhQa4czrlxr5MFbFsE8yk6sgxSb1jkOh1tAlE1yLxM3x+l45nK5MvQDL89HkY4VInlVl7tsLXY0HwN2tISYpMwtZWYqY4xIRudMtdwHXVXYOmKFmpUSfa9S+HGCLAyjtm5QAZKKRMq8EkXy0pn0fiYsBuwgihpSkrBcW9HWzZoSTUyMpl8J/nk52XMuFcar1xT+Ui7qZ0kYN0qTTKGyFzGHUgh1XhvZpJH33c8ej0cD0Qbacod1RSMdYmCaBUI2jiPLTZxU3otZSminNBixIxqt0ZU4oEKIZY0kMWaUk3cpzb+uAv7FixPkKG7bpjQMXmns8ywxf8fjkWmaeF8sX7vdnvu7e4nkLnrOttvQtB2JzLV0KZ+en2RHcVbsUB/esdnt0dYy+omQEraSB/jzwxeUUhx2B7qmYxxHzucL0zCwuDrqQtbLGcZxYpwF2z/6wMv5jE8JXTkwmrppePvuLSlLd9BoRbfrcMZIB/rhgTD25HkUlKefxZQcRtq65vPnn3h8+MJFNk6qynF3f4vTmioHjBIu0u9//3t+/PEHrlcJZPrw4QPaWp6vgwgTXMN9t6Wu6rXjjRJHxc3tDYfdBqUSl/5SSixfToxZLFzDzDR6coJNt8Wg2CiLVUZyKZ1DZ8Xl6Zk5SLUSYmQsmtZpFv5uTKnM8SK5jLZOo/grnZPm2cL8VTnTLPPffuQ0epxx7NpOgGRWOuamjEKcyYTsVj1rUwsx0DmhvofZi6LHB7KP1MaBdex3rmzW0pg6Xc4cL5eibXVfoVJZqQkiPHGrmkkruWqQIWtRjAXE6gVAxZozM88zT09PXE5HucPvdsXyVdOWzTom0TiHUgUsFeWu21A5x7cfvuH+7o6hHzifz4UCKY6tgIDO9rsdtpLG3ab774mdL4uzqgW9EEMs3bOSMpaS6DVD4N27d1R1Tddt2O8PgCgvZHF2GGu59BdBlfQ9x+NJwmlrsWppY2i6TuDJRaRsrMXHyPPLMzFErHZUthJsZd/jp5nFlSAfipOw2OAZh5Hz5co4C3c2pEy1aUXxUjluqlumaeR8PaONNCAqZwlDz2noUdFjcyTHgB96nDHURtE2Nc/PjxxfnplUBaajco77uzvauqLRCVdMAT/++AOPj4+M44Bxjvu7W6q25fzHH5jOF3bNhsPhgKZEGKKE2mAkde3+/o5rf+b48iTg4rI4z9cr8+yJIRODLISmaXFKs1MVTkvDwzonmtqTiC+GSYzVY/B/MWuWKiUU76Pcm67F5WOL/7FyjqZ0N+sSlziPE1NIHLZ72t1WgqJ0LJ1OgIxVmcAr76euarabjaBNy50wJDHO5xjFc2sNm+0Obc06kxzHkXmaSsCwYcGdfB14tUQ+uELQUEpJDZuKEVtJVz1TIgtLZ1Z0xMLsTQWRE0OgaWreb9+J4KNECM5+ZiwndVXu4/c3d7RNw4f377m7veV0PBF9wBvZeEKZp4eUxMbYNri6oimz5V+0OGe/YCorrG1ReEB2I+Wk1Xy9XmVmdzkzHfYiJdtsSlNH3thp8uRxpr8O9OPIPEZQlpwifT/hfeT55YW6bdjtNux2G+ncZXl4nLsRPa42DBfP9TxyOl6le6gFmdhsKipXF7CYpu0rdC1IkD6N+BAwFpSBFOQyb1C0tkYpmK8zUXtUTKisGHvPc7xIpIGfsdbQnEbaOdN7RTANPiTm6UytM4ZUnPFCHQyFp9MPnnnO6Bi5nHqqObGpW+wbh3M1lcqF1iZl4tvbO5q6Zt81VEkcJnazYRxHHk4XfPDgi85XGbQT2FhVNxgUIchp48OMSqL8GaNnCp7LfBUaeYl36MMssQFZQGnynkcSmUmL2iimJI0lpamcLAajhK1uSmMoRM8w93LN6CrWUGWlcVbQHk2hOyhVktgyhWqRV2zoFIQB6yqH2W9xRmGLvvqw7Rj6LdZZ6raR37FyhBiojF4JG7JgIeaIZkGYKmmQRU8ujUVd7qIoiNqATlgnEwGrjeRyFl11ToIrXZRl1uXSyClZJ4XMeC0e5WsxaEOm61rpAXxVoYQYcVVFW1WrQeBfvDj7AYxRoFqqakfQM0pNGA1VYaJ8/OHPzPPEh3dvuN3v0Epzd3srptPiMH94eGYYRvphZBhHQUziSClzOp9Aw6ePn0k58bvf/Zb7+ztSDsyhF9OqOwCKL3/uOT4NvDxeePzyQuUs93d7qtqxPbS0XcOm62jaltPlQv3oOF+uXPyZcRKlSFZZsBsh4FBUVUeKketR7jptJfrIyzBx9JdXKZc1BHWhrmdi0iS7ZZqOjMdHGgJOJWpDSd4y9Jeevh84nyfGURiBj59lA3r74R27/Y5pmiTIVUFlNF1r+De//Zabw4H+eGa89mycxdQ3HPOJj8c/SZKbc3JK1BZVVbi6ptlsyAnGq8RZTPMoXNkkadbjPPE8niQBTEmJdZl6UfJYI9kgitUwnbW0YVQIqJDJaLpa/JFGyQgjKl1QMRPn3tNtOrb7DuvcCtt+U+/Y2Yab21vevn3LNI48PDysV56cE6fzkev1wjR4rpcX2rbFqTvaStNtGlzlSH6PiR5TFmcGpnkixMipbUry9cwwiKgl5kBSsnGhRNfd+wGjxKYnPCBZcMkYdMoYJ9zbEANTP6CSBCxLXpL0PKwROj81tJ0QEbz3TCmIgKUfCCVwqXaO20LamwqaJiQRNyx8rF+8OF9HI3LpDkEwj1pBMhD8vCr5p0nivk3xKAq/RRanPISTBJcO4mZISvI0jRFJngiQC1KxiBesK80lLZfq8+nMw6cjw6Vfhe2utNgFvb/gD0NJhZIyRshtilD+e4WEvRptqVwtzYpZUs4WFozMVstlfUFFGrOKGmbvIUv2S9e1bNqWrm3XfM5MaZRVFW/fvCUDdSelpi7NFbJkpDgjeMW2rkujYV5PE20Lec9KWZlL/SIZIiXdugi3Y0qMfiYUiNeSsRJSXIHQAK+TAbWeDnOcRGBQTkW5E2qUjlA0x6oobhaiokC9g5QjSvyMi4wx50jOS95IwaNGgX0vnFs5OYsczrk1ZtE6KwtkEjteLCMKV0pao4R6scxU20aiH03xTabC4CUvriRpKDpr0dpitdxLF+2vq6q1q2u1RntFSgL/XmDakYyKiog0qRZlj3CWZlLKqJhJNpBCEKJEGQVZo/FBkbSY0MXVpVY11C9anPv9DljqfWmJp+jljS9cmBQjSmuej0dQirqq6dpOBvte+CwPj89yivRXrv0glqemxhjNbneDdQZna1JSeC8ND1tXNLsbIOOHK9Pk+Yf//Pf8p//P3wm3ZbOjaSputjvB8sdMGD1jzPhhkvJ5GImzx2lD0k5a2CGilKVxjrbdcHt7T0qJl7om+HktuyRhO64KDq3NCiE+nk48Pj1yt+/47rtfcX97y/ff/4q2aTi9nBmnCZD4uvu39/z2r39LjJHn41EwlMFzPZ+l1a80bdPyzfv3OGO4XC705wtxDiQf2XSaTVvRthLLMM4zD8cTwzQxhMg0zVQpQ1Ux+8Dn5yeZqV4uhUIvjR5XWbqulRlzFuFFq0Wkfrn2XM4nMbFvNlhXcX/YybhqkkaNVkqkcSqTknCb5nFkmkbZ0CqH0Yr+chVOj9YkF5iyYwhgzFk8tfPM5XIRNU3wRTstf+/usOf7X3/POI78+OOPvBxfpNFnBf/SlWAtmTdqqlqaRptuQ0JiG/u+px9HvjwK3lRlafq0dUNdVWhtMUoqj7qSErypRWRhtcIqaXbqXjbjKcyEIeHzcj+XjQ7k0Ms5k0rXtnVO5rMFRmaMxlVWZt3zBEqydGyJajhfL7+8W/s65A3FF+eJYRa/YvZy9yxyrxhT8eQZpsLHmX0Z9BZAlC/Zha+wMCk7XFG7+DkIfW/ya35hTplhnBj6gcv5wuV0Zrvt6Lo9VTk1RTigyokk6P+viWlWa6IpGVQJMKXLV3ygOaWSGSknAuUDzTqvQgCtXyHPwvIRvmnXigG9rkTyh4Kc5GF2TrSah/0eHwPXoV87xDkXFqrWpVlSqG/TTI4RJZdAJChHLHfGWmxKBcmogVj0sElM6t4zzAJIG6aJeZ7KcD6C2ElfQ4WyhBthLJUxuHLXqq2jco66PGgpie9QIX7KtQEDJQqh3N8WkkNK66adtZZkuqwZJ4Mb7FcREMXcXPy4SyOn23ZFiaPBS57MMiFgVbvJ72C0KbQCVYzzkeCc9BcWEkexaCWtSFmjlFQ/iyUNpUo8SC79lSVaUOqmOQR0TswFhxPKSAi16HUzqSQKGKSbnY3BWCfVU8lhXV7T8rOB/75Ryjj2oJawVpj8xNhfZRdrpZESvScpqLoN28MNIQTOw0AIketV0qNHL1gLax1No2jahv1hXzS08o4/Ph4Jnx9kQWbFZrfh7SzRCv/Hf/wPvDw98/HHT2igcTV3uwN1XXHYbAvPRaxUp/NJYhR6z3SWh3PbbGhcJgaFZmIOkXmcJI1ruEppYzS6ltM1RL/mj9ze3vKv/vW/RinFH//4J86XM1pptt2Gw27H/e2B/W6DKWL3y+mF0+nEzc0t3377ocwlBdHYXy+M48Td/R3bwmBaErqeHh5QiBPGas223dLVLdM888PHj8w+cO4HEWArja1byYkMgdF7nj9+YfQzn84vktA8jFKmG4MrSJi5nOi+sGH3NwfazQZu35CLBrrpOlDiNQ0hoowFLZF/GiGZb5pGMkK20tVcsKPyABZsSBKsyvPlgRefcJV05au65nBzQAHH8wv9MLDZdDRdw62+5bY+YK3hr373W/zseX54ZOgH/DwyjQNVJYRAozTVIu0bBqZyACQfcNrw5uZGpgElqft8uUg0I7oooiS7dDHAC2xNrhnTPHPtxXeshrPcxbPgVFLR6molNBBpjIl+2BhQOuMqS7vt0Ebz5fEBZy23tzfs6p2c7H1PJosA5pcuTh+K6sLJTiMoB18+BOH7LHQxCUxtCGlgDkNJaholG6PE3iljsChcJW4PbUSJkXJiGCau/ZXD84nnw5EQE91G/JB//tOPPHx5IJxldOKsBMrUlcjsKmfZNJI/0l8HwSSGkvFICSkyyCmrIz7Hr8J/JJFZG4VSBq9K3ES5G1lreXN/D0rxpz//eQ1IrSpphXdNQ1M5udfnhPfS5HHuLbe3N0zTzOl8EUPA7PF+pqlrDvu9lHYlX+VyOopPtm7J1qI3GleYsKfzmRAjw1RyYQrm0QJJadLsuV6uDGHmMg5CGijmA60VThkWUzFZKOgUwcGu7UrAcUm2bhpiynz2XxjmUCgHai1rl7wSozW5VB22xARKTEchEmbxXo5DTxjnVeK52W7Z3+xBSTRjP1zRkiBMiJL9aq3l1t3ivae/XJjGET9L36OET5eucRHCRGEBLwFJBhl5Ka2puw6lTQmmKtVYls50XuR36TUmgiyezanwbqPYzuV9LydhLn2MmOuSHSNVQ0yRlM1K5lCI8N1ay33Bmg6jjKhUIX/83Nd/WyEkk2eWGPjtfi8X2vKhbQ8HiWurHFMM+JxJShMy9NNUZmmCXXSuoqlqtDYMxYRqa/kVXFWz1Zpp8vz4wyfMp0f++KcfmP3Ml88vDP1MrQx146jbhrpt0ArOl8t6sleVuOLrumEYRSQRYuQ6TCtKoiplj1alEdM2aG1EF5kzzmmxv7UiiDbW8unjj8yz5/j0xHC90rYdN/sdm7YWKVuJgqirir/+q78ifOcZxokffvgzp9OZj58+kVKWXb9IxLqm5Xg8cnk5SkRcgbBK4E/kpM94H7lcr1yGoRAUjNjBtCnmYoPNGTWM0nyLkWRkHOCMQWeotCwcU8YMzlreffMtjau4vbtlu9uVEYFwbJeZaBxGuUvxVX5JlPlgfz6hlaIyBaZmNNZKXokuoUIU7Mima7DbrZDtLhcSkYdHGXnVbYWtb+k2G9quwVaW8/VE3TS8ubtf7Vi73Y7r5UJ/ueCsoykzzBwk88SgpIoglEQ4oCzCqfiQx35gGkaSNiRbdLNeohZWNGZBs4QQmMu9OqviMS00PiU7zzpCQUvoU2UldUAVd83sPbqcqovt0peexuHmRuIW/3vunCGWbpLKcrl1lrZrAbl3KWPY7vdUdYV2jilGfEplcWb6ecLPYT25Xd1QN60AogfxUVZZmEDOScLTNM2cz1+Y/VzkasJkU1AwhBVVI4sz+JnzWfS/xoqaA8T8K+Q5Eb2fTxdCSlRtVzp8UxEnG9qmEUZpLoKJJOqTt2/f8M2H9xyPR/7uP/8Dfd9zfHlhmiZuDwfu7+6ojXRWUwiCJmka3r97T1VV/Mf/4//kH3//ex4eH/n97/9A0zT823/7b9nvD+wKV/clPnM5SZlcVxUY5AGKEbJiLDmR575HaYOtxcyOEae31lqg3tpIjEWMRCOMXGuc3CNzxsRyH0rS4fzV+2/Yb7dsN5vVvxhiFOXWWRpJYZrICx2vPLALcYIoQO9dKxQMZzXOmUIVLASDklbW3e3YbraE6Okfenz0KCtVweHuhrppaNuWummAzHm4gIHdYSf0+Qz9vufl6ZljcaE4bcglFDmmJCdoIQ3GGIq0nTJFkNS3cRiYxhFsBUpCnifvWeIhc5ECplLphVLtyfMvyWq6dFkXAbzIT0XwUVcVhMKwyuDnWe7hTiYX58uZYei5vbvjcNhzPB4ZH8dfDvhatIwypZBI7q+zxRRIOI33QhLPJd3KRwmAyfLCFqVQisUvqDVNI21sXUJSl9a6VpqmbqXEDIuR+TWCPCi4TCNfnp+IwdOfL7KBWcM4zasXrx8nGRjbjK0qiAJfylFShuumAQWn00mMuUU1smlbmroiBs/L87OMhxTUzvH2/o6UEvvNhsoYmsqybRsqV63mcW0MTWi4XK+cz2estfzud39dHBwwjiLtWoDNzrqi6RVAlkC8VKHAyZwya7kn+eLKj34mo9GuQheSnnUWozIqzSLGtlKKRh8Is6cuUQt1VbHdboWrhMjnltjGFCKVsagaiaVftK3ptbGRYhQKRs4i8K4qXKE21FXFbrsp8XyujC/E13l7dyNNKUAZabLd3N3Qdd2rrjrGNU2g76/SDFK53FcFe6OVzCKFPxvRQQJ10ZphHF/T0rLYzwS8FVb6HilJwvYyslvUMkqjNALEVmCW8WMxbZuy2SxlrYgdJGPVB1F3VUrLCV5Gi9ZIMBVWqsaqWOXmaWaaZsZRjAS/aHFWTcXC8IlJBN0ryEnJLG+YRVh+Op8ZhmGVbhUgpXTs4rRi72OM1HXNZiM5n0tJcb3OzH6m22zYbLfCvtUWHwLXi3xQQSkGEtPphcfTi1zkCwqjnyax+UTZvcTMWoO2NElM3i8nGUF02w37w4F5nvjp44/knLG6+Ah//Wt2m5ZhGPjzwxcpdTU0m4bffPsNlasZpwk/ew6bhnd3WyQu/kG6rTHRdh1fvnzh46dPfPf99/zf/+d/j/ee//y3fyun7zBRWYfRmq5tyztV2vKVdF8n75mnWVCWxgiMehDy/eAlKn6zP9BtdsSchAgXNPT9q+60DL+H44l91/FmJ6fYu7fvuD0ceHl85HI6r6FKicymkcrIVO4vTMKLKTl4z/HlmZwSt4c9bdNQOUNlZdT0zQepHDZl0X15/MLpcuLm/sBvf/cbhnHk08MXjDF8/5vv2N8cOJ3Oq6pmHiYmP/Pw/EBVVWzrjqatSX6DyqLeMlk2fGIm2iiihbrmdLnICC8l1PK8eYkmjF5GITlGsi9XrQR5gVOLhQV0RmFL26iQ41UxiWslQcjRo0p6gVaKaZgJaqbe7mirmrnAu2onKiBlLW3T0rYtKSWul57L+cL5dPmLkKV/0eIUA6wsxMVnGYumsYy8VtnUNEkYTaknMFqSgpc/Kz9PKAlaa7wXYzRKohhyEi9gDBJLPpedJRbvW84SuJu0uD8EgRlJ8yy1vdVU87wya2z5p8i18rpjC7nBlDGRsFzICVVCgAUbouXvLW+cXrca2VVVaRzIOMaQYmYu97Pnl5eiS41sdlu6jdDOldYrl3ehNyxeWFJe/y5rHcZCQBofKiVSls1xmEZ8iAx+FlRo01K1cQUgy4xWxiVq8WcWLk5TN2y3O7quEzyln4WnVLTR3vvVEYRWVICxguUQf6xAxaIxzE1DinEdHzlrsFYCa+uqkgZTAZDpEpNhy5VIG8NuGiW2sUjzYpZApRC9xC6mAqBGMWsRe6xNRfIaRb9+qcII4qvxxHKXKs/B0pBKyhCW8+W/uO7JmaOKB7X8i/Wfy2LOr95VJWZzU+7eCrUmide2kg3YWBnnFHGH/I5iYopRnEG/aHH2Qw9KdJHO1VK7z9PaHEopcjqdxFGxKD5KKbF8SIu1S+XMPA+coscaw/UslqTtTgh/0Uvn9PzywsuT5Ec+Pj+hlGK722OdY1LCAU0xyJ/3nvEs+lf7KN27u9sbDrsdjQajajyZYZ4JMdJ0He224DWKhWeZORqtiTHwd3/7t0zjwLcfPvCb739dfHqgYmS8XPDGlFDaSPJSpsQQOZ1FfPCf//4fGaaJX//mt/z7/+V/EVWPBozi7bv3HG5m/DQTfSjDanHC9GOP1prbN/dUdc15EM7Rub9yOZ24zCM/fvnEOM/MBTydrEE3FT56sgZlFBVFZpYyJkS6bkuzv+H+9pZ/9bu/wRrNy+nIw8MXPv30kefnp3VDjVFS2lCK/X5PXdfsdoJCqXZbbrqNYGPKRtvUlQhAysmyQLgWo7jSihgD0zSy2W24u78jkbn75q1UCQoGP/J0fObTp0+SZWOshD5drzgzMQ6DpJPNRQyBxipDiqJTTUlKYRUDk/dyD80Zj3hUbeXIRqGcowkd4xy5DqXZU5pGqXRiZWOHkAXatSxK8S2L2mhJz85kZuWprOPw9h1d3RCmif7Ss9tsuX//VkzjlXTWNVKKgypKJlUW5y88OX0hWmekRFoSqnPOIgiPUR6W5cQklx3mlfupyoAaLTCjGEuWYS5Y/JJ7kfNyvxTM4jSJC0EpTeoSySRCgqBzKZE9wc+MfiJHgQtroNt0dClik+hHY17+mVfJ1hJeswivv/4ehp7r+cx8e7u646EQ5GNctz2jlmGy4DGmSU6i0/lMP4worbm5vVvJczlDVUunWqUCSc5q5fwCIlksNAQTPCbFNeoikphjkFTqEIt22eOLQITSq7Bak5PkYaqccdasJVXXdSgyLw+P9Ncr56vAu5ZqIwTJC1lGRcBaiqlMwYFognOkpL96f5YTq5TmeZFJqtc7Wrm3WaMFT5ITl6FfE8BnP2OSoVIKnfTajFRZvKIq5hUWjVKr8kmgYGl90EN5RpfPXP74ksxuZFyD+Cy1eg1mSLnIXLUulrLyvy2/A2UBq8zatVWliqyMjPTyHIjZl+gKmQIY+5omlgurWZQsy/v2X19/P39y9oMsMGskA9MYXF0zzzPHl5eClUhQwmVyzjRVTdc01M5JOpbWZOtEEZPlxRkt9bqzjv2mBaU4H58Z+gvWVjSN5Bu2nbBlhnFkHALJNmRbcblceXp4ENNuDGgUm1oE5yEnGeGkjC/lcFJS0vrisDhfLlyvwjlalCLeexTw/v0Hql99x4e3b7m/uyX4wPV0hpyxJU78cLhlu9kKy9U5xtOZ3//hnxnGke9/+1v++uaWD9/+ClfVRa52JhcgtVoizbPCz2I/ssbw/sMHUKL/na49z5cT56FnCoFkFK5tePPNeyFEnM8CSjMwjH158BW1ctxvdtK0mSbCHLC1oraWGAIfP3/Ez55/+Pu/53I+yynnJFNys9kwTzOzknlfvWlfF3XTSMBRIVFYbYgJrpeeEOZCMihJ0U4M2q4ShI1Pkc1+S8iRz49fhFq33ZKBYegZ5xmlZBNYkt1yyqhO1D1VXYuCbI6k0mg8nY6Srn69EmOimWecq7j08vPGaeb5fBbYV4GR2brCOEtVWXZtSScIJS80FvdT7bCuYvYz19ILXbTQFK21sxLMTM7o4pTa1jWVsXT7A2Z/oKlrqkJ3aNsWFELdn0cxuZdZal1VJRj5FyzOucxlvPfyhhc2T8oz134QbEkRDy+qMGMMXXEkCKVAoaxFEojFba8LWdxZR1NXZVeJ+HnCGLsmHm+sw3vPMAwyk0KCa8cQOZ4vohayMsdDS+c3IpKrVHZwiUuwoLTMOlOkHwaeX47UVWHSgkCLgf3uwM1hx93Nge1GQnDHi5C5jRInw3675c39HXOSaAEfIl8eRdP6f/l3/xO/+u57dgcxjqd5FlRFytTalhLQgAGPQLWcc+z2ezLwdDwyzhP9OHDpryStxAlSOXaHPT4E5hxhHEFlZj8JTsRWWKWo6oYcE6fJk2LGZAGt5ShXkGEc+fHTR06nE/f395II19S0+x1qGDCXkzTB6gpXQmBdJUzfRdaoMWSVSl9gEP2o+Mk4ny+vACytqbeSwhVT5Hw5SzxkU4NSojOeJ1CCYR3HUYiJxcqltAjiK1fhsydnRZpm+vLnxnGQri1gQ2AsgczjPHM8nYgpUbUNxlpaZzBK6I1tJYJ2XbjDqpgw6iK+N0YRoogpFvPHMr9tqpqmlhGPihGjFLUVLXFXN8I/LtXiYvoGGAf5nX0MzCGIV9a5Xz5KWejUi7okDAPXfviLXEpf/vPSzVOl2WGNYb8XFH3ys9xDraFaeDTDiFKpBDApmrZmM3foEgYkphJFzKLFVcYwzwHPQJgjRjvxCdayaXTtRhZb17Fp21d9LJRRgDRtQoxUVcW7d+/LmyfiZ53jev8/ny40rmLeeqx1fPurb0VZM82Q8nqPGPorHx8eeXx+wdUNpqo53N5yc3cnFrOUyErh6loaWFGkfNe+ZxpGDGqNf8iIXetUSs1Lf2WYJslysYJqqdoaEy1VLz5GFITSYLNGo7PChohShnp/IAM3d7fcvrljmEaeji+M84Rra1q21NsO2zVQWYLKmKbizYf3KBTbtqO2jrrrqOoGbc0KpXJ1hYmS1YqSGXXXdWvUQQiJ6D0Z8NpTJYmBvL+5EfdJI4zcpm7+oolChmmcCkVBo7Xl9u6e3W7Pxx9+4vHhiXmahdpQutgZxfF6FUhzFmbUHAPKGkw2uKpGW8MwTlz6nsZUbG1TGkuZrCU3M5PYbTs2ux3jNLJMEVeIXVFJbbqO3aZk0wbRUNfFgjZc5Kqw3WzZ3d6sjU+JehBt7jAOpbEnPOLMf72u/fk5Z9EuyswoFU/mIHK30mJemkFd15XYvcIhtZabww2Vs8z9hRQD27Zl0zScz2cexqGIjUWA3nUSDuPLrIucSFEeWGUM2oq4u59m/BywxlFZTVtLK7/rNjR1xX63Y7/ZyHhglCH1XCxH0zgyzTOHm1v2h5vVOKy1oq3ldH/49JGXlxe6umG69Rx2W3793bdo4PHLF6Zxoqodxir6oedPf/6B69BT1S2uctze3XP/9i39MEi4EJQxR2TuZ2LynC5XLscT++2Om90ea51YwULkeD7xcj7T+4kxeLAWlR2m7Oo5Z6pzVe7csZy8YnMzGWoyRis2uxvqpub27Rvu3r/l8+MDP375JLmRbYuqHPVui9t0aOvwKlM1Fe/v7zHaYFKW5O1GFqdRknkjTY56/YxV4RVttntJ+Cp3QQG4RTyWKhh2+z3v3r0T/2R5ntpZ8lSW3J0UM1fTY7QtnWzL3bv3vH33noeHJ55eXkQkEOXuuSzOl8szp9MZW1XYSvJctCD+cI2okU5PjxxPJ+42Ww43tkwgSl6PNaAsN9sNt3c3DONIZXVRjElSni2hVof9jtvDQe6gJV3dKplR//F05Pj0SOOEBp/J4l+OER+kGz2MvSSo51dw2S9anK68QMhrtqS0mRM5STNgSa82hUAgrgUgpzKbFBlgDJ7ZGDRSSjRtI4u7QMQyeQ2xkfGLLhh9jasrMIbKB3xM4GpUHTC6LC6kU2uUojKWuhLaOamIIqI0K9q2paqbspAb4cD0A4qMHwXk5Wdp4Z8uZ/70458I79/zP/zNX0sz5OGh6CeXxgSwNL2sVA39OHA8nZhnSfbyXpApMpNNJB8ZBolhcMZSu+VhcpIxqgU2nL0YiVVRAcUUmYrLZBF1xCgQ41RVaC3Tuaa22KyoK3H7kEXwHmNYrwzGGiJZButOPmNJZA6cLheR5lFcJlFUUE4bGiM+yMVvixJId0iZ6zDIKCYLtnMZ1fsQyVMouZ+Lo0XcLJtuQx2lOUOCUAfapvQpkhASTscjWhtOp5N4gVMiRVlUuTxLvjT/FpfUcqUBqZrQMjuWsVnGFnKkK0m/qlR8m03LZtNSVRbrTDH6V+uISgHbbsN20wn6pGA3/TiJAcAauq7FOvM6+tGS8q2tQZd4xJhLt/2/Z3F2xXEuu/REil66q0mRiStiX5eunTR7RE9IToz9QDCaaeiJwYsiRgvd7vbulhDE4xh8IOSErgw2anKyawKwBjZ2J7vtZUZPgWRqctWSUyDOPSbJG11j6Oqa3WZDDIG5clLKhkjUmsPhDlfVwoh1Nc8vzzw8PBL8TPIzkGgLOe1PP/7A//5/fuT/+u/+Hf/r//r/omsa/vTnPzL6STAfJCmJnMVEh6sqGbo/fFmlX1nJXeP0ImFFnRMXwtPTEy9Pz2JgT1JmTws3qapoleJl6BmmWe6R2ZFD5PoylIgAASVP48jUD7RVhTOyeO6alkoZTFVJKRo8L89PjNMo8ehGcZkHspZTpW4bYkiizfUj16M0vzZ1TWUMlbZUSqIetk1L5apy2luwjnZr6aeR5wdJB1gah9v9FmMt43gl9RPjG3HCqFwMzVpze3OHMZaHh0de9Au1qdC5hCHPgT4M/PM//hM/uj/zxz/+iYfn59IVLpYxK/2KMUbmRZReTmVflGC+3AtnH1YoXVPLJmUri9IaV9cYa7l/+4bb+zvZQJa0tAIKi7M4lSordjqK4m2eJn78058Z+ytd21B/eIt1jnGWXCDtLAqDU0nySE+KKfr1+Vjb3f/SxSmJzBkfWAW6qweuzITk56tFNCSnZ8E/xFKeSrKyF3F5gTCB7BzzLIzaENN6ZwiJdXHmrNZ5FEu3F0VWhqyypDiXy6KImf2am7joa52rMKUkW6DXKU3SnZxnEfjHSInhkTucc9RN/RfdNFPClESQkVfzrcjnpPwJQWaFysh9ffEvqgxznlZaw1+mPi9hrXKVWSIWF32oND3yCiOmvOcyAtGrzvPrjTimKIgNDCi5L4rvsvgZtehI59nLzy8CkNW5EoKILVReObnSpc1UbhRYePmcZ+8leBipgEwSaLdktkZp9nnPNM7SLCoJZJutyPvquhG4W4ZumsWbOnliTMJOVppr36+JapQO+wJrlgdPFweNRpW7PrxqbKUnUsp/o9dID2OMdHKtLdcDvTpj9GKMUJoJCLM0LscxlPEK4lctdjU5aR2qrJtXvLb82rlUWpTEdaV/ZmX+txZn29YlZ2IkBo9WUDtbLFbSxAizx+eZuiAUnbNsNhusMQLhzYnjywvzNNLWFXVV4VMgG8U0zXx6fFzNwT5EQkYka5RwUYTyDgqbazQOciTngNECmNZkop/p/cSPY8/njz9xf3/P999/T9so6qYjhMTL6cL5dOLl5cTL8UQI4hfVWrMvHea2sVTW8KvvvuH9+/8n97e39JeeaZxE5N/UWKsJSVAgT8/PZaZ5U2aoiXN/lTZ5yRhpu4Ywe16eXgheunT3b+4LkMyRsir4FphzIpSEK2McKWb6fkG7yONWmYpKO1zWNLqitjW+n1AmcrEZqxTXoWfynu3tDfu7WzJZfJ3W0lTSQXx5eqb/6SNNVbNpRVTfNI0YhmPG+ygiU6OIs2eaJT7x8eXlq9nh6yYi9zgJsp2T6ITbOuFs5vhy4g9/+OfSw1DUdU1Tb6irlt39W9q3H5hOZ26+PHA6nTg+SQbq08uRflz4U5PQ8ZfTrMjPTN3QaInrq8uobwqxWNgkMHm72VLXLTf7DW3bSH/i5kYWoZOytnJWhPMKtBHl06YEXPXnC5fLhYfPn/n000ecdWw3G5Gens8EH9judhI4jYzvKCVsBqYsVkVVWerdZo12+Lnl+d9gCNnXXT6/JgjLP+Xu4QuuBCf+TkmolpFBKIyZuQCPVtd8KGoOPzNME+M4chnGQoKjkOAUqfgQl25zZzSV1kjOX6EUGItSmTjP5Q4m7KDtdrsOnlF2PSnEqnPl5eUIyCm1NB+ck5GBsZrD4YZff/drmrpI7oLHlgjCxesZymuzVUXdCBw5IJWCtRZHEQYYQ1KB2Xv8NLNpWwGBabMKEJbAVxFup/UEjTkRfZSTwEipsoCSs3EoJydajolEJGrxsA6TwNSqTbeKIFSpapbveZq5ni+oLlFbGTO4SgzEMXnRn5Z+Ykyiq16sVZSG0EpBKKeWNkbm2bPHmCgEvbIRn08XlJLPs2lauS/HjKkqTN2Aj8SmZRpEWOJn0VWfr1d8FMQkBTwmo7tcDlI5LEyBYOtS0q74B6R6ck6QJNbKvb6ua5yzoqktEtVY7vmLSGWpPCVbduZ8PvPl4UF6BUFm7DKbLRuBLoFMJTsnKXkHQ4yEnMhaoYsf1xRP9C9anO/e3Bc0YKKyVmxJIawfcgaoK3KG7XZTUqlrjLFCtOuvUiplJH5AGQKKKURUL/kh12lmmr3Q2LXGGFe6lxD+f+2d2ZIkx3Kev1hyq7V7NgDnkBRNEt//bagbEgIpnMFM79NVlVtsunDP7MaRCIrQBXHRaQaD2QBd05WZEeH++78UcZSf1EApl0TJEe8tVSUayrpxUDJxloe1321FM3kQQvgwTnz+csswjHy5ued86XG2YquLt6lrvHN0tXxe5dDYOkm2nsaZn7/9LEjd1U4E3f3ANI1MIdB0Ddvdjr/9u7+lrip+/uWzlGI6uA+laLJaFkS6riWCwHkBPbKYgO32B2LKfLm/pR8Gzid5KRfNoHWW2kkkhRhKJbyxNHVL17ZcHY6iKdXMFp9mvAW8EAGKeclbLTGRppnWeei2tHVDbT3OGGzWDcXX4NUFwwq4JinMBeMXeYkhGwVd1KLGG/Hh8V78bmMc6WPA4ECfZ5iCfOfNjvube4wXI+nhfOZ0/8jl0nPz9Y5hHMmpUPuaTCCqLjimTImZ4XxZ1SWlqHOgsVJSF9YNyRgZ6202W/a1o9tUYktTVSoqECL8dOmZorjkzWEW36j15OyZp4nz6QzKz+1HaZ+C2vK4YSQYy2XoeTqd1mqnAJElk0aS1L0TMO13+9ZeHSSCbxgkeWqVZCmXEsBor7XphE2y+O2kmBg1OpACxknkXipAKuRpZpoC0xyYourNrcVUFVXdiiZAycElRnJZUNKENVKCeGfFib0I1auQaTctV9dH2q6TxTlNfL294XS+8PXmnstl4P37j7x/91HUE10nPSayDhwZZ8qKAo9z4O72Dmuh7cSvaJpmLpdeMlrqim7T8enTR6qq4uvtjeR2IGLubEQKRS40TQ21hi0ZSwxSWRjn2Ox2hBiJXyXbchhGxmGSHq3y+OKx9dLjJWIM1K0MvbumZb/d4azBWHG081ONLxIDkHJW5b0Xt8SUSCFSGYdrOmG9KDHbymEkSv5XPVE2gnqufR4v/ZwgqBlXxBA72yL9nffESWiGMAjZOybGfqTynsN2z+X5LDNNY7lcep6+PUtw8qO0HTjJPXEpY8wS4CQo/PncE1N8xeVV9DglPTDl9LTGst1sub6+pvPQeJFDmiXYKkiP/ayUxmEYeHp6AtTq1FhMMTI3L0UZcUjsIaw2n3aaSdby8O2ZX27F6nVlznqhsDZLKJW34Cp+6+j8d0cpOUvuBwbsWYa95RVv0S+JYfp3TFqmBlU9CBAhgNEyB1se7zzP9JOo+Itq+rAJ54taP5r1LRC7RkmathZiniWURiMi5jSTi0TW7a6OzCHw9e6W8/nC/eMjwzhRty1V23G4OrLb7yjaTxugMgLvv786sN10OO8UxocPHz7gvWO33VHXFdM4cX//wHmQkJqYEo+Pj3jvlc0UVFkzCcNoGKBo2pcxxCAlo/MV3WZLt9nQbjp8SmwPe5KSr21Vy7A6zipQH6GI03pKEaqGynkByGIiWUN2soklHbBnI+MNowwnWZiJHLKU8XYJg62VhCGRi8LNZTVBXozJjDEra0a0qI4c5SQTvEPgwajBtAtlsW06rq6uSTFx8RcMhtP5wjTOAtClImZm6hXrNcFsikGsPaO0JSUVQpQh/ukkJtutthTOeuZKwnaLgodJf49pmhiGgWQLycobWJ4kNGkYR0IShtGkLdjlMko/aSTBvTJeaKdeeLTST0q7NycB+Zgj0cxcxpnzID9f1MwuR3mXQ4Y6ZfwsGujffXJWqi6/OhzEk9WY1V4yTjNg8Ip4We1Lx3HkfD6vaoRSxA7QOgcpilg4CXoXQuC574kxYV2FsQ5cwqW0IoSvbRyqxrNpG2KcmcNIyZJ4RckUI345zbbj6uN7fvnlCz/95WdOpzOfb76SUuZPf/479ocjh92B/W4vgMPNrZTt1ogm8W9+4IfvPhGmgbu7G66ujvzDf/9v4pvjrUZQDHz+/IVsHTgJ6f3y9SvWGM6nk/TY48jYD+KGfzoL6LQ/4KylnwfGceLq+h2745Fus2GzP5By4urdO3zd4OqWbitE+vuHe2JMTL2E7qYgNv9ms6NxYsWYY6LYwqRjnmgyeEM2YtFprYRApZjEdnOONE2ngIdTr+FMylH7TEHIY5CXNuXEnALOO3Y60627lqZu1sWZUyJPEmEcpkAyicqLfHC73fHp4/fEEGhruUdPD09M48Q4CHK+2Ww4Xl2Dop7WOc7jyDBNq4AhpsgUItM88/j4yBwCh8OBTnWxzgohACUqhFlOs/7SiwqIwsUILvDtfCLGyGWUhO1FqJHUcnRB/wG6Wviyh/2BuhWLTqFLZ6YgHPNgZlzKfLv0PJ17QHSxGAhJMq2rOVLXkyDO/Nvxf//u4lxge2sdVSX2H03TYG0Sel0pLFHlIUQ96mU0knNaB8FLniNmsXlQkFl5ps6xHu9lGTVYMFZ2q1pzGZ06FuQipAYoOG8wxksUu3dY7wj68C59zzTPyvN0VKozxKAzr0zbNlAKldHhtCnkJAPlerdnu9mspbokfEsyd103Yo2hiOzQy8MwoH6odqWl1XWNQW07S1KghfV3KgZOl7MIqUchL6AnVNM0bDcbucfLC4OYSS/lnFWiCIUVjBhG2QDqeaauZ5yRBRiDIK5rcnRKMgizeR1VwfK8xFa0qWs5NbNmrGolhJa01oBRimHRKscZt+oonY6vBnUEXGbPVgkXPr6AKUF9qxYHBuc8dV2U0KHYQ17MqAWMqlRHWvlKebkyEkPfz5ylQpIUMENlreTpaCDUFKIeEGL0los8G4PF2KKKFEPKQqoYp7CODXPO4i6ZEtGAK5qLkvJqjLZollMBq2SIUhIrsvV7FufCm62qmtq2HGKhFMscZioV6Z4vvTBt5pmCYZonhmEUBsZC57NqSuU1iNUasb83hqbrVvZGUgF1DLPEzDeye25qKbmciWRGQugZhhNVXXE87tVV/YMka/mK+6cnbh8e+Hp3R86FbrelqmqO10f2+4OcmA93bNqW73/4JCZMcVbVTORyfuL7T5/4mz//ibqu6boNKUZub+44nc+UbPjw/jtc21DtNlwuF3768X8SQuDTh/ccj2LGvRhav79+rz2SmClHBS6qtmFz3HPpe/71px+Z5sD5IraibdvSdh1VU3M47CVLpJd7fTk9E8PMppV+0VthXiXKesJ9/vKFh4cHdcSvcc7TVEKX65qO/X5PUf1mXVXSaxqdVy9nZynsuhZXiWVJ1IRqYXVJinSk0FRCBreA095M48GwNmFMZhxnfv7LZ2X+yAax3WzZ7j3zLFXUPAcuw6gMH0Gm2m7D1nsenh45qzVo1Cj6tq7JdcXV4cj+cFiZYssmmZWymWLi4f6enBN13dB1O1JOIt5Qv6BcCr5Y6ZttRdV20kdWAvZQCrHAaQgM8zecsxqwWzidL8Jxriqsd5z7gTGKUL12AvrkkBCjykQKgnjHxZPp9yzOnPNK7ZLDTXfCrInShdUYScOcZJFlEcUufPvF08VlgZalt9DdUofpL9SuF52cM+pqoGbOTl1HF+lW5cWrpmnkRGyaRk/NgXmayUnAq6qu9WQVqqFYrwQKDXVd4QwkEiZnPcDl5F4TtXXzGKeZaRTnh6ZpMK/GITEmSUJzXhwDNJENpTQmxGwsxCC9CuLSsMzC+lHR60FeJpVBaBiQ0BGLxgbEpsYZFBTza6q4IWNzwL4Kd806r/TOk2JW97pWyzc1eLaW7ARok++sJwaIcXddk0rG6Yuc0mLzoWnVLqu5+K81niw0P15U/zKKkTFY0bno8k8xRsQC5WWAL9RIIdi/uBzIxy/MNKdODbwmYhh+1c9JdTdjjKOq0/r+5cJKFcivTrLl3S26Va3/TavJjJyCwgcXZZL06VkT28oqvNAPevn9DOup+dduDP/PizMmQUCH8SIE8iByl2Kg7TqwlnGWjBR5mWTGY5XSH9QZewqzAEpWDZFUBrYsQFl4MsZrnaXxnqpybLw6zHkppfZdTdtYYjwQoswSN5utzowcJUTub265e3hkDpGr4zXeV+yvjngvZU8IgZyj0A9Nlgj0UtYetm33HA875nngp3/5Z7yr5ORMMkgfp4nNdseu6zgNF27uHiS0puno2g0f3n/i+uqK8/OJ8+lECIGnZ3G0+3p7S4iBbn+gaVv6ceDx9MzpfOa5l+Cjz798oe9F/e+s5frqyPefvtOdusLUnrb2UDLbbiOBvm3L8epATJGb50f53KtrSoz0/cj5MjDbwOSicmtrauU7L95OIUQ2bcun62tZ9LXOMLXamYO4NcxBJXkxEedENAZTR5iDkNgrKem9lXnpHAMxR7UJkXRnQfoNl3HkMk5M0yQeRrmsBAzvBXTKVhD+vCweRV+xInIuSH8Zp5mkwVnOGiWsSxlrK0dKjpyd+C27CmsLVQuuFLKOOWLU9ztG8ig83jCLEqmp61WD7LynGKMJ4YkpBuYYyFEANWntZilxp1GIGjlhSqHxjqaqMQ2Yl23sP744l6HzpLV5UqGo8Bo9Tl3N5hh02G9XehKoB1FejHhZ6WbzPAszxxjaSt3nlBLojaFWtXyt/EanD3TT1Gw7YSZlhIHSNGJItfQNQz/w7ekJ72u6tqOqazbdVnZfjLqsS88ilpuyN+YsFD7nDI06v1/OJ7yvBE3OklQlvYmjaVqex4G+lzLUO5nrte2GrtswDZO4SOSy+iH1/cAcA1W3oSpFMzMF8JjmwDhNPJ9OnM5njGzpWAPvr68xVLhaTMFcJfmYXSfl5GYrc90QA+dZTNY2bcu23TBPcTVblo8s4s9jzBpZgfZVTS0MrqZtaNsGvwzn9ZGGeSQbg8kFk+QelgLJWKIx4DzZqOuFkYriNc9VtmyznqaTlqejLk6MeK5bIxpWFrmizjGXI8coZVEcBoryXKXcDfNMdrKZvwgxll5ZZ7bWiMue8ytF0VDU+U/ejyW7NEyTludCaHFynCuBXVPYc14tRHN5McQzWlWK04eGahlDre2ed/8fptJ9P5BLXv1x4iIS9Z622yjzZyaEiHFSquTESjNbqhqroMDLjTJYoz2nEs1bJQPsN1t2m60AEdXi0SNweGsKDVnDfDt8VbPd7Uk58/nLLXGeudru8d87qqaj2exIOXPuB3F1Wwjj0yDBTPNEGi/U3nO929A0nmG4cH+f2G42vFNy/lmH3a6u8E1LTJlvpzP9MJGyDLqbrsMZx+PTN/pLz3DpGS+9xhYc2G53bHZCjChe7D7OQ8/Xf/onhnHk7uGRaZ4Z40RWKZ0pUNUV250E9HZa1ra1AGXTOPJ8euLSn3j8di+gEwZXCn/+9AMfrz5w9/TIzcOjbASzaAtDTszjsKZ+VdYxW0+33XB8f8V+u+O439PUFf35zDD0osmdAyZGOuvItZXA3qoS9k0tTo05yoYeZiG6J81z6ceR5/P5FQbyYsoVlNO72I2wLCYjZBNnHTEGUSdpeSges1KWT+NIDFGsS5a5p1ZqlW7+lWpw0ZS4mBL9KD1nUsJ8SGlFthdqokvSBllvNEC3UFhIDnLm+sqCrfSzJEqwauUZda0AhiZLD79tO7qmXd1Afjd9bxjF9Pbb84l+6JnnmRACddNwSEL6nkOQeruAderZ8wqCkiRkj3NKVjasaJ+1RgJzqop919HWNcfdnuNuv6JqOWeGS09OidZATWFfVVwdDtRNw/54TYiJ+6/3XGLiuNmx3xxoui2bw1Ec5n76F8I4c35+FsPkOJNiYDwnTg+Rbdfx7h/+K03dMI0989jTtQ1XV0fO556b2wdSLlxdf6SqG4ZhYhp6xmkiZ9mU6qbFAt++PZNjEhVDiGw2He8OB5z3fGwlj/Hb0NPPM3e//IUf/9e/MoWg4EReBbhF75WvPZvthtp7SbCylt22pfaem6nndH5WGqHYbX64+kBTN/zw/hNV07B/fKDb7enHkfvnZ6Yw8/D4JLxn7e+CsVQmEpH8lOvjFZ/evWNTN9ze3EBKTOZCCQGTEo322df7PW3XiY6yqgkhcDkPsgEGzXXxEiK0VAWi5Vwodeq+l5VFExflyMq6W2mFbdtKn69LOqXIOFhSiYoDTCyNXNbDQEppIf77yuMrCAlGjXA89ef1lFv63KK/l9fqxHonp56GEGEKC7UgK9XSVhbv1BMqZ4yRZSUm25oFirg4bpqWrm4kaNj9drD8b9uUzGEdh9i/cgxLevwvTJDFfLfksrI2uq5TcW693ijvHXNVIcwyK6MK72mbhsZ7msrTrM7emtJs5DQ+bDYc9w1109I4S1vVHHY75hDF9zUE6q6hajuMq2TgPkfGQWaOUb1LUcCp8o62qtjtxBnu6rAX7xdVb9zd3zFNYbXmPJ3PGDswTZE5RIYw00+T9IfG4YwRraEyYcI0K5dTeq1LPxBz4tsgobXP5zPni6RNZwpFq4xipapwWOpGXAasMaR5IsfCOYsI4enpkcenh9WNHyPUvGykJyxe8sEq9bOxzuCL53h9TcqZy+UiJIyM+r0mESGMA48PD1yc53I+kXSW3HhPQstao2BGXkyv1ELUoG1C1rTqQqQwDCJ0B9aRmtjGLFaX0io1qgv2lWZvNq30yXZpcYQxJPrQohiClO2SvWNX4FKkX/o7adUWs8wbMbJ4inrz5lIoSVwVrZXcEwOs0QtaDQparcogs7IYRakUy1rqL6LynDW5zLrV5qZyVp6vfake/sOLc1FKlGLwrgIm5iCC4DkIZamqJBE5Zq3Xo9ww5xz7/Z6qrleHhE0raoB5muhVVLtrWylhnaOykmC1bWuB5YFkDMEYsrV8d33Fn767JqUiQUddx3fvP4pJVoE0TmyO7zhev5exxDAzDyPnp29c+p68SIAVfW7qiuvjjuurI3//9/+F9++uOe53dE3Lj//8I//4j/8DsNT1llzg4fZWqHNiGs6cEoMaXJksm43XUcI8BYZ+oNtsaJqWmBIPDzdcxpHn8cIQZm5ub7l7uMd6T9NtpOSvNDvGOryxbHdCO0shcHc5EeaZp1H0sV9vvnB3d8vhsOO77z5hjWRFpgS5mcnW4TC0TUvIYrRde8/7d++w3vPL5194eHgghUAcJ+YUOfVnSsk83dxiUqYy4A2YlNg1LclFhqwYQi4QE6bK+qxQ5FvsU+Z55jSN9OquN06TVhmNzBFzIdvFpdFQ+Zq6aiSq4XikrioO+wNtXTOPE/MkfkmbtiPGyHbTyewzihFA0za0m3YNexZzOKH4LcitSVCQHthXlcRRJnEJDCkQ4izz3ehfZJH6TzEQciDPEeuMbohmbaNLSaQU1o2AIp7Jxhqc64QL7uRdd9aq1+2/ff3m4ly4k//nn5eXPzermvNXPyNDdrv+osYYRepUFeEWv1NVM6z/n3zSOlbRj14AAGclzcpks/78aj1I0Ru63JzyMoguS9HyAmcv45slDmHJiKwqpdnFiLV+Zcws2kvFV1S58Npa8wUpZ7l3r26fDNDTWn0sto4spATzso+u/9bvmBVkW4bqKWk6dH6t8eTlO796duvLsnzfVa9o13u7PlcdkZSUIGWcGowJhfLls/5v78WvXrTyohwREK6s74Xco+Wuvv4AlZzZF/9b74VeaF38lQLGqS4zJYtxcvouP7NqiSkKaJnXf8Wv5v7LO/DXZABRYf310lnubeHl65d1NFJe/exyQ16+ZVnf5df367foe+a3hqBv19v1dv3nXb9N7nu73q636z/telucb9fb9Qe93hbn2/V2/UGvt8X5dr1df9DrbXG+XW/XH/R6W5xv19v1B73+NxVs9mZXYy+aAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# view test image\n", - "image = X_test[0]\n", - "label = y_test[0]\n", - "plt.imshow(image)\n", - "plt.axis(\"off\")\n", - "plt.title(f\"Label: {label}\");" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "from PIL import Image\n", - "\n", - "img = Image.fromarray(X_test[0])\n", - "file_name = \"data/test_image.jpg\"\n", - "img.save(file_name)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.010918906889855862, 0.9890810251235962]\n" - ] - } - ], - "source": [ - "import json\n", - "\n", - "runtime = boto3.Session().client(service_name=\"runtime.sagemaker\")\n", - "with open(file_name, \"rb\") as f:\n", - " payload = f.read()\n", - " payload = bytearray(payload)\n", - "\n", - "response = runtime.invoke_endpoint(\n", - " EndpointName=mpg_name, ContentType=\"application/x-image\", Body=payload\n", - ")\n", - "\n", - "result = response[\"Body\"].read()\n", - "\n", - "# result will be in json format and convert it to ndarray\n", - "result = json.loads(result)\n", - "print(result)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# the result will output the probabilities for all classes\n", - "# find the class with maximum probability and print the class index\n", - "index = np.argmax(result)\n", - "index" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "predictions = []\n", - "for i in range(len(X_test)):\n", - " img = Image.fromarray(X_test[i])\n", - " file_name = f\"/tmp/test_image.jpg\"\n", - " img.save(file_name)\n", - "\n", - " with open(file_name, \"rb\") as f:\n", - " payload = f.read()\n", - " payload = bytearray(payload)\n", - "\n", - " response = runtime.invoke_endpoint(\n", - " EndpointName=mpg_name, ContentType=\"application/x-image\", Body=payload\n", - " )\n", - "\n", - " result = response[\"Body\"].read()\n", - " result = json.loads(result)\n", - " index = np.argmax(result)\n", - " predictions.append(index)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Precision = 0.8927835051546392\n", - "Recall = 0.8523622047244095\n", - "F1-Score = 0.8721047331319234\n" - ] - } - ], - "source": [ - "from sklearn.metrics import precision_recall_fscore_support\n", - "\n", - "precision, recall, f1, _ = precision_recall_fscore_support(y_test, predictions)\n", - "print(f\"Precision = {precision[1]}\")\n", - "print(f\"Recall = {recall[1]}\")\n", - "print(f\"F1-Score = {f1[1]}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Clean up resources" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "best_model.sagemaker_session.delete_endpoint(mpg_name)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "instance_type": "ml.t3.medium", - "kernelspec": { - "display_name": "conda_mxnet_p36", - "language": "python", - "name": "conda_mxnet_p36" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/use-cases/index.rst b/use-cases/index.rst index 5f406a8668..8e2cae295e 100644 --- a/use-cases/index.rst +++ b/use-cases/index.rst @@ -15,7 +15,6 @@ Fleet Predictive Maintenance .. toctree:: :maxdepth: 1 - predictive_maintenance/0_usecase_and_architecture_predmaint predictive_maintenance/1_dataprep_dw_job_predmaint predictive_maintenance/2_dataprep_predmaint predictive_maintenance/3_train_tune_predict_predmaint @@ -37,10 +36,8 @@ Computer Vision for Medical Imaging .. toctree:: :maxdepth: 1 - computer_vision/1-metastases-detection-train-model - computer_vision/2-metastases-detection-lineage-registry - computer_vision/3-metastases-detection-deploy-predict - computer_vision/4-metastases-detection-pipeline + computer_vision/metastases-detection + computer_vision/metastases-detection-pipeline Pipelines with NLP for Product Rating Prediction diff --git a/use-cases/predictive_maintenance/0_usecase_and_architecture_predmaint.ipynb b/use-cases/predictive_maintenance/0_usecase_and_architecture_predmaint.ipynb deleted file mode 100644 index 9853666c61..0000000000 --- a/use-cases/predictive_maintenance/0_usecase_and_architecture_predmaint.ipynb +++ /dev/null @@ -1,167 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fleet Predictive Maintenance: Part 1. Introduction\n", - "\n", - "*Using SageMaker Studio to Predict Fault Classification*\n", - "\n", - "---\n", - "\n", - "## Contents\n", - "\n", - "1. [Background](#0_Background)\n", - "1. [Setup](#0_Setup)\n", - "1. [Architecure](#0_Architecture)\n", - "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", - "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb.ipynb)\n", - "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb.ipynb)\n", - "\n", - "\n", - "\n", - "\n", - "---\n", - " \n", - "## Background\n", - "\n", - "The purpose of this notebook is to demonstrate a Predictive Maintenance (PrM) solution for automible fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we focus on preprocessing engine sensor data before feature engineering and buidling an inital model leveraging SageMaker's algorithms. This notebook will cover the following:\n", - "\n", - "* Setup for using SageMaker\n", - "* Basic data cleaning, analysis and preprocessing\n", - "* Converting datasets to format used by the Amazon SageMaker algorithms and uploading to S3 \n", - "* Training SageMaker's linear learner on the dataset\n", - "* Hyperparamter tuning using SageMaker Automatic Tuning\n", - "* Deploying and getting predictions using Batch Transform\n", - "\n", - "## Important Notes: \n", - "\n", - "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", - "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", - "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n", - "\n", - "Please see the README.md for more information about this use case. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "## Set up\n", - "\n", - "Let's start by:\n", - "\n", - "* Setting up or refreshing storemagic variables \n", - "* Install and Import any dependencies\n", - "* Instatiate SageMaker session\n", - "* Specifying the S3 bucket and prefix that you want to use for your training and model data. This should be within the same region as SageMaker training\n", - "* Define the IAM role used to give training access to your data\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View stored variables from previous session\n", - "\n", - "If you ran this notebook before, you may want to re-use the resources you aready created with AWS. Run the cell below to load any prevously created variables. You should see a print-out of the existing variables. If you don't see anything you may need to create them again or it may be your first time running this notebook." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After you run the notebooks each in succession you will accrue a set of stored variables, stored gradually as you run each notebook:\n", - "Stored variables and their in-db values:\n", - "\n", - "\n", - "- create_date -> '2021-03-16-06-42-12'\n", - "- dw_output_path_prm -> 's3://sagemaker-us-east-2-1234567890/export-flow\n", - "- exp_prefix -> 'sagemaker-experiments/linear-learner-2021-03-16-0\n", - "- experiment_name -> 'll-failure-classification-2021-03-16-06-42-12'\n", - "- features_created_prm -> True\n", - "- path_to_test_data_prm -> 's3://sagemaker-us-east-2-1234567890/test/test.c\n", - "- path_to_test_x_data_prm -> 's3://sagemaker-us-east-2-1234567890/test/test_x\n", - "- path_to_train_data_prm -> 's3://sagemaker-us-east-2-1234567890/train/train\n", - "- path_to_valid_data_prm -> 's3://sagemaker-us-east-2-1234567890/validation/\n", - "- trial_name_1 -> 'linear-learner-lr-training-job-2021-03-16-06-42-1\n", - "- trial_name_2 -> 'linear-learner-svm-2021-03-16-06-00-37'\n", - "- trial_name_3 -> 'linear-learner-svm-thresh-2021-03-16-06-00-37'\n", - "- trial_name_4 -> 'linear-learner-svm-balanced-2021-03-16-06-00-37'\n", - "- tune_trial_name -> 'll-svm-tuning-job-trial'\n", - "- tuning_job_name -> 'll-svm-tuning-job'\n", - " \n", - " \n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%store -r\n", - "%store" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note : The above output will be null in the very beginning. On subsequent runs, you will see the stored variables. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "## Architecture\n", - "\n", - "![solution_arch_diagram](./images/solution_arch_diagram.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---\n", - " \n", - "## Next Notebook : Data Prep with DataWrangler" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "instance_type": "ml.t3.medium", - "kernelspec": { - "display_name": "conda_python3", - "language": "python", - "name": "conda_python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb index 20cf3b8dc0..3ea4987017 100644 --- a/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb +++ b/use-cases/predictive_maintenance/1_dataprep_dw_job_predmaint.ipynb @@ -4,18 +4,45 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Fleet Predictive Maintenance: Part 2. Data Preparation with Data Wrangler\n", + "# Fleet Predictive Maintenance: Part 1. Data Preparation with SageMaker Data Wrangler\n", "\n", - "1. [Architecure](0_usecase_and_architecture_predmaint.ipynb#0_Architecture)\n", - "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", + "*Using SageMaker Studio to Predict Fault Classification*\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Background\n", + "\n", + "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on preprocessing engine sensor data. It is the first notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb) (current notebook)\n", "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)\n", - "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb.ipynb)" + "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Important Notes: \n", + "\n", + "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", + "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", + "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "----\n", "## SageMaker Data Wrangler Job Notebook\n", "\n", "This notebook uses the Data Wrangler .flow file to submit a SageMaker Data Wrangler Job\n", @@ -31,22 +58,17 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "# SageMaker Python SDK version 2.x is required\n", - "import pkg_resources\n", - "import subprocess\n", - "import sys\n", - "\n", - "original_version = pkg_resources.get_distribution(\"sagemaker\").version\n", - "_ = subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"sagemaker==2.20.0\"])" + "# Upgrade SageMaker to the latest version\n", + "! pip install --upgrade sagemaker" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -70,7 +92,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -87,18 +109,15 @@ "\n", "iam_role = sagemaker.get_execution_role()\n", "\n", - "container_uri = (\n", - " \"415577184552.dkr.ecr.us-east-2.amazonaws.com/sagemaker-data-wrangler-container:1.2.1\"\n", - ")\n", - "\n", "# Processing Job Resources Configurations\n", "# Data wrangler processing job only supports 1 instance.\n", "instance_count = 1\n", "instance_type = \"ml.m5.4xlarge\"\n", "\n", - "# Processing Job Path URI Information\n", + "# Processing Job Path URI Information. This is the where the output data from SageMaker Data Wrangler will be stored.\n", "output_prefix = f\"export-{flow_name}/output\"\n", "output_path = f\"s3://{bucket}/{output_prefix}\"\n", + "# Output name is auto-generated from the select node's ID + output name from the flow file, which specifies how the data will be transformed.\n", "output_name = \"ff586e7b-a02d-472b-91d4-da3dd05d7a30.default\"\n", "\n", "processing_job_name = f\"data-wrangler-flow-processing-{flow_id}\"\n", @@ -128,14 +147,16 @@ "metadata": {}, "outputs": [], "source": [ - "from demo_helpers import update_dw_s3uri, get_dw_container_for_region\n", + "from demo_helpers import update_dw_s3uri\n", "\n", "# update the flow file to change the s3 location to our bucket\n", "update_dw_s3uri(flow_file_name)\n", "\n", "# get the Data Wrangler container associated with our region\n", "region = boto3.Session().region_name\n", - "container_uri = get_dw_container_for_region(region)\n", + "container_uri = sagemaker.image_uris.retrieve(\n", + " \"data-wrangler\", sagemaker.Session().boto_region_name, version=\"1.0.1\"\n", + ")\n", "\n", "dw_output_path_prm = output_path\n", "print(\n", @@ -183,7 +204,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -333,6 +354,140 @@ ")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Cleaning with Data Wrangler\n", + "\n", + "#### Load, preparation, EDA and Preprocessing \n", + "\n", + "[contents](#2_Contents)\n", + "\n", + "For the initial data preparation and exploration, we will utilize SageMaker's new feature, Data Wrangler, to load data and do some data transformations. In the Data Wrangler GUI, we will perform the following steps. Note that because this data is generated, the data is relatively clean and there are few data cleaning steps needed. After completing these steps, you can uncomment and run the code below to inspect your cleaned data.\n", + "1. Load fleet sensor logs data from S3\n", + "1. Load fleet details data from S3\n", + "1. Change column data types \n", + "1. Change coulmn headers \n", + "1. Check for Null/NA values (impute or drop)\n", + "1. Join sensor and details data\n", + "1. One-Hot Encode categorical features\n", + "1. Do preliminar analysis using built-in feature\n", + "1. Export recipe as SageMaker Data Wrangler job\n", + "1. Upload final cleaned data set to S3\n", + "\n", + "\n", + "\n", + "For our purposes, we will download the final cleaned data set from S3 into our SageMaker Studio instance, but for more information on how to load and preprocess tabular data follow this link: [Tabular Preprocessing Blog]().\n", + "For additional information on preprocessing for PrM, please refer to this blog, [On the relevance of preprocessing in predictive\n", + "maintenance for dynamic systems](https://bird.bcamath.org/bitstream/handle/20.500.11824/892/CernudaPREDICT2018S16.pdf?sequence=1&isAllowed=y)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# fleet = wr.s3.read_csv(path=dw_output_path_prm, dataset=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# # add in additional features and change data types\n", + "# fleet[\"datetime\"] = pd.to_datetime(fleet[\"datetime\"], format=\"%Y-%m-%d %H:%M:%S\")\n", + "# fleet[\"cycle\"] = fleet.groupby(\"vehicle_id\")[\"datetime\"].rank(\"dense\")\n", + "# fleet[\"make\"] = fleet[\"make\"].astype(\"category\")\n", + "# fleet[\"model\"] = fleet[\"model\"].astype(\"category\")\n", + "# fleet[\"vehicle_class\"] = fleet[\"vehicle_class\"].astype(\"category\")\n", + "# fleet[\"engine_type\"] = fleet[\"engine_type\"].astype(\"category\")\n", + "# fleet[\"engine_age\"] = fleet[\"datetime\"].dt.year - fleet[\"year\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# fleet = fleet[\n", + "# [\n", + "# \"target\",\n", + "# \"vehicle_id\",\n", + "# \"datetime\",\n", + "# \"make\",\n", + "# \"model\",\n", + "# \"year\",\n", + "# \"vehicle_class\",\n", + "# \"engine_type\",\n", + "# \"make_code_Make A\",\n", + "# \"make_code_Make B\",\n", + "# \"make_code_Make E\",\n", + "# \"make_code_Make C\",\n", + "# \"make_code_Make D\",\n", + "# \"model_code_Model E1\",\n", + "# \"model_code_Model A4\",\n", + "# \"model_code_Model B1\",\n", + "# \"model_code_Model B2\",\n", + "# \"model_code_Model A2\",\n", + "# \"model_code_Model A3\",\n", + "# \"model_code_Model B3\",\n", + "# \"model_code_Model C2\",\n", + "# \"model_code_Model A1\",\n", + "# \"model_code_Model A5\",\n", + "# \"model_code_Model A6\",\n", + "# \"model_code_Model C1\",\n", + "# \"model_code_Model D1\",\n", + "# \"model_code_Model E2\",\n", + "# \"vehicle_class_code_Truck-Tractor\",\n", + "# \"vehicle_class_code_Truck\",\n", + "# \"vehicle_class_code_Bus\",\n", + "# \"vehicle_class_code_Transport\",\n", + "# \"engine_type_code_Engine E\",\n", + "# \"engine_type_code_Engine C\",\n", + "# \"engine_type_code_Engine B\",\n", + "# \"engine_type_code_Engine F\",\n", + "# \"engine_type_code_Engine H\",\n", + "# \"engine_type_code_Engine D\",\n", + "# \"engine_type_code_Engine A\",\n", + "# \"engine_type_code_Engine G\",\n", + "# \"voltage\",\n", + "# \"current\",\n", + "# \"resistance\",\n", + "# \"cycle\",\n", + "# \"engine_age\",\n", + "# ]\n", + "# ]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# fleet.sort_values(by=[\"vehicle_id\", \"datetime\"], inplace=True)\n", + "# fleet.to_csv(\"fleet_data.csv\", index=False)\n", + "# fleet.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you followed the above steps correctly, you data should match that of the existing [fleet_data.csv](fleet_data.csv). It would also fit the following key observations:\n", + "\n", + "- There are 90 vehicles in the fleet\n", + "- Data has 9000 observations and 44 columns.\n", + "- Vehicle can be identified useing the 'vehicle_id' column.\n", + "- The label column, called 'Target', is an indicator of failure ('0' = No Failure; '1' = Failure).\n", + "- There are 4 numeric features available for prediction and 4 categorical features. We will expand upon these later in the Feature Engineering section of this notebook. " + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -346,8 +501,7 @@ "It is important to note that the following XGBoost objective ['binary', 'regression',\n", "'multiclass'], hyperparameters, or content_type may not be suitable for the output data, and will\n", "require changes to train a proper model. Furthermore, for CSV training, the algorithm assumes that\n", - "the target variable is in the first column. For more information on SageMaker XGBoost, please see\n", - "https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html.\n", + "the target variable is in the first column. For more information on SageMaker XGBoost, please see [XGBoost Algorithm](https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html).\n", "\n", "### Find Training Data path\n", "\n", @@ -377,12 +531,12 @@ "metadata": {}, "source": [ "Next, the Training Job hyperparameters are set. For more information on XGBoost Hyperparameters,\n", - "see https://xgboost.readthedocs.io/en/latest/parameter.html." + "see [XGBoost Parameters](https://xgboost.readthedocs.io/en/latest/parameter.html)." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -425,30 +579,6 @@ ")\n", "estimator.fit({\"train\": train_input})" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Cleanup\n", - "\n", - "Uncomment the following code cell to revert the SageMaker Python SDK to the original version used\n", - "before running this notebook. This notebook upgrades the SageMaker Python SDK to 2.x, which may\n", - "cause other example notebooks to break. To learn more about the changes introduced in the\n", - "SageMaker Python SDK 2.x update, see\n", - "[Use Version 2.x of the SageMaker Python SDK.](https://sagemaker.readthedocs.io/en/stable/v2.html)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# _ = subprocess.check_call(\n", - "# [sys.executable, \"-m\", \"pip\", \"install\", f\"sagemaker=={original_version}\"]\n", - "# )" - ] } ], "metadata": { diff --git a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb index 983bc2456b..1dca5c3a41 100644 --- a/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb +++ b/use-cases/predictive_maintenance/2_dataprep_predmaint.ipynb @@ -4,104 +4,73 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Fleet Predictive Maintenance: Part 3. Feature Engineering\n", + "# Fleet Predictive Maintenance: Part 2. Feature Engineering and Exploratory Data Visualization\n", "\n", - "## Data Preparation: Featurization and Exploratory Data Visualization\n", - "\n", - "*Using SageMaker Studio to Predict Fault Classification*\n", - "\n", - "1. [Architecure](0_usecase_and_architecture_predmaint.ipynb#0_Architecture)\n", - "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", - "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)\n", - "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)" + "*Using SageMaker Studio to Predict Fault Classification*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "---\n", - " \n", - "\n", - "## Contents\n", - "\n", - "1. [Background](#Background)\n", - "1. [Setup](#2_Setup)\n", - "1. [Data](#2_Data)\n", - "1. [Feature Engineering](#2_Features)\n", - "1. [Data Visualization](#2_Visualization)\n", - "\n", - "\n", - "---\n", - "\n", "## Background\n", "\n", - "The purpose of this notebook is to demonstrate a Predictive Maintenance (PrM) solution for automible fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we focus on preprocessing engine sensor data before feature engineering and buidling an inital model leveraging SageMaker's algorithms. This notebook will cover the following:\n", - "\n", - "* Setup for using SageMaker\n", - "* Basic data cleaning, analysis and preprocessing\n", - "* Converting datasets to format used by the Amazon SageMaker algorithms and uploading to S3 \n", - "* Training SageMaker's linear learner on the dataset\n", - "* Hyperparamter tuning using SageMaker Automatic Tuning\n", - "* Deploying and getting predictions using Batch Transform\n", - "\n", - "## Important Notes: \n", - "\n", - "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", - "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", - "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n", - "\n", - "Please see the README.md for more information about this use case. " + "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on feature engineering. It is the second notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "---\n", - " \n", - "## Set up\n", - "\n", - "[contents](#2_Contents)\n", - "\n", - "Let's start by:\n", - "\n", - "* Setting up or refreshing storemagic variables \n", - "* Install and Import any dependencies\n", - "* Instatiate SageMaker session\n", - "* Specifying the S3 bucket and prefix that you want to use for your training and model data. This should be within the same region as SageMaker training\n", - "* Define the IAM role used to give training access to your data\n", - " " + "1. [Data Prep: Processing Job from SageMaker Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", + "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb) (current notebook)\n", + "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### View stored variables from previous session\n", - "If you ran this notebook before, you may want to re-use the resources you aready created with AWS. Run the cell below to load any prevously created variables. You should see a print-out of the existing variables. If you don't see anything you may need to create them again or it may be your first time running this notebook." + "## Important Notes: \n", + "\n", + "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", + "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", + "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "%store -r\n", - "%store" + "---\n", + " \n", + "\n", + "## Contents\n", + "\n", + "1. [Setup](#Setup)\n", + "1. [Feature Engineering](#Feature-Engineering)\n", + "1. [Visualization of the Data Distributions](#Visualization-of-the-Data-Distributions)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note : dw_output_path_prm should appear above as a stored (restored) variable, whose value was set when you ran notebook 1_datapred_predmaint.ipynb" + "---\n", + "## Setup\n", + "\n", + "Let's start by:\n", + "\n", + "* Installing and importing any dependencies\n", + "* Instantiating SageMaker session\n", + "* Specifying the S3 bucket and prefix that you want to use for your training and model data. This should be within the same region as SageMaker training\n", + "* Defining the IAM role used to give training access to your data\n", + " " ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -111,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -151,184 +120,39 @@ "metadata": {}, "source": [ "---\n", - " \n", - "## Data\n", - "\n", - "#### Load, preparation, EDA and Preprocessing \n", - "\n", - "[contents](#2_Contents)\n", - "\n", - "For the initial data preparation and exploration, we will utilize SageMaker's new feature, Data Wrangler, to load data and do some data transformations. In the Data Wrangler GUI, we will perform the following steps. Note that because this data is generated, the data is relatively clean and there are few data cleaning steps needed. \n", - "1. Load fleet sensor logs data from S3\n", - "1. Load fleet details data from S3\n", - "1. Change column data types \n", - "1. Change coulmn headers \n", - "1. Check for Null/NA values (impute or drop)\n", - "1. Join sensor and details data\n", - "1. One-Hot Encode categorical features\n", - "1. Do preliminar analysis using built-in feature\n", - "1. Export recipe as SageMaker Data Wrangler job\n", - "1. Upload final cleaned data set to S3\n", - "\n", + "## Feature Engineering \n", "\n", + "For PrM, feature selection, generation and engineering is extremely important and very depended on domain expertise and understanding of the systems involved. For our solution, we will focus on the some simple features such as:\n", + "* lag features \n", + "* rolling average\n", + "* rolling standard deviation \n", + "* age of the engines \n", + "* categorical labels\n", "\n", - "For our purposes, we will download the final clened data set from S3 into our SageMaker Studio instance, but for more information on how to load and preprocess tabular data follow this link: [Tabular Preprocessing Blog]().\n", - "For additional information on preprocessing for PrM, please refer to this blog, [On the relevance of preprocessing in predictive\n", - "maintenance for dynamic systems](https://bird.bcamath.org/bitstream/handle/20.500.11824/892/CernudaPREDICT2018S16.pdf?sequence=1&isAllowed=y)." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "fleet = wr.s3.read_csv(path=dw_output_path_prm, dataset=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:numexpr.utils:NumExpr defaulting to 2 threads.\n" - ] - } - ], - "source": [ - "# add in additional features and change data types\n", - "fleet[\"datetime\"] = pd.to_datetime(fleet[\"datetime\"], format=\"%Y-%m-%d %H:%M:%S\")\n", - "fleet[\"cycle\"] = fleet.groupby(\"vehicle_id\")[\"datetime\"].rank(\"dense\")\n", - "fleet[\"make\"] = fleet[\"make\"].astype(\"category\")\n", - "fleet[\"model\"] = fleet[\"model\"].astype(\"category\")\n", - "fleet[\"vehicle_class\"] = fleet[\"vehicle_class\"].astype(\"category\")\n", - "fleet[\"engine_type\"] = fleet[\"engine_type\"].astype(\"category\")\n", - "fleet[\"engine_age\"] = fleet[\"datetime\"].dt.year - fleet[\"year\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "fleet = fleet[\n", - " [\n", - " \"target\",\n", - " \"vehicle_id\",\n", - " \"datetime\",\n", - " \"make\",\n", - " \"model\",\n", - " \"year\",\n", - " \"vehicle_class\",\n", - " \"engine_type\",\n", - " \"make_code_Make A\",\n", - " \"make_code_Make B\",\n", - " \"make_code_Make E\",\n", - " \"make_code_Make C\",\n", - " \"make_code_Make D\",\n", - " \"model_code_Model E1\",\n", - " \"model_code_Model A4\",\n", - " \"model_code_Model B1\",\n", - " \"model_code_Model B2\",\n", - " \"model_code_Model A2\",\n", - " \"model_code_Model A3\",\n", - " \"model_code_Model B3\",\n", - " \"model_code_Model C2\",\n", - " \"model_code_Model A1\",\n", - " \"model_code_Model A5\",\n", - " \"model_code_Model A6\",\n", - " \"model_code_Model C1\",\n", - " \"model_code_Model D1\",\n", - " \"model_code_Model E2\",\n", - " \"vehicle_class_code_Truck-Tractor\",\n", - " \"vehicle_class_code_Truck\",\n", - " \"vehicle_class_code_Bus\",\n", - " \"vehicle_class_code_Transport\",\n", - " \"engine_type_code_Engine E\",\n", - " \"engine_type_code_Engine C\",\n", - " \"engine_type_code_Engine B\",\n", - " \"engine_type_code_Engine F\",\n", - " \"engine_type_code_Engine H\",\n", - " \"engine_type_code_Engine D\",\n", - " \"engine_type_code_Engine A\",\n", - " \"engine_type_code_Engine G\",\n", - " \"voltage\",\n", - " \"current\",\n", - " \"resistance\",\n", - " \"cycle\",\n", - " \"engine_age\",\n", - " ]\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(9000, 44)" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fleet.sort_values(by=[\"vehicle_id\", \"datetime\"], inplace=True)\n", - "fleet.to_csv(\"fleet_data.csv\", index=False)\n", - "fleet.shape" + "These features serve as a small example of the potential features that could be created. Other features to consider are changes in the sensor values within a window, change from the initial value or number over a defined threshold. For additional guidance on Feature Engineering, visit the [SageMaker Tabular Feature Engineering guide](). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### Key observations:\n", - "\n", - "- There are 90 vehicles in the fleet\n", - "- Data has 9000 observations and 44 columns.\n", - "- Vehicle can be identified useing the 'vehicle_id' column.\n", - "- The label column, called 'Target', is an indicator of failure ('0' = No Failure; '1' = Failure).\n", - "- There are 4 numeric features available for prediction and 4 categorical features. We will expand upon these later in the Feature Engineering section of this notebook. " + "First, we load up our cleaned dataset, which can be produced by following the steps in the notebook [Data Prep: Processing Job from SageMaker Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb) (the first section in this notebook series). See the [Background](#Background) section at the beginning of the notebook for more information." ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "# # run this cell to pick-up the new cleaned dataset\n", - "# fleet = pd.read_csv('fleet_data.csv')" + "fleet = pd.read_csv(\"fleet_data.csv\")" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAANOCAYAAABUfxZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3zV9fU/8Nf73pubm7032YOQEEIGiIoigshQ1Lqrtq5a2/p1/GrtsN8Ota21Wqu2tWpV2q8DhDoAFRAUEFdISMiCDLLnzd7r3vv+/ZGEBkgg4977uTd5PR8PHsC9n3GAAPeee4aQUoKIiIiIiIiIiMhcVEoHQEREREREREREswsTTkREREREREREZFZMOBERERERERERkVkx4URERERERERERGbFhBMREREREREREZmVRukArMHX11dGREQoHQYRERERERER0ayRlZXVLKX0G++5OZFwioiIQGZmptJhEBERERERERHNGkKIyomeY0sdERERERERERGZFRNORERERERERERkVkw4ERERERERERGRWTHhREREREREREREZsWEExERERERERERmRUTTkREREREREREZFZMOBERERERERERkVkx4URERERERERERGbFhBMRWYzJJPHp8UYUNXQpHQoRERERERFZkUbpAIhodqpr78NPth3FF6UtAIANi4Lw4KpYxAa4KRwZERERERERWRoTTkRkVlJKvJddi19vL4DJJPH4VYlo7BzA61+U46O8emxMDsb9q2IR7eeqdKhERERERERkIUw4EZHZtHQP4NH38rGroAFLIrzwzPWLEebjDAC4c3kkXj5Yhn99WYEdR+twdUoIHlgVi3AfF4WjJiIiIiIiInMTUkqlY7C49PR0mZmZqXQYRLPa3sJG/OzdPHT2DeHHa+Jw90VRUKvEGcc1dw/gpQMn8O+vKmEwSVyXOg/3XRqDUG9nBaImIiIiIiKi6RJCZEkp08d9jgknIpqJrv4hPLHzGLZkVmNBkDuevTEZ8YHu5zxP39mPv+8/gbcyqmAySVyfHooHV8ciwF1nhaiJiIiIiIhops6WcGJLHRFN2zdlLfjx1qOoa+/DDy+JxgOrY+GoUU/qXH93HX6zMRHfXxGFv392ApsPV6G8uRub7znfwlETERERERGRpTHhRERTZjCa8NTuIrzyeRnCvJ2x9d7zkRbuPa1rBXk44fGrF8JZq8brX1RgwGCcdNKKiIiIiIiIbJNK6QCIyP68uP8EXj5Yhm8vDcNH91807WTTWClhXhg0mlBQ12mGCImIiIiIiEhJTDgR0ZQcb+jE85+W4IpFQfjdNUlwcTRPoWRqmCcA4Ehlm1muR0RERERERMphwomIJm3IaMLDW4/CXeeAx65aaNZr+7vrEOLphOzqdrNel4iIiIiIiKyPM5yIaNJeOnAC+bWdePGWVHi7aM1+/ZQwT1Y4ERERERERzQIWq3ASQrwmhNALIfLHPPa4ECJXCJEjhNgjhAie4FzjyDE5QojtYx7fJIQoH/PcYkvFT0SnKmrownP7SrBhURDWJQVZ5B6pYV6o6+hHQ0e/Ra5PRERERERE1mHJlrpNANae9tifpJSLpJSLAewE8KsJzu2TUi4e+bbxtOd+Mua5HDPHTETjOKWVbmOixe6TMjLHKbuKVU5ERERERET2zGIJJynlQQCtpz02dv2UCwBpqfsTkfm8fLAMebUdePzqhfBxdbTYfRKDPaDVqDjHiYiIiIiIyM5ZfWi4EOJ3QohqALdg4gonnRAiUwjxtRDi6tOe+91IW96zQogJ3/kKIe4ZuUZmU1OTucInmnOKGrrwl73F2LAoCOst1Eo3SqtRYWGwO+c4ERERERER2TmrJ5yklI9KKUMBvAngvgkOC5NSpgP4NoC/CCGiRx7/OYB4AEsAeAP46Vnu87KUMl1Kme7n52e+XwDRHGKwUivdWKlhXsir7cCgwWSV+xEREREREZH5WT3hNMZbAK4d7wkpZd3I92UA9gNIGfl5vRw2AOB1AEutEyrR3PSSlVrpxkoJ88KAwYRj9Z3nPpiIiIiIiIhsklUTTkKI2DE/3Qjg+DjHeI22ygkhfAFcCKBw5OdBI98LAFcDyD/9fCIyj6KGLjy3twQbkizfSjdWajgHhxMREREREdk7iyWchBBvA/gKwHwhRI0Q4i4ATwoh8oUQuQDWAHhg5Nh0IcQ/R05dACBTCHEUwGcAnpRSFo4896YQIg9AHgBfAE9YKn6iucxgNOEn247CVafBY1dZp5VuVJCHEwLddThSxcHhRERERERE9kpjqQtLKW8e5+FXJzg2E8DdIz/+EkDSBMddarYAiWhCLx0sQ25NB/727VSrtdKNlRruiexqVjgRERERERHZKyVnOBGRDSpu/G8r3YZF1mulGysl1AvVrX1o6hpQ5P5EREREREQ0M0w4EdFJo1vpXHUa/NbKrXRjcY4TERERERGRfWPCiYhO2vRlBXJrOvDYVYnwVaCVblRisAcc1IJznIiIiIiIiOwUE05EBADo6B3CC5+WYkWcH65YFKxoLDoHNRKCPVjhREREREREZKeYcCIiAMCLB06gs38IP10br3QoAICUUE/k1nTAYDQpHYpFDBlNaO4eQH1Hn9KhEBERERERmZ3FttQRkf2oa+/D61+U45rFIUgIdlc6HABAargXNn1ZgeMNXVgY4qF0OFPS3D2AD3Lq0NYziPa+QbT3Dg1/G/Pj7gHDyeNfuz0dl8YHKBgxERERERGReTHhRET4y95iSAk8dFmc0qGclBL638Hh9pZwenH/Cbx6qBwqAXg6a+Hp5AAPZwf4u+kQ5+8GD2cHeDlr4ensgFcPleOpXUW4JM4fKpVQOnQiIiIiIiKzYMKJaI4rbuzCtqwa3HlhJEK9nZUO56R5Xk7wc3NEdlU7bjtf6Wim5pvyFpwX6Y23v7fsnEkkDycHPLA5Bzty63DV4hArRUhERERERGRZnOFENMc9tes4XBw1+NHKGKVDOYUQAimhnjhiZ4PDO/uHUFjXiWVRPpOqWLpyUTDiA93w7CfFGJql86qIiIiIiGjuYcKJaA7LKG/F3mN6/OCSaHi5aJUO5wyp4V6oaOlFa8+g0qFMWlZlG0wSOC/Se1LHq1QCD6+Zj4qWXmzLqrFwdGSrTCaJgroOvLj/BO7cdBiflzQpHRIRERER0YywpY5ojpJS4g8fH0OAuyPuuCBS6XDGNTrHKae6zW6GameUt0KjEkgJ85r0OasW+CM1zBPP7S3BNSkh0DmoLRgh2Qp9Zz8+L2nG5yVNOFTajObu4cSqs1aN3Jp27HloBbxtMBGspOyqNvz5k2L8dmMiovxclQ6HiIiIiM6CCSeiOWp3QSOyq9rx5LeS4KS1zQTHonmeUKsEjlS221XCadE8jyn9ngoh8JPL43HzK1/jja8rcfdFURaMkJTSP2TE4YpWfF7SjIPFTTje0AUA8HXVYnmMLy6O88PyGF+09Axi418P4dfbC/DCzSkKR207Klt6cNe/MtHaM4gfvnkE7//oQiZniYiIiGwYE05Ec5DBaMJTu48jxt8V16XNUzqcCTlp1VgQ5IbsavuY49Q3aERuTTvuWj71hNH50T64KNYXf99/AjctDYOrI/95nk1KGrtw9d++QM+gEVq1CukRXvjZunhcFOuLBYHup8z78nfX4YFVsXh6TzHWLQzE+qQgBSO3DW09g7jj9cOQUuI3VybgNzsK8dsdBfjDtxYpHRoRERERTYDvaIjmoHcya1DW1IOXb0uDRm3bo9xSw7zwn6waGE0S6kkM4VZSdnUbhoxy0vObTvfwmvm46m9f4NXPy/HA6lgzR0dKOlzRhp5BI164OQWrFvjDWXv2/37vXRGN3QWN+OX7+Vga6Q1fV0crRWp7+oeMuOf/MlHT3oe37j4P6RHeaOgcwD8OnMB5kT64OoXbHYmIiIhskW2/0yQis+sdNOAve4uRHu6FyxJsv00tJcwTPYNGlOi7lA7lnDLKWyEEkBYx+flNYyWHeuLyxAC88nkZ2uxoULrSBg0m/CerBh29Q0qHMqFSfTecHNTYkBR0zmQTAGjUKjxzQzK6+w343/fzIaW0QpS2x2SS+Mm2XByuaMMz1ycjPWI4mfvwmjikh3vhF+/loVTfrXCURERERDQeJpyI5pjXDpVD3zWAn6+PhxC2XTEEDFc4AcCRynaFIzm3jPJWJAS5w13nMO1r/HjNfPQMGvCPAyfMGNnstuVwFX689ShW/Xk/PsiptcnkTIm+C9H+Lqe0zp1LXIAb/t+aOHyc34DtR+ssGJ3teuaTIuw4Woefro3HlcnBJx/XqFV44dsp0Dmo8aM3j6Bv0KhglEREREQ0HiaciOaQ1p5B/ONAGdYkBCAtfHptX9YW5u0Mbxctsqtse47ToMGEI1VtWDrNdrpRcQFuuGZxCDZ9WYHGzn4zRTd7SSnxxtdViPF3RYinEx7YnIPbXs1ARXOP0qGd4oS+G7H+blM+73sXRSElzBO/+qAA+jn29bA5owp/++wEbl4ahntXnDkXLcjDCX++IRlFjV34zfYCBSIkIiIiorNhwoloDnnh0xL0DhrwyNr5SocyaUIIpIZ54oiNJ5zyajvQP2Sa9vymsR66LA4mKfHCpyVmiGx2y6xsQ1FjF+5eHol3f3ghHrsqETnV7Vjzl4N4fl8JBgzKV770DBhQ19GPGH/XKZ+rVgk8fX0y+oeM+MV7eTZZvWUJB4ub8Oj7+VgR54fHr0qcsBrzkvn++NHKaGzJrMa7R2qsHCURERERnQ0TTkRzRHVrL974uhI3pIciZhqVFkpKCfPCiaYem57Rk1HeCgBYEjHzhFOotzNuWhKGzRnVqGrpnfH1ZrM3v66Em06DjYuDoVYJfOf8COz78QpctiAAf/6kGOuf+xxfl7UoGuOJpuEZQ9F+U084jZ73k8vnY+8xPd7LrjVnaDapsK4TP3zzCOIC3PC3W1LPudjgodVxWBrpjUffy0epHcx6IyIiIpormHAimiOe3lMEtUrgwdVxSocyZSlhngCGt8DZqozyFsT4u8LHTNvE/ufSGGjUAn/ZW2yW681GLd0D+CivAdemzjtlEHeAuw5/uyUVr9+xBAMGE256+Ws8vPUoWhUaxF7SOJxwmk6F06g7LozEkggv/Hp7ARo6Zm9rXUNHP+7cdBiujhq8dns6XB0nN2D9hZtT4KxV44ec50RERERkM5hwIpoD8ms78EFOHe68MBKBHjqlw5my5HmeUAkgu8o2B4cbTRKZFTOf3zSWv7sO370gAu/l1KK4kVUb49maVYNBownfPi9s3OdXzvfHJw+twA8uicb72bVY9cx+vJNZbfW2tNKmbjioBcJ9nKd9DbVK4E/XJWPIaMLP3s2dla113QMG3LHpMLr6h/Da7UsQ5OE06XMD3HV49sbFKNF341cf5FswSiIiIiKaLCaciOaA5/eVwNPZAfdeEq10KNPi4qjB/EB3m53jdKy+E10DBrPMbxrr3ouj4arV4Jk9RWa97mxgMkm89U0VlkZ6Iy5g4hZRJ60aP10bjw/vvwjRfq54ZFsu3vimyoqRAqX6bkT4uMDhHK1h5xLh64KfrY3H/qImbM2cXfOKDEYTfvTmERQ3duFvt6QiIdh9yte4OM4P962MwdasGmzLml2/P0RERET2iAknolmus38InxXpcX3aPLjrHJQOZ9pSwjyRU90Ok8n2KjvMOb9pLC8XLb53cRR2FzQip9o2q7uU8nlpM6pae3HrsvBJHT8/0A3vfP98RPm64ECR3sLRnapU3z2jdrqxvnN+BJZFeeOxnYWobe8zyzWVNmgw4aF3juJAcROeuHohLpnvP+1rPbg6DsuivPG/7+ejhJWBRERERIpiwololtt3rBFDRol1SUFKhzIjqWFe6Oo3nBzAbEsyylsR6u2EYM/JtwBN1p3LI+HjosXTu1nlNNYbX1fCx0WLyxMDJn2OSiWQHuGFrMo2q7WkDRiMqGzpQayZEk6qkdY6k5T46Tb7b63rHjDgzk2HseNoHX62Lh43Lx2/PXKy1CqB529KgYvj8Dyn3kGDmSIlIiIioqk69zROIrJrH+Y2INhDh5RQT6VDmZGTg8Or2hF7lhYqa5NS4nBF64yqMs7G1VGDH66MweM7C/FlaTMuiPG1yH3sSV17H/Yda8T3V0TDUaOe0rlp4V54J7MGZc09094aNxUVzb0wSSDaTAknYHiL4S/WL8Av38/H/Ztz4OuqhZTDX4smCZhGvpdSQo78PDbAFfdcbFsttU1dA7hjUwaO1Xfh6euTcV3aPLNc199dh7/cmIJbX/0Gb2dU467lkWa5LhERERFNDRNORLNYV/8QDpY04dbzwiGEUDqcGYnydYGHkwOOVLXhhiWhSodz0ommHrT0DJp9ftNYt5wXhtcOleOJD49hx/8sh1pl33+WM7X5cDUkgG9PoxomLXz4zymros0qCadS/cw31I3nlvPCkFnRik8KG6ESAkIMVz8JYOTnAioBCAH0DRqxNcuAG5eEwcPJNtpqK5p78J3XMtDUNYB/fjcdK82csF0e6wtvF+3J338iIiIisj4mnIhmsU+P6zFoMGF9UqDSocyYEAIpYZ42t6ludH6TOTfUnU7noMbP18fjvreyseVw9YRb2eaCIaMJmzOqsCLOD6HeU9/6FuXrAk9nB2RVWidxWaLvghAwe3JLCIG/3JQyqWMPFDfhu69loKC2wyYq5PJqOnDHpgwYTRJvfe88pIR5WeQ+Yd7OqGrtsci1iYiIiOjcOMOJaBb7KK8eAe6OSLXQGzprSw3zQrG+C539Q0qHclJGeQv83RxntPJ+MjYkBWFppDee3lOEjj7b+fVb297CRui7BnDreZMbFn46lUogLcwLmZWtZo5sfKX6boR6OUPnMLXWP3NKCvEAAOTXdSgWw6jPS5pw08tfwVGjxrYfXGCxZBMAhPs4o7Kl12LXJyIiIqKzs1jCSQjxmhBCL4TIH/PY40KIXCFEjhBijxAieIJzjSPH5Aghto95PFII8Y0QokQIsUUIobVU/ET2rmfAgP1FTVi3MAiqWdKClRLmCSmB3Grl3zgDwzNyvilvxdJIb4u3LAoh8OsrE9DWO4jn9pZY9F627I1vKhHsocPK+Om3YKVFeOFEUw/aegbNGNn4zLmhbrq8XbQI8XRCXm2nonF8kFOLOzcdRqi3M9794QUWb2kM93ZGXXsfBg0mi96HiIiIiMZnyQqnTQDWnvbYn6SUi6SUiwHsBPCrCc7tk1IuHvm2cczjfwTwrJQyFkAbgLvMHTTRbPFZkR4DBhPWLbT/drpRyaGeEAI4UtWmdCgAgJq2PtR39Ft0ftNYicEeuGlJGP79VQVK9XNv5XtZUze+KG3BzUvDZjTHKm2kqsbSX0dGk0RZc4/iCScASAx2R36tconaf35ehgc25wwPbb/3fAS46yx+zzAfF5gkUNveZ/F7EREREdGZLJZwklIeBNB62mNjP151ATDpfc5iuHzgUgDbRh76F4CrZxgm0az1UV49/NwckR5hnWSINbjrHBDr74psG0k4/Xd+k4/V7vnwmjg4adV4bOcxSDnpf0Jnhbe+qYJGJXDj0pnNXkoO9YRGJZBZadmvo+rWXgwaTDaRcEoK8UB5c4/V21FNJonff3QMT3x4DOuTArHpjqVw11lncPlom2tlC+c4ERERESnB6jOchBC/E0JUA7gFE1c46YQQmUKIr4UQo0klHwDtUkrDyM9rAISc5T73jFwjs6mpyWzxE9mD3kEDPjvehLWJgbNuo1lqmBe+LmvFw1uP4u/7S7ErvwGl+i5F2mYyylvh6TycBLMWH1dHPLg6DgeLm/Dpcb3V7qu0/iEjtmbV4PLEQPi7zaw6RuegRmKIB7IsnHCy1Ia66Vg4b3iOU2GdddvqHv+wEC8fLMN3zg/HCzenWnWWVfjIUPmqVs5xIiIiIlKC1bfUSSkfBfCoEOLnAO4D8OtxDguTUtYJIaIAfCqEyAMw3qvkCT/el1K+DOBlAEhPT59bZQA05x0oakLfkBHrZsF2utPdtDQMFS09OFDchG1ZNScfV6sEQr2cEOXniihfF0T5uWJBkBsWh3pabL5SRkUrlkR4W31G1nfOD8db31Ti8Z2FuCjWD1rN7N//8GFuPTr6hnCLmTb0pYd74Y2vKzFoMFns96+0yYYSTsEjg8NrO7AsyjoVea09g3jj60rckD4Pv92YaPE5Z6fzc3OEk4Oag8OJiIiIFGL1hNMYbwH4EOMknKSUdSPflwkh9gNIAfAfAJ5CCM1IldM8AHXWC5fIfnyYVw8fFy3Os2Krl7UsDvXE5nvOBwB09g+hvKkHZc3dKGvqQVlTD040deOL0mYMjFQ8Pbp+Ab53cZTZ49B39qO8ucdsCZCpcFCr8KsrE/Hd1zLw+hfl+P6KaKvHYG1vfFOJKD8XnB9tnq/ptHAvvHqoHAV1HRbblFbS2A1/N0ertZCdjZ+bIwLddciz4hyn97JrMWSUuGt5lNWTTcDwoP0wb26qIyIiIlKKVRNOQohYKeXoeqWNAI6Pc4wXgF4p5YAQwhfAhQCeklJKIcRnAK4DsBnAdwF8YKXQiexG/5ARnx7X4+qUkFnXTnc6d50DkkM9kRzqecrjJpNEXUcfnth5DH/4+BgSg91xQYyvWe+dUTE8v2mJQjOyVsT5YVW8P174tBTXpIbMuM3MlhXUdSC7qh3/e0WC2RIX6eHDSaasyjaLJZxKm7oRG6B8ddOohSEeVhscLqXEO4erkTzPA/MD3axyz/GE+ThzhhMRERGRQizWhyGEeBvAVwDmCyFqhBB3AXhSCJEvhMgFsAbAAyPHpgsh/jly6gIAmUKIowA+A/CklLJw5LmfAvh/QohSDM90etVS8RPZqwPFTegdNGL9wiClQ1GMSiUwz8sZT9+QjGg/V9z3drbZN1VllLfCWatGYrC7Wa87Fb+8IgEDBiP+tKtIsRis4Y2vq+CoUeG61Hlmu6a/uw6h3k4Wm+MkpcQJfTdi/Gwn4ZQU4oGy5h50DxjOffAM5dZ0oKixCzcsmdmA95kK93ZGVWvvnBuwT0RERGQLLLml7mYpZZCU0kFKOU9K+aqU8lop5UIp5SIp5ZVSytqRYzOllHeP/PhLKWWSlDJ55PtXx1yzTEq5VEoZI6W8Xko5YKn4iezVR3n18HJ2wLKo2bOdbrpcHTX4x21pGDKY8IM3stA/ZDTbtTPKW5EW7gWNWrn5SZG+LrjzwkhszarB0ep2xeKwpK7+IXyQU4srk4Ph4Wze1rS0MC9kVrZZJBnR2DmA7gGDTcxvGpU0zx1SWmdw+JbMaugcVLgyOdji9zqbcB9n9A+ZoO/iywUiIiIia5v9k2aJ5pD+ISP2HdPj8sRARRMhtiTazxV/vnExcms68KsP8s2SXGjvHcTxhi6cF6l8Uu++S2Pg6+qI3+4omJVVHO9n16J30Ihbl4Wb/dppEd5o6hpATZt5q98AoETfBQCI8Veunex0o4PDLT3HqW/QiB05dVi/MEjx+VVhPi4AwDlOREREZDNm42v2ifAdKdEscqikGd0DBqxLmrvtdOO5LCEA918ag3cya/BWRtWMr3e4YrgNa6kNDGV30zngkbXzcaSqHR/kzK49ClJKvPF1FRaGuCN5nofZr582Mrsps7LV7Ncu1dvOhrpR/u46+Ls5osDCCaeP8+vRNWBQvJ0OGG6pA8A5TkRERGQzntpdhIe25CgdhlUw4UQ0i3yUVw8PJwdcYKZNXrPJA6vjcMl8P/xmewGOVM1sbk9GeQu0GhUWWSAJMh3Xpc7Donke+MPHx9Bjhfk81pJZ2Yaixi7ccl64RbaczQ90g6ujxiJznEr13fBwcoCvq9bs156JpBAPi1c4bTlcjXAfZ5uoAAzxcoJaJVDVygonIiIiUl5X/xA2fVEBR83cSMXMjV8l0RwwYDDik2ONWJMQAAe2051BrRJ47sYUBHk44QdvZEHf1T/ta2WUt2JxqCd0DmozRjh9KpXAr69MRGPnAF7cf0LpcMzm3SM1cNGqsdFCc4DUKoGUME9kVpg/4VSi70aMv6tFEmUzkRjigRNN3egdtExisqK5B9+Ut+KG9FCb+LU7qFUI9tSxpY6IiIhsws7cevQNGW2iEtwa+K6UaJb4srQFXf0GrGc73YQ8nB3w0m1p6Ogbwn1vZmPIaJryNboHDMiv67SJ6o2x0sK9cPXiYLz8eRmqZ0E1h9EksaegESvj/eHiqLHYfdLCvVDU2IWu/iGzXveEvhuxNtRONyopxAMmCRyrt8zg8K1Z1VAJ4FozbhScqXBvF1TOgr8TREREZP+2HK5GrL8rUkI9lQ7FKphwIpolPsyrh5tOgwtjfJUOxaYtCHLHH69dhIyKVvzuw2NTPv9IZRuMJomlNpZwAoCfrVsAtRD4zXb7HyCeVdmGlp5BXJ4YaNH7pId7Q0ogu8p8W/7aegbR0jNoU/ObRiWFjAwOrzF/W53BaMK2rBqsiPNDoIfO7NefrjAfZ1RxhhMREREprLixCznV7bhxiW1UglsDE05Es8CgwYQ9BQ24LCEA2jnSDzwTVy0OwV3LI7Hpywq8l10zpXMzyluhVgmkjgyctiWBHjr8eE0c9h3Xm2U4upJ25TdAq1bhkvl+Fr3P4jBPqMTwvChzKW0aHhgebYMJpwB3R/i6OiKv1vwVTp+XNKOxcwA32liJeLi3M9p6h9Bp5io2IiIioqnYcrgaDmqBa1JClA7FavjOlGaFxs5+vJ9dq3QYivmqrAWd/QasX8h2usn62bp4nBfpjZ+/m4eCuslXe2SUt2JhiIdF27xm4s4LI3FRrC8e31mIUn2X0uFMi5QSuwsasDzWF246B4vey9VRg/hAdxwxY8KppHFkQ52f7SWchBBYGOKOfAsMDt9yuBo+LlpcGh9g9mvPRLjP8Ka6Ks5xIiIiIoUMGkx4L7sWqxcEwMfVUelwrIYJJ5oVXj1Ujge35KC40T7fYM/UR7n1cHXU4KI4ttNNloNahb/dkgpPJy2+/39ZKGvqPmcbWv+QETnV7TY3v2kslUrg6euT4eSgxv1v52DAYFQ6pCkrqOtEbXsfLk+0TuIiLdwL2VVtMExjptd4SvXdcHJQI5JXjcQAACAASURBVMTTySzXM7ekEA+U6LvQN2i+r42W7gHsPdaIa1JCbK7KMszbBQA4OJyIiIgUs/dYI1p7BufMsPBRtvWqkGiaRtea7zxap3Ak1jdkNGF3YQNWL/CHo8Y2tqbZC19XR/zjtjToOwdw6TMHkP7EXty56TCe31eCA8VN6Og9tQXnaHU7Bo0mLI2w3YQTAAS46/DUdckorO/E07uLlA5nynYXNEAlgNULrJNwSo/wQs+gEUVmSliXNnUj2t8FKpVt9uYvHB0c3mC+trr3smthMEmbfBEVNlLhVNnKOU5ERESkjC2HqxHkocPFsZYdF2FrbLMnhGgKBgzGkwNwd+bW46HL4ubMEDYA+KasFe29Q1jH7XTTsjjUE3seuhiHSpuRU92Oo9Xt+KxIj9Fip0hfFywO9UTyPA8UNXZBCGCJjSecAOCyhADccl4YXvm8HCvi/LE81n6q33YXNGBJhLfVyo1H53FlVbYhMdhjxtcrbeyyyaHyo0YHh+fXdphlFpmUElsOV2NxqCfiAtxmfD1zc3XUwNdVi8pmVjgRERGR9dW19+FgSRPuWxkDtY1+IGkpTDiR3cuv7cSg0YSL4/xwsLgJx+q7kBDsrnRYVvNhXj1ctGqsiJtb2XJzivB1QYSvC25dFg4A6OwfQl5NB3Kq25FT3Y5Dpc14b2RG2IIgd3g4W3aukLn8ckMCvilvxf97Jwe7HrwY3i5apUM6p7KmbhQ3duNXVyRY7Z7zvJwQ4O6IrMo2fOf8iBldq2fAgLqOfsTaYOJlVJCHDt4uWrPNccqpbkeJvht/+FaSWa5nCWHezqxwIiIiIkVsy6qBlMD1abZXCW5pTDiR3Rsd9vvo+gX4orQZO3Pr5kzCyWAc3k536YIA6BzYTmcu7joHXBjjiwtjhquCpJSo7+jH0ep2RNngIOiJOGnVeO6mxbjmb1/ip//Jxcu3pdl89d/ugkYAwOULA612TyEE0sO9kVkx88HhJ0Y31Nnw18nw4HAPs22qeyezGk4OalyxyHarLMN9XPBNWYvSYRAREdEcYzJJvJNZjQuifU62+c8lnOFEdi+rsg1h3s6YH+iGC6J9sDO3/pzDn2eLjIpWtPQMYkOS9d6cz0VCCAR7OmFdUhDmB9pu5cp4EoM98Mja+fiksBFvZVQpHc457S5oQFKIh9UHbqeGe6G2vQ8NHf0zuk6pfmRDnb/tJpwAICnEHSWNXegfmtng8N5BA3Ycrcf6pCCLbxSciTBvZ9R39tvlEH0iIiKyX1+VtaCmrQ832uCcS2tgwonsmpQSWVVtSAsfnkOyISkIVa29yDfTJ/e27qO8ejg5qLEizl/pUMiG3XlhJC6K9cXjOwtRqrfdTY4NHf3IqW7HWitWN41KD//vHKeZKNF3Q6MSCLfxT7CSQjxgMEkcb5jZ18NHeQ3oHjDY/IuocB9nSAlUt/YpHQoRERHNIVsOV8Ndp8HliXOzQIAJJ7JrNW19aOoaQOrIm8W1CwOhUQnszJ392+qMJold+Y24NN4fTlq209HEVCqBZ65PhrNWg/vfzrHZKo89hQ0AgMsTrbOdbqyEYHfoHFTIrGyd0XVK9d2I9HWBg9q2/3sdHY4+0zlO7xyuRqSvC5ZEzHz4uCWNJgCrOMeJiIiIrKSjdwi7ChpwdUrInB1/YtuviInOYbQaIW1k05KnsxbLY33nRFvd12UtaO4ewAYbnptCtsPfXYc/XrsIhfWdeHp3kdLhjGt3QQOi/FwQ42/9tkUHtQrJ8zxPzoSbrhP6bptvpwOGB6V7OjvMKOFU1tSNjIpWXJ8+z+Zng4V5uwAAKlu4qY6IiIis4/2cWgwaTLgh3bYrwS2JCSeya1mVbXDRqk+Zq7MhKQi17X3IqW5XMDLL255TB1dHDS6NZzsdTc5lCQG4dVkYXvm8HJ+XNCkdzinaegbxdVkr1ipYbpwW7oWCuk70DU6vAmzAYERFS49dJJyEEEgK8UDeDBJOW7NqoFYJXJc6z4yRWYavqxbOWjUTTkRERGQ1Ww5XIzHYHQtDPJQORTFMOJFdy6psQ0qYF9Sq/366viYxEFq1Cjtz6xWMzLIGDEZ8nF+PNQncTkdT8+j6BMT4u+LH7xxFa8+g0uGctO+4HkaTVLS/PT3CCwaTnHayuqK5FyZp+wPDRyUGe6C4sWtaLZYGown/yarBJXF+8HfXWSA68xJCIMzbGVWtTDgRERGR5eXXdqCwvtPm51xaGhNOZLe6Bww43tB5cn7TKA8nB1wc54uP8uphMs3OtrqDxc3o7DfgysXBSodCdsZJq8bzN6WgvXcIj2w7CqON/B3ZXdCAIA8dFs1T7hOg1JHW3CNV02urs5cNdaOSQjwwZJQobuie8rkHipug7xrADXb0IircxxmVLZzhRERERJa35XA1tBoVrkoOUToURTHhRHbraHU7TBInN9SNtWFREOo7+qf9xtHWbT9aBy9nByyP8VU6FLJDCcHu+MX6eOw9psfP381VPDHbO2jAweImXJ4YqOgsIE9nLWL8XZFZMb3B4aX6bggBRPvZT8IJwLTa6rYcroavq9auWnrDfVxQ3dan+Nc7ERERzW79Q0a8n1OLdQsD4eHsoHQ4imLCiexWVmUbhAAWh3qe8dzqBQHQamZnW13voAF7CxuxPinI5jdhke26/cJI3L8qFu9k1uCXH+QrOmT/QFETBgwmrFFgO93p0sO9cKSqfVpJiRJ9F+Z5OdlNm2uotxPcdZopJ5wqmnvw6XE9vpU6z67+DQrzdsagwYSGzn6lQyEiIqJZbFd+A7r6DbhxDg8LH2U/rxSJTpNV2YY4fzd4OJ2ZNXbTOeCSOD98lFdvMy1D5vJJYSP6hozYmMx2OpqZh1bH4geXROOtb6rw2x2FiiWddhU0wMvZAUsjvBW5/1ip4V7o6BvCiaapt5mV6rsRq8CGvekSQmBhiAcK6qaWcHry4+PQalS4+6JIC0VmGeE+zgC4qY6IiIgsa8vhaoR6O2FZlI/SoSiOCSeySyaTxJGqtjPmN411RXIw9F0DODzN9hhbteNoHYI8dFhiA2/Oyb4JIfDI5fNx9/JIbPqyAr/78JjVk06DBhM+Pa7H6gUB0NhAtUz6yL8pmZVTa8c1miTKmu1jQ91YSSEeOF7fhUGDaVLHZ5S3YldBA+5dEQ1/N9sfFj5WuLcLAKCqlXOciIiIyDIqW3rwVVkLbkgLhUql3KgIW6H8q3uiaSht6kZXv2Hc+U2jVsX7Q+egwoezqK2uvXcQB4qbcMWiIP4DRmYhhMCjGxbgu+eH45+HyvHU7iKrJp2+KmtBV79B0e10Y0X6usDbRYusKSacatp6MWgwIcZO5jeNWhjigUGjCcWNXec81mSS+N2HhQh01+F7F0VZITrzCvbUQaMSrHAiIiIii9maWQOVAK5Ln6d0KDaBCSeyS6NvBs+WcHJx1ODSeH98nF8Pg3Fyn97bul35DRgySmyc49sOyLyEEPjNxkR8+7wwvLj/BP6yt8Rq996V3wBnrRrLY21jAL4QAqlhXlNOOJU0jmyoC7CvhNPo4PDJtNVtP1qHozUd+Mnl8+GktY85VWNp1CqEeDmhspUJJyIiIjI/o0liW1YNLo7zQ5CHk9Lh2AQmnMguZVW2wdtFi4iRmRwTuWJRMJq7B5FRPjva6rYfrUOkrwsWhrgrHQrNMkIIPHHVQlyfNg/P7SvBXz+1fNLJaJL4pLARK+f729Sg7fQIL5Q396Cle2DS55SOzHyyt5a6MG9nuDmee3B4/5ART+06joUh7rgmxX4T3mHezqhihRMRERFZwMHiJjR09nNY+BhMOJFdOlLZhtQwr3OuUF853x/OWjV2zIK2On1nP74qa8GVycGKro6n2UulEnjy2kX4VkoInt5TjJcOnLDo/bKr2tDcPYDLF9pGO92o0crJqVQ5leq74e/mCHedfa2+VakEEkPckVfbedbjXj1UjrqOfjy6PsGu23nDfZxR2cIZTkRERGR+mw9XwcdFi1ULlN+8bCsslnASQrwmhNALIfLHPPa4ECJXCJEjhNgjhJhwzZYQwl0IUSuE+OuYx/YLIYpGzs8RQvhbKn6yXa09gyhr7jlrO90oJ60aqxYEYFd+PYbsvK1uZ249pAS305FFqVUCf7o+GVcmB+MPHx/Ha4fKLXavXfkN0KpVWDnfz2L3mI6kEA84qMWUEk4l+m67q24alRTigWP1nRP+G9nUNYC/f1aKyxICcH60fW9bCfd2QWe/Ae29g0qHQkRERLPI/iI9dhc04sYlodBqWNczypK/E5sArD3tsT9JKRdJKRcD2AngV2c5/3EAB8Z5/BYp5eKRb3rzhEr25Mgk5jeNdcWiILT1DuGrEy2WDMvith+tQ0KQu92+qSX7oVYJ/PmGZKxbGIjHdhbi/76qMPs9pJTYXdiAC2J84GZjVUE6BzVSw7yw+XA1cmvaz3m8lBIn9N2ItdO/mwtDPDBoMKFU3z3u88/uLcaAwYSfr4u3cmTmFzbShj2dweFbDlfh1n9+Y+6QiIiIyM41dQ3g4a1HMT/ADfevilU6HJtisYSTlPIggNbTHhtbs+8CYNxVSEKINAABAPZYKj6yX1lVbdCoBBbN85jU8Svi/ODqqMHO3DoLR2Y5VS29yKlux8bFrG4i63BQq/DcTSlYvSAA//tBAXKqz514mYrC+k5Ut/ZhrY1spzvd09cnw02nwS2vfHPOSqfGzgF0DxjsNhm8cGRw+HhznIoaurA5owq3LgtHlJ1t4BtP+GjCaRqDw//9VSUOlTajrYfVUURERDTMZJJ4eOtRdPUb8PzNKTY1l9QWWL3WSwjxOyFENYBbME6FkxBCBeAZAD+Z4BKvj7TT/a84yyAbIcQ9QohMIURmU1OTWWIn25BV2YbEEI9J/2XWOahxWUIAduU3YNBgn211O0aSZVeynY6sSKtR4dkbk6HVqPBBTq1Zr727oBEqAaxOsM0e91BvZ7zz/fPh6+aI2179Bl+XTVwhOVoZFG2nCadIHxe4OmqQP07C6fcfHYOrowYPzJJP68K8hxNOVVOc41TT1ouCuuHPzMqax68EIyIiornntS/KcaC4Cb/csADzA92UDsfmWD3hJKV8VEoZCuBNAPeNc8gPAXwkpawe57lbpJRJAC4a+XbbWe7zspQyXUqZ7udnW/NBaPqGjCYcrW5HWtjk2ulGXbEoCJ39BnxR2myhyCxre04d0sO9EOLJ9ZpkXW46B1wc64eP8xpgMo1blDotewoakB7hDV9XR7Nd09yCPZ2w5Z5lCPZ0wu2vZ+Bg8fgfXpTouwDY34a6USqVQEKw+xkJpwPFTThQ3IT/uTQWXi5ahaIzL2etBn5ujlNuqfuksPHkj080ceg4ERERAfm1HfjjruO4LCEAty4LVzocm6TkNKu3AFw7zuPnA7hPCFEB4GkA3xFCPAkAUsrake+7Rs5fap1QyVYU1nViwGCa9PymUctjfeGm05ysFLInRQ1dKGrsYjsdKWbDokA0dPYju3ryQ7TPpqK5B8cbunC5jbbTjeXvrsPme5YhwscFd/8rE/uONZ5xTKm+Gx5ODvCz4eTZuSwM9kBhfScMI4PDjSaJ3394DGHezvjOBbPrBVS4t/OUW+p2FzQg2s8FWrUKJ5pY4URERDTX9QwYcP/b2fB20eKP1y7iFvEJWDXhJIQYW5O/EcDx04+RUt4ipQyTUkYAeBjAv6WUPxNCaIQQviPXcQBwBYD808+n2W10lkpquOeUznPUqHF5YiA+KWjEgMFoidAsZvvRWqhVAuuTgpQOheaoVQsCoFWr8GFug1mut7tg+DprbLSd7nS+ro7YfM8yxAe54d43srArv/6U50tHNtTZ8wuNpHnu6B8ynazeeSezGkWNXfjZung4ambXLIIwH2dUTaHCqa1nEBnlrVi3MAgRvs4oY4UTERHRnPfbHQUob+nBszcuhvcsqQS3BIslnIQQbwP4CsB8IUSNEOIuAE8KIfKFELkA1gB4YOTYdCHEP89xSUcAu0fOzQFQC+AVS8VPtimrqg0hnk4I8ph6a9kVi4LQNWDAwWL7aauTUmLH0XpcEO1j061HNLu56xxwcZwvPs6vN0tb3Yd59UgMdkfoyDwde+DprMUbd5+HpBAP/Oit7FNmWpXquxFj5wO1k8YMDu8eMOCZPcVID/fCuoW2X4U2VeHeLmjo7Ef/0OQ+fNh3XA+TBNYkBiDK15UVTkRERHPcztw6vJNZgx+siMYF0b5Kh2PTLLml7mYpZZCU0kFKOU9K+aqU8lop5UIp5SIp5ZVjWuQypZR3j3ONTVLK+0Z+3COlTBs5N1FK+YCU0r5KVWjGjlS2IXWK7XSjLozxhaezg11tq8upbkdVay82clg4KWx9UhDqO/qRPcNtdYV1ncit6cC1qfPMFJn1uOsc8O+7zkN6uBce3JKDdzKr0dYziJaeQcQG2HfCKdLXFc5aNfJrO/CP/SfQ3D2ARzcssOuqrYmMbqqrnmRb3Z6CBgR56JAU4oFofxdUtfRiyGifCyiIiACgrKkbRjPOZSQ63eGKVlz5wiF8VqRXOhSzq27txc/fzcPiUE88dFmc0uHYvHMmnIQQziMb4V4Z+XmsEOIKy4dGdKq69j7Ud/QjLWxq7XSjHNQqrE0MxN7CRvQN2keucvvROmjVKlw+C6sMyL6sThhuq/sor/7cB5/F5sNV0GpU+FZqiJkisy5XRw023bEUy2N88ci2XPz+o2MA7HdD3Si1SiAhyB0Hi5vwyudl2JgcjJQpLmewF2EjCafJDA7vGzTiYEkT1iQEQAiBaD9XGEwSVVOcAUVEZCsyK1qx6s8H8NLBE0qHQrPYSwfKkFfbgTteP4xH38tD76BB6ZDMwmA04cEtOZASeP6mFDiolRyJbR8m8zv0OoABDA/zBoAaAE9YLCKiCYzOb0oL9572Na5aHIKeQSNW/Okz/HHXcZQ32+4sDqNJYmduPS6Z7wd3nYPS4dAc565zwEWxvvg4rx5STu9T0b5BI97LrsW6hYHwdLbfXncnrRqvfCcdq+L9sTWrBgDsvqUOABaGeKCsuQcSwCNr5ysdjsWEj7RyTmZw+MGSJvQPmbBmZMB91Mif8wk92+qIyP6YTBKP7SyElMArB8tmTRKAbEtT1wA+K9Lj9gsicM/FUXgrowobnj+E7CrzLJ9R0vOfliKrsg1PXL3w5AdYdHaTSThFSymfAjAEAFLKPgCzr8aebF5WZRucHNSID3Kb9jXOj/bB67cvwaJ5HnjpwAmsfHo/bnjpK/wnq8bmqp6+KWtBU9cAt9ORzViXFIS6jn7kTLOt7qO8enT1G3DTkjAzR2Z9Ogc1Xrw1DRuSghDg7ogQz6nPlbM1o3Oc7loeiXles/dFlLeLFq6OGlS1nPsDhz0FjfBwcsDSyOEPOqL8XADg5HB1IiJ78l52LXJrOvDd88PR1juEt76pUjokmoU+yKmF0SRxy3lh+MX6BXj7e8swaDDhun98hT/vKbLbtvSM8lb89dMSfCslBFen2GelvhI0kzhmUAjhBEACgBAiGsMVT0RWdaSqDcmhHjMuXVwZ74+V8f5o7OzHtqwabM2sxo+3HsVvthfgysXBuDE9FIvmeSg+u2T70Tq4aNVYFW8fm7xo9rssIQAOaoGP8uqn1W61+XAVIn1dsCxq+lWKtkSrUeGv307BoNEElcr+P4dZkxiAB1pj8b2Lo5QOxaKEEAjzdj5nhZPBaMK+441YFe9/8v8dd50D/NwcUcbB4URkZ3oGDPjjruNIDvXEr69MRGlTN146WIZbl4VD5zC7tpGScqSU2JpZg+RQT8QGDBcJLIvywccPXoTfbi/E85+W4rOiJjx742LE2NE4go7eITy4ORuh3s547OqFSodjVybzzv3XAHYBCBVCvAlgH4BHLBoV0Wl6Bw0oqOtE2jQHho8nwF2HH62MwWcPX4LN9yzDZQkBePdIDa762xdY99zneO1Q+aS3GJnboMGEj/MbcFlCAJy0fBFAtsHDyQHLY3zxUV7DlNvqSvXdOFzRhhuXhCqezDUnIQQcNbPj76ibzgEPXRYHV8fJfBZl38J9nFF1jhlOGRWtaO8dwprEU5P+0X4u3FRHRHbnHwdOQN81gF9dkQCVSuC+lbFo6hrAO5nVSodGs0h+bSeKGrtwXdqpy2HcdQ545oZk/OPWVNS09WLD859j0xflZtl+bGlSSvzs3Vzouwbw/E0pc+J1kjmdM+EkpfwEwLcA3A7gbQDpUsr9lg2L6FS5NR0wmqRZE06jhBBYFuWDP9+4GBmPrsYTVy+EVqPCYzsL8dSuIrPfbzIOFjeho2+I7XRkc9YnBaG2vQ9HazqmdN6Ww1XQqIRdbqej2SfMxxnVbb1n3dK0p6ARjhoVLo7zO+XxaD9XnGjqmfYsMyIia6tp68XLB8tw1eLgk6+ll0V5Y0mEF/6x/wQGDbbV4tQ9YMANL32FrMpWpUOhKdqWVQ2tRoWNi8Z/D7N2YRB2P3QxLoj2wW92FOI7r2WgvqPPylFOzZcnWvBxfgMeuiwOyaHTW141l01mS10qgHAA9QDqAIQJIaKFEEztkdWMDgxPCbXs1iR3nQNuXRaO7fctx9rEQOzIrVNkbez2o3XwdHbA8hi/cx9MZEVrEgJPttVN1oDBiP8cqcXqBQHwc3O0YHREkxPu7YIho5zwRa6UEp8UNuKiWF84a099uRPl54qOviG09gxaI1Qiohl78uPjEAL46dr4k48JIXDfpbGo6+jHu0dqFIzuTJ8d1yOjvBXPflKidCg0BQMGIz44Woc1CQHwcJ544ZG/mw6v3b4Ev78mCVmVbbj82YMn3+vZolcPlcPHRYu7lkcqHYpdmkzS6O8AUgHkYnhY+MKRH/sIIe6VUu6xYHxEAIAjlW2I9nOBl4v1NlttWBSEXQUNyKxoxXlRPjO+XkljF149VA4hAI1KBbVKQKMSUKtHvlepRr4X2HusEVctDoFWw1WbZFs8nB1wYYwvPsytx8/XxU+qPe6Twka09gzipqWhVoiQ6NzCRzbLVLX0jjsgvaCuE7XtfXhgdewZz0WPGRzu48oEKhHZtsyKVuzMrcf9q2IRfNqCi4tjfbFongf+vv8ErkubB42NrHjfe6wRAHCotBnHGzoRH+iucEQ0GfuO6dHeO4Tr08/9ek8IgW+fF4YLon3w3dcz8MM3s7Djf5bD301nhUgnr6ypG58e1+P+VbGcdTZNk/lXpQJAipQyXUqZBiAFQD6A1QCesmBsRACGP2nOqmqzSDvd2Vwa7w9HjWpKlRxn89y+EvznSA32HdPjw7x6vHukBm9nVGHTFxV46UAZnt9Xgj9/Uow/7S7CgMGEG9LZekS2abStLq92cm11mzOqEeLphItiWbFHtiHMezjJNNHg8D0FDVAJYFW8/xnPRfsNDznl4HAi86ho7sHDW4/a3Lbg2cBkkvjtjkIEuutw74ozF0IIIXDfyhhUtfZiR26dAhGeachowmfH9cNzTB3UeO1QudIh0SRtzaxGoLsOy2N8J31OhK8LXrotDR19Q7jvrWyb22D3+hcV0KpVuG1ZuNKh2K3JVDjFSykLRn8ipSwUQqRIKctm0+BXsl1lzT1o7x2yesLJxVGDlfP98XF+A359ZeKMtlB19g/hk8JG3Lw0DI9dNf5mAyklTBIwmIb/oZ0tg4hp9lmTEIBfqAQ+zKvHonln72WvaunFodJmPLQ6DupZsMmNZodgTyc4qAUqJxgcvqewEekR3uNWMIV4OsFRo+LgcCIz+eOu4/g4vwEbFgVh5fwzk7w0fe9m1yKvtgPP3ph8RnvwqNULAhAf6Ia/flqKq5JDFN+6eriiFZ39BlyXNg8B7o54J7MGj6yNhy8rSm2avrMfB4qbcO+K6Cm/3osPdMeT31qEB7fk4I8fH8cvr0iwUJRT0947iG1ZNdi4OJgjIWZgMhVORUKIF4UQK0a+/R1AsRDCEcCQheMjOtnTa+2EEwCsXxQEfdcAMmfYV7wrrwEDBhOuSQmZ8BghhtvpHDVqJpvIpnk6a3FBjC8+yqs/5+DkLZlVUAnghiWs2CPboVYJzPNyRlVrzxnPVbb04HhDFy5PDBz3XJVKINLXBWVNZ55LRFNzrL4TH+c3AACyq9oVjmZ26Rkw4Kldx5Ec6omrkid+/alSCdx3aQxONPWc/LNQ0t5CPbQaFS6K9cUdF0Zi0GDCG19XKh0WncO72bUwSZyxnW6yrk4Jwe0XROCfh8qx00aq7TYfrkbfkBF3XsjZTTMxmYTT7QBKATwI4CEAZSOPDQFYaanAiEZlV7XBw8kBUb6uVr/3KjO11b2bXYNIXxcs5mYDmiU2JAWiurUP+bWdEx5jMJqwNbMGl8z3R5CH04THESkhzNt53AqnPQXDs0PWJARMeO7wpjpWOBHN1PP7SuDmqEGEjzOyq2x3aLA9enH/Cei7BvDrKxPOWbW0bmEQovxc8MKnJYpu4JRS4pNjDVgeM7ywIdrPFZfG++ONryvRP8SWS1slpcS2rBqkhXshym/679d+sX4B0sK98Mi2XJQ0dpkxwqkbMprwry8rcH6UDxKCOUNsJs6ZcJJS9kkpn5FSXiOlvFpK+bSUsldKaZJS8tUWWVxWZRtSwzwVKfF1cdTgkvl++Di/HqZpbqurbe/D12WtuCYlZFIDlonswZqEQKhH2uom8ulxPfRdA7hpCYeFk+0J93FGVUvvGW+u9hQ2YEGQO0K9zxwmPirazwVVrb0YMPANENF0jVY33bE8EhfE+CKnun3ar7XoVDVtvXj58zJctTgYqWHn7hBQqwR+dEkMjjd0Yd8xvRUiHF+JvhvVrX1YveC/Cf+7lkeiuXsQ24/aRtULnSmnuh2l+u5pVzeN0mpU+PstqXDWavD9N7LQ1a9cM9Wu/AbUd/RzM50ZnDPhJISIFUJsE0IUCiHKRr9ZIziijr4hFDd2K9JON2p9UhAaOweQNc1PxCsTwQAAIABJREFU3t7PrgUAXL144nJmInvj5aLFBdE+Z22r23y4Gv5ujrh0nMHLREoL83ZG14ABbb3/fUHb3D3cQn226iYAiPZ3hUkOzygjoul5bu9wddNdF0YiJdQTXf0GlDXzs+zTvZ9diztez8DuggYYJ5mQe/Lj41AJ4Kdr4yd9n42LgxHq7aRoldMnhcMVpqsW/Pd1wwXRPogPdMNrh8oVrb6iiW3LqoHOQYUNi4JmfK0Adx3++u0UVLb04idbcxX7M3/1UDkifJz5GtYMJtNS9zqAFwEYMNxC928A/2fJoIhGjZZXpyqYcFq1IABajQof5k69rU5Kifeya5Ee7oUwn4k/LSeyRxuSglDV2ouCujPb6uo7+rC/SI/r021nzTLRWOE+LgCGZzaN2nesEVJiwvlNo0ZbvNlWRzQ9hXWd2FUwXN3k4eyAlJEqnCOc43SG174ox2dFTfj+/2Vh5dP78dqhcnQPGCY8/nBFK3bm1uP7F0cj2HPy7ewOahV+sCIGR2s68HlJszlCn7K9xxqRPM8DAe66k48JIXDn8kgcb+jClydaFImLJtY/ZMT2o3VYmxgId52DWa65LMoHP18Xj10FDXj5oPXrXLIq25BT3Y47LoxUfIj+bDCZdwFOUsp9AISUslJK+RsAl1o2LKJhRyrboFYJJJ9jE5YluTpqcEnc9Nrq8ms7UarvxjWprG6i2WdN4sRtdVsza2CSwI3pYQpERnRu4SMfAlS1/rdKaXdBI+Z5OWFBkNtZz43yG05WneDgcKJpeX5fCdx0mpPtKlG+LnDXaTg4/DRtPYPIq+3A/ZfG4O+3pMLPzRGP7SzE+b/fh8d3FqK69dQqS5NJ4rEdhQh01+H7K6KmfL9r00IQ5KHDXz8tNdcvYdL0Xf3IqW7HqgVnVphuTA6Gr6sWrx4qt3pcdHZ7ChvR1W/A9enmHZ9w1/JIbFgUhD/uOo4vS62bAH3ti3K46zQzbhGkYZNJOPULIVQASoQQ9wkhrgHA2jL6/+zdd1xb97n48c9XEmKD2HsabLwYHuAZx45jO0kz2rRp08xmdqRNezvS/jrubdPe2962aZvupBlN0oy2SZrcDNtx7DTGC2ODbbDBYANmg9gbhM7vD8AhDsYMCUnwvF8vXq2FdM5jxxY6z3nGjMitaCEl3Bdv97FXuc6Ua1KH2uqOTrKt7pW8Kox6HR9bGmmnyIRwnMDhtrq3L2irs1o1XjpcydqkIKnsE04rdnhG08jg8M4+C9mlZrYsCr/kvD1vdwPhfh5S4STEFIxUN921NgF/z6GKCJ1OkR4bIIPDL7D/TBOaBhsWhHD10ghe/sIa/vWltWxMCeWv+8vZ8PM9fOG5Ixwub0bTNF7Jq+ZEdRsPXbUAL+PkPzu7G/Tcf1kiOeXNHDo7s9VEe4oa0DQ+NL9phIebnltXxbG7qEHed53MP3IriTJ5sjoxyKbHVUrxvzemkhjiw5dfyKOmtcemx7+Y6tYethfUcXNmrMOvP2eLiSScvgp4AV8BlgO3ArfbMyghYGg7QN65VlbGBzo6lA/a6iaxrc4yaOX/jtWwKSUUfy/blJgK4WyuWhJBeVM3J2s/aKvbW2qmurWHz6yU6ibhvDzc9IT5uZ9POL1/upF+i5Wti8ef3zRiXqi3VDgJMQUj1U13XTCMNyPGxOn6jnHbxeaa7NJGfN0NH6r0T48x8ejNGex9aCP3b5jH/jNNfOpPB7j+9/v46dtFpMeYuD5t6pX1n8mMJdjHyG9nuMrpnZMNRJkuXmF666o4jAYdT+2TKidnUdvWQ3apmRuXRdml9czb3cCfbl1On8XKF/92dEYWdTyzvxyA29fE2/1cc8VEEk7xmqZ1appWpWna5zRNuxGQqwhhd6dq2+kZGGRFvOPmN43wcTewYX4Ib5+om3Bb3d4SM+bOfmmnE7Pa1sVh6HWKt0YlY1/MOUeAlxtbJnjhLoSjxAV6c655KGm0s7COQG/jhJdUzAvx4WxjpwyxFWISCmvaPlLdNCIj1oRVg+NV0lYHQ3NA95aYWTUvaMxZiBH+njy0LYUD39nEj29YQmefhZbufn5w7aJpXfx7uOm5d30i2aXmSVf2T1VP/yDZpY1sXhh60QrTYB93bkiP5OUj1bR2989IXGJ8rxytRtPgRju2niWF+vCLT6WSX9nKw2+ctNt5ALr6LDyfc45tS8KJmsT8MzG+iSScvjPBx4SwqcPlQz/kVsQ5vsIJhgYk17X3klc5sR++r+RVY/JyY+MC6UAVs1eQjzurEgN560QdmqbR2NHHOyfruXFZNO4GvaPDE2JcsUFeVDR102+x8m5RA1ekhE54yH1isDcdvRYaO/vsHKUQs8fFqptgqHIHkDlOwyqauqlq6WF9cvC4z/MyGrh1VRy7vraBQ//vCpbFTv9G7S2r4jB5ufH7Gapy2ldqpnfAyuZLbAi9a10CPQODPJ9zbkbiEhenaRr/PFJFZkLg+SUc9rJtSQT3b0jkuYPneC2/2m7n+eeRKjp6LednywnbuGhjolLqKuBqIEop9eiob/kxtLFOCLvKLW8mJtCTcH+PSz95BlyxMHR4W10dyy+RBOvoHWBnYR2fWhGN0SAbusTsdvXSCL77agGnajt4v6QRi1XjM5m2HR4phD3EBXrR0NHHe8UNdPRa2HKJ7XSjzQsd2lR3trGLUF/n+Dllb5qm0do9QHlTF+eauyk3d1PR1EVFczcVTd18LDWC/7pusaPDFE6qsKaNHYX1PHhF8keqmwBMXkYSQ7wl4TRs7/Cg5HVJ4yecRuh0imAfd5uc28fdwN1rE/jlO6cpqG5jSZS/TY57MbtO1ePjbiArYfw5QCnhfqxLCuaZ/RXcuz4RN9mC6zBHKlooM3fxxcvnzcj5vrllAftKzfx2dynXpUVectbiZFmtGk/tKyM9xmSTpK34wHj/SmuAI0Dv8P+OfL0ObLV/aGIu0zSNw+UtTlPdBODr4cZlyRPbVvd2QR19Fisfz5DtBmL227o4HJ2CN0/U8NLhSlbGB5AUOv6WLyGcwchQ+79kl+Hppr9kJcFoiSFDCafZPMBW0zSeyC7jgeePcu1vs0n74U4yHn6Hj/9hPw++mM+vdp3mwNkmDDpFdIAnzxwo5+ws/vMQ0zNeddOIjJgA8itbpFUVyC5pJMrkSUKwfatHLub2NfH4uht4enimjb1YrRq7TjWwYUHIhG7S3r0ugbr23g+18ouZ988jVXgZ9Vy9NGJGzmfQ67h9VTylDZ3kVti+1XN3UQPlTd1S3WQHF61w0jTtGHBMKfWcpmlS0SRmVEVTN+bOPqeY3zTaNanh7DpVT15l67hzPl49Wk18kBfLYk0XfY4Qs0WwjzurEoN4al853f2DPLAxydEhCTEhI20AOWXNbFscjofbxNtAI/w88HTTc6Zh9g4Or2rp4eE3hlasJ4f5kB4TRVyQF3FB3sQHeRET6HX+z8zc2ce6n+3md7tLeeTT6Q6OXDibkeqmr24eu7ppREasiZePVlHV0kNM4NzdcmoZtLL/TBNXL4mweSXHRPl7urF+fjD7S81omma3OI5VtWLu7OPKMbbTjWXD/BASQ7x5IrvMLpUu4tK6+y28cbyWq5dGzOgmt4+lRfCjN07yQs45my+VenJfGZH+Hly1ZOKVzmJiLppGVkqdUEodB44qpY5f+DWDMYo5aCRz7Qwb6ka7YmEYRr1u3LsqNa09HCxr4oaMKPkhKOaMq5dG0N0/iK+HYcbudgkxXXGjLmgnO+Rep1Mkhnhz1jx7K3qOV7UB8Njty3n27iwevmEJ96xP5MpFYSSH+X4oQRfs487tq+P5V361VDmJjxipbvrc2vGrBzKGb9TN1LBqZ3W8uo2OXgvrJlF1aQ+Z8YHUtPVS1WK/lfS7TtWj1ykuXxAyoefrdIq71iZwvKrNLpUu4tJ2FNbR2Wfhk3YcFj4WL6OB69MjefN4LW3dAzY77smadvafaeL2NfETnuMoJm68P9GPAdeO8yWE3eSWN+Pv6UbScMuCs/DzcOOy+cG8feLibXX/yh/a2PDxDNlOJ+aObUvCMegUn8iIwtMow8KFazB5ueHrYUCvU2xKmfyCh8QQn1ndUneiug03vWJB+MRaZO+7LBGjQcfvZnidunBuI9VNd6/76Ga6Cy0I88XLqJ/zc5yyS8woBWsnOL/JXrISh2YqHSprtts5dp1sYGV8ACYv44Rf84llUfh7uvHE3jK7xSUu7h+5VcQGepHpgMKAmzNj6bNYeTWvymbHfHLfUFv9zStjbXZM8YGLJpw0TasY+WJojtPS4a+e4ceEsJvD5c2siAuY1lpXe7l6aQQ1bb3kj7G2V9M0Xj1azfK4ALtvbBDCmQT7uPP6A+t46KoUR4cixIQppVgY4cf65OBJXeyMmBfiTVVLD70Dg3aIzvEKa9qYH+Y74Y2TUuUkxvKbXROrboKhOS2p0f7kzfEKp+wSM4sj/Qj0nvz7ki0tCPPF39ONnLImuxz/XFM3xfUdbJ5gO90IL6OBz2bFsvNkHZXN3XaJTYytqqWb/WeauHFZtEOu05ZE+bM0yp8XD1faZNZbY0cfr+fX8KkV0fh7jZ8QF1NzyZoxpdRNQA7wKeAm4JBS6pP2DkzMXU2dfZxp7GK5k81vGrF50XBb3fGPttUV1rRT0tAp1U1iTloU6YeXceZ6+YWwhcduW86jN2dM6bWJIT5oGpQ3zb45TpqmcaK6jaWT3E4lVU5itILqNnaenFh104iM2AAKa9pnbSL3Ujr7LBw918K6pIm1mNmTTqdYGR9otwqnXafqAbhy0eQSTgB3rI5HpxRP7Su3cVRiPK8crQbgxuWOu9a5OTOWoroO8iqnXwn53MEK+get3LkmfvqBiTFNpEnxu8BKTdPu0DTtdiAT+L59wxJz2REnnd80ws/DjfXJwbxdUPeRzPorR6sx6nV8LFVm2AghhCsweRnx85jaXc15IUOVrLNxcHhVSw+t3QOTXocuVU5itEffLcFvgtVNIzJiTFisGoU1bXaMzHkdOtuExapNamumPa1KDKSiqZu6tl6bH3vXqXqSQ32m1BUQ7u/BNakR/D23ko5e283zEeN743gNmQmBRAc4bqj/demReBn1vJhzblrH6R0Y5G+HKrgiJfT85llhexNJOOk0TWsY9eumCb4OpdSTSqkGpVTBqMceHh48nq+U2qmUihzn9X5KqWql1O9GPbZ8eKB5qVLqUSVTmWedIxUtGPW6Sd9VnUlXL42gurWH/FGZdcugldeP1bAxJWRKrRlCCCFcS2Lw0AfU2ZhYKageutifys9iqXISMLq6KXHC1U0A6cODw+fqHKe9JWbcDbpxtyHPpKyEkTlOtm2ra+se4FBZM5unUN004u51CXT2WXjpcKUNIxMXc6axk9P1nQ7f5ObjbuC6tEj+71jttJKN/zhShbmzn7vXTTwhLiZvIomjt5VSO5RSdyql7gTeBN6a4PGfBrZd8NjPNU1L1TQtHXgD+ME4r38Y+PcFj/0RuA9IHv668PjCxR0ubyY12n9S66ln2uZFYbjp1Ye21WWXmjF39vHxjJnd2CCEEMIxPI16okyes3Jw+InqNgy6iQ8MH02qnATAU/vK8XU3cOfa+Em9LtTXg+gAzzmbcMouNZOZEOg0n4MXRvji426weVvde6cbGLRqk57fNFpqtIm1SUH8fk+pTbeWibHtKKwDYOtixyacYKitrmdgkNfya6b0+paufn65s5ishEBWzwuycXRitIkknOqA5xgaGJ4KPKZp2kMTObimae8DzRc81j7ql97AmNO+lFLLgTBg56jHIgA/TdMOaEO9TM8AN0wkFuEaegcGOVHdxgonbacb4e/pxvrkEN468UFb3at51fh7urExxfE990IIIWZGYog3ZxpnX0vdieo2ksN8p3zRO1Ll9FupcpqTBgatvHOyji2LwydV3TQiIzZgTg4Or23robSh02na6WBokPuK+ABybJxw2nWqgWAfI+kxpmkd57tXL6KtZ4Bfv3vaRpGJi9lRUEdatD+RJk9Hh0JqtD8LI/x4YYptdT/fWUxHr4UfXb8EaZiyr4kknHyBbzM0u+kMsH+6J1VK/UQpVQncwhgVTkopHfBL4JsXfCsKGL0DsWr4MTFLHKtsZWBQY4WTlBGPZ6St7lhVG519FnYU1nFNasSEt/kIIYRwffNCfDjb2GmTbTnOQtM0CqrbWBrlN+VjjFQ5vZZfPSsrwMT4Dp5tor3XwrYptt5kxJioaeu1y9wgZ5ZdYgZgfbJz3bzMTAiktKETc2efTY7Xb7HyXnEDm1JC0U9z09miSD9uzozlmQMVlNR32CQ+8VEj1zxbHdxON0IpxWczYyisaedE1eTmvZ2oauOFnHPcsTp+SlW8YnIumXDSNO2HmqYtBr4ERAL/Vkrtms5JNU37rqZpMcDfgAfGeMoXgbc0TbuwIXesd6SLVUjdp5TKVUrlNjY2TidcMYNyhweGO0vf+niuHNVWt72gjt4BK5+Q7XRCCDGnzAvxpqt/kPp221yIOYPq1h5augemPUtRZjnNXdsL6vAy6qdcqZMxPMcpv3JuVTlll5oJ9nEnxckugkfmONmqyulweTMdvZZptdON9vUtC/A26vnRGydnVfLfmewcbqfb5gTtdCOuz4jCw03H85OocrJaNb7/WgFB3u589cpkO0YnRkxo+PewBoba65qAUBud/3ngxjEeXw08oJQqB34B3K6U+ilDFU2jB+REA2M2bmqa9pimaSs0TVsREuJcdwnExeWWN5Mc6kOAt/MP3fb3dGNdUjBvHq/llaNVxAZ6uUSiTAghhO3MC5l9g8MLqoemH0x2Q92FpMppbrJaNXaerOfyBSFTbslcFOmHUa+bU3OcrFaN7BIz65KCnK7FZ2mUP55uepslnN45WY+7Qcc6G7UOBnob+dqV89lbYmbXqYZLv0BM2vaCOuaH+TjVNjc/Dzc+lhrJ6/nVdPVZJvSafx6pIr+yle9clTLlDbVici6ZcFJKfUEp9R7wLhAM3KtpWupUT6iUGp1KvA4ouvA5mqbdomlarKZp8cA3gGc0Tfu2pmm1QIdSatXwdrrbgdemGotwLlarRm5Fi9PPbxptpK1u/5kmbsiIcroPCEIIIexr5MP3bEqoFFS3odcpFkZMvaVuxH2XJeJu0EuV0xySV9lCY0fftAYLuxv0LI7ym1MJp1N17TR19bPOydrpAIwGHcviTBw8O/1NdZqmsetUPeuSgvEyGmwQ3ZBbV8WRHOrDj988SZ9l0GbHFWDu7ONwebNTVTeNuDkzhq7+Qf7v2KWHh7d1D/Cz7UWsiAvgE8ukK2WmTKTCKQ74qqZpizVN+09N005O9OBKqReAA8ACpVSVUupu4KdKqQKl1HFgC/Dg8HNXKKX+MoHDfgH4C1DK0Eyptycaj3Bupxs66Oi1uMT8phFbFoXjph9KMn1c2umEEGLOCfNzx9uon1WDw09Ut5Ec6mOTLVlDVU5xUuU0h2wvqMOo17EpZXoNERkxARyvbmVg0GqjyJzbyPymdUnOMzB8tKyEIIrrO2jt7p/WcYrrO6hq6WHzItu0041w0+v4wbWLqGjq5snscpsee67bdbIeq4bTzG8abVlsAPPDfCY0PPyRd4pp6e7nh9cvliKBGTSRGU7f1jQtfyoH1zTtZk3TIjRNc9M0LVrTtCc0TbtR07Qlmqalapp2raZp1cPPzdU07Z4xjvG0pmkPjPp17vDr52ma9oAmjbqzxuHyoT79lS5U4eTv5caWReGsTQoiIdjb0eEIIYSYYUopEkN8Zk0y5YOB4dNrpxvtXqlymjM0TWNHYT1rkoLwnWa7Skasid4BK8V1c2MQdHapmeRQH8L9PRwdypiyEgLRtA8+r0/VrpP1AFwxzYTkWNYnh7B5YRi/211CQ/vcGjhvT9sL64gJ9GSRDapebU0pxc2ZsRyraqOw5uLDw0/WtPPswQpuXRXH4kjb/XwTlzaZGU5C2FVueTOhvu7EBDp+1eZkPHpzBn/9XKajwxBCCOEg80K8OTtLKpxq23pp6upnabTtPpBLldPccaq2g3PN3TZpvRkZHJ53bvYPDu8dGCSnrNlmM43sIS3GhNGg49A02+reOdVAWoyJUD/7JNa+d81CBgY1/ndHsV2OP9e09w6wr9TMtsXhTlsV9PGMKIwGHS/mXLhvbIimafzn6wWYvIx8/coFMxydkISTcBq55S2sjA902jezi9HrFAa9/FMSQoi5al6ID9WtPfT0u/7ckBPVQ3eIbX0HWKqc5obthXXoFDZpl4oyeRLi6z4n5jjllrfQZ7FOeavfTPBw05MeYyKnfOqDwxvaezlW2cqVC21f3TQiPtibu9YlnB8OLaZnT1EDA4Ma25ywnW6EycvINUsj+Fde9Zg/h/+VX83h8hYe2rYAfy8ZFD7T5CpZOIWa1h6qW3tYEe8685uEEEII+GBw+Fmz61fvFFS3oVPYvHVCqpzmhh0FdayIDyTYx33ax1JKkRFjIm8OJA32ljbipldkJQQ5OpRxrUoIpKC6jY7egSm9/s0TtYBtEpLjeWBTEiG+7vzX64VYrTJ9ZTq2F9QR6utORoxzX6N9ZmUMHX0W3jj+4eHhHb0D/PdbRaTFmPjU8hgHRTe3ScJJOIXciqFy6RVxrjO/SQghhACYFzo0w282DA4fGhjui6dx+gPDLzRS5fRfrxey62Q9JfUd9A64dlVYU2efo0NwGmXmLorrO2y6ySojNoAycxfNXdMbVO3sskvMZMQG4O1uu61t9pCZEIRV++Bz+2RYrRrPHqggLcZESrh9ZwH5uBt4aFsK+ZWt/Cu/2q7nms16+gd5r7iRrYvD0emcuwMlMyGQxBBvXjz84ba63+wqwdzZx4+uW+z0v4fZyrnf1cSckVvejJdRz8IIX0eHIoQQQkxKfJA3SsFZF6/cGRkYvmG+fdpdgn3ceWBTEj/fUcze4Y1cABH+HsQGehEX5EVckDexgV7EB3kTH+w17cHT9rTrZD33PZvLy19YQ0asc9/9nwk7CusA226yGpnjlF/ZwqYU+1bFOEpTZx+FNe18/cr5jg7lkpbFmTDoFDllzWxcMLn3ifdLGjlr7uLXn063U3Qf9omMKJ49WMFP3y5i6+Jwp0/mOaP3SxrpGRh06na6EUopbl4Zy0/eOsXp+g7mh/lyur6Dp/aX85mVMaTFmBwd4pwlFU7CKRwub2FZbIDMQhJCCOFyPNz0RAd4unyFU317H+bOfpZG2a/64Esbkzj6/St59Ytr+M1n0vmPK+ezel4Qg1aNPcWN/HxHMV9+IY9rf5fN8od38ZoTVye8daIWqwZ/+vcZR4fiFLYX1JEa7U+UyXbLX1Kj/dHr1Kye47TvzNAQbmceGD7Cy2hgabT/lAaH/3V/OcE+7ly9NMIOkX2UTqf4z2sX0dDRx+/3yOy4qdhRUIfJy43MBNfoQLlxeTRGvY4Xcs4NDQp/rRAfdwPf3Jri6NDmNEn1Codr7x2guK6dr1yR7OhQhBBCiCmZF+Lj8hVOIwPDbbmhbiyB3kYCvY1jVgV19Vk419xNRVM3T+0r46sv5dPea+G2VXF2jWmyhhJkDbgbdOw8Wc+Zxk7mDc/ymovq2nrJr2zlm1ttuwHKy2ggJdx3Viecsksa8fMwkBrtGhUYWQlB/GXvWXr6Byfceltm7mJPcSMPXpGM0TBzN5eXxQbwiYwo/rK3jM+sjCU2yGvGzu3q+i1Wdp2qZ8vicNxcpCAg0NvI1iXhvHK0msWR/hw428TDNywh0Nvo6NDmNNf42yNmtbxzrVg1md8khBDCdSUG+3C2sculB9SeOD8w3L4Jp/F4uxtYGOHHtiXh/PWuTK5ICeX7/ypwugqF/MoWWroH+H9XL8RNr+Px9886OiSH2nlyuJ3OhvObRmTEmsivbGXQhf9tXYymaWSXmFkzLxi9i8yXyUoMxGLVOHpu4nOcnjlQjkGnuCUr1n6BXcRDV6Vg0Ct+8tbJGT+3Kztwton2XotNZ7LNhJtXxtDWM8C3Xz7O4kg/Pps583/nxIdJwkk4XG55M3qdIj3WNe7sCCGEEBeaF+pNz8Agte29jg5lygqq20gK9bHLwPCp8HDT88dbl3N9eiQ/31HMT98uQtOcI+mw61QDBp3i48ui+NTyaF45Wk2DC/+3n67tBXUkhfqQFGr7Kq+MmAA6+yyzcrvhWXMXNW29LtFON2JFXAA6xYTb6rr6LPwzt4qrl0YQ6udh5+g+KszPgy9tTGJHYT37Ss2XfoEAhv5Nexn1LvV3E2BVYhDxQV5YrBo/un6JyyRyZzNJOAmHO1zezKIIP3xkmJ8QQggXNdJO5cptdSeq21gS6bjqprG46XX86qZ0bl0Vy5/+fYbv/qvAKSpddp9qIDMhED8PN+5dn4jFauWp/eWODsshWrr6OVTWzNbF9hnqPTI4PG8SFTWuInt4eP56F7qo9/VwY3GkP4fKmif0/FeOVtHRZ+HOtfH2DWwcd69LIDbQi+++emJOJ4YnatCq8c7JOjamhOLh5hw3ICZKp1P88PolPHz9YpbHyTIHZyAJJ+FQ/RYr+ZWtrIiXNwQhhBCuKzHEG4AzDa6ZcKpv76Wxo48lUc6VcIKhC4iHr1/CFy+fx/OHzvHVl/IZGLQ6LJ7K5m6K6zvYlDK0pSs+2JurlkTw3MEKOnoHHBaXo+w6Vc+gVWPbYvsMg04I9sbf021WznHaW2ImJtCTuCBvR4cyKVkJgeRVttI7MDju8zRN4+n95aRG+5PhwC1hHm56HrkpjYaOPj792EFq23ocFst4csubz297tIXegUG+9c9j5JZPLDk44khFC+bOfpdrpxuxYX4It62Od3QYYpgknIRDFda00TtgZWW8zG8SQgjhukJ83PH1MLjsproTVTMzMHyqlFJ8a1sK374qhf87VsP9zx655MWuvewuagDgioUfVPTcd1kiHb0WXswwETqXAAAgAElEQVSpdEhMjrSjsI4okydL7LTdUClFRqxp1iWcBgatHDzbxLqkEEeHMmmZCYH0W6wcH37fuJjsUjNnGru4c008Sjm2tWlFfCDP3p2JuaOPm/58gMrmbofGc6E9RQ189vFDPPhiHn0W27y3ZZeY+XtuFZ976jAF1eP/txpte0EdRr2OjcNJdSGmQxJOwqGOVAyVR6+QkkchhBAuTClFYogPZ82uWeFUUNOGUrAowj5JA1v5/IZ5/PfHl7KnuIHbn8xxSEXRu0UNJIZ4kxD8QVVKWoyJ1YlBPJFdRr/FcdVXM62zz8L7JWa2Lg63a0IhIyaA0w0ds6qC7FhlK519FpdqpxuRmTB0o/hSc5ye3ldOsI+Ra1LtU/02WcvjAnnunizaugf4zGMHqWhyjhsE7xU3cP9zR/DxMNA7YD1/fTRd2aVmPNx0+HoYuOPJnAm1fGuaxo7COtYnB8u4E2ETknASDnW4vJnYQC+HDBEUQgghbGleiDdnGpzjAmayCqrbmBfig7cLXGB8NiuWRz+TwdGKFj77+CGau/pn7NxdfRYOnmniijHu/N+/IZG69l5ey6+esXgc7b3iBvotVrvNbxqREWtC07hkRY0r2VtiRilYMy/I0aFMmsnLSEq477hznM41dbO7uIGbM2NxNzjPHKC0GBMv3LeK7n4LN/35gMOH0b9/upH7nj1CUogPrz+wFoNOnZ/tNV3ZpWYyE4J49p4sAG57Ioea1vHbCQuq26lu7WHrEtdspxPORxJOwmE0TSO3vEXmNwkhhJgV5oX4UNfeS2efxdGhTNqJ6jaWOuH8pou5Ni2Sx29fwen6Dm7684EZGwS8t8RM/6CVTSkfTbBsmB9CSrgvj71/FqsTDDafCTsK6wnyNrLCzqMR0mJm1+BwTdN4r7iB1Ch/TF5GR4czJVkJgRypaLnoPLVnDpSjV4pbsuJmNrAJWBzpz4v3rWbQqvHpPx/kdH2HQ+LILjFz7zO5zAvx4W/3ZBEd4EVGrIlsG2zTq23robShk/VJwcwL8eGvd2XS3jPAbU+Mn6TfXliLXqfYvNC+SWQxd0jCSThMmbmLpq5+md8khBBiVpg3PDi8zMXmODV09FLf7pwDw8ezMSWUZ+7KpKqlm5++XTQj59xdVI+fh2HMm2VKKe7fkEhJQyd7ihtmJB5H6h0YZPeperYsDrP76nF/TzeSQn1mzRynvSVmjlW1cUNGlKNDmbKsxCB6BgY5McZsoK4+Cy/lVrJtSTjh/s7ZxbAg3JcX71uNTsFnHjvIyZr2GT3//lIzd//1MAnB3vztniwCvIcSj+uSQjhR3UbLNCs395UOtTuuTRpq2VwS5c9f7lhBVUsPdz518Xbk7QV1ZCUEEujtmolQ4Xwk4SQcJrd86C7VSqlwEkIIMQvMC/EBcHiLxmSNDJN1pQqnEVmJQdyxOp5/5VdTaucNgVarxu6iRjYsCMVNP/ZH6I+lRhJl8uTP/z5r11icwf4zZrr6B9kyQ5usMmJM5FW2ommuXT1mtWr89O0iYgI9+WxWrKPDmbKRG8Y5Y7TVvZpXTUevhc+tjZ/hqCYnKdSHl+5fjbtBx82PH+R41cwkNA+caeKuvx4mPmgo2TQ6ubMuOQhNg/1nxp+PdSnZJY0E+wy1Po7ISgzij7cu42RNO/c+k/uRxQulDR2caexim7TTCRuShJNwmNyKZkxebiQG+zg6FCGEEGLaYoO80CkmNJjVmZyoah8aGB7p3APDL+b+DfPwdNPz612n7Xqe49VtmDv7xpzfNMJNr+PudQnklDfbbPCvs9pRUI+vu2HGZhBlxAbQ3NXPOSfbLjZZrx2r5mRtO9/YssCpZhtNVoivO/NCvD8yOFzTNP66v5wlUX4si3X+m8oJwd78/f7V+HoYuOXxQxy1c9vmwbNN3PX0YWICvPjbvVkE+bh/6Ptp0SZ83Q1klzZO+RyappFd2sSaecHoLqg+3JQSxi8+lcbBs8088HwellEtkdsL6gDYskgSTsJ2JOEkHCa3vIUVcQEfeSMUQgghXJG7QU9soBdnXKyl7kR1GwnB3i67kSjQ28jn1ibwxvFaiurs1xaz+1Q9OgWXLxh/jf2nV8bg7+nGY++fsVssjmYZtPLOqXo2LQydsaRJRuzQHCd7JwTsqc8yyC92nGZJlB/XpkY6Opxpy0oMIre8hcFRM8v2n2mipKGTO1bH23VzoS3FBHrx0v2rCfIxcttfDo1ZtWULOWXN3PX0YaICPHn+3lUEX5BsAjDodayaF8TeEvOUq/mK6zswd/ax7iIbEG/IiOKH1y1m16l6vvXy8fMz57YX1pERa3LaNkjhmiThJBzC3NnHWXOX3YdMCiGEEDNpXoiPS7bUuWI73Wj3rE/A193Ar96xX5XTu0UNrIgLvOSQZ293A7evjmPnyXqH/12oa+vl2y8fv+T6+sk6XN5Cc1c/22aonQ5gfpgvvh4GcspcN+H07IEKqlt7+Pa2hbPihmtWQiAdfRZO1X6Q6H16fzmB3kauTXOthFqUyZOX7l9NuL8Hdz6VY/Ptl7nlzdz5VA7h/h48f28WIb4fTTaNWJ8cTFVLDxVNU6vmG9lyty5p7IQTwB1r4vmPK+fzytFqfvTGSSqbuymobp/Rf9NibpCEk3AImd8khBBiNkoM8abM3PWhO/7OrLGjj7r2XpdPOJm8jNy9PoEdhfXnZ1LZUm1bD4U17WxaePF2utHuWBOPm17H4+87dpbTcwcrePFwJZ9+7CC3/sV27UI7CutwN+jYcIlqL1vS6xQr4wPJKbNt8mymtPcO8Ls9paxPDr5o5YmryUoYaqc8OJzQrGzuZtepem7OjMHDzfXaBcP8PPjpjal09w/atCX2SEULdzyZQ7ifBy/eu4pQ3/EriEYSRXunuK0uu9RMYog3kSbPcZ/35U1J3LU2gaf3l3P/s0cA2CoJJ2FjknASDpFb3ozRoHO5jThCCCHEeOaF+NBnsfLWiVqXGG5cUDOUnJkNP4/vWpeAv6ebXaqcdhcNbZ3bPMGEU7CPO59aHs0rR6tpaO+1eTwTtfNkHSviAvjeNQs5VdvOJ/6wn889lcOJqqkn5TRNY0dhHZfND8HLOLNtmJkJgZxp7MLc2Tej57WFP713htbuAR7aluLoUGwm3N+DuCCv8y1ozx6sQKcUt66Kc3BkU7ck0h+9TnGs0nYDxB98MY9gX3eev3cVoX6XbldLCPYmyuRJdsnk5zj1WQY5dLaZ9eNUN41QSvG9axZy47JoTta2kxLuS3yw96TPKcR4JOEkHCK3ooW0aH+XHpYohBBCXGhjSiixgV58+YU8rnk0m7dP1J6fj+GMCoYTD4tddGD4aH4ebtx3WSLvFjWQZ+M5P7tPNRAb6HV+E+FE3Ls+EYvVylP7y20ay0SVmbs4Xd/JNakR3LM+kfe/tZFvbVtAXmUr1/4um/ueyf1QK9REHa9qo7at1yGtN5kJF9+M5szq2np5cl8Z16dHzork7miZ8YHklDfT1WfhxZxzbFscToT/+JU1zszTqGd+mC/HbLSxrrath6qWHu5cEz/h2UhKKdYlBbP/TNOkq2XzzrXSMzDI2gkknAB0OsXPblzK/RsS+caWBZM6lxATIQknMePaewcoqG47v05VCCGEmC3C/Dx49+sb+MWn0ugZGOQLfzvKtt+8z2v51U7ZZneiuo3EYG98PdwcHYpN3LkmnkBvI4/YsMqpp3+Q7FIzm1JCJzUEOT7Ym6uWRPDcwQo6egdsFs9E7Sgc2jh15aIwYGi21BcvT2Lvtzbytc3zOXCmiat+s5cvPX+U0oaOSx7PatVo6x7gX/nV6HWKKyZY7WVLS6P88XTTu1zC6de7TjNo1WblBX1WYhCt3QP8fEcx7b0W7lwb7+iQpi09xp9jla02qVLNPzeUuMqY5Ma+dcnBdPRaOD7JxFd2iRm9TrFqEtsjDXod37lqIZuH3yuEsCXXXEciXFp2iRmLVePyBTP/QUUIIYSwNze9jk8uj+bjGVG8cbyG3+8p5cEX8/n1rhK+ePk8bsiIwk3vHPf8CqrbZtUCD293A5/fkMh/v1XE4fJmm9zc2n/GTJ/FyuaFk78Yu++yRN48UcuLOZXce1nitGOZjB2FdSyJ8iM6wOtDj/t6uPHg5mTuXBPP43vP8tS+Mt4+Ucu1aZFEB3jS1jNAa/cAbT0ffLV2D9DeO8DI9ff65OBLDk+3Bze9juVxARxyoYRTaUMHf8+t5I418cQEel36BS4ma7jq7On95SyK8GNFnOvPZ02LNvFCTiXlTd0kTLPFLK+yFaNex8II30m9bm1SMEoNXTdNJlmVXWomLdofv1lyE0G4Puf4tCPmlD1FDfh5GFg2vN5WCCGEmI30OsX16VFsf/Ay/nTrMryMer75z+Ns/MV7/O1QBX2WQYfG19TZR02b6w8Mv9Btq+IJ8XXnkZ22qXJ6t6gBb6P+fDvXZKTFmFidGMQT2WX0W6w2iWci6tt7yTvXytZFF2978/dy4xtbF7D3oU3cuz6RnYX1/PG9M7x1oo7CmnY6ei0EeBlJjzFxfXokX96YxPeuWcjPP5nK/34ydcZ+LxfKTAikqK6dtu6Zrxqbip9tL8bLaODLm5IdHYpdRAd4EjncKnbnmvhJVQE6q9TooWuUyVYXjSXvXAuLo/wmPUYk0NvI4ki/SQ0Ob+se4HhVK+uSZ26YvxCXIhVOYkZZrRrvnW7ksvkhGJzk7q4QQghhTzqdYtuSCLYuDmdPcQOPvlvKd18t4LfvlvLHW5dNutXCVk4Mb3NbHOX685tG8zTq+eLl8/jh/51k/xkza+ZNfSOYpmnsPtXAZfNDMBqm9rnl/g2J3PnUYV7Nq+LTK2OnHMtkvHOyHoCtSy49ZynQ28h3rl7IN7cuQKcUOp1zJwwyEwLRNDhc3uz0LUC55c28c7Keb2yZT6D3zFeEzQSlFOuTQ3i3qJ7r0iMdHY5NzA/zwcNNR35lK9enR035OAODVk5Ut/HZzKkNUV+bFMyT2WV09Vnwdr/0ZfuBs2as2gdb7oRwBnLFL2ZUYU07jR19bJR2OiGEEHOMUopNKWG8+sU1PHt3JgA/eK3QYdvsCqpnz4a6C92cGUu4nweP7Dw9rT/fwpp26tp7uWIK7XQjNswPIS3an9/sKqF3YGaq2nYU1pEQ7E1y6MSHnBv0OqdPNgGkx5gw6nXklDt3W52mafzP20WE+rpz17oER4djV9+/dhFvfmU9Hm6zYxmQQa9jaZQ/x6exzRGguK6D3gEr6VPs6lifFMLAoMahsqYJPT+71Iy3UU+GdJEIJyIJJzGj9hQ3oBRsWCClnkIIIeamkYqAb2xdwInqNrYX1DkkjoLqduKDvGblrA8PNz1f2pREbkUL75dMvCXlQruLhj63XD6Nzy1KKR7alkJNWy/PHayY8nEmqq1ngANnmtiyKGxWtDddyMNNT3qMyennOO08Wc+Riha+unk+XsbZ3VTi424gzG9iG9hcRWq0iYLqNgYGp94KO7ItMyNmagmgFfEBuBt07J3ge1h2iZlViUFOMyNQCLBjwkkp9aRSqkEpVTDqsYeVUseVUvlKqZ1KqY/UXSql4pRSR4afU6iU+vyo772nlCoe/l6+UkrKZFzMnuIGUqNNBPu4OzoUIYQQwqE+nhFFUqgPv9hZ7JANdieq22ZlddOIT6+IIcrkySM7i6dc5fTuqXrSY6b/uWVNUjDrk4P53Z5S2u28sW5PUQMWq8aWxZdup3NVmQmBFFS30dVncXQoY7IMWvnf7UUkhnhz04poR4cjpiAtxkSfxUpx3aU3OF5M3rlWgn3ciQ7wnNLrPdyGZsdlTyDhVNncTXlTN2ulnU44GXumP58Gtl3w2M81TUvVNC0deAP4wRivqwXWDD8nC/j2BYmpWzRNSx/+arBH4MI+mjr7yK9sZaNUNwkhhBDodYpvbJnPmcYuXjlaNaPnbunqp7q1Z9YNDB/NaNDxlSuSOFbVxrunJv+RsaGjl2NVbVPaTjeWh7al0No9wGP/PmuT413MjsI6Qn3dp1xV4QoyEwIZtGocqWhxdChj+seRKs40dvGtrSkys9RFpZ8fHD71trr8ylbSY0zTqjRclxRMSUMndW294z5v3/Bw8fXJknASzsVu74Capr0PNF/wWPuoX3oDH7ndpGlav6ZpfcO/dLdnjGJmvV/SiKbBphQpTBNCCCEAti4OJzXan1/vKpnRrXUjA8Nnc8IJ4BPLookL8uKRdyY/y+m9okbAdp9blkT5c21aJE9kl9HQPv7F41T1DgzyXnEjVy4Kc4l5TFO1LC4AvU6R44RtdT39g/zqndMsizWxdbFzDzUXFxcT6EmAlxvHKqe2qa6lq5+z5q5pz1NaN5xAyr7EtrrsUjNhfu4kTWJumxAzYcaTOUqpnyilKoFbGLvCCaVUjFLqOFAJ/EzTtJpR335quJ3u+2qcdLFS6j6lVK5SKrexsdGmvwcxNXuKGgn2MbIkcnZ/uBVCCCEmSinFN7cuoLq1hxcOnZux836woW52/0x20+v4yqZkTta2s6NwcrOydp2qJ9Lfg5RwX5vF8/Ur5zMwaOXR3SU2O+Zo2SVmegYG2TqL2+lgaGbQkih/p0w4PbmvjIaOPr5z9cJZOUNrrlBKkRpt4ljV1BJO+cOvm27CaWG4H0HeRrJLLn49a7Vq7D/TxNqkYPk7J5zOjCecNE37rqZpMcDfgAcu8pxKTdNSgSTgDqXUyO2BWzRNWwqsH/66bZzzPKZp2gpN01aEhEgLl6NZBq38+3QjG+aHzuo7bkIIIcRkrUsKZlViIL/bU0p3/8zMpCmobiMuyAt/z9k3MPxCN2REkRjiza/eKcE6wVlZvQODZJeauWKhbQdvxwd785nMGF7MqaTc3GWz447YUViHr4eBVYlBNj+2s8lKCCS/snXGNv+Npd9i5VRtO6/mVfE/b5/ijidzePTdEjYvDGNlfKDD4hK2kRZj4nR9x5Tel/PPtaJTQ8PHp0OnU6xNCia7tOmiVZona9tp7upnncxvEk7Ike1qzwM3jveE4cqmQoaSS2iaVj38vx3Dr8+0c4zCRvIrW2nrGZB2OiGEEOICQ1VOKZg7+3lqX/mMnPNEdducqTjW6xRf3Tyf4voOnjtUMaGk06GyZrr7B9m00PafW75yRTJueh2/fOe0TY9rGbSy61Q9m1JCMRpm/0SKzPhA+get5E+x5Wmy6tp62V1Uzx/eK+UrL+Sx9Vfvs+gH27nqN3v52kvHeCq7nIaOPj6WGsnDNyyekZiEfaVF+2PVhjZ6TlZeZSvzw3zxcZ/+hsJ1ycGYO/sorh97gPlIu50knIQzmtEdnUqpZE3TRmqIrwOKxnhONNCkaVqPUioAWAs8opQyACZN08xKKTfgY8CumYpdTM/uogb0OnW+D1kIIYQQH1geF8DmhaH86d9nuDUrDn8v+1UetXT1U9XSwy1ZcXY7h7P52NII/rL3LD94rZA/7DnDtWkRXJ8exeJIvzErmN49VY+nm57VdqgUCvX14O51CfxuTyn3X5Zos02Bh8tbaOkemPXtdCNWxgeiFOSUNdu9ouvvhyt56JXjjBSYRJk8SQn35YqFoaRE+JES7ktCsLeso59lRqqTjlW2kpkw8Yo1q1Uj/1wL16RG2CSOkURSdomZlHC/j3w/u8TM/DAfQv08bHI+IWzJbgknpdQLwOVAsFKqCvhP4Gql1ALAClQAnx9+7grg85qm3QMsBH6plNIABfxC07QTSilvYMdwsknPULLpcXvFL2xrT3EjK+IC5kTpvhBCCDEVX9+ygKsf3cuf3j/DQ9tS7HIOq1XjqX1lwOwfGD6aTqd46b7V7DpVz2v5NTy9v5zH95aRGOzNdemRXJ8eRUKwNwCapvHuqQbWJQfj4aa3Szz3bUjkuUMV/Gx7Ec/enWWTY+4orMNo0LFh/twYJeHv5UZKuJ/d5zidbezkP18vJCshkK9vWcD8MF/5PDtHhPi6E2XynPQcp7KmLtp7LWTEBNgkjkiTJ4kh3uwtMXPP+sQPfa93YJCc8mZunUM3EIRrsVvCSdO0m8d4+ImLPDcXuGf4/78DpI7xnC5guS1jFDOjrq2XU7XtfPsq+3x4FkIIIWaDhRF+XJcWyVP7yvjc2nhCfW17t9rc2cd//P0Y759u5Oql4axKnFszZjyNeq5Ni+TatEhau/t5u6CO1/Kr+c27Jfx6Vwmp0f5clxbJ/DBfqlt7+PKmJLvF4ufhxpcuT+Inb51if6mZNdNshdE0jXdO1nNZcjDeNmjhcRVZCYG8dLiSgUGrXaqLBgatfO2lfIwGHb/+dAbh/lJBMtekxfhPOuGUd27o+enTHBg+2vqkYF7KraTPMoi74YNEeG55C/0WK+uli0Q4Kan7FHa3p7gBgI0LZH6TEEIIMZ6vbZ6PZVDj97tLbXrcfaVmrvrNXg6ebeLHNyzh959dhmEOt/+YvIzcnBnLi/et5sC3r+B71yxE0+DHb57i9idzAOw+d/K21XFE+nvwsx3FFx0GPFGFNe1Ut/awZY60043ITAikZ2Dw/NZFW/vtuyUcq2rjfz6xVJJNc1RatInK5h6aOvsm/Jq8cy34uhtICvGxWRzrkkPoHbBypKLlQ49nl5px06tJtfwJMZPm7icNMWP2FDUQZfJkfpjt3nSFEEKI2Sg+2JubVsbwfM45Kpu7p308y6CVn+8o4tYnDuHv6cbrD6zl1lVxsjp7lHB/D+5Zn8j/fXkd7359Aw9ekcw3ty6w+zwUDzc9X71yPscqW9leUDetY+0orEOn4Io5tpxlZBOcPdrqjlQ087s9pdy4LJqrl9pmFo9wPWkxQ1VKxyeR1MyvbCUtxmTTzdyrEgPR6xTZJeYPPZ5d2khGbMCcqmwUrkUSTi5i0KrxWn417b0Djg5lUvosg+wrNXP5ghD5cCuEEEJMwFc2JaNTil/vKrn0k8dR3drDpx87yO/3nOGm5TG8/sDaMQfOig/MC/Hha1fO50sb7ddON9qNy6JJDvXh5zuLsQxap3ycHYV1rIwPJMjH3YbROb8QX3fmhXjbPOHU2Wfhqy/lE2ny5L+uW2TTYwvXsiTKH6WGBodPRHe/haK6DtJjbNdOB+Dr4UZGjOn8RjqA5q5+CmvaZTudcGqScHIRnb0WvvGPY9z711z6LIOODmfCDpe10NU/KO10QgghxASF+3twx5p4Xs2rouQia7AvZXtBHVf9+n2K6zp49OYMfvbJVLyMcgfc2eh1im9sXcDZxi7+eaRqSscoM3dxur5zzmynu1BmQhCHy5sZtE6vLXG0H75eSHVLD7/6dDq+HjIgfC7zcTeQHOoz4YTTiao2Bq0aGTac3zRiXXIwJ6rbaOnqB2D/GTOahmwBF05NEk4uwt/LjV98Ko1DZc18/e/HsNrwh6o97SluwGjQsSbJvutqhRBCiNnkCxvm4WU08Mudpyf1ut6BQX7wWgGff+4I8cHevPmVdVyXFmmnKIUtbFkUxrJYE7/eVULvwORvKu4oHGrH27I4zNahuYSshEA6ei2cqm23yfHePlHLP45U8cXLk8637Im5LS3axPGqtgnNWssfTkzZusIJYH1yMJoG+880AZBdYsbXw0DqHNo4KlyPJJxcyPXpUXznqhTeOF7Lf791ytHhTMie4gZWJQbJXVUhhBBiEgK8jdy7PpHthXUTurPe0NHLjsI6bvj9Pp45UMG96xP45+fXEBfkPQPRiulQSvHQthTq2nt5en/5pF+/s7COJVF+RAd42T44FzAyLNkWbXX17b1859UTpEb78+Dm5GkfT8wOqTEmmrr6qWrpueRz8861EhfkZZf21rRoE77uBrJLzWiaxt4SM6sTg+b0Agjh/CQL4GLuuyyR2rZe/pJddn7IpbOqaOribGMXt6+Kc3QoQgghhMu5e30Cfz1Qzi92FvPs3VnnH+8dGKSwpp28cy3kV7aSd66V6tahC6EgbyNP3bmSjXNseLSry0oMYuOCEP6wp5SbV8bi7zWxNq6G9l6Onmvl61fOt3OEzivS5ElMoCc5Zc3ctS5hysexWjW+8Y9j9A4M8qtPp+MmF/FiWHr0ULXSsapWYgLHT+zmVbawKtE+nR0GvY5V84LILm2koqmb6tYe7t/gvNeCQoAknFyOUorvf2wRDR29/PjNU4T6eThtqfyeogYALpf5TUIIIcSk+bgb+OLl8/jxm6f47bslmDv7yK9s5WRtOwODQ60dUSZP0mNNfG5tPBmxJhZH+uPhpndw5GIqvrUthasf3cv3Xivgfz6xFJ8JbJ3aebIegC1zdH7TiMz4IPYUN6Bp2pSX1Pz1QDl7S8z8+IYlzLPhOnvh+haE+2I06Dhe1cbHUi9+3VXb1kN9ex8ZdminG7E+OZh3TtbzfM45ABkYLpyeJJxckF6neOSmdMwdOXzj78cI8XFn9Tznm5G0u7iRxGBv4oOlnF8IIYSYiltXxfFkdhm/fOc0XkY9qdH+3LM+kfQYExkxJkL9PBwdorCRhRF+fGVTMo/uLuFoRQs/vmHJJSvVdhTWER/kxfywuZ0gyUoI5OWjVZQ2dJIc5jvp15+u7+B/3i5iU0oot2TF2iFC4cqMBh2LIvzOz2e6mLxzQ9/PiA2wWyxrhxNMT+8vJ8rkSYJcZwknJwknF+Xhpufx21fwyT/t575nc/nH51c71arj7n4LB882cZu00wkhhBBT5uGm5+UvrqG1e4D5Yb7odVOr3hCu4WtXzuey+SF8++XjfO7pw1yXFskPrl1E8BjzYNp6Bjhwpom71yVMuapnthiZ43SorHnSCac+yyAPvpiPr7uBn92YOuf/LMXY0mNM/D23kkGrdtH34bxzLRgNOhZG2O+aLDHYm0h/D2raelmbFCR/X4XTk+ZkF+bv5cZf78rE22jgzicPU9N66UF2M+XAmSb6LVY2SjudEEIIMS0R/p4sjPCTZNMcsTwugDe/sp6vbZ7P9r5XHEEAACAASURBVII6Nj/yb14+UvWRDVnvFTdgsWpzvp0OIC7IizA/9ykNDn9k52lO1bbzsxtTCfG1/aBnMTukxfjT3T9IaUPnRZ+TX9nKkkg/jAb7XWIrpViXPFTltC45xG7nEcJWJOHk4iJNnjx910q6+izc+VQObd0Djg4JgN1FDXgb9axMsF9JqRBCCCHEbGQ06HhwczJvPbiOpBAfvv6PY9z+ZA7nmrrPP2dHYR2hvu52nRfjKpRSZCYEkVPWPKHV9SP2l5p5bO9ZPpsVy+ZFYXaMULi61JHB4RdpqxsYtHK8qs2u7XQjrk+PIibQk/Uyv0m4AEk4zQIp4X78+fbllJu7uffZXHoHBh0aj6ZpvFfcyNqkYNwNMrhUCCGEEGIqkkJ9+fv9q3n4hiXknWtly6//zePvn6Wrz8J7xY1cuSgMnVS+AUNtdXXtvZxr7r70k4GC6jbuf/YIicHefO+ahXaOTri6hCBvfD0MHKsaO+FUVNtBn8VK+gwkgNcmBbP3W5sI8Dba/VxCTJcknGaJNfOC+cVNaeSUNfP1vx/Dap343R1bK2nopLq1R1YyCyGEEEJMk06nuG1VHO/8x2WsSwrhJ2+dYvMj/6a7f1Da6UbJGjXH6VKK6zq47YlD+Hm68czdWXgZZaytGJ9Op0iLNl004ZRX2QJARqxUHAoxmiScZpHr0iL53jULefNELY/tPeuwOHYXNQDI/CYhhBBCCBuJ8Pfk8duX84dbljEwqBHobWR1ovNtKXaU5FAfAr2Nl5zjVGbu4tYnDuGm1/H8vVlEmTxnKELh6lKj/Smq7RizmyT/XCshvu7y90mIC0g6f5a5Z30iu4saeO5gBfetT3RImfWeogYWRvgR7i+rmoUQQgghbEUpxdVLI7hsfgidvRa7Did2NUopVsYHjJtwqmrp5pbHDzJo1XjpvlXEBclKeTFxaTEmLFaNk7XtLLtgVlNeZSsZMSbZGifEBeSn1Cx004oYqlp6yCmf/KaO6WrvHSC3ooVNKbI1QQghhBDCHnzcDXJjbwyZCUGca+6mtu2jm5vr23u55S+H6Oyz8OzdmSSH+TogQuHKRuYzXTg4vKWrnzJzF+nSTifER0jCaRbaujgcH3cD/zxSNePn3nvazKBVk3Y6IYQQQggxo0bmOF1Y5dTU2cctfzmEuaOPp+/KZHGkvyPCEy4uzM+DMD/3jySc8ofnOmXEyHZuIS4kCadZyNOo55qlEbx1opauPsuMnntPcQP+nm4zsqFBCCGEEEKIEQsj/PB1N3xocHhb9wC3PZFDZXM3T9y58iOtUEJMRlq0ieNVbR96LO9cKzo1NONJCPFhknCapW5cHk13/yDbC+pm7JxWq8Z7xY1smB+CQS9/tYQQQgghxMzR6xQrRs1x6uyzcMdTOZQ0dPDn25azSoasi2lKizFx1txFW/fA+cfyzrUwP8wXb3cZjyzEhSQrMEutjA8gNtCLl4/OXFvdsapWzJ19bJT5TUIIIYQQwgEyE4IobeikqqWbu58+zInqNn732WVcLuMehA2kRQ91cRyvHmqjs1o1jlW2kiGVc0KMSRJOs5RSihuXRbP/TBNVLd0zcs7X8mswGnRcsTBsRs4nhBBCCCHEaJnDc5xu+tMBcsqbeeSmNLYuDndwVGK2WDrcNjfSVnfW3EV7r4UMGRguxJgk4TSLfWJZFACvHq22+7ksg1beOF7D5oWh+Hm42f18QgghhBBCXGhplD+ebnpq2nr56SeWcn16lKNDErOIv6cbiSHe5A8PDs871wJAhsyvFWJM0mg6i8UEerE6MYiXj1bxwKYklFJ2O1d2qRlzZ7/8UBdCCCGEEA5jNOj47jUL8fUwyOdSYRdp0Sb2lZoByK9sxdfdwLwQHwdHJYRzkgqnWe7G5dGUN3VzpKLFruf5V141/p5uXL5A5jcJIYQQQgjHuXVVnCSbhN2kRfvT0NFHXVsveedaSY81odPZ78a+EK5MEk6z3FVLwvEy6vnnEfsND+/ut7DzZD1XL43A3aC323mEEEIIIYQQwpHShtvnDpw1U1TXLu10QoxDEk6znLe7gauWRPDm8Vp6+gftco53TtbT3T/IDemRdjm+EEIIIYQQQjiDhRF+GHSK5w6ew6pBugwMF+KiJOE0B3xyeTQdfRZ2nqyzy/FfzasmyuTJyvhAuxxfCCGEEEIIIZyBh5uehRF+50eWpMcEODgiIZyXXRNOSqknlVINSqmCUY89rJQ6rpTKV0rtVEp9pCxGKRWnlDoy/JxCpdTnR31vuVLqhFKqVCn1qLLnJOxZIishkCiTp13a6sydfewtMXNdeqT0LgshhBBCCCFmvbQYfwDig7wI9DY6OBohnJe9K5yeBrZd8NjPNU1L1TQtHXgD+MEYr6sF1gw/Jwv49qjE1B+B+4Dk4a8Ljy8uoNMpblweTXapmdq2Hpse+41jNQxaNT6eIYMZhRBCCCGEELNfavRQG126zG8SYlx2TThpmvY+0HzBY+2jfukNaGO8rl/TtL7hX7ozHKdSKgLw0zTtgKZpGvAMcIM9Yp9tblwWhaYNtb/Z0r/ya1gY4cf8MF+bHlcIIYQQQgghnNGy2KE2uuVx0k4nxHgcMsNJKfUTpVQlcAtjVzihlIpRSh0HKoGfaZpWA0QBo/vCqoYfG+v19ymlcpVSuY2Njbb9DbiguCBvMuMD+eeRKoZyddNXZu4iv7JVhoULIYQQQggh5oykUB+evzeLm1bGODoUIZyaQxJOmqb9f/buO77q6v7j+Otkh5FAIIskkDAEwiZhL1FUQEUpzrpBcY+2tqVarb/WWqvdrXUPXFUUBVRAEVmyw94jQCCDJIQZspPz+yMXDRAg497c5Ob9fDzuIzff7/me7yffQwL58DnnPGmtjQE+AB46R5sD1tqeQEfgDmNMOFDZIkGVZk+sta9ZaxOttYmhoaHOCr1Bm5AQxZ7s8iSRM8xcn4YxME4JJxERERERaUQGd2iNv4+3u8MQqdfcvUvdh8CE8zVwVDZtAYZRXtEUXeF0NJDusug8zNgekQT4ejll8XBrLTPXpzMwrhWRwYFOiE5EREREREREPEWdJ5yMMZ0qfDoO2F5Jm2hjTKDjfUtgCLDDWpsBnDDGDHTsTnc7MLMOwvYIzQN8Gd0tgi82pFNQXFqrvjakHmPvoZNaLFxEREREREREzuLShJMx5n/AcqCzMSbVGDMJeN4Ys9mxPtPlwKOOtonGmDccl3YFVhpjNgCLgL9Yazc5zt0PvAHsBpKBOa78GjzNdQkxHC8o4dttmbXqZ8a6NPx8vBjdI8JJkYmIiIiIiIiIp/BxZefW2psrOfzmOdomAXc73s8Dep6nXXdnxdjYDOrQisjgAD5dk8pVPWu29lJJaRlfbkzn0i5hBAX4OjlCEREREREREWno3L2Gk9Qxby/DT/pGsXhnNlnHC2rUx/e7D3Eot4hrNZ1ORERERERERCqhhFMj9JO+0ZRZ+HxdWo2un7EujaAAHy7urN3/RERERERERORsSjg1Qh1Cm9G3bQumr03FWluta/OKSvhmayZX9ozUNqAiIiIiIiIiUiklnBqpCQnR7MzMZVPasWpdN29rJnlFpVzbW9PpRERERERERKRySjg1Ulf1bIOfjxcfrNhfrSqnz9el0SY4gH6xIS6MTkREREREREQaMiWcGqngQF+uS4jm46QD3Pf+GnJyCy94zaHcQpbsOsQ1faLw8jJ1EKWIiIiIiIiINERKODVif7imO0+M7cKC7dlc8Y8lzN+Wed72X25Ip7TMajqdiIiIiIiIiJyXEk6NmLeXYfLwDsx6eAihzf2ZNDWJKdM3kltYUmn7GevT6RLRnM4Rzes4UhERERERERFpSJRwErpEBDHjwcHcN6IDHycdYOw/l5C07/BpbfYeOsn6A0cZ30fVTSIiIiIiIiJyfko4CQD+Pt5MGdOFafcOwmK54dXl/HnudopKygCYuT4NY2Bc7zZujlRERERERERE6jslnOQ0/WJDmPPocK5PiOHlhclc89JSth88zsz16QyMa0VkcKC7QxQRERERERGRek4JJzlLM38f/nxdT16/PZHsEwVc9a/v2XvoJNf2UXWTiIiIiIiIiFyYEk5yTpfFh/P1Y8O5tGsYoc39Gd090t0hiYiIiIiIiEgD4OPuAKR+a9XMn1dvS6SszOLlZdwdjoiIiIiIiIg0AKpwkipRsklEREREREREqkoJJxERERERERERcSolnERERERERERExKmUcBIREREREREREadSwklERERERERERJxKCScREREREREREXEqJZxERERERERERMSplHASERERERERERGnUsJJREREREREREScylhr3R2DyxljsoEUd8fhJK2BQ+4OQuqExrrx0Fg3DhrnxkNj3XhorBsPjXXjobFuPDTWztHOWhta2YlGkXDyJMaYJGttorvjENfTWDceGuvGQePceGisGw+NdeOhsW48NNaNh8ba9TSlTkREREREREREnEoJJxERERERERERcSolnBqe19wdgNQZjXXjobFuHDTOjYfGuvHQWDceGuvGQ2PdeGisXUxrOImIiIiIiIiIiFOpwklERERERERERJxKCScREREREREREXEqJZxqwRgTY4xZYIzZZozZYox51HE8xBgzzxizy/GxpeP4LcaYjY7XMmNMrwp9jTbG7DDG7DbGTDnPPe9w9LvLGHNHheN/NMYcMMbkXiDmBGPMJsd9/mWMMY7j1zu+hjJjjLaGPIOHjfWLxpjtjtg+N8a0qO3z8SQeNtZ/cMS13hjzjTGmTW2fjyfxpLGucP5xY4w1xrSu6XPxRJ401saYZ4wxaY7v6/XGmLG1fT6exJPG2nHuYUcMW4wxL9Tm2XgaTxprY8zHFb6n9xlj1tf2+XgSDxvr3saYFY6xTjLG9K/t8/EkHjbWvYwxyx3nvjDGBNX2+TRI1lq9avgCIoG+jvfNgZ1APPACMMVxfArwZ8f7wUBLx/sxwErHe28gGWgP+AEbgPhK7hcC7HF8bOl4f6q/gY54ci8Q8ypgEGCAOcAYx/GuQGdgIZDo7mdb314eNtaXAz6O938+FbNeHjnWQRXaPAK84u7nW59enjTWjnMxwNdACtDa3c+3Pr08aayBZ4DH3f1M6+vLw8Z6JPAt4O/4PMzdz7c+vTxprM9o81fgaXc/3/r08qSxBr6p8H4ssNDdz7c+vTxsrFcDIxzvJwJ/cPfzdcdLFU61YK3NsNaudbw/AWwDooBrgKmOZlOBax1tlllrjziOrwCiHe/7A7uttXustUXAR44+znQFMM9ae9jRzzxgtKPvFdbajPPFa4yJpPwX0OW2/E/+uxVi22at3VHth9BIeNhYf2OtLakkNsHjxvp4haZNAe0SUYEnjbXD34FfoXE+iweOtZyDh431/cDz1tpCR39Z1XgUHs/DxvpUGwPcAPyvio+hUfCwsbbAqUqXYCC9io+hUfCwse4MLHa8nwdMqOJj8ChKODmJMSYW6AOsBMJP/eF0fAyr5JJJlGdAofyb6ECFc6mOY2eqartziXJcU9PrBY8b64kVYpMzeMJYnyoHBm4Bnq5Gv41KQx9rY8w4IM1au6Ea/TVKDX2sHR5yTB9469S0AjmbB4z1RcAwY8xKY8wiY0y/avTbqHjAWJ8yDMi01u6qRr+NigeM9WPAi45/m/0F+E01+m1UPGCsNwPjHO+vp7wSvdFRwskJjDHNgOnAY2dUFJyr/UjKvyF+fepQJc0q+x/qqrY7561reX2j50ljbYx5EigBPqhGv42Gp4y1tfZJa20M5eP8UDX6bTQa+lgbY5oAT6KE4gU19LF2fHwZ6AD0BjIon34jZ/CQsfahfIrHQOCXwLRTa4PIjzxkrE+5GVU3nZOHjPX9wM8c/zb7GfBmNfptNDxkrCcCDxpj1lA+PbCoGv16DCWcaskY40v5N8MH1trPHIczHeV1p8rssiq07wm8AVxjrc1xHE7l9IxnNJBujBlgflxAcNy52p0nNu8K1//ecX3F6VPnvV5O50lj7VgQ7yrgFkf5p1TgSWNdwYc00lLe8/GQse4AxAEbjDH7HMfXGmMiqvMsPJ2HjDXW2kxrbam1tgx4nfJpA1KBp4y149xnttwqoAzQhgAVeNBYY4zxAX4CfFz1J9B4eNBY3wGciv8T9DP8LJ4y1tba7dbay621CZQnkpOr9yQ8hK0HC0k11BflGc13gX+ccfxFTl/U7AXH+7bAbmDwGe19KF+gLI4fFzXrVsn9QoC9lP9vV0vH+5Az2lxoUbPVlP9P2alFzcaecX4hWjTco8ea8nnJW4FQdz/X+vjysLHuVKHNw8Cn7n6+9enlSWN9Rpt9aNFwjx1rILJCm58BH7n7+danl4eN9X3A7x3vL6J82odx9zOuLy9PGmvHudHAInc/1/r48qSxpnxNoosd7y8F1rj7+danl4eNdZjjo5fja5ro7ufrljF1dwAN+QUMpbxkbiOw3vEaC7QC5gO7HB9DHO3fAI5UaJtUoa+xlK/Cnww8eZ57TnR8U+0G7qpw/AXKM6xljo/PnOP6RMrnkyYD/8HxDxdgvOO6QiAT+Nrdz7c+vTxsrHdT/o/WU7Fp5zLPHevpjuMbgS+AKHc/3/r08qSxPqPNPpRw8tixBt4DNjm+lllUSEDp5XFj7Qe87zi3FrjE3c+3Pr08aawd594B7nP3c62PL08aa8fXsobyBMhKIMHdz7c+vTxsrB913H8n8DyN9D8MTj0MERERERERERERp9AaTiIiIiIiIiIi4lRKOImIiIiIiIiIiFMp4SQiIiIiIiIiIk6lhJOIiIiIiIiIiDiVEk4iIiIiIiIiIuJUSjiJiIiIiIiIiIhTKeEkIiIiIiIiIiJOpYSTiIiIiIiIiIg4lRJOIiIiIiIiIiLiVEo4iYiIiIiIiIiIUynhJCIiIiIiIiIiTqWEk4iIiIiIiIiIOJUSTiIiIiIiIiIi4lRKOImIiIiIiIiIiFMp4SQiIiIiIiIiIk6lhJOIiIiIiIiIiDiVEk4iIiIiIiIiIuJUSjiJiIiIiIiIiIhTKeEkIiIiIiIiIiJOpYSTiIiIiIiIiIg4lRJOIiIiIiIiIiLiVEo4iYiIiIiIiIiIUynhJCIiIiIiIiIiTqWEk4iIiIiIiIiIOJUSTiIiIiIiIiIi4lRKOImIiIiIiIiIiFMp4SQiIiIiIiIiIk6lhJOIiIiIiIiIiDiVEk4iIiIiIiIiIuJUSjiJiIiIiIiIiIhTKeEkIiIiIiIiIiJO5ePuAOpC69atbWxsrLvDEBERERERERHxGGvWrDlkrQ2t7FyjSDjFxsaSlJTk7jBERERERERERDyGMSblXOc0pU5ERERERERERJxKCScREREREREREXEqJZxERERERERERMSplHASERERERERERGnUsJJREREREREREScSgknERERERERERFxKrcknIwxo40xO4wxu40xUyo5/3NjzFZjzEZjzHxjTLsK514wxmwxxmwzxvzLGGPqNnoRERERERERETmfOk84GWO8gZeAMUA8cLMxJv6MZuuARGttT+BT4AXHtYOBIUBPoDvQDxhRR6GLiIiIiIiIiEgVuKPCqT+w21q7x1pbBHwEXFOxgbV2gbU2z/HpCiD61CkgAPAD/AFfILNOohYRERFxg2lJB/hqY4a7wxARERGpFh833DMKOFDh81RgwHnaTwLmAFhrlxtjFgAZgAH+Y63dVtlFxpjJwGSAtm3bOiFsERERkbqVW1jC72ZuocxaukY2p31oM3eHJCIiIlIl7qhwqmzNJVtpQ2NuBRKBFx2fdwS6Ul7xFAVcYowZXtm11trXrLWJ1trE0NBQpwQuIiIiUpdmb8ogv7gUC0yZvomyskr/ySQiIiJS77gj4ZQKxFT4PBpIP7ORMWYU8CQwzlpb6Dg8Hlhhrc211uZSXvk00MXxioiIiLjF9DWpxLVuyrPXdGfVvsN8sDLF3SGJiABQXFrG11sOcvfU1Tz4wVqsVUJcRE7njoTTaqCTMSbOGOMH3ATMqtjAGNMHeJXyZFNWhVP7gRHGGB9jjC/lC4ZXOqVOREREpCE7cDiPlXsPM6FvFNcnRjOsU2uen7OdtKP57g5NRBqxvYdO8vyc7Qz603fc+94aVuw5zFebMli865C7QxOReqbOE07W2hLgIeBrypNF06y1W4wxvzfGjHM0exFoBnxijFlvjDmVkPoUSAY2ARuADdbaL+r2KxARERFxvelrUzEGxveNxhjDc+N7YIEnPtukSgIRqVP5RaV8tjaVG15dzsi/LOT1JXvo07YFb96RyOonRxEZHMBL3+12d5giUs+4Y9FwrLWzgdlnHHu6wvtR57iuFLjXtdGJiIiIuJe1ls/WpjG4QyuiWgQCEBPShF9d0ZlnvtjKZ2vTmJAQfYFeRERqZ3PaMT5efYAZ69M4UVBCbKsm/Gp0Z67rG01YUMAP7SYPb8//fbGVVXsP0z8uxI0Ri0h94paEk4iIiIic2+p9R9h/OI/HRnU67fjtg2L5YmMGv/9yK8MvCiW0ub+bIhQRT1ZQXMo97yaxZNch/H28GNsjkhv7xTAgLgRjzt4D6qZ+bfnPd7t5acFu+sf1d0PEIlIfuWMNJxERERE5j0/XHKCpnzeju0ecdtzLy/DnCT3JLy7ld7M2uyk6EffILSxxdwiNQmmZ5ZH/reP73YeYMqYLq54Yxd9v7M3A9q0qTTYBBPp5M3FoHIt2ZrMp9VgdRywi9ZUSTiIiIiL1SH5RKbM3HWRMj0ia+J1djN4xrBmPXtqJ2ZsOMndzhhsiFE90NK+I0rL6uzZYSs5J+j37LVOmb6SsHsfZ0FlreWbWFr7ZmsnTV8Vz34gOBDfxrdK1tw1qR/MAH/67UGs5iUg5JZxERERE6pGvtxwkt7CE686zRtPk4e2JjwziqZlbOJZXXIfRiSdKyTnJgOfmk/DsPB79aB0z1qVx5GSRu8M6zetL9pBfXMpHqw/w+y+3auF8F3l5UTLvrUjh3uHtuWtIXLWuDQrw5Y5BsczdcpDdWSdcFKGINCRKOImIiIjUI9PXphLdMpD+sedeeNfX24sXruvJ4ZNF/OGrrXUYnXiilxcmY4FLOofx/a5DPPbxehKenceEl5fx0oLdbE0/7tYEz6HcQj5JSuWmfjHcPTSOd5bt489zdyjp5GTT16TywtwdXNO7Db8e3aVGfUwcGkeAjzf/XZDs5OhEpCHSouEiIiIi9UT60Xy+332Ihy/phJdX5WulnNI9Kpj7RrTnpQXJjOvVhuEXhdZRlOJJ0o7mM31tKjf3b8vvr+lOWZllY9oxvtuexYLtWbz49Q5e/HoHkcEBXNw5jJGdQxnRORR/H+86i/HdZfsoKi3jnuHtad+6KfnFpbyyKJkmft48cmmnC3cgF7R4Zza/nr6RwR1a8eJ1vS748+dcQpr68dMBbXln2T5+dtlFxIQ0cXKkItKQqMJJREREpJ74fF0a1sKEvlFVav/wJZ3oENqU33y2iZNaUFlq4NVF5ZUo947oAJQvTN87pgU/v+wivnh4KKueuJQXJvSkd0wLvtiQzuT31vCbzzbVWXwnC0uYujyFy+PD6RDaDGMMf7imOxP6RvO3eTt5ffGeOovFU21OO8b976+hY1gzXrktAT+f2v2KeM+w9ngbwyuLVOUk0tgp4SQiIiJSD1hrmb42lf6xIbRr1bRK1wT4evPCdT1JP5bPC3O3uzhC8TRZxwv4aPUBJvSNJqpFYKVtwoICuKFfDC/fmsDapy7juoRovtqYUWcJzmlJBziWX/xDQgxO7dbYgyt7RvLH2dt4b/m+OonFEx04nMdd76ymRRM/pk7sT1BA1RYIP5+I4AAmJETzSVIqmccLnBCliDRUSjiJiIiI1APrDxxlT/ZJJiRUrbrplIR2IdwxKJZ3V6Swet9hF0Unnui1xXsoKS3j/os7XLgx4OfjxfUJ0RSWlDF/e5aLo4Pi0jLeWLKX/rEh9G3b8rRzPt5e/OPG3ozqGsZTM7fwSdIBl8fjaY6cLOKOt1dRWFzKO3f1IzwowGl93z+iAyVlZbyxRBVoIo2ZEk4iIiIi9cD0takE+Hoxtkdkta/95RWdiWoRyG8+26Qt46VKcnIL+WDlfq7pHVXlijqAxNgQwpr789XGdBdGV272pgzSjuZz74j2lZ739fbiPz/ty7BOrfn19I18scH1MXmKguJSJk1dTeqRfN64ox+dwps7tf+2rZowrlcbPli5v97teCgidUcJJxERERE3KyguZdb6dK7oFkHzGkxpaervw88vu4jdWbmqcpIqefP7vRSUlPLgyKpVN53i7WUY2yOShTuyyXXhtDprLa8s2kOnsGaM7Bx2znYBvt68dlsiibEh/Ozj9Xyz5aDLYvIUpWWWR/63jnUHjvLPG3vTP+7cO2LWxgMjO5JXVMrbS/e6pH8Rqf+UcBIRERFxs/nbsjheUMKEvtE17mN09wia+fvw6ZpUJ0YmnuhYXjHvLk9hbPdIOoZVv7JlbI/I8ml12zJdEF25JbsOsS3jOJOHt7/gjmmBft68dWc/ukUF89CH61i0M9tlcXmCZ2Zt4ZutmfzuqnjG1KCisqouCm/OFd3CeWfZPk4UFLvsPiJSfynhJCIiIuJm09emEhEUwJCOrWvcRxM/H8b2iGD2pgzyirRjnZzb28v2kltYwkOXdKzR9YntWjqm1WU4ObIfvbo4mfAgf67pXbU1zZr5+/DuXf3pGNaMe99LYtVeVfpVZkv6Md5bkcKkoXHcOSTO5fd7cGRHjheU8P6K/S6/l4jUP0o4iYiIiLhR1okCFu3MZnzfKLwvUMlxIRP6RnOyqJSvNa1IzuFEQTFvL93HqK7hdI0MqlEfXqem1e3MdknlyqbUYyzdncOkoXH4+VT915XgJr68N6k/EUEBTJm+kZLSMqfH1tDN2XQQLwMPVHGh+NrqGd2CFX3jtwAAIABJREFUYZ1a8+b3eygoLq2Te4pI/aGEk4iIiIgbzVyXTmmZrdV0ulP6xYYQExLI9DVpTohMPNF7K1I4ll/MwzWsbjrlqp6RFJWU8Z0Ldqt7dXEyzf19uLl/22pf26qZP1PGdGXPoZN8UQcLmzck1lpmb85gYPtWtGrmX2f3fWhkRw7lFvHxau0kKNLYKOEkIiIi4ibWWqavTaVXTAs6hjWrdX9eXoaf9IlmafIh0o/mOyFC8SR5RSW8sWQvwy8KpVdMi1r11bdtSyKCAvjSydPq9ufkMXtTBrcMbFejBfQBLo8vr9769/zdqnKqYFdWLnuyTzKme0Sd3ndA+1b0i23Jq4uSKSrReIg0Jko4iYiIiLjJlvTjbD94gusSal/ddMqEvtFYC5+vU5WTnO5/qw5w+GRRrauboDy5OaZHBIucPK3u9SV78PHy4q4hsbWK7dFLO6nK6QyzN2VgDFzRrW4TTlC+Y136sQJm6OeSSKOihJOIiIiIm0xfm4qftxdX93TeTlFtWzWhf1wI09ekYq11Wr/SsBUUl/LqomQGtg+hX2yIU/o8Na1u/jbnTKvLyS1kWtIBxveJIjwooFZ9qcrpbHM3H6RfuxDCavlsa+Lii0LpHhXEfxfudlr15faDx3lqxmbmbtaadSL1lRJOIiIiIm5QVFLGzPXpjIoPo0UTP6f2fV3faPYcOsm6A0ed2q80XJ+sSSXrRCEPX9LJaX32iWlJZLDzptVNXZ5CYUkZ9wxvX+u+VOV0uj3ZuWw/eILRdTyd7hRjDL+4vDP7D+cx7IUF3PfeGpYn51Q7KV5WZlmwI4tb31jJ6H8s4b0VKfx2xibyi7QguUh9pISTiIiIiBss3JHF4ZNFTlks/ExjekQQ4OvF9DWpTu9bGp6ikjJeWZhM37YtGNyhldP69fIyjOkeyeKd2Ryv5bS6vKIS3l2+j8viw52ynhn8WOX0r3pY5VRQXEpeUUmd3W+OowrIXQkngJGdw1j0y5HcM6w9K/bmcPPrK7jiH4t5f0UKJwvP/ywKikv5cOV+Lvv7Iu56ezW7sk7wq9Gdee22BA7lFvG/Vfvr6KsQkerwcXcAIiIiIo3R9LWptG7mz/CLQp3ed/MAX0Z3i+CLDek8dVU8Ab7eTr+HNBwz1qWRdjSfZ6/tjjHGqX1f2TOSt5buZf62TMb3qXnydNrqAxzNK+a+EbWvbjrlVJXTfe+vYdaGdH7iguRuTZwsLOHKfy1hX04erZr6Ed0ykOiWTYgOcXxsGUhMy0CiWjQh0M8537tzNmfQO6YFbVoEOqW/mooJacKUMV14bFQnZm1IZ+qyffx2xmb+PHc71yfEcNugdsS1bvpD+6wTBby3PIX3V6RwJK+Y7lFB/OPG3oztEYmfT3ntRP+4EF5dnMxPB7TVzzqRekYJJxEREZE6tivzBN9tz+KOQbH4erum4HxCQjQz1qfz7bZMrurZxiX3kPqvpLSM/y7cTfeoIC7u7PzkZp+YFrQJDuCrjRk1TjiVlJbx+pK9JLZrSUI756wvdcoPazl9t5txvdrg46Lvt+p4bvY2Ug7ncd+IDhzLLyb1SB7bMo4zb2smRWdUYrVu5s8V3cJrlSzcn5PH5rTjPDG2izPCd4oAX29uSIzh+oRo1u4/ytRl+3h3+T7eWrqXEReF8pO+USzeeYgvNqRTXFbGqK7h3D00jv5xIWc9h0cu6cStb67k0zWp3DqwnXu+IBGplBJOIiIiInWooLiUh/+3juYBvkx2YjXHmQZ3aE1kcADT16Qq4dSIfbkxg305ebxya4LTq5vg1G51kby3PIVj+cUEB/pWu4+vNmWQdjSfZ8Z1c0l8j43qxL3v1Y8qpyW7svlg5X7uHhrHlDGnJ4DKyizZuYWkHskj9Ug+qUfyWZtyhA9W7mdcrzYMaF+z6ZBzt5SvsTWmu/M2J3AWYwwJ7VqS0K4lv72yK/9bdYAPVqbw6EfZBPp6c3P/GO4aEkdshaqnMw3p2Io+bVvw8sJkbuwX47IkvohUn74bRUREROrQC3N3sP3gCV68ridhzV23W5S3l2F8nygW7zpE1okCl91H6q+yMst/Fuymc3hzLo8Pd9l9ruwZSVFpGd9uzaz2tdZaXl20hw6hTbm0S5gLoiuvcop3VDnVdC0nZ+z4eLygmF99upEOoU15/IrOZ5338jKEBwWQ0C6Ea3pH8eDIjrx0S19aNfXj5UXJNb7v7E0H6R4VRExIk9qE73JhQQE8OqoTS6dcwkeTB7LiN5fyf9d0P2+yCcqTVo9c0om0o/l8vjatjqIVkapQwklERESkjizckcVbS/dyx6B2XNrVdQmAUyYkRFNaZpm5rma7dO3JzuXwySInRyV15ZutB9mdlcuDl3TEy8v51U2n9IlpQVSLQGZvqv5udbM3HWRrxnHuHd7BZTEaY3h0VCf2HjrJrA3V+16w1vKv+bvo+4d5LEs+VKs4/vDFVjKPF/CX63tVea2hAF9vJg6NY+GObLamH6/2PdOP5rP+wNF6Wd10Lr7eXgxs34rgJlWvlru4cyg9ooJ5aWH9WyBepDFTwklERESkDhzKLeTxTzbSObw5vxnbtU7u2SG0Gb1jWvDpmtRqV2h8s+Ugl/5tEX3/MI/L/76IJz/fxMz1aRw8pmqphuKNJXuJbhnIWBfvTGaMYWyPCBbvyuZYftV3q9uWcZxffrqBXjEtuLZPlAsjrFmVU3FpGVOmb+Jv83ZSXGqZ/O4aNqUeq9H952/L5JM1qdw3ogN92ras1rW3DmxHM38fXqlBldNcx+50Y9y4O11dMMbw0CUdScnJ44uNNUuwi4jzKeEkIiIi4mLWWn75yQaOFxTzz5t71+lOShMSotmReYIt1aiO2Jh6lEc/Wk/PqGB+eUVnIoMDmbk+nUc/Ws/AP81n+AsLePyTDUxLOkBKzkmnTDeC8l/w52/L5KEP13Lxiwt4Y8keilWtUCPr9h8hKeUIE4fE1clC2WN7RFJcaplXxWl1h3ILuXtqEkEBvrx+W8IPO465SsUqp5nrL5yQOFlYwt1Tk/g46QAPX9KRb38+ghZNfLnj7VXszsqt1r2P5hUx5bNNdIlozqOjOlU79uBAX24Z0JYvN6aTknOyWtfO3XyQLhHNaR/arNr3bWgu6xpOl4jm/Oe73ZSWOednkojUjhJOIiIiIi42ddk+FuzI5okxXegSEVSn9x7Xsw1+3l58uia1Su1Tj+QxaWoSIU39eOOOfjw4siNTJ/Zn/dOX8cVDQ3nqqni6RjZn/rZMfvXpRka8uJABz83noQ/X8t6KFHZmnqhWAspay9r9R3h65mYGPDefSVOTWLr7EC2b+vHsV9sY/Y/FLNqZXdMvv9F68/u9NPf34YZ+MXVyv97VmFZXVFLG/e+vIedkIa/fnkhYkOvWMqvoxyqnXeetcso6UcCNry3n+92HeG58D35xeWciggN4f9IAvAzc/uZK0o/mV/m+v5u1hSMni/jL9b3w96lZsnni0Dh8vLx4bfGeKl+TdbyA1SmHGe3h1U2neHkZHhzZkeTsk8zZXP3pne5UVmZZve8w6/YfcXcoIk6lXepEREREXGj7weM8N2c7IzuHcsfg2Dq/f3ATXy6LD2fWhnSeGNv1vJUkxwuKmfjOagqKS/nw7gGENvf/4ZyPtxc9ooPpER3MpKFxlJVZkrNzWbn3MKscry83lv+SF9LUj/6xIfSPC2FA+xC6RAThfcb6PHsPnWTGujRmrE8jJScPfx8vLosPZ3yfKIZ1CsXX2/Dd9ix+/+VW7nhrFaO6hvHbK+MvuICwlCcN52w+yKShcTTzr5t/7htjuLJnJG8v3cuxvOJzrr9jreW3Mzaxet8R/n1zH3pEB9dJfKdifNSxY93M9elMSDh7x7rdWbnc+fYqcnKLeOP2REZWWMg8tnVTpk7sz02vruC2N1fyyX2DCWnqd957zt2cwcz16Tw2qhPdo2r+tYYHBTAhIZpP1qTy6KhOVdpw4OstB7G2vPqssRjbI5K/f7uT/3y3m7HdI126dpkz7Mw8wYx1acxcn07a0Xya+HmzbMoltGhy/j9XIg2FEk4iIiIiLlJQXMoj/1tHUIAvL17fyyXb0lfFhIQovtqUwYIdWVzRrfJqh+LSMh78YC17sk8ydWJ/OoU3P2+fXl6GTuHN6RTenFsHtsNay/7Deazce5iVew6zcm8Oc7eUrx8TFOBDv9jy5JOvtxcz16ez/sBRjIHBHVrx0MiOjO4eQfOA05MUl3YNZ2in1rz1/T7+890uLv/7YiYNi+OhkR1pWkeJlIZo6rJ9AHWe4LyyRySvLd7DN1sPcn1i5ZVVby3dx7SkVB65pCNX92pTp/HB6VVO1/Ruc9p0w1V7D3PPu0n4ehs+vncgPaNbnHV9tzbBvHlnP257cyV3vr2KD+8ZeM6kXk5uIU9+vpnuUUE8OLJjrWO/d3h7Pl69n7eX7uPXo7tcsP2czQdpH9qUTmGeP53uFG8vw0MjO/LzaRv4dlsml5/j5507HTxWwKwNacxYl87WjON4exmGdmzN7YPa8ac52/lg5X6n/HkRqQ/0N7WIiIiIi/xp9jZ2ZuYydWJ/Wjfzv/AFLjK8Uyitm/kzfU1qpQknay1PzdjMkl2HePG6ngzp2Lra9zDG0K5VU9q1asoNjmRD2tF8Vu3NYeWe8gqo+duzAOgaGcQTY7swrlcUEcHnr9Tw9/Hm/os7MKFvFM/P3c7LC5OZviaVKWO6cG3vqHpfwVDXThQU89GqA4ztEUlUi8A6vXfP6GCiW5ZPq6ss4bRwRxZ//Goro7tF8Nioi+o0tlPOVeX01cYMfjZtPdEtAnnnrv60bdXknH30jwvhv7f0ZfJ7a5j8bhJv3dnvrHXZyiu5NnOioIQPr++NrxPW0Ypt3ZQxPSJ5f3kK91/cgaCAc+/ilpNbyIo9OTxwcUe3JbrdZVyvNvxz/i7+/d1uLosPrxdf//GCYuZuPsjM9WksS87BWugV04LfXR3PVT3b/FBNujQ5h7eX7mPS0Lg6XetPxFXcsoaTMWa0MWaHMWa3MWZKJed/bozZaozZaIyZb4xpV+FcW2PMN8aYbY42sXUZu4iIiEhVfLc9k6nLU5g0NI4RF4W6NRYfby+u7d2GBTuyOHyy6KzzLy9K5qPV5Ysjn6sypSaiWgQyvk80z0/oyXePX8yqJy5lweMXM+fRYUwe3uGCyaaKwoIC+NsNvfnsgcFEBgfw82kbmPDKMjYcOOq0eD3BtKRUThSWMGloXJ3f2xjDlT0iWbLrEMfyTt+tbndWLg9/uI7OEUH87cZebk0UnrmW0xtL9vDQ/9bSMyqY6fcPPm+y6ZRLu4bzl+t7siw5h0c/WnfWmlCzNqQzZ/NBHrusE50jzl8tWB33j+jAicISPlix/7zt5m3NpMzCmB71r8LH1Xy8vXjg4g5sSjvGwnqw/tuf526n37Pf8qtPN5J6JJ9HLunEd78YwcwHh3DXkLjTpi7fN7w9h3IL+XxdmhsjFnGeOk84GWO8gZeAMUA8cLMxJv6MZuuARGttT+BT4IUK594FXrTWdgX6A1muj1pERESk6rJOFPD4JxvpGhnEr0Z3dnc4QPludcWlllnrT/9F5suN6bwwdwfjerXh55e5tuokLCiAuFquwdS3bUs+f2AIL1zXkwOH87n2v0t5euZmThaWOCnKhquktIy3l+6lX2xLesecPR2sLlzZM5KSMsvXWw/+cOxoXhF3T12Nv68Xb9yRSBM/906yMMbw2KhO7MvJ46bXVpQvTt8tgvfvHkDLC6zJVNH4PtH87up4vt6SyROfb/phsfys4wU8PXMLvWNaMHlYe6fG3j0qmGGdWvPm93spKC49Z7vZmw/SNqQJ8ZF1u0lBfTG+TzRRLQL59/xdTttFsyaSs3N5eWEywy8K5bMHBrPw8Yv52WUXnXPXwEEdWtE9KojXl+yhTDvtiQdwR4VTf2C3tXaPtbYI+Ai4pmIDa+0Ca22e49MVQDSAIzHlY62d52iXW6GdiIiIiNuVlVl+MW0DeUUl/Oum3jXelcrZukYG0a1NENPX/phwWpNymJ9P20C/2Ja8eH3PejH1pCq8vAw3JMaw4PER3Dk4lvdWpDD6n4tZnpzj7tDc6putmaQeyWfSUOcmOaqjR1T5tLqvHAvIF5eW8eCHa0k/WsCrtyXU+TS/c7nMUeWUlHKEiUPi+M9P+9ZoCtNdQ+J45NJOTEtK5fk527HW8pvPNlFQXMpfb+h12hpRznL/xR04lFvI9LWV7zx5LK+YZbsPMaZHRIP5nnY2Px8v7ru4A2v3H2WZG38ufLBiP77ehufG96Bv25YXHA9jDJOHd2BP9km+3ZZZR1GKuI47Ek5RwIEKn6c6jp3LJGCO4/1FwFFjzGfGmHXGmBcdFVNnMcZMNsYkGWOSsrPdX0opIiIijcNbS/eyZNchfntl/AUX3q5rE/pGsyntGDsOniAl5yT3vLuGqBaBvHZbYr1JjFVH8wBffnd1Nz6ePAhvY7j59RUNutqpsKT0rKlZ1fHGkj20DWnCZfHhToyqek7tVrd09yGO5hXxhy+3snR3Dn8c352EdiFui+tMxhheuqUvr96WwNNXx5+1i2J1/GxUJ24f1I5XF+/hrndWM397Fr+8ojMdzlHFUluD2reiV0wLXl20p9I/L/O2ZVJSZhnTvfHsTleZ6xOiCWvuz7/m73LL/fOKSvhkzQHGdI88bdrchYztHkF0y0BeW7zHhdGJ1A13JJwq+2leab2gMeZWIBF40XHIBxgGPA70A9oDd1Z2rbX2NWttorU2MTTUvesmiIiISOOQnJ3LC3N3cFl8OLcMaOvucM5yTe82+HgZ3vp+L3e9vRprLW/f2a9a04jqo/5xIcx5dDgTh8T9UO20LPmQu8Oqli3pxxjxwkJuem3FeadKncualCOs3X+UiUNia5U8cYarerShpMzy0IfreHd5CpOHt3fq2mDOEte66Tl3bawOYwzPXN2Ncb3asHBHNv1jQ5g4xHVraBljuH9EB/YfzmP25oNnnZ+zKYM2wQH0ig52WQwNQYCvN/eO6MDKveWbFtS1WevTOVFQwm2D2l24cQU+3l5MGhpHUsoR1qTUfdwizuSOhFMqUPFvnGgg/cxGxphRwJPAOGttYYVr1zmm45UAM4C+Lo5XREREpEqmr0ml1FqeG9+jXk5ladXMn4s7h/Fx0gFSj+Tz+u2JxNZyTaX6ItDPm6evjmfaveXVTj99fSVPzWgY1U4LtmdxwyvLKSkrIynlCL/6dGO115156/u9NA/wqReJne5RQbQNacL3uw8xsnMovx7dxd0huZyXl+GvN/Tid1fH8++f9nH5ouiXx4fTPrQpLy9MPu3PyomCYpbsOsTo7pH18mdQXftp/7a0bubHv7+r2yonay3vLk+hS0RzEtu1rPb1N/aLoUUTX15dpConadjckXBaDXQyxsQZY/yAm4BZFRsYY/oAr1KebMo649qWxphTJUuXAFvrIGYRERGR87LWMmfzQQa1b1Wt6RN17bZB7fDz9uIvN/QiMbb+THFyln6xP1Y7vb+y/lc7vbcihUlTVxPbuilfPTKMX43uzKwN6fzj26r/gnzgcB5zNmfw0wFtaerv3gW5obwC594R7RncoRX/urmP2yuu6oqvtxd3DYkjPKjquy/WlJeX4b4RHdiWcZxFFXZi+257FkWlZYxthLvTVSbQz5u7h7Vnya5DrK/DHS3X7j/K1ozj3DaoXY0Sf038fLhtYDvmbctkT3auCyIUqRt1nnByVCY9BHwNbAOmWWu3GGN+b4wZ52j2ItAM+MQYs94YM8txbSnl0+nmG2M2UT497/W6/hpEREREzrQj8wR7D52s99uQj7golI3PXM64Xm3cHYrLVKx28vHyqpfVTmVlludmb+OpGZu5uHMY0+4dRHhQAPeP6MD1CdH8c/4uZq6v2tbo7yzbh5cx3Dk41rVBV8MtA9rx4T0DaR7g6+5QPNa1vaOIDA7g5YXJPxybs+kgYc396du2+lU1nurWge1o0cSXf367s87u+f6KFJr5+3Bt7/MtVXx+tw+Kxdfbi9eX7HViZCJ1yx0VTlhrZ1trL7LWdrDW/tFx7Glr7anE0ihrbbi1trfjNa7CtfOstT2ttT2stXc6droTERERcavZmw5iDFweX78TTkCNduNqiPrFhjD7kWFMGlpe7XTlv5awoQ6rHM6loLiUBz9cy2uL93DbwHa8dlvCD5VJxhj+OL4HA+JC+OUnG0nad/41XI4XFPPx6gNc2TOSyOD6sQOc1A0/Hy/uHtaelXsPsyblCCcLS1iwI4vR3SNcPqWvIWnm78Pk4e1ZsCOb73e5vtoxJ7eQrzZmMKFvVK0qDkOb+zOhbzTT16aSfaLwwheI1ENuSTiJiIiIeJq5mzPoHxtSr6fTNUaBft48dVU8H08eRHGpZcLLy3hlUTJlZdVbI8lZcnILufn1FczdcpDfXtmV31/TDR/v0/9J7ufjxSu3JhDVMpDJ761hf07eOfubtvoAuYUlTBrqukWqpf66ybHWzyuLklm4I5vCkrJGvztdZSYOiaNtSBP+74stFNdiJ8iq+DjpAEWlZdVeLLwy9wyLo7i0jHeX76t1XyLuoISTiIiISC3tzsplZ2YuY7rX/+qmxqp/XHm10+Xdwnl+znZue2slmccL6jSG5Oxcxv93GVvTj/PyLX25e1j7c67v0rKpH2/ekUhpmWXi1NUcyy8+q01JaRlvL91H/7gQeka3cHX4Ug819ffhjkGxzNuayauLk2nV1I/+cZ63NlttBfh689sru7IrK5f3V6S47D6lZZYPVuxnUPtWdAxrXuv+2oc24/L4cN5dnlKvpgSLVJUSTiIiIiK1NHdzBgCjVVlQrwU38eWln/bl+Z/0YG3KUcb8cwnzt2XWyb1X7snhJ/9dxsnCEj6aPLBKf1bahzbjlVsT2HfoJA99uPasyoyvt2SSdjSfu1Xd1KjdMTiWQF9vNqYe4/JuEY1mkfbquiw+nGGdWvO3eTvJyXXNFLWFO7JIO5rvlOqmUyYP78Cx/GKmJR1wWp8idUUJJxEREZFamr3pIH3btiAi2PW7U0ntGGO4qX9bvnh4KBFBAUyamsQzs7ZQUFzqsnvOWJfGbW+uolUzPz5/YAh9qrGg86AOrXjuJz1YsusQz8zagrU/TgV84/s9xLZqwqVdw10RtjQQIU39uKl/DICqLM/DGMPvro4nv6iUv3zjmgXE312eQniQP5fFO+97MqFdSxLbteTN7/dS4uLpgCLOpoSTiIiISC2k5Jxka8ZxxvZQdVND0jGsGZ8/OJiJQ+J4Z9k+rn1pKbsyTzj1Hsfyivn5tPU89vF6+rRtwWf3D6ZtqybV7ueGxBjuG9GBD1bu562l+wBYk3KEdfuPMmlonCpahMcuvYhnr+3O0I6t3R1KvdYxrDm3D4rlo9X72Zx2zKl9p+ScZNHObG7u3xZfb+f+mj15eHtSj+Qze/NBp/Yr4mpKOImIiIjUwhzHLwCjVVnQ4Pj7ePP01fG8fWc/sk8UcvV/vueDlSmnVRHV1HfbM7n8H4uYuT6dhy/pyHuTBtCiiV+N+/vVFZ0Z3S2CZ7/ayvxtmbz5/R6CA32ZkBBd61il4Qtu4sutA9tpd7oqeHRUJ0Ka+J1VMVhbH6zcj4+X4eb+bZ3W5ymjuobTPrQpry1OdmrMIq6mhJOIiIhILczZlEHP6GCiW1a/ckXqh5Fdwpjz2DD6xYbw5OebmfjOalbuyanRL3bH8or5xbQNTHwniRaBfsx4YAi/uLwzfj61+2e3l5fh7zf2pkdUMA//bx1zNx/klgFtaeJX823XRRqj4EBffnlFZ5JSjjBrQ7pT+iwoLmVa0gGu6BZBeJDzp1Z7eRnuGdaezWnHWZ6c4/T+RVxFCScRERGRGko9kseG1GPahtwDhDUPYOpd/fntlV1Zu/8oN762gjH/XMKHK/eTV1S13aFOVTXNWJ/GQyM7MuvhIfSIDnZajIF+3rxxeyLBgb54exnuGBzrtL5FGpPrE2PoHhXEn2Zvr/L39/l8sSGdo3nF3DrQeYuFn2l8nyhaN/PnlcV7XHYPEWdTwklERESkhuY6ptNpoV7P4OVluHtYe1b85lL+PKEHXsbwxOebGPDcfH7/xVb2HjpZ6XXH8ot5/JMfq5o+f2Awj1/RGX8fb6fHGBYUwCf3DeL9SQNcUkkh0hh4exmeubobB48X8N8FybXu7/0VKXQKa8bA9iFOiK5yAb7e3DUklsU7s9mWcdxl9xFxJiWcRERERGpo7uaDdI0MIrZ1U3eHIk4U6OfNjf3a8tUjQ/n0vkGM7BzGu8v3MfIvC7njrVXM35ZJaVn5dLsF27O4/O+L+Hzdj1VNPaNbuDS+6JZNGNC+lUvvIeLpEmNDuLZ3G15bsof9OXk17mfDgaNsSD3GbYPaYYxr19C6dUA7mvh587qqnKSBUMJJREREpAYyjxeQlHJE1U0ezBhDYmwI/7q5D8umXMLPRl3EtozjTJqaxMV/WcA97yZx1zurCQ70dWlVk4i4xpQxXfHxMjz71dYa9/HeihSa+Hkzvk+UEyOrXHATX27sF8OsDem1SpKJ1BUlnERERKTRmr4mla82ZtTo2q+3lE+nG9tDCafGICwogEdHdWLplEv4z0/7EBkcyMIdWTw4sgNfPDzU5VVNIuJ8EcEBPDiyI99szWTJruxqX3/kZBFfbEhnfJ8omgf4uiDCs903ogO+3l78ac62OrmfSG1oWwsRERFplPKLSnl65maKyywXhTejU3jzal0/e1MGHcOa0TGsetdJw+br7cVVPdtwVc82WGtdPoVGRFxr0tA4Pl59gP/7YitzHh2Gr3fVazI+XZNKYUkZtw1y3WLhZwoPCuD+izvwt3k7WbknR9NrpV5ThZOIiIg0St9sPcjJolIAHv9kAyWlZVW+9lBuIav2HmasptM1akqw2OQNAAAgAElEQVQ2iTR8Ab7ePHVVPLuzcnlveUqVrysrs7y/MoX+sSF0iQhyYYRnu2dYeyKDA3j2q22UOdaTE6mPlHASERGRRunzdWlEtQjkr9f3YkPqMV6txiKs32zJpMzCmB6RLoxQRETqwqiuYQzr1Jq/f7uTnNzCKl2zeFc2KTl53FqH1U2nBPp58+vRXdiUdozP1qXV+f1FqkoJJxEREWl0sk8UsmTXIa7p3Yare7Xhyp6R/OPbnWw/WLWtpudsziC2VRO6RGg6nYhIQ2eM4XdXx5NfVMpzs7eTknOS/Tl5HDicR9rRfDKO5ZN5vICsEwVknygkJ7eQqcv20bqZP6O7uafSdVyvNvSKacGLX28nr6jELTGIXIjWcBIREZFGZ9aGdErLLD/pW76r0B+u6c7KPTn8YtoGZjw45LxreBw5WcSy5BwmD2+vKVUiIh6iY1hz7hgcy5vf72X62tQqXfPQyI74+binhsPLy/D0VV2Z8PJyXlm0h59fdpFb4hA5HyWcREREpNGZsS6NHlHBPyz4HdLUj2ev7cF976/hvwuSeXRUp3NeO29bJqVlljFav0lExKNMGdOFfrEh5BWVYC2UWfvjR8o/llmw1uLtZbimd5Rb401oF8JVPSN5bXEyN/WLoU2LQLfGI3ImJZxERESkUdmddYJNacd46qr4046P7h7Btb3b8O/vdjEqPoxubYIrvX7u5oNEtQikR1Tl50VEpGHy9fZidAP7z4QpY7rwzdZMXpi7nX/c1Mfd4YicRms4iYiISKPy2do0vL0M43q1OevcM+O60bKpH7+YtoGikrN3rTteUMySXdmM6R6h6XQiIuJ20S2bcPfQOGasT2f9gaPuDkfkNEo4iYiISKNRVmaZuT6dYZ1aE9rc/6zzLZr48afxPdh+8AT//m7XWee/25ZFcanV7nQiIlJvPDCyI62b+fOHL7dirXV3OCI/UMJJREREGo1V+w6TdjSf8X3Ove7GqPhwJvSN5r8Lk9mYevr/Fs/elEF4kD99Ylq4OlQREZEqaebvwy+vuIg1KUf4cmOGu8MR+YESTiIiItJofL42jaZ+3lwef/41Op6+Op7QZv78YtoGCktKAThZWMKindmM6R6Jl5em04mISP1xXUIM8ZFBPD9nOwXFpe4ORwRQwklEREQaiYLiUmZvymB090gC/bzP2zY40JfnJ/RgV1Yuf59XPrVuwY4sCkvKtDudiIjUO95eht9e1ZW0o/m8+f1ed4cjAijhJCIiIo3Et9syOVFYwk/6Vm0b64s7h3FTvxheW5zM2v1HmLPpIK2b+ZEYG+LiSEVERKpvcIfWXBYfzn8X7CbrRIG7wxFRwklEREQahxnr0ggP8mdg+1ZVvubJK7sSERTA49M2sGBHFld0i8Bb0+lERKSeemJsV4pKy/jr1zvdHYqIEk4iIiLi+XJyC1m4I5tre0dVK2HUPMCXF67rxZ5DJ8krKmVMd+1OJyIi9Vdc66bcPiiWaWsOsCX92HnbWms5crKILenHyCsqqaMIpTHxcXcAIiIiIq725cYMSsos46s4na6ioZ1ac+fgWOZtzWRAe02nExGR+u2RSzrx2dpUnv1yG6/cmsCBI3mkHskn9ayP+eQWliea4lo35Z27+tGuVVM3Ry+exFhr3R2DyyUmJtqkpCR3hyEiIiJucu1LSykoLmXuY8NrdL21lpIyi6+3isNFRKT+e3f5Pp6eueWs4838fYhuGUhMSBOiWwYS3bIJzf19+NOcbXgZw5t39qN3TIu6D1gaLGPMGmttYmXnVOEkIiIiHm1Pdi7rDxzlibFdatyHMQZfb63dJCIiDcNP+7clt7AEP2+vHxJLMS2bEBTogzFn/32WGNuSO99ezU2vLeffN/flsvhwN0QtnkYJJxEREfFoM9al4WXgmt7Vn04nIiLSEPl4e/HAxR2r3L59aDM+e2Awk95Zzb3vJfF/47px26BY1wUojYJb6sKNMaONMTuMMbuNMVMqOf9zY8xWY8xGY8x8Y0y7M84HGWPSjDH/qbuoRUREpKGx1vL5+jSGdGxNeFCAu8MRERGpt1o38+d/kwcysnMYT83cwvNztlNW5vlL8Ijr1HnCyRjjDbwEjAHigZuNMfFnNFsHJFprewKfAi+ccf4PwCJXxyoiIiIN25qUIxw4nM+1qm4SERG5oCZ+Prx6WwK3DGjLK4uSeezj9RSWlLo7LGmg3FHh1B/Yba3dY60tAj4CrqnYwFq7wFqb5/h0BRB96pwxJgEIB76po3hFRESkgfpsXRqBvt6M7h7h7lBEREQaBB9vL569tju/Gt2ZWRvSueOtVRzLL3Z3WNIAuSPhFAUcqPB5quPYuUwC5gAYY7yAvwK/vNBNjDGTjTFJxpik7OzsWoQrIiIiDVFhSSlfbczgim7hNPXXspUiIiJVZYzhgYs78o8be7Mm5QjXvbyMtKP57g5LGhh3JJwq2+Kl0omhxphbgUTgRcehB4DZ1toDlbU/rUNrX7PWJlprE0NDQ2scrIiIiDRMC7ZncSy/mGv7aDqdiIhITVzbJ4qpd/Xn4LECxr+0lFV7D1NSWubusKSBcMd/96UCMRU+jwbSz2xkjBkFPAmMsNYWOg4PAoYZYx4AmgF+xphca+1ZC4+LiIhI4/b5ujRaN/NnaMfW7g5FRESkwRrcsTWf3D+Iu95ezQ2vLsfP24uOYc3oEtmcrhFBdIlsTpeIIEKb+7s7VKln3JFwWg10MsbEAWnATcBPKzYwxvT5f/buO7zq8vzj+PvJXiQEMsggQBJWGGGDiCBDwQG4tWrVule1au0e1tafVlutts66tdWqdSDgAgRFQIaQMBIgYSVkB7LJODnP748ARQ2QcZKT8XldVy7IOd9xHzUx55PnuW/gWWCOtbbgyOPW2iuOOeYaGhqLK2wSERGRbympqmVZegFXndIfL0+3DOUVERHpMob0CWbRHaexYkcB6bnlpOWVs3JnEe9+s//oMb0DfY6GTxMG9OLMpEiMaWyDk3QX7R44WWsdxpjbgU8AT+BFa+1WY8z9wHpr7QIattAFAW8f/g90n7V2XnvXKiIiIp3TwtRc6uot52s7nYiIiEv0CvTh/NGxMPp/jxVX1LA9r5z0vHLS88pIzyvn9TV7eWHlbp794VhmD+seQzsOVtZyybOr8fQwXDGpH+ePjiFI/SMx1jbaPqlLGTdunF2/fr27yxAREZF2cuHTqyg7VMend03Vb1dFRETaUa3Dydy/r6SixsHSe6bh5+3p7pLalKPeydUvrWXd7oMkRASRlltGoI8n542O4YqJ/UiKDnZ3iW3KGLPBWjuusee0xlxERES6lJSsEjbsPciFY2MVNomIiLQzHy8P7ps3jP0lh3h6eaa7y2lzD36UzlcZxfzp/OEsvmMK7906mbNGRPHOhmzOfuJLLnjqK/67IZvqunp3l9ruFDiJiIhIl2Gt5cGP0ggL8uHKSf3cXY6IiEi3dEpCb+YmR/P0ikz2FVe5u5xGuSIAemdDNi+s3M01k/tzybi+GGMYHRfKXy5O5utfzeQ35wylpKqOe95OYdKDS3lg0TZ2F1W6oPrOQYGTiIiIdBnLtxeyZtcB7pg5UL0TRERE3OhXZw/By8Pwx0Xb3F3Kt9Q46rnnrRRG3vcpb6/PavF1NmWV8Kv3NjM5oTe/Pmfo957vGeDD9afFs/Seafz7+olMTujNS1/tYfpflvN/i9Na8xI6Df0kJiIiIl1CvdPy0Efp9OsdwGXj49xdjoiISLcWFeLPj2cM5M8fp/P59gKmD45wd0kcqKzlptfWs27PQRIjgrj3nVT2FFdyzxmD8fBo+jb8grJqbnptPZHBvjx5+Ri8TzAR1xjD5MQwJieGUVBWzdsbsonu6eeKl9PhaYWTiIiIdAnvfpPN9vxy7p09GB8v/YgjIiLibtdO6U98WCD3f7iNGod7exjtzC9n/pMrScku5YkfjOajO0/jBxP68uTnmdz+xjdN3mJX46jnptc3UHbIwXM/HEdooE+Ta4gI9uO26YkN0/66Af00JiIiIp1edV09j362g+TYEM4ZEeXuckRERATw9fLk9/OGsbuokhdW7nZbHV/sKOSCp1ZxqNbJmzdOYl5yNN6eHvzf+SP49dlD+WhLHpc+t4bC8poTXsday+/e38rGfSU8ekkyQ6O69gS61lLgJCIiIp3eK6v2kFtazS/OGqrJdCIiIh3ItEHhnJkUyd+XZpBbeqjd7//a6j386OV1xIT688HtpzImLvToc8YYbpgazzNXjmVHXjnnPfkV2/PKj3utV1fv5T/rs7hjRiJn6RdcJ9WqwMkYc2pTHhMRERFpKyVVtTz5eQbTB4dzSkJvd5cjIiIi3/Hbc5NwWssDi9qvWbaj3sl9C7by2w+2cvqgcN65ZTIxPf0bPXb2sD68ffMpOJxOLnx6Fcu3F3zvmFWZRdy/cBuzhkbyk1mD2rr8LqG1K5z+3sTHRERERNrEU8szKa9x8POzhri7FBEREWlE314B3DwtgYWpuazOLG7z+5VV13HdK+t5edUebjhtAM9dNe6k02uHx4Tw/m2nEtcrgGtfXsdrq/ccfS7rQBW3/esbBoQF8tilyc1qMN6dtWhKnTHmFGAyEG6MufuYp4IBT1cUJiIiInIy+0sO8fKqPVwwOpYhfdRHQUREpKO65fQE/vtNNvct2MrCO6accLJba2QdqOK6V9axq7CSBy8YwQ8mNH1ybVSIP2/ffAp3vrmR336wlV1Fldx9xiBueHU99U7LP68aRw8/7zapuytq6b9hHyCIhsCqxzEfZcBFrilNRERE5MT++ul2AO4+U0vbRUREOjI/b09+e24S2/PLeW313ja5x9e7ipn/5FfklVbz6rUTmhU2HRHo68WzPxzHdVMG8NJXe5j2yHJ25Jfz98vHMCAssA2q7rpatMLJWrsCWGGMedla2zb/pYiIiIicQFpuGe9t3M+Np8UftyeDiIiIdBxnJkUydVA4j322g7nJ0YT38HXJdevqnTy+ZCdPLc+gX+9AXrh6HPHhQS2+nqeH4bfnJjEgLJA/fLiVX509lGmDwl1Sa3fSosDpGL7GmOeA/sdey1o7o5XXFRERETmhP3+cTrCfN7eenujuUkRERKQJjDH8fm4Sc/72BX/+OJ2/XJzc6mvuKqzgJ//ZRGp2KRePjeX384adtF9TU105qR8XjY3Fz1udg1qitf8W3gaeAZ4H6ltfjoiIiMjJrcosYvn2Qn519hBCAtRLQUREpLNICA/iuinxPLMikx9MiGNsv9AWXcdayxtrs/jjwm34envw9BVjOGtElIurRWFTK7Q2cHJYa592SSUiIiIiTeB0Wh76KJ3oED+uOqW/u8sRERGRZvrxjETe25jN7xds4YPbpuDZzKlvxRU1/Py/m1mSls+UxDD+cnEyfUL82qhaaanWBk4fGmNuBd4Dao48aK090MrrioiIiDRq0eZcUrNL+cvFyfqto4iISCcU6OvFr89J4o43NjL5oaVMHRjO1EHhnDYwjJ4BPic89/PtBdz7dipl1XX89twkfjS5Px7NDKykfbQ2cLr68J/3HvOYBeJbeV0RERGR76l1OHnkk+0M6dOD80fHuLscERERaaG5Ixu2v32yNY9Pt+Xz9oZsPAwk9+3J1IHhTBscTnJsz6Orn6rr6nlwcRqvrN7LkD49eP36CQzpE+zOlyAn0arAyVo7wFWFiIiIiJzMG2v3se9AFS/9aHyzl9+LiIhIx2GMYV5yNPOSo6l3WlKyS1ixvZAVOwp5YtlOHl+6kxB/b6YMDGPigF68unovGQUVXDdlAPfOHqxVzp1AqwInY0wAcDcQZ6290RgzEBhsrV3okupEREREDquocfDE0p2cEt+b0zWaWEREpMvw9DCMiQtlTFwod50xiIOVtazMKOKLHQ0B1KLUXCKDfXn9uolMGRjm7nKliVq7pe4lYAMw+fDn2TRMrlPgJCIiIi61KDWH4spafjp7MMZodZOIiEhXFRrow9zkaOYmR2OtZVdRJZHBfgT5tjbCkPbk0crzE6y1DwN1ANbaQ4B+AhQRERGXW5JWQExPf8bE9XR3KSIiItJOjDEkhAcpbOqEWhs41Rpj/GloFI4xJoFjptWJiIiIuEJ1XT0rdxYxc2iEVjeJiIiIdAKtjQh/D3wM9DXG/As4FbimtUWJiIiIHGt1ZjGH6uqZMSTC3aWIiIiISBO0OHAyDb9eTAcuACbRsJXuTmttkYtqExEREQFgSVo+AT6eTIrv7e5SRERERKQJWhw4WWutMeZ9a+1YYJELaxIRERE5ylrLsvQCThsYphHIIiIiIp1Ea3s4rTHGjHdJJSIiIiKN2JpTRm5pNTOHRrq7FBERERFpotb2cJoO3GSM2QtU0rCtzlprR7a6MhERERFgaVoBxqD+TSIiIiKdSGsDp7NcUoWIiIjIcSxNz2dU356EBfm6uxQRERERaaLWNA33ABZZa4e7sB4RERGRo/LLqknNLuXe2YPdXYqIiIiINEOLezhZa51AijEmzoX1iIiIiBz1eXoBADOHajudiIiISGfS2i11UcBWY8xaGno4AWCtndfK64qIiIiwJK2AmJ7+DI7s4e5SRERERKQZWhs4/aElJxlj5gCPA57A89bah77z/N3A9YADKASutdbuNcaMAp4GgoF64AFr7X9aUb+IiIh0UNV19azMKOTScX0xxri7HBERERFphlYFTtbaFc09xxjjCTwJnAFkA+uMMQustduOOWwjMM5aW2WMuQV4GLgUqAKustbuNMZEAxuMMZ9Ya0ta8zpERESk41mVWUR1nZMZQyPdXYqIiIiINFOLezgBGGPKjTFlhz+qjTH1xpiyk5w2Aciw1u6y1tYCbwLzjz3AWvu5tbbq8KdrgNjDj++w1u48/PccoAAIb81rEBERkY5pSVoBgT6eTIrv5e5SRERERKSZWrvC6VsNFYwx59EQKJ1IDJB1zOfZwMQTHH8d8NF3HzTGTAB8gMzGTjLG3AjcCBAXp77mIiIinYm1lmVpBZw2MBxfL093lyMiIiIizdSqFU7fZa19H5hxksMaa8JgGz3QmCuBccAj33k8CngN+NHhaXmN1fKctXactXZceLgWQYmIiHQmW3PKyCur1nQ6ERERkU6qVSucjDEXHPOpBw3hUKPh0TGygb7HfB4L5DRy7VnAr4Fp1tqaYx4PBhYBv7HWrmlh6SIiItKBLUnLxxiYPkSBk4iIiEhn1NopdXOP+bsD2APMO8k564CBxpgBwH7gMuDyYw8wxowGngXmWGsLjnncB3gPeNVa+3YraxcREZEOamlaAaP79iQsyNfdpYiIiIhIC7Q2cPIA7jwyJc4YEwr8Fbj2eCdYax3GmNuBTwBP4EVr7VZjzP3AemvtAhq20AUBbx8eg7zPWjsPuASYCvQ2xlxz+JLXWGs3tfJ1iIiISAeRX1bN5v2l3Dt7sLtLEREREZEWam3gNPJI2ARgrT14eHXSCVlrFwOLv/PY7475+6zjnPc68HrLyxUREZGObmlaw+LmWUMj3VyJiIiIiLRUa5uGexxe1QSAMaYXrQ+xRJrtm30H+fk7qTidJ2shJiLScVlreWPtPjILK9xdilstS88nNtSfQZFB7i5FRERERFqotYHTX4FVxpg/Ht4Stwp4uPVliTTPS1/t4T/rs9hfcsjdpYiItNin2/L55bubufTZ1WQUdM/QqbqunpUZRcwaGsnhbfUiIiIi0gm1KnCy1r4KXAjkA4XABdba11xRmEhTOeqdrNjesP0io5uvChCRzqvW4eTBxWn07x0AGK54fg17iyvdXVa7+yqjiOo6JzM0nU5ERESkU2vtCiestdustf+w1v7dWrvNFUWJNMeGvQcpq3YAkNlNVwSISOf3+pq97Cmu4vdzh/Gv6ydS63By+T+/7nYrN5ekFRDo48nE+F7uLkVEREREWqHVgZOIuy3bXoCXh6GHr1e373siIp1TSVUtjy/dyWkDwzh9cDiD+/TgtesmUlZdx+X/XEN+WbW7S2wX1lqWpeczdVA4vl6e7i5HRERERFpBgZN0ep+nFzBhQC+GRPUgs6D7bT8Rkc7viaUZlFfX8etzhh7tWzQ8JoRXrp1AUXkNl/9zDUUVNW6usu1t2V9GflkNMzWdTkRERKTTU+AknVr2wSp25FcwY0gECeFBWuEkIp3OrsIKXl29h0vH92VIn+BvPTcmLpQXrxnP/pJDXPn815RU1bqnyHayJC0fY2D64HB3lyIiIiIiraTASTq1z9MbmoVPHxJBYkQQxZW1HKzs2m/IRKRreeijdHy9PLjrjEGNPj8xvjf/vGocu4oquerFtZRV17Vzhe1naXo+Y+JC6R3k6+5SRERERKSVFDhJp7Y0vYB+vQOIDwskITwIQKucRKTTWLOrmE+35XPL6QlE9PA77nGnDQzn6SvGsC2njB+9tI7KGkc7Vtk+8kqr2bK/jJlDNZ1OREREpCtQ4CSd1qHaelZnFjN9cATGGAVOItKpOJ2WPy3aRnSIH9efFn/S42cOjeSJH4xm476DXP/Keqrr6tuhyvazND0fgFnq3yQiIiLSJShwkk5rVWYRNQ4nM4Y0/DY8JtQfXy8PMgoUOIlIx/fexv1s2V/Gz+YMwc+7aRPZzh4RxaOXjGLN7mJuem0DNY6uEzotTSugby9/BkYEubsUEREREXEBBU7SaS1LLyDAx5OJ8b0A8PQwDAgLJLNQk+pEpH1kFFTw4srdzQ5+qmodPPLJdpJjQ5iXHN2sc88bHcNDF4xgxY5C/rQwrVnndlSHauv5KqOImUMij07pExEREZHOTYGTdErWWj5PL2BKYhi+Xv9bGZAYEaQVTiJuUlfvxFrr7jLaTb3TcscbG7l/4TbOe3IVO/LLm3zuP7/YTV5ZNb85NwkPj+YHLJeOj2P2sEhW7Chs9rkdjdNp+TA1hxqHU/2bRERERLoQBU7SKaXnlZNTWn10O90RCeFBZB2s6nK9TUQ6uqpaB6c8uJTHPtvh7lLazTsbstiWW8Y1k/tTUFbN3L+v5OWvdp80dMsvq+aZFZmcPaIP4/v3avH9R8b2ZN+Bqk45tS6n5BBvrcvix29sZPwDS/jZO6n0CfZj4oDe7i5NRERERFzEy90FiPs4nRZLw1a0zmZZegEA078bOEUEYS3sKa5kSJ9gd5Qm0i0tTSugqKKWf3yewcyhkST37enuktpUeXUdj3yyg7H9Qvn93CRum57Iz95J4b4Pt7F8RyEPXzTyuFPn/vrpduqdlp/PGdKqGpKiGr7HpeWUMTG+Ywc15dV1rNl1gJU7C/kyo4hdh7c+h/fwZeqgcKYkhnH64HB8vPR7MBEREZGuQoFTN1VZ4+BHL60jLbeMaYPDmTU0ktMHh9MzwMfdpTXJ5+kFDIsOJjL422/oEg9PqssoqFDgJNKOPkzJIaKHLx7G8LN3Ulnw41O/td21q3lqeSZFFTW8cPU4jDGE9/DlxWvG89qavTywKI05f/uShy8cyaykb09c25pTytsbsrl+ygD69Q5sVQ3Dohu+x23L7biB06LUXF5etZuN+0pwOC1+3h5MHNCbyyfEMWVgGIMje6hnk4iIiEgXpcCpGzpUW8+1L69jw76DzBnehzW7ilmYmounh2Fcv1BmDY1kVlIkA8Ja92aorRysrOWbfQe5fXri954bEBaIMZBZoMbhIu2l9FAdy7cX8sNT+nFqYm+ufXk9Ty7L4O4zB7u7tDaRdaCKF77czQVjYr61kssYw1Wn9OeU+N7c+eYmrn91PZdPjOM35wwlwMcLay0PLEqjp783t88Y2Oo6wnv4Ehbkw7acslZfq6383+I0rLXcODWeKQPDGNsvtEsHkSIiIiLyPwqcupnqunpueHU96/Yc4LFLRzF/VAxOpyUlu4QlafksTSvggcVpPLA4jfjwwIbwaWgkY+J64uXZMbY6fLGzEKf9/nY6AH8fT2J6+pNZqMbhIu3l06151NY7mZsczai+PblgdAxPLc9k9vA+DIsOcXd5LvfgR2l4ehh+NrvxLXEDI3vw3m2TefTTHTz35S7WZBbz+GWjyS+rZlVmMX+YN4wQf+9W12GMYWhUMFs7aOBUWF7D/pJD/PrsodwwNd7d5YiIiIhIO1Pg1I3UOOq5+fUNfJVZxCMXJTN/VAwAHh6G0XGhjI4L5d7ZQ8g6UMXStHyWpBXw0le7ee6LXQT4eBLXK4DYUH9iQ4/86U9Mz4a/9wzwbrdtEcvSC+gd6ENybOM9YjSpTqR9fZiaS1yvAJJjG8Kl381N4suMIu59O5UPbj8V7w4SVrvC17uKWbw5j7vPGESfkMZ7NAH4ennyy7OHMm1wOPe8lcL5T31FzwBv4sMDuXxinMvqSYoO5sWVu6l1ODtc/6PU7BKALt/PS0REREQap8Cpm6ird3L7vzeyfHshD14wgovGxh732L69Arjm1AFcc+oAyqvr+GJHEev2HCD7YBXZBw+xZtcBKmoc3zon0MeT2NAA+ocF8Mf5w4kIPv4bsdZw1DtZvr2QmUMjjjtKPCE8iDW7inE6bYvGjYtI0xVX1PBVRhE3T4s/Gjr3DPDhT+cN56bXNvD08kzumNn67WMdQb3Tcv/CbUSH+HHDaU1bsTM5IYyP75zKr97fzKLUXB6+aKRLA7hh0SHU1VsyCipIiu5YfetSskrwMDA8pmPVJSIiIiLtQ4FTN+Cod3Lnmxv5bFs+988fxg8mNP236z38vDlnZBTnjIw6+pi1lrJDDrIOB1D7Sw6RfbCKrAOH+HRbPkOjgvnJrEFt8VLYmFVC6aE6ZjSyne6IhPAgquuc5JQeIjY0oE3qEJEGi7fkUe+0zE2O/tbjs4f1YW5yNH9ftpMzh0V2iSb+/92QzdacMh6/bBT+Pk3vQxQS4M0/fjCa++cNo3eQr0trOjKpbltuWYcLnDZllzIosgcBPvpRQ0RERKQ76ljr78Xl6p2We9rtuFQAACAASURBVN5OYfHmPH5zzlCuOqV/q69pjCEkwJvhMSHMGd6H66YM4Pdzh/H81eOYOKAXH2zKwVrb+uIbsSy9AC8Pw2kDw497TGLE/ybViUjb+jAlh4ERQQyO7PG95+6bm0Swnzf3vp2Ko97phupcp6LGwcOfbGdMXE/mfSdcawpjjMvDJmgYlODv7cnWnFKXX7s1rLWkZJUwStvpRERERLotBU5dmNNp+fl/U/lgUw4/mzOY65u4BaQ1zhsVw+6iSlKz2+bNz+fpBYzrH3rChrsJ4Q3T9TILNalOpC3llh5i3Z4DzEuObrSHW+8gX/4wfxib95fy3Je73FCh6zz1eQZFFTX8bu6wdutX1xSeHoYhUT063KS6vcVVlB6qU/8mERERkW5MgVMXZa3l1+9v4Z0N2fxk1kBuPT2xXe571ogofDw9eH/Tfpdfe3/JIdLzyk+4nQ6gV6APPQO8NalOpI0tSs3FWjj3BCt+zhkRxZxhffjbZzvJKChvx+pcJ+tAFc+v3M0Fo2M65IqdpKhgtuWWtdnK0pZIOdIw/DjDHURERESk61Pg1AVZa7lvwVbeWLuPW09P4M52bNgb4u/NjCERfJiS6/ItNJ+nFwCcNHAyxpAYrkl1Im3tw5QcRsSEMCAs8LjHGGP443nDCfD15N53Uql3dpxQpKke+igdT2O4d85gd5fSqKToYMqrHWQfPOTuUo7alFWCn7cHgyKD3F2KiIiIiLiJOnl2IpuySsgrraau3nn0o7be4jj6uaXW4SSjsIJFqbnccNoA7p09uN23f5w3OpqPt+axKrOYqYOO32upuZalF9C3lz8J4Sd/A5MQHsTS9HyX3VtEvm1vcSUp2aX8+uyhJz02vIcv980dxk/+s4mXvtrdLtt7XWXt7gMs2pzLXbMGERXi7+5yGjUsOgSArTll9O3VMQYlpGSVMCImBC8XTuQTERERkc5FgVMnUVxRw/lPfUVTdkz4eHpw49R4fnnWELf0Gjl9cAQ9/Lx4f9N+lwVO1XX1rMos4rLxcU16TQkRgfxnfS0lVbX0DPBxSQ0i8j8fpuQAfGuC5YnMHxXNwtQcHvlkOzOHRp5wVVRH4XRa7l+4lagQP26c2nFDssGRPfAwDZPq5gzv4+5yqKt3siWnjKsm9XN3KSIiIiLiRgqcOoneQb58ce90yqsd+HgZvD098PL0wNvT4OPpgffRD+P2hrZ+3p6cPTyKhak5HDqvvlnjw49ndWYx1XVOpp9kO90RRybVZRZWMLZfr1bfX0S+7cOUXMb3DyW6Z9NW/RhjeOD8EZzx6Ap+/k4qb944CQ+PjtN8uzH//SabLfvLePyyUS75PtZW/H08iQ8PYlsHmVS3Pa+cWodTDcNFREREujmtde9E+vYKICk6mMSIHvTrHUhMT38ievjRM8CHQF8vfLw83B42HTF/dDSVtfUsSXPNtrZl6QX4e3sycUDTwqMj2+4yCzSpTsTVtueVsz2/nLknaBbemMhgP357bhJr9xzgtTV726g616iscfDwJ9sZHdeTec18ne4wLDq4w0yq25TV0DC8IzZYFxEREZH2o8BJ2sSkAb3pE+zHBy6YVmetZVl6AacmhuHn3bRVBrGhAfh4eZChSXUiLvdhSg4eBs4e0bTtdMe6aGwsk+J78eyKTJwdtIF4ZY2DPy7cRmF5Db87N6nDBPknkhQVTE5pNQcra91dCilZJfQK9CE2tGP2vBIRERGR9qEtddImPDwM80ZF8+LK3RysrCU0sOV9lHbkV7C/5BC3TU9s8jmeHob4sEAyNalOOiin0/Lvtft4enkm9U6Lt9f/tsf6ejX86XPMnz5eHiTHhjBnWBRxvd3XGNpay4epOZyaGEZYkG+zzzfG8IMJcdz55ibW7z3IhCauWmwPFTUOXlm1h+e/3MXBqjqumdyf0XGh7i6rSZKigwFIyy1jcmKYW2tJyS4hOTakUwR1IiIiItJ23BI4GWPmAI8DnsDz1tqHvvP83cD1gAMoBK611u49/NzVwG8OH/ona+0r7Va4NMv8UdE898UuFm3O5cpWNI9dll4AwIwm9m86IiE8iK0dpKeJyLGyDlTxs3dSWb2rmPH9Q4kPC6Ku3klNvZNax+EJlIf/rKxxUFtvqaxxsCg1l/9bnE5SVDBzhvdhzvA+DIwIatc39pv3l7K3uIrbTm96APxds4ZG4u/tyQeb9neIwKm8uq4haFq5m5KqOk4fHM4dMwcyppOETdCwwgkaJtW5M3CqqHGws6CiRavfRERERKRraffAyRjjCTwJnAFkA+uMMQustduOOWwjMM5aW2WMuQV4GLjUGNML+D0wDrDAhsPnHmzfVyFNkRQVzMCIID7YtL9VgdPn6QUkRQXTJ8SvWeclRATx0ZZcquvqm7wVT6QtOZ2W19bs5c8fp+NhDA9eMILLxvdtcmCUdaCKT7bm8fGWPB5bsoNHP9tBfFggs4f3Yc6wPoxsh1UlCzbl4O1pmN2KaWiBvl7MSopk0eZcfj93GD5e7tndXXqojpe/2sMLK3dRVu1g5pAI7pg5sFM2u+4d5EufYD+25bq3j9Pm7FKspVP+MxQRERER13LHCqcJQIa1dheAMeZNYD5wNHCy1n5+zPFrgCsP/3028Jm19sDhcz8D5gBvtEPd0kzGGM4bHcMjn2wn60AVfXs1fxtQaVUdG/Yd5JZpCc0+NyE8EKeFvcVVDO7To9nni7jS3uJK7n0nlbW7DzB1UDgPXjCCmCZOeDuib68Arj8tnutPi6egrJpPt+Xz8ZY8nvtiF08vzyQ6xI/Zw/twxcQ4EiNc/9+802lZmJrLtEERhPh7t+pa85Oj+TAlh5UZhcwYEumiCpumtKqOF7/azYtf7aa82sGsoZHcOXMgI2JD2rUOV0vqAI3DU7IbGoYnxypwEhEREenu3BE4xQBZx3yeDUw8wfHXAR+d4NwYl1YnLjUvOZpHPtnOgpScZvVgOmLFzkLqnZbpzdxOB8dMqius6LKBk7VWfVI6OKfT8vKqPTz8STrenh48fOFILh4X2+p/bxHBflw5qR9XTupHSVUtS9IK+HhLHv/6eh/vfrOfd2+dfPRrwFXW7z1IXlk1vzx7SKuvNXVQOCH+3izYlNNugZO1lqeWZ/LM8kzKaxzMHhbJj2cMZHhM5w6ajkiKCmbFjkK3rupMySohrlcAvVrRt09EREREugZ37GNo7F1Wo6OKjDFX0rB97pEWnHujMWa9MWZ9YWFhiwqV1uvbK4Bx/UJ5f+N+rG3eRCprLQs27adXoE+LxmsfebOd0UUbh+eXVTPr0RX8+eN0d5cix7GrsIJLnl3N/Qu3MTkhjM/umsYlzdhC11Q9A3y4aGwsz189jqV3T8Pb0/Cjl9ZRXFHj0vssSNmPv7cnZyS1PiDy8fLg7BFRfLotn6pahwuqO7l/fb2PRz7ZzsT43iy+4zSe/eG4LhM2AQyLDqbeadmRX+62GlKySrSdTkREREQA9wRO2UDfYz6PBXK+e5AxZhbwa2CetbamOecCWGufs9aOs9aOCw8Pd0nh0jLnjY5hZ0FFs3uLvL5mL0vSCvjR5P54ejT/Dbq/jycxPf3JLOx6gVN1XT03vbaBzMJKnl6eyfNf7nJ3SXKMeqfln1/s4qzHv2RHfjl/vTiZF64e1+w+ZC3Rt1cAz101jvyyam58bQPVdfUuua6j3snizXnMHBpBgI9rFsfOHxVNVW09S9IKXHK9E0nPK+P+hduYNiic53449uhUt67kyGty17a6grJqckqrSe7kWxNFRERExDXcETitAwYaYwYYY3yAy4AFxx5gjBkNPEtD2HTsO5FPgDONMaHGmFDgzMOPSQd2zogovDwMH2xqNBts1Ia9B/jDh9uYMSSiRVvxjkiICOpyK5ystfzm/S1syirhycvHcNbwPjywOI1FqbnuLk0O+9uSHTywOI3TBobz2d3TuHBs67fQNceYuFAeu3QUG/Ye5N53UnE6m7e6sDGrMos5UFnL3ORoF1TYYEL/XvQJ9mPBpv0uu2Zjqmod3P7vjYT4e/PXS5LxaEGA3Rn0DQ0gyNfLbY3DU7IbpoK2ZEWqiIiIiHQ97R44WWsdwO00BEVpwFvW2q3GmPuNMfMOH/YIEAS8bYzZZIxZcPjcA8AfaQit1gH3H2kgLh1XaKAPpw8OZ8GmHOqb8Ma3oKyaW17/hphQfx67ZFSr3hwmhgexq7DSJW+4O4qXV+3hnQ3Z3DFzIOeMjOKxS0cxNi6Uu97axNrd+nJwt+KKGl5YuZtzRkbxz6vGEhnc9quaGnP2iCh+PmcIH6bk8NiSHa2+3oKUHHr4ejFtkOtWjHp4GOYmR7F8eyEHK2tddt3vuv/DbWQWVvDYJaMIC/Jts/u4m4eHISkqmK1uWuGUklWCp4dhWLRWOImIiIiIe1Y4Ya1dbK0dZK1NsNY+cPix31lrjwRLs6y1kdbaUYc/5h1z7ovW2sTDHy+5o35pvvmjYsgrq+br3cUnPK7W4eTWf31DebWDZ64cS0hA6yZhJUQEcqiuntyy6lZdp6NYlVHEnxalcUZSJD+ZORAAP29P/nnVOGJD/bnh1fVkFLivf4vAc1/u4lBdPXfNGuj2hu43T4vnsvF9+fuyDN5en3XyE46jxlHPJ1vymD28j8ubUc8fFYPDafloS55Lr3vEhyk5vLkui1umJTBlYFib3KMjSYoOJi23zC0he0p2CYMje+Dv456G5SIiIiLSsbglcJLuZ9bQSAJ9PPlg44m31f3f4jTW7z3IQxeOYGhU63usdKXG4VkHqrj1398QHxbIo9/ZFhQa6MMrP5qAt6cHV7+4joLyrhGwdTbFFTW8umov85KjSYxw/2REYwx/PG84UxLD+OW7m1mVWdSi66zYXkh5jcOl2+mOGBYdTHx4IAtSXL+tbl9xFb96dzNj4npy1xmDXH79jigpKpiq2nr2Hqhq1/s6nVYNw0VERETkWxQ4Sbvw9/Fk9vA+LN6Se9wmxu9tzOblVXu4bsoA5o+Kccl9EyMaAqfMTh44VdY4uOHV9Tidln9eNY4eft9f+dW3VwAvXTOeg1W1XPvyOipq2mfyl/zPc1/sosZRz49nDHR3KUd5e3rw5BVjGBAWyM2vbWhR+LogJYdegT5MTujt8vqMMcxPjuHr3QfILT3ksuvW1Tv58ZsbMQYev2w03p7d4393RxqHb80pbdf77imupKzawai+2k4nIiIiIg26x0/g0iGcNyqG8moHy7d/fyLV1pxSfvnuZiYO6MUvzhrisnv2DvQhxN+7U0+qs9by07dT2JFfzj8uH0P/sMDjHjsiNoQnLx9DWm45t/3rG+rqne1YafdWVFHDq6uPrG4Kcnc53xLi782L14zHx8uDH728luKKmpOfdNje4kqWphVw9og+bRbazBsVjbWwMMV1je//8ul2UrJK+POFI+nbK8Bl1+3oBkYG4eVh2n1SXUp2CYBWOImIiIjIUQqcpN1MTuhNWJAv739nW11JVS03v76Bnv4+/OPyMS59U2uMISE8sFNvqfvHsgw+2pLHL88aytQmNGyePiSCB84bzoodhfz6vc1Y23UapndkR1c3zew4q5uO1bdXAP+8ahwFZTXc8Or64640rHU4WZVRxAOLtjHr0RVMe2Q5tfVOLhrbt81qGxAWSHJsCB+4aFvdih2FPLtiF1dMjOOsEVEuuWZn4evlSWJEULtPqkvJKiXAx5OBHWArqYiIiIh0DF7uLkC6Dy9PD+YmR/GvNfsoPVRHiL839U7LnW9uIq+0mv/cdArhPVw/QSoxIohl6YUuv257+HRrHn/9bAfnj47h+tMGNPm8yybEkVNazRNLdxLd05+fzOoe/WvcpbC8hldX72H+qJijfcM6otFxofzt0lHc8q9v+OnbKTxx2Wg8PAx5pdUs317A59sLWLmziMraenw8PZgY34sfTIhj5pCIE66sc4W5ydH8aVEaGQUVrVohVlBezT1vbWJwZA9+e26SCyvsPIZFh/DFzvb9nrcpq4ThMSF4tmKqqIiIiIh0LQqcpF2dNyqGl77aw8dbcrl0fByPL9nBih2FPHD+cMbEhbbJPRPCg3hrfTalVXWtnnrXnnbml3PXfzYxMjaEBy8Y0eyJZ3fNGkhOySH+tmQn0SH+XDK+7VaodHfPrsik1uHkxzMS3V3KSZ01IopfnDWEhz5Kp6q2npySQ6TnNUw2jA7xY/7oGKYPjmByQm8CfdvvfxFzk6N5YHEaC1JyuLuFDb6dTsvd/0mhosbBv2+Y5PKJep1FUnQw//0mm4LyaiJ6+LX5/WodTrbllHHNqf3b/F4iIiIi0nkocJJ2NTI2hAFhgby/MYdegb48sSyDS8bFcvmEuDa755HVEhmFFYzt1zahlquVVtVxw6vr8ffx4tkfjm3RG2djDA9eMIL8smp++d5mIkP8mNaELXnSPAXl1bz+9V7OGx1DfAde3XSsm6bGk3Wgiv+sy2Jc/1B+edYQpg+JYGBEULODTVeJDPbjlPjefJiSw12zBraojme+yGRlRhEPXjCCQZHdd2tX0uEJn2m55e0SOKXnlVFb7yQ5Vv2bREREROR/FDhJuzLGMH9UNI8v3cnm/aWMjA3h/vnD2/RN7pEtTpluDpyWbMvnzx+n4+XpQaCPJ4G+XgT6ehLg40WQrxcBRx7z8eSTrfnsLznEmzdOIirEv8X39Pb04KkrxnDh06v43QdbWP7T090WKHRVz67YRV297VCT6U7GGMOfzhvO7+Ym4evVcVYBzR8Vzc//u/nw94bmhRcb9h7kr5/u4JyRUVzWzVfzHQmctuWUtUvInJJ1pGG4JtSJiIiIyP8ocJJ2d96oGP62ZCfenoanrhjT5tteYkP98fH0INONjcNLqmr52X9T6eHnRb/egVTVOig5VMf+kkNU1TiorK2nssaBw9nQ4NvDwIMXjGBsv16tvncPP2+uPXUAv3h3M1v2lzEiVm8KXaWgvJrX1+zlvFExDGjjHkeuZozpUGETwJxhUfz2/a18sCmnWYFTcUUNd7yxkagQvxZtP+1qQgK8iQ31Z2tOabvcb1NWKWFBPsT0bHk4LiIiIiJdjwInaXf9wwL5v/NHMCImhNjQth9X7uXpwYCwQDIL3Rc4/fnj7ZQequP16yaSFB3c6DHWWmrrnVTVNEwPCw30cdn9Zw/rw2/e38LCzTkKnFzomeW7cDhtp+jd1BmEBHhz+uBwPkzJ4VdnD21SA+qsA1Vc/eJaiipqePPGSQT7dZ4+bW0pKSq43SbVpWSXkBzbs9sHfSIiIiLyba6bPy/SDJdPjGvX4CMhIpDMwsp2u9+xvtl3kDfW7uOayf2PGzbB/1achAb6uDRsgobw6tTEMBal5mKtdem1u6uCsmr+9fVezh8d0+YT3LqTeaOiKSiv4etdxSc9dmtOKRc8vYqiihpev34io9to8EBnlBQdzO6iSqpqHW16n7LqOjILK0juq/5NIiIiIvJtCpykW0gID2JvcSU1jvp2va+j3smv39tCn2A/7mrh5C1XOXdkFNkHD5GS3T7bbLq6p1dkanVTG5g5JJJAH08WpOSc8LhVGUVc+uwavDwM79wymfH9W7/9tCsZFh2CtQ2Nw9vSluxSrEWBk4iIiIh8jwIn6RYSI4JwWthbXNWu931l9V7Scsv43dwkgtpxxHxjzkzqg7enYeFJ3sjLyeWXVfOvr/dxwegY+vXW6iZX8vfxZPawPizenHvcgPjDlByufmkt0T39ePfWyd16It3xHFlN2dbb6jZlH24Yrq26IiIiIvIdCpykWzg6qa4dG4fnlVbz6KfbmTYonLOG92m3+x5PSIA3UweGs3hzLk6nttW1xtPLM3E6O9dkus5k3qhoyqodrNhe+L3nXvpqN3e8uZHRfUN5+6bJrZri2JVFh/gR4u/Ntpy2DZxSskoYEBZIzwDXbgMWERERkc5PgZN0C/HhDatQMtoxcPrjom04nJb75w/rMM10zxkZRU5pNRuzDrq7lE4rr7Saf6/dx4VjYonr3fZN77ujUxPD6B3owwfHrMaz1vLQR+n84cNtnJkUyavXTSAkQA3Cj8cYw7DoYLa18aS6lKxSrW4SERERkUYpcJJuIcDHi5ie/u02qe6LHYUsSs3ltumJHWrL1RlJkfh4ebAwNdfdpXRaTy/PwOm03K7eTW3G29ODc0ZGsWRbPhU1DurqndzzdgrPrMjkyklxPHXFWPy8Pd1dZoeXFBVMel45jnpnm1w/r7SavLJq9W8SERERkUYpcJJuIz68fSbVVdfV87sPthAfFshN0+Lb/H7N0cPPm2mDtK2upXJLD/HG2iwuGhtL315a3dSW5iVHU+Nw8t7G/Vz3ynre/WY/Pz1zEH+cPxxPj46xYrCjS4oOpsbhZHdR23zfSznSv0mBk4iIiIg0QoGTdBsJ4UFkFla0edDy9PJM9hRX8cfzhuPr1fFWYZw7Mor8shrW79W2uuZ68vMMnNZy23StbmprY+JCienpz2/f38JXGUX8+cIR3D5jYIfZntoZDItu2OrWVo3DU7JK8PIwJEUFt8n1RURERKRzU+Ak3UZiRBBVtfXklVW32T12F1Xy9PJM5iVHc2piWJvdpzVmDo3E18uDhamaVtcc2/PKeWNtFpdN6KvVTe3Aw8Nw2fi++Hl78NwPx3Lp+Dh3l9TpxIcH4uPlwdY2ahyekl3C0KhgbW8UERERkUYpcJJu48ikuqY0Dt9VWMHP3knhsc92UFRR06TrW2v53Qdb8PXy4DfnDm1VrW0pyNeLGUMiWLw5j3ptq2sSay33L9xKkK8Xd58x2N3ldBu3TU9kw2/OYObQSHeX0il5e3owOLJHm0yqczotqVmlJPdVw3ARERERaZwCJ+k2EiIamnefqHF4eXUdDy5OY/bfvmBBSg6PL93J5IeW8Yv/ppJRUH7C6y9MzeXLnUX8dPZgInr4ubR2Vzt3ZDRFFTWs3X3A3aV0Cp9szeOrjGLuPmMQvQI1/r29eHgYAn293F1Gp5YUFcy23DKsdW24vKuokvIaB8mx6t8kIiIiIo3TT/LSbYQH+RLs59Vo4OR0Wt7duJ8/f5xOYXkNF4+N5d45gymvdvDCyt38d0M2b67L4vTB4dxwWjyTE3p/q5dMeXUdf1y4jeExwVw5qV97vqwWmT4kHH9vTxam5nBKQm93l9OhVdfV86dFaQyO7MEVE7WtSzqXYTHB/Gd9Fnll1USF+LvsuilZDQ3DR6lhuIiIiIgch1Y4SbdhjCEhIuh7W+o2ZZVw/tOr+OnbKcT09Of9207lkYuTiejhR0J4EP93/ghW/WIGd58xiC37S7ni+a8554mVvPtNNrWOhnHjf/10B4UVNTxw3ohOMUErwMeLmUMj+HhLXpuNTO8qnvtiF9kHD/H7eUl4eepbpnQuRxp6u3pbXUp2CUG+XsQf3qosIiIiIvJdevck3UpieBCZhQ0jwgvKq/np2ymc9+RX5JQc4q8XJ/PuLZMb/Y197yBf7pg5kJU/n8GfLxxBXb2Tu99K4bSHl/Hg4jReXb2HKybGdarx4OeOjKK4spY1u7St7nj2lxziqeUZnD2iD5MTOmYTeJETGRIVjDFtEDhllTAiJqRTBOwiIiIi4h7aUifdSkJEEG9vyOaJpTt57otd1DjquWlaPD+eMZCgJvSK8fP25NLxcVwyri/LdxTywpe7efaLXYQF+XDv7CHt8Apc5/TBEQT6eLJocw5TBipMacyDi9OwFn51dsdtAi9yIkG+XvTvHci2XNcFTqWH6tiWW8a1Uwa47JoiIiIi0vUocJJu5cikukc/28HMIRH85twkBoQFNvs6xhimD45g+uAIduSX4+PpQYi/t6vLbVN+3p7MSorkoy153D9/ON7aLvYta3YVszA1lztnDiQ2NMDd5Yi0WFJUMKn7S1x2vddW76Gu3jIvOdpl1xQRERGRrkfvMKVbOSWhNxePjeWla8bzwjXjWxQ2fdegyB70d8F13OHckdGUVNWxKrPY3aV0KI56J/ct2EpMT39unpbg7nJEWmVSQm+yDhxitQu+zqtqGwYpzBgSwbDoEBdUJyIiIiJdlQIn6VaCfL145OJkpg+JcHcpHcLUQWH08PViYUqOu0vpUN5Yl0V6Xjm/Pmco/j6e7i5HpFUuHhtLZLAvj362HWttq671xtosDlbVcdv0RBdVJyIiIiJdlQInkW7M18uTM4ZF8snWvKMT97qK8uo6/vLJdnbmlzfrvIOVtfz10+1Miu/FWcP7tFF1Iu3Hz9uT26cnsm7PQb7cWdTi69Q46nnui0wmxfdibL9QF1YoIiIiIl2RAieRbu7ckVGUVTtYmVHo7lJc6oWVu/nH5xmc/cSX/PXT7VTX1TfpvEc/20HZoTrumzcMYzSBS7qGS8b3JaanP49+tqPFq5ze/WY/+WU1Wt0kIiIiIk2iwEmkm5uSGE6wnxcLU3PdXYrLVNU6eHnVHqYkhnHuyGj+viyDsx7/kq8yTry6Iy23jH99vZcfTurHkD7B7VStSNvz9fLkxzMS2ZRVwufbC5p9vqPeyTMrMkmODWFKoqZaioiIiMjJuSVwMsbMMcZsN8ZkGGN+0cjzU40x3xhjHMaYi77z3MPGmK3GmDRjzBNGSxBEWsXHy4PZw/rw2dZ8ahxNWwXU0b25NouSqjruOmMQj106itevm4jTWq54/mvufmsTxRU13zvHWst9C7YS4u/NXWcMckPVIm3rwrGxxPUKaNEqp0Wbc9lbXMWt0xO18k9EREREmqTdAydjjCfwJHAWkAT8wBiT9J3D9gHXAP/+zrmTgVOBkcBwYDwwrY1LFunyzk2OprzGwRc7Wt7fpaOodTj555e7mDDgf31mpgwM45OfTOX26Yl8mJLDzEdX8Nb6rG+96V68OY+vdx/gnjMH0zPAx13li7QZb08P7pg5kC37y/hka36Tz3M6LU99nsmgyCDOGBrZhhWKiIiISFfi+BXAyQAAIABJREFUjhVOE4AMa+0ua20t8CYw/9gDrLV7rLWpwHe7GFvAD/ABfAFvoOk/NYtIoyYn9CY0wJtFqZ1/Wt0Hm/aTW1rNracnfOtxP29Pfjp7MIvuOI3E8CB+9k4qlz23hoyCCg7V1vPAom0MjQrmBxPi3FS5SNs7b1Q08WGBPPbZDpzOpq1yWppewPb8cm49PREPD61uEhEREZGmcUfgFANkHfN59uHHTspauxr4HMg9/PGJtTbN5RWKdDPenh7MGd6Hz7blN7m5dkfkdFqeWZFJUlQw0waFN3rMoMgevHXTKTx0wQjScss4+/EvufrFteSUVnPf3CQ89YZaujAvTw/unDWQ7fnlLNp88r5t1lr+8XkGfXv5c+7IqHaoUERERES6CncETo29m2vSr1mNMYnAUCCWhpBqhjFm6nGOvdEYs94Ys76wsGtN3xJpC+eMiKaytp7l2zvv18un2/LJLKzkltMTTthnxsPDcNmEOJbeczpnjejD2j0HmJsczcT43u1YrYh7zB0ZzaDIIP62ZAf1J1nltCqzmJSsEm6eloCXp+aMiIiIiEjTueOnx2yg7zGfxwJN3cdzPrDGWlthra0APgImNXagtfY5a+04a+248PDGVzqIyP9Miu9F70AfFnbSbXXWWp5ekUm/3gGcNbxPk84J7+HL45eN5qM7T+ORi0a2cYUiHYOHh+GuWYPILKzkg037T3jsP5ZlENHDl4vGxrZTdSIiIiLSVbgjcFoHDDTGDDDG+ACXAQuaeO4+YJoxxssY401Dw3BtqRNxAa/D2+qWpOWzu6jS3eU02+rDKzFunBrf7JUYQ6OC8fP2bKPKRDqe2cP6kBQVzONLd1JX/912iQ027D3I6l3F3Dg1Hl8vfX2IiIiISPO0e+BkrXUAtwOf0BAWvWWt3WqMud8YMw/AGDPeGJMNXAw8a4zZevj0d4BMYDOQAqRYaz9s79cg0lXdcnoC/t6e3PDqesqq69xdTrM8vSKT8B6+XDhGKzFETsbDw3D3GYPYW1zFu99kN3rM08sz6BngrUb6IiIiItIibmnIYK1dbK0dZK1NsNY+cPix31lrFxz++zprbay1NtBa29taO+zw4/XW2pustUOttUnW2rvdUb9IVxUbGsBTV4xlT1ElP3lz00n7u3QUm7NL+XJnEddNGaCVSiJNNHNoBMmxITyxNINax7dXOaXllrEkrYBrTx1AoK+XmyoUERERkc5MHUBF5FtOSejN7+cmsSy9gL98ut3d5TTJ0ysy6OHnxRUTtRJDpKmMMdx1xiD2lxzirfVZ33ruqeWZBPl6cfUp/d1TnIiIiIh0egqcROR7rpzUjx9MiOPp5ZknbSrsKtZarG3+iqrMwgo+2pLHVaf0o4efdxtUJtJ1TRsUzth+ofxjWQbVdfUA7C6qZFFqDldO6kdIgL6mRERERKRlFDiJyPcYY/jDvGFM6N+Ln72Tyubs0ja934HKWi56ZjXn/n0l+4qrmnXucyt24ePpwY9OHdBG1Yl0XcYY7jljEHll1byxdh8AzyzPxNvTg+um6GtKRERERFpOgZOINMrHy4OnrhxDWJAvN7y6noLy6ja5z/6SQ1z8zCq27C8l60AVc/+xki93Fjbp3LzSat7dmM2l4/sSFuTbJvWJdHWTE8OYFN+LJz/PZFdhxdGvqfAe+poSERERkZZT4CQixxUW5MtzV42l9FAdN7+2gRpHvUuvn1FQzkVPr6KgvIZXr53Agtun0CfYj6tfXMuzKzJPusXu+S934bRww2nxLq1LpLu558zBFFXUcMXzX2Mt3DhVX1MiIiIi0joKnETkhIZFh/CXi5P5Zl8Jv31/S4v6LDVm476DXPTMahxOy39uPIWJ8b3pHxbIu7dOZs7wPjz4UTp3vLmJqlpHo+eXVNXy77X7mDsyir69AlxSk0h3Nb5/L04bGEZuaTXnjY4hNlRfUyIiIiLSOgqcROSkzhkZxY9nJPLW+mxeXrWn1df7YkchVzz/NcF+3vz35skkRQcffS7Q14snLx/Dz+YMZmFqDhc8tYqsA9/v6/TKqr1U1dZz8+kJra5HRODnc4YwKDKI26YnursUEREREekCFDiJSJPcNWsQZyRF8qdFaazcWdTi63yYksN1r6yjX+9A3rnlFOJ6f38lhTGGW09P5KVrxpNTcuh7fZ2qah28vGo3M4dEMKRP8PfOF5HmGx4Twqd3TWNAWKC7SxERERGRLkCBk4g0iYeH4bFLR5EQHsht//6GPUWVzb7Gq6v3cMebGxndN5Q3b5xERA+/Ex5/+uAIFtw+hcgeDX2dnvuioa/Tm2uzOFhVx63TtbpJRERERESkIzKu6sfSkY0bN86uX7/e3WWIdAn7iquY9+RKwoJ8+fGMRJKighkQFoiX5/Hza2stf1uyk8eX7mTW0Ej+cflo/Lw9m3zPyhoH976TwuLNecxNjmbDngPEhgbw1s2nuOIliYiIiIiISAsYYzZYa8c1+pwCJxFprlUZRdzw6noqaxum1vl4eTAoMoihfYIZGhXMkKgeJEUF0zPAh3qn5b4FW3ltzV4uHhvLgxeMOGE4dTzWWp5anslfPt2OtfDSNeOZPiTC1S9NREREREREmkiBkwInEZerdTjJLKwgLbeMtNwy0vPKScsto6ii9ugxUSF+9AzwIS23jJumxvOLs4ZgjGnVfb/cWciGvQe58//Zu/P4xq7ybuC/I1m2vMnybsn2jGcms9mTGU8yWclKEpgESAIhSQMv0IYQ9hbeFkiB0r7skJbQlJY2QAmBAGlIIPs6ZUjIPpPM4tk377sky7IWy7LO+4fu9Wg8XrRc6UrXv+/no49l6erqWMeWr577PM+5YnXa+yIiIiIiIqLUMeDEgBNR1gz7Qjg44JsJRB0f9eP69kbcetEKvYdGREREREREGloo4FSQ7cEQkbHVlVtRV27FJWtq9R4KERERERER6YSr1BERERERERERkaYYcCIiIiIiIiIiIk0x4ERERERERERERJpiwImIiIiIiIiIiDTFgBMREREREREREWmKASciIiIiIiIiItIUA05ERERERERERKQpBpyIiIiIiIiIiEhTDDgREREREREREZGmhJRS7zFknBBiBECX3uPQSA2AUb0HQVnBuV46ONdLA+d56eBcLx2c66WDc710cK6XDs61NpZLKWvnumNJBJyMRAixQ0q5Re9xUOZxrpcOzvXSwHleOjjXSwfneungXC8dnOulg3OdeSypIyIiIiIiIiIiTTHgREREREREREREmmLAKf/co/cAKGs410sH53pp4DwvHZzrpYNzvXRwrpcOzvXSwbnOMPZwIiIiIiIiIiIiTTHDiYiIiIiIiIiINMWAExERERERERERaYoBpzQIIZqFEH8UQhwQQuwTQvyNcnuVEOI5IcQR5WulcvsHhRB7lMvLQohNcfvaKoQ4JIQ4KoS4Y4Hn/Iiy3yNCiI/E3f4tIUSPEGJikTGfLYTYqzzP3UIIodx+o/IzRIUQXBpyFoPN9Z1CiIPK2H4vhLCn+/oYicHm+hvKuHYJIZ4VQjjTfX2MxEhzHXf/3wkhpBCiJtXXxYiMNNdCiH8SQvQpf9e7hBDXpPv6GImR5lq577PKGPYJIb6fzmtjNEaaayHEA3F/051CiF3pvj5GYrC5bhdCvKrM9Q4hxLnpvj5GYrC53iSEeEW57zEhhC3d1ycvSSl5SfECwAHgLOV6OYDDAFoBfB/AHcrtdwD4nnL9QgCVyvWrAbymXDcDOAZgJYBCALsBtM7xfFUAjitfK5Xr6v7OV8YzsciYXwdwAQAB4CkAVyu3rwewFsB2AFv0fm1z7WKwuX4HgALl+vfUMfNiyLm2xW3z1wD+U+/XN5cuRppr5b5mAM8A6AJQo/frm0sXI801gH8C8Hd6v6a5ejHYXF8O4HkARcr3dXq/vrl0MdJcz9rmXwB8Te/XN5cuRpprAM/GXb8GwHa9X99cuhhsrt8AcKly/VYA39D79dXjwgynNEgpB6SUbyrXfQAOAGgEcB2AXyib/QLA9co2L0spPcrtrwJoUq6fC+ColPK4lDIM4LfKPmZ7J4DnpJRuZT/PAdiq7PtVKeXAQuMVQjgQ+wD6ioz95t8XN7YDUspDSb8IS4TB5vpZKWVkjrERDDfX43GblgLgKhFxjDTXirsAfBGc59MYcK5pHgab608C+K6UclLZ33ASL4XhGWyu1W0EgJsA/CbBl2FJMNhcSwBqpksFgP4EX4YlwWBzvRbAC8r15wDckODLYCgMOGlECNECYDOA1wDUq7+cyte6OR7yUcQioEDsj6gn7r5e5bbZEt1uPo3KY1J9PMFwc31r3NhoFiPMtZoODOCDAL6WxH6XlHyfayHEtQD6pJS7k9jfkpTvc634jFI+8N9qWQGdzgBzvQbAxUKI14QQfxJCnJPEfpcUA8y16mIAQ1LKI0nsd0kxwFx/DsCdyrHZPwP4+yT2u6QYYK47AFyrXL8RsUz0JYcBJw0IIcoAPATgc7MyCubb/nLE/iC+pN40x2ZznaFOdLt5nzrNxy95RpprIcRXAEQA3J/EfpcMo8y1lPIrUspmxOb5M0nsd8nI97kWQpQA+AoYUFxUvs+18vXHAFYBaAcwgFj5Dc1ikLkuQKzE43wAXwDwP2pvEDrJIHOtugXMbpqXQeb6kwA+rxybfR7Az5LY75JhkLm+FcCnhRA7ESsPDCexX8NgwClNQggLYn8M90spH1ZuHlLS69Q0u+G47TcC+CmA66SULuXmXpwa8WwC0C+EOE+cbCB47XzbLTA2c9zjv648Pr58asHH06mMNNdKQ7x3A/igkv5JcYw013F+jSWayrsQg8z1KgArAOwWQnQqt78phGhI5rUwOoPMNaSUQ1LKaSllFMBPECsboDhGmWvlvodlzOsAogC4IEAcA801hBAFAN4H4IHEX4Glw0Bz/REA6vgfBN/DT2OUuZZSHpRSvkNKeTZigeRjyb0SBiFzoJFUvl4Qi2jeB+CHs26/E6c2Nfu+cn0ZgKMALpy1fQFiDcpW4GRTs7Y5nq8KwAnEznZVKterZm2zWFOzNxA7U6Y2Nbtm1v3bwabhhp5rxOqS9wOo1ft1zcWLweZ6ddw2nwXwO71f31y6GGmuZ23TCTYNN+xcA3DEbfN5AL/V+/XNpYvB5voTAL6uXF+DWNmH0Ps1zpWLkeZauW8rgD/p/brm4sVIc41YT6LLlOtXANip9+ubSxeDzXWd8tWk/Ey36v366jKneg8gny8ALkIsZW4PgF3K5RoA1QC2ATiifK1Stv8pAE/ctjvi9nUNYl34jwH4ygLPeavyR3UUwF/F3f59xCKsUeXrP83z+C2I1ZMeA/AjKAcuAN6rPG4SwBCAZ/R+fXPpYrC5PorYQas6Nq5cZty5fki5fQ+AxwA06v365tLFSHM9a5tOMOBk2LkG8EsAe5Wf5VHEBaB4MdxcFwL4lXLfmwDervfrm0sXI821ct+9AD6h9+uaixcjzbXys+xELADyGoCz9X59c+lisLn+G+X5DwP4LpboCQP1xSAiIiIiIiIiItIEezgREREREREREZGmGHAiIiIiIiIiIiJNMeBERERERERERESaYsCJiIiIiIiIiIg0xYATERERERERERFpigEnIiIiIiIiIiLSFANORERERERERESkKQaciIiIiIiIiIhIUww4ERERERERERGRphhwIiIiIiIiIiIiTTHgREREREREREREmmLAiYiIiIiIiIiINMWAExERERERERERaYoBJyIiIiIiIiIi0hQDTkREREREREREpCkGnIiIiIiIiIiISFMMOBERERERERERkaYYcCIiIiIiIiIiIk0x4ERERERERERERJpiwImIiIiIiIiIiDTFgBMREREREREREWmKASciIiIiIiIiItIUA05ERERERERERKQpBpyIiIiIiIiIiEhTDDgREREREREREZGmGHAiIiIiIiIiIiJNMeBERERERERERESaYsCJiIiIiIiIiIg0xYATERERERERERFpigEnIiIiIiIiIiLSFANORERERERERESkqQK9B5ANNTU1sqWlRe9hEBEREREREREZxs6dO0ellLVz3ZexgJMQ4r8BvBvAsJRyg3JbFYAHALQA6ARwk5TSI4S4DMAjAE4oD39YSvn1Ofa5AsBvAVQBeBPAh6SU4cXG0tLSgh07dqT7IxERERERERERkUII0TXffZksqbsXwNZZt90BYJuUcjWAbcr3qhellO3K5bRgk+J7AO5SHu8B8FGNx0xERERERERERGnKWMBJSvkCAPesm68D8Avl+i8AXJ/o/oQQAsDbAfwulccTEREREREREVF2ZLtpeL2UcgAAlK91cfddIITYLYR4SgjRNsdjqwGMSSkjyve9ABrneyIhxO1CiB1CiB0jIyNajZ+IiIiIiIiIiBaRK6vUvQlguZRyE4B/A/CHObYRc9wm59uhlPIeKeUWKeWW2to5+1cREREREREREVEGZDvgNCSEcACA8nUYAKSU41LKCeX6kwAsQoiaWY8dBWAXQqiNzpsA9Gdn2ERERERERERElKhsB5weBfAR5fpHEFuZDkKIBqVHE4QQ5yrjcsU/UEopAfwRwPtnP56IiIiIiIiIiHJHxgJOQojfAHgFwFohRK8Q4qMAvgvgKiHEEQBXKd8DsSBShxBiN4C7AfyFEmCCEOJJIYRT2e5LAP6vEOIoYj2dfpap8RMRERERERERUWqEEtcxtC1btsgdO3boPQwiIiIiIiIiIsMQQuyUUm6Z675caRpOREREREREtCQ9uKMHf/nz17Gzy633UIg0U7D4JkRERERERESUKc/tH8L2QyPYfmgEW9sa8MWta7GytkzvYRGlhRlORERERERERDpy+8M4a5kd//eqNXjxyAiuuusF/MMfOjDim9R7aEQpY8CJiIiIiIiISEdufxhOezH++orV2P6Fy/GBc5fh169347I7/4i7tx1BIBzRe4hESWPAiYiIiIiIiEhHoxOTqC4tBADUlhfhG9dvwLOfvwQXra7BD547jMvu3I7fvt6NyHRU55ESJY4BJyIiIiIiIiKdTE1HMR6KoKq06JTbV9WW4b8+tAW/+8QFaKosxh0P78U1d7+Ip/YOYNAbwlJYcZ7yG5uGExEREREREenE4w8DAKrKCue8f0tLFR765IV4umMQ33v6ID55/5sAAKvFhJbq0tilphQrakqwvLoUK2pKUVdeBCFE1n4Gorkw4ERERERERESkE5cScFJL6uYihMDVZzpwZWs9XjvuxonRCZwYDaDT5cfhYR+2HRzC1PTJjKeSQjNW1pbiBze1Y019ecZ/BqK5MOBEREREREREpBO3muG0QMBJZTGbcNHqGly0uuaU2yPTUfSPhdDp8qPT5cfR4Qnc90oX/nxklAEn0g0DTkREREREREQ6SSTDaTEFZhOWVZdgWXUJLkEtpJT4nx096B8LajVMoqSxaTgRERERERGRTtwTkwASy3BKlBACTnsxBrwhzfZJlCwGnIiIiIiIiIh04vaHIQRgL9Eu4AQAjfZi9DHDiXTEgBMRERERERGRTlz+MCpLCmE2abuqnKPCypI60hUDTkREREREREQ6cfvDmpbTqZz2YoxMTCIciWq+b6JEMOBEREREREREpBNXBgNOUgJD4+zjRPpgwImIiIiIiIhIJ25/OK0V6ubjrCgGAPZxIt0w4ERERERERESkE7c/jOqyTGQ4WQEAA14GnEgfDDgRERERERER6WA6KuEJhFFVWqT5vp32WIZT/xhL6kgfDDjlkTe7PZBS6j0MIiIiIiIi0sBYIAwpkZGSOqvFjKrSQpbUkW4yFnASQvy3EGJYCNERd1uVEOI5IcQR5WulcvsHhRB7lMvLQohN8+zzXiHECSHELuXSnqnx55q+sSDe9x8v49n9Q3oPhYiIiIiIiDTg8ocBICNNw4FYWd0AA06kk0xmON0LYOus2+4AsE1KuRrANuV7ADgB4FIp5UYA3wBwzwL7/YKUsl257NJ4zDmrpqwQBSaB3T1jeg+FiIiIiIiINOCaiAWcMpHhBMQah7OkjvSSsYCTlPIFAO5ZN18H4BfK9V8AuF7Z9mUppUe5/VUATZkaV74qKjDjjLoy7Osf13soREREREREpAG3muGUgabhQKyPUz8znEgn2e7hVC+lHAAA5WvdHNt8FMBTC+zjW0rp3V1CiHk7qwkhbhdC7BBC7BgZGUlv1DmizVmB/QMMOBERERERERmB2z8JILMldb7JCMZDUxnZP9FCcqppuBDicsQCTl+aZ5O/B7AOwDkAqhbYDlLKe6SUW6SUW2prazUfqx7anDaM+CYx7GNKJBERERERUb5TezhVlmQuwwkABlhWRzrIdsBpSAjhAADl67B6hxBiI4CfArhOSuma68FSygEZMwng5wDOzcKYc0ar0wYALKsjIiIiIqIZUkp4A8xgyUdufxgVxRZYzJn5aO6oiAWcWFZHesh2wOlRAB9Rrn8EwCMAIIRYBuBhAB+SUh6e78FxwSqBWP+njvm2NSI14LSfASciIiIiymED3iB2ds1u50qZsu3AMNq/8Sx+/Vq33kOhJLn84Yw1DAeARiXDqd/LgBNlX8YCTkKI3wB4BcBaIUSvEOKjAL4L4CohxBEAVynfA8DXAFQD+A8hxC4hxI64/TwphHAq394vhNgLYC+AGgDfzNT4c5HNasGyqhIGnIiIiIgop/3r80fwgZ+8Bh/7xmTF4WEfpAS+/Pu9+OmLx/UeDiXBPRHOWP8mAKgtL0KBSTDDiXRRkKkdSylvmeeuK+bY9jYAt82zn2virr9dm9Hlr1aHDfv6vXoPg4iIiIhoXl2uACYjUTy7bwg3nM0FqDNtYCyE8qICXLKmFt984gD8k9P46yvOQKwwhHKZ2x/G8uqSjO3fbBKot1nRzx5OpIOcahpOi2tz2tDpCvBsERERERHlrB5PAADwyO5+nUeyNAx4g3Dai/Gvf9GOG85qwl3PH8Z3njoIKaXeQ6NFuPxhVJdlLsMJiJXVMcOJ9MCAU55pa4z1cTo46NN5JEREREREp4tMRzHgDcFqMeGlo6MYnZjUe0iG1z8WgsNuRYHZhDvfvxEfvmA57nnhOL76hw5Eoww65apoVMITyGxJHQA47Vb2cCJdMOCUZ1odFQCAfX0sqyMiIiKi3DM4HsJ0VOIvzlmG6ajEk3sH9B6S4Q14gzOrkZlMAv/v2jZ88rJVuP+1bvzdg7sRmY7qPEKay3hoCtNRiarSoow+j8NejEFviMFHyjoGnPJMva0I1aWF2MfG4URERESUg3o9sUyKK9bXYV1DOR7ZxbK6TApNTcMTmIKzwjpzmxACX9q6Dl9451o8/FYfPvubtxCOMOiUa1z+MABkdJU6AHDaizE1LZltSFnHgFOeEUKg1WnD/gEGnIiIiIgo96gBp6bKErxnkxM7uzzocQd0HpVxDXhjzaAd9uLT7vv05Wfga+9uxVMdg/jYfTsQDE9ne3i0ALcScMp0SV2jPRaM7GMfJ8oyBpzyUKvThsNDPp6lICIiIqKc0+sJQIhY35hrNzkBAI/tYZZTpgwoQYT4DKd4t160At+74Uy8cGQEf/nz1zExGcnm8GgBrgklwynDTcPVckuuVEfZxoBTHmpzVmBqWuLIMBuH55PQ1DSOcs6IiIjI4Ho9QdSXW1FUYEZzVQnOWmbHoyyry5j+BTKcVDefsww/vLkdO7o8+OBPX4M3wBWvc4F7pqQusz2cnHY14MQMJ8ouBpzyUJsztlLdfvZxyiu/fKUL19z9Z/hC/AdPRERExtXjDqCp8mTw47r2Rhwc9OEQV1nOCDXDyTFPhpPquvZG/Of/ORsH+sfxYWY65QSX0lOpstSS0eexWQtQVlTAleoo6xhwykMt1aUotpjZODzPHB+dQDgSxUEebBEREZGB9XqCpwScrjnTAbNJ4NHdfTqOyrj6vSFUlRbCajEvuu1VrfX40Qc2o6PPi9t+8QZCU+zppCeXP4zyogIUFSw+d+kQQsBRYWWGE2UdA055yGwSWO8oZ4ZTnulTaqY5b0RERGRUkekoBsdDaKosmbmttrwIF66qxqO7+yEll2XX2oA3uGh2U7x3tDXgBzdtwmsn3Pjkr3ayL6yO3P4wqjLcv0nltBezhxNlHQNOearNWYH9A+OIRvlPO1+o6c4HuMIgERERGdSAN4TpqDwlwwmIlXP1uIN4q2dMp5EZ18BYaKYpdKKua2/Et64/E388NILPP7AL0/xMoQu3P5zxFepUTnsxBlhSR1nGgFOeanXaMDEZQY+HS8zmAynlTAorA05ERERkVL2e2PFOfIYTALyzrR6FBSY2D8+Afm8QTnviGU6qD5y3DF9913o8sXcAdzy0hyeydeDyh1GdrYBThRWjE2GWUVJWMeCUp9TG4ezjlB/GgxH4w9OwWkw4OOhDZJqpy0RERGQ8vcrJ0NkZTuVWC65YV4fH9wzwOEhDE5MR+EKRpDOcVLddvBJ/c8VqPLizF19/fD9LHrPM7Z/MaoYTEMtCJMoWBpzy1Jr6cphNgv2A8kSfkt100Rm1mIxE0eny6zwiIiIiIu31eoIQ4uSH23jXbnJidGISrx536zAyY1JbNqSS4aT63JWrcdtFK3Dvy534l2cPazU0WoSUUimpK8rK880EnNg4nLKIAac8ZbWYcUZtGfb1e/UeCiVALae7cn0dAGamERERkTH1eAJosFlRWHD6x4zL19WhvKgAj+zianVa6VeyVVLNcAJiK5h95V3rccu5zfjRH4/ix9uPaTU8WoBvMoKpaZm9kjolKNnHgBNlEQNOeazNaWPgIk/0Kw36Ll5TC4tZ4MCAT+cREREREWmv1xM8rZxOZbWY8Y62Bjy9b5B9ZDSiZqsks0rdXIQQ+Ob1Z+K6die+9/RB/PKVzvQHRwtyT4QBIGsldQ3K7whXqqNsYsApj7XRyd3eAAAgAElEQVQ6bRj2TWLEN6n3UGgR/WMhFJpNcNisWF1XzsbhREREZEh9nuBpDcPjXdfuhC8UwfZDI1kclXH1e0MQ4mQwIR1mk8A/37gJV66vxz88sg8P7ezVYIQ0H5dfCTiVZSfgVFRgRm15EVeqo6xiwCmPtSqNw/czeJHz+seCaKiwwmQSWO+wcc6IKG3+yQgC4YjewyAimjE1HcWAd/4MJwC4cFU1asoK8ehultVpYWAsiNqyIljM2nyss5hN+NEHNuNtZ1TjC7/bjef3D2myXzqdWwk4ZaukDoitVMeSOsomBpzyWJujAgDYxykP9I+dXK621WnDiG8SoxPMTCOi1H3iVzvxhQf36D0MIqIZg94QovL0FeriFZhNeNeZDmw7MAxfaCqLozOmAW8IjjkatKfDajHjJx/egtV15fj+Mwe5cl2GuP2xzwLZKqkDYo3D+xlwSspkZBp3PLQHv3q1iyf6UpDRgJMQ4r+FEMNCiI6426qEEM8JIY4oXyuV24UQ4m4hxFEhxB4hxFnz7PNsIcReZbu7hRAikz9DLqsosaCpsph9nPJALOAUOxhY7ygHAJbVEVHKpJR4s8uDA4N8HyGi3NHjCQDAgiV1AHBtuxOTkSie3cfsmXT1e4NwalBON1tJYQE+fOFyHB6awJ5entzOBNdMhlN2VqkDYgGnAW+IQcQkdPR58ds3evDVP3Tg/G9vw7efPIAed0DvYeWNTGc43Qtg66zb7gCwTUq5GsA25XsAuBrAauVyO4Afz7PPHyv3q9vO3v+S0uqw4QADTjktMh3F4HgIjUrAqdWhlEJy3ogoRX1jQfjD0+gfC/KgkYhyRq8nljnRvEjA6axllWiqLMaju/uzMSzDklJiYCyU1gp1C3nPJieKCkx4cGdPRva/1Lknwii2mFFcaM7aczoqrAiEp+ENZja7cDw0hV+/1o3n9w/h6LAPk5H8XSSgczQWXPqXGzfh4jW1+NmfT+DSO/+Ij/9yB1497uJx2CIKMrlzKeULQoiWWTdfB+Ay5fovAGwH8CXl9vtkbMZeFULYhRAOKeWA+kAhhAOATUr5ivL9fQCuB/BUBn+MnNbmrMBzB4bgn4ygtCij00kpGvJNIioxk+FkLymEs8LKDCciA/BPRtDjCWBdgy2rz3t4KLbSZWgqCpc/jJqy7J0dJSKaT68nCFMCDayFEHjPJifueeE4XBOTqOZ7WEq8wSkEp6Zn2jZozWa1YOuGBjy6qx9ffVcrrJbsBUaWArc/jOosNQxXqSfA+8aCsJdk7rn/8FYfvvbIvpnvhQCcFcVYUVOK5dUlWFFTipbqUrTUlKC5qgRFBbn7u9Xp8sMkYgHYG85uQv9YEL96tQu/eb0bz+wbwnqHDX91YQuubXfyb2QOevRwqleDSMrXOuX2RgDx4fNe5bZ4jcrtC20DABBC3C6E2CGE2DEyYtxVMNqcNkjJ8qxcpi5X64yrr1/vsOHAgE+vIRGRRv7rT8ew9Ycv4u8f3pvVuv7DQxMz1/s87MVARLmh1x1Ag82KwoLFP2Jc1+7EdFTiyb0Di25Lc1OXt89UhhMA3Hh2M8ZDETzL5uGaG/WHs9owHDj5eWRA+d3JlM7RAEoKzfj9py7ED29ux1+/fTXOaamEbzKCJ/YO4JtPHMBt9+3AlT94AW1fewYvHR3N6HjS0ekKoKmyZOZ9zWkvxhe3rsMrf38FvnfDmZBS4osP7cEF39mGO585yD69s+RSSsxcvZhm56clsk3sRinvAXAPAGzZssWweW7xK9VtaanSeTQ0F3UliPj6+vUOG7YfHkFoapqRcKI8dmjIB6vFhN++0Y1Xj7tw183taG+2Z/x5Dw/6IAQgZew9ZlMWnpOIaDG9nuCi/ZtU6xpsWFNfhkd29eNDF7RkdmAGNTgeO8Z0ZCjDCYitKthoL8aDO3pw7SZnxp5nKXL7J1Gb5ew+9Xel35vZk1Xd7gCWVZVg87JKbF5Wedr9Y4EwOl0BdI768Q9/6MDjewbwtjNqMjqmVHWO+rG8+vT3NavFjJvPWYabtjTjleMu3PtSJ/5j+zE88EYP7rq5HRevrtVhtLlHjwynIaU0Ti2RG1Zu7wXQHLddE4DZhd29yu0LbbOkOCqsqCyxYF8fM5xy1czZp7gMp1anDdNRiaPDE/M9jIjyQJcrgLetqsFvPnY+wpEobvjxy/jX548gMh3N6PMeGvJhY1MsyMQMJyLKFb2ewIIr1M12XXsjdnR50OthA95UqMeYzgxmOJlMAjec1Yg/Hx3l6mYac0+EUZXFhuEAUFNahEKzaeaEeKb0uANorpo/+GwvKUR7sx3Xb27E286owZ8ODedkLyQpJTpdfqyoKZ13GyEELlxVg3s+vAVP/80lqCwpxIf/+3X88zOHMn48mA/0CDg9CuAjyvWPAHgk7vYPK6vVnQ/AG9+/CZgpwfMJIc5XVqf7cNzjlyQhBNqcFdg3wNUjclX/WBAVxRaUxfXYWu84mZlGRPlJShk7g1ddgvNXVuOpz12Mazc5cdfzh3Hjf72CLpc/I8+rBqvPWV6JsqKCjB80EhElIhyJLZKSTMDpPRtjGTOP7WZZXSoGvEGYTQK15ZkNWrz/7GZICTz8Zu/iG1NCpJRw6dDDyWQScNitGS2pmzk+WiDgFO/StbXo94Zy8kS8JzAFXyiC5dXzB5zirW0ox6OfuQg3nd2MH/3xKG75yasYyHA2Wa7LaMBJCPEbAK8AWCuE6BVCfBTAdwFcJYQ4AuAq5XsAeBLAcQBHAfwEwKfi9rMrbrefBPBTZbtjWMINw1WtThsOD05gihHUnNQ/FjylfxMALK8qQUmhmSvVEeWxkYlJBMLTaFEOQmxWC+66uR1337IZx4YncPW/voj/eaNH8zN23e4AJiNRrGkoR6O9eGZVKCIiPQ16Q4hKJFxSBwDLqkuweZkdj+zqy+DIjGtgLIT68iKYTXN1HdHOsuoSnLeiCr/b2ZuTWSj5KBCexmQkiqos93ACYhUymcxWG5mYRHBqOuGA02VrY6Vn2w/lXt/lE6Oxk4ctc5TUzae40IzvvX8jfnhzO/b3j+Oaf30R/3tw6fZAy2jASUp5i5TSIaW0SCmbpJQ/k1K6pJRXSClXK1/dyrZSSvlpKeUqKeWZUsodcftpj7u+Q0q5QdnuM5Lvemhz2hCejuZkVDif3fvSCU0CQn1jQTTOqq03mQTWNZQviWbvz+wbZAo2GVK3K1YCsmzWQci1m5x4+nOXYFOTHV98aA8+/sudcPvDmj3vocHYggNr68vRWFnMDCciyglqWVxTVXLlXdducuLgoA+do5nJCjWyfm/wlJYNmXTjlmZ0ugJ4o9OTleczOvW4QI+Ak9NenNFj8x63cnyUYMDJUVGMtfXl2H54ePGNs0zNVm9ZoKRuPtdvbsRjn70Ijopi3HrvDnzrif0IR5ZegogeJXWksTalcfg+ZstoJjQ1jX96bD9++Wpn2vuaK8MJiJXV7R8YN/SZIm9wCp/41U7c+cwhvYdCpLlOJeC0fI4DKqe9GPffdh6+cs16bD80gnf+8AVsP6TNgdSRoVjA6Yy6MjTai9HH3idElAPUbMvmJDKcAOAcZdGbjn62h0jWgDcER0XmGobHu+bMBpQWmvHgjp7FN6ZFuZSAU7ZXqQOARnsxhnyTGesv1K0EnBbq4TTbpWtr8cYJD/yT2VvxNxGdo36YRPLva6qVtWV4+FMX4sMXLMdPXjyBG//rlZmA3FLBgJMBrKgpg9ViYnmWhtSMgWMj6Z1tm5iMYDwUmTfg5AtFDJ2dsLtnDFICzx8YWpIRfTK2blfsIGS+8hGTSeBjl6zEI595G6pKCvGXP38DBwfTf58+NORDc1UxSosK0FhZjPFQBL7QVNr7JSJKR48nAJMAGpIMgKyuL0OBSfA4NklSSgx4Q3MeY2ZCSWEB3rXRgSf2DuRcUCAfuf2TAPTJcHJUFGM6KjHsm8zI/rtdQQiBpPq5XbamFuHpKF455srImFLV6QqgsbIYhQWph02sFjO+ft0G/PiDZ+H4yASuuftFPN2xdPrWMeBkAGaTwLoGG/bxzJBm1LN0x9MMOA0owaS5zj61KplpBwZ8aT1HLnurewwA4AtF8NKxUZ1HQ6StLncATvviByHrHTbce+s5AIBXNTiQOjI0gbX15QBiZykBGDpwTUT5odcThKOiGBZzch8vigrMOKOujAupJMnlDyMciWYtwwmIldUFwtN4cu/S+bCcKa4JNcMpu6vUAYBTafWRqbK6bncADTYrrBZzwo85u6USJYVm/OlwbvVx6nT5Z3p1puvqMx148q8vxsraMnziV2/iP7Yf1WS/uY4BJ4Nocxq/PCub1FTH0YlJjKeROaB+CGyc4+zTuoZyCAFDn9Hb1ePByppSlBcV4CkenJDBdLoCCR+ENNisqCsvwp7e9E4MhCNRHBuZwGo14KScPexbQo3D+X+OKDf1egIz70nJanXaDH08lAnqKmOOiuxkOAHAluWVWFFTigd3crW6dM30cMryKnXAyc8l/d7MrFTX4w4kVU4HxALPF66qwfbDwznzf15KiROj2gWcgFiZ4YMfvwCfffsZiEZz4+fMNAacDKLVGSvP4mpF2oh/HdPJcupXDgbmSncuKSxAS3WpYRuHSynxVs8YzmmpwhXr6/Ds/iGupEiG0u3yn9YwfD5CCGxssmNX71haz9np8iMSlTMZTk1LLMNpf/84tnzzebzVzaa1RLmm1xNMqoQmXqvDhmHfJEYnMlPiY0T9ylLrTnv2MpyEEHj/2U14/YR7ppkypcbtD6OwwITSwsSzgLSiNprPZIZTog3D4126thY97uDMynB6GwtMwReKYHkSK9QlorDAhL99x1p85u2rNd1vrmLAySDanBUAwLI6jfR6AihUUsKPj6S++l//WBBmk0Bd+dzpsq0OGw5o0NMlF3W6AhgLTGHzMju2bnBgLDCF14679R4WkSa8wSl4AlNzNgyfT3tzBY6P+NPKmjysNAxfowScasqKUGg2LZkMp1ePu+Dyh/F3D+5GaGpa7+FQnvny7/fi7m1H9B6GIYUjUQyOh+btabeYVofaZsCYx0SZcLJtQ/YynADgfWc1wiSA3+VZltNPXzyOD/3stYw1yk6Wyx9GdWkhhBBZf+6yogLYrAUZCTiFpqYxOB5KKeB02ZpaAMD2Q7lRVndCXaFOwwynpYgBJ4NY11AOk+BKdVrp8QTRvswOs0mkmeEURIPNioJ5+hmsd5SjyxUwZMNfNQNh87JKXLqmFsUWM55aQg3yKPdEoxK337cDLx5J/0CmW12hLomDkI1NdgDA3jTK6g4P+mASwMra2POaTAJOuxW9SyTD6ciwD4VmE46N+HHXc4f1Hg7lmaf2DuDBnVxhKxMGvEFICTSnmOG0Xgk4sawucQPeEArNpqyvcuaoKMZFq2vx0M5eTOdRSdAz+wbx4pFR/PylTr2HAiCW4aRHw3CV0148U4mhpV5l5dxUAk7NVSVYWVuK7TnSx0nN4mupYcApHQw4GYTVYsaq2jL+o9ZInyeAVbWlWFZVguOjaWQ4eYMLpjqrB1iHBo3XOHxXzxhKC2ONQIsLzXj7ujo8s28wrw5OyFhOuPx4dv8QnuoYTHtfXe7YQUgyadYbm2KZqLvTKKs7NORDS03pKY04GyuLl0yG06FBHzYvs+OWc5vxkxeP402W1lGC1KzEHncQgxnqW7KUqa0IUs1wqiwthLPCysbhSej3htBQYYXJlP0MmRvPbkK/N4SX82RBGCklDg76IATwg+cO50QZuisnAk7avw7dSh/cZHs4qS5bU4fXjrtyIov5xGhs5c3mquxmERoNA04G0ua0McNJA4FwBKMTYTRVlmBlTWnaPZwWSnU+uVKd8ebtre4xbGqOZYkBwNYNDRidCGNHJ8vqSB8dfbHMoiND6Qd4u2YynBI/oLKXFKKlugS7e1IPOMWvUKdqtBfnxMFzpkkpYz9/Qzm+fM16OCqK8QWW1lGC1KxEAHiD/4c0p2Y1pNrDCWDj8GQNjAWzukJdvKta62GzFuRNWV2/NwRfKILbL1kJAPjHR/bpPCLA7Z/MenZaPKfdOtMHTEvqe20qGU5ArI/TZCSKV46nv6pvurpcfjjtxSgqyH6fLSNhwMlA2pwVGBwPwcWGi2npmzlLV4yVtaU4MepPaRWBaFRiwBucs2G4qsFmhb3EYrgzesHwNA4MjGPzMvvMbZevq0NRgUmT7BKiVKgBp8NDE2mvgNLl8qO2vAglhQVJPW5Tsx27e1IrqQtNTaPT5Z9ZoU7VaC/BiG/S8IGXAW8IvskI1tSXo9xqwXdvODNWWvc8S+tocWpWIsCAUyb0uGM9K9MJgLQ6bDg2MmH49zKtDHhDCx5jZpLVYsZ17Y14umMQ3mDut4U4pPRLvXJ9PT535Wo8f2AIz+zT93jUPRFGVencPV6zwWkvxlhgCoFwRNP9druDKCk0oybF1ffOW1EFq8WEP+VAH6dOjVeoW6oYcDIQNVvGaMGLbOuZOUtXgpW1ZZiMRFPKHhidmMTUtETjAiV1Qgisb7Bh/4CxSuo6+r2IRCU2N1fO3FZWVIBL1tTi6Y7BJbMMKOWWjr7Ye6M3OIWRNAPzna5AUg3DVRub7BgcD2FoPPmSnqPDE4hKnJ7hpGQUDBi8TOjQrIbpF6+ujZXWvWD80rpn9w3ipy8ex7DP2HOcSWpW4tnLK/H6CQactNbrCSzYszIR6x02RKUx2wxobToqMTge0i3DCQBu3NKEyUgUj+/p120MiTqgHGevbSjHrRetwLqGcvzTo/swMaltsCVRoalp+MPTqE4xKKMFZ4W6Up22/1fUFepSbYZutZhxwcpq/CkH+jh1ugJoqdF2hbqliAEnA2lTAk4sq0uP2oegubIYK5UmccdTWJ5TDVItdvap1WnDocFxQ/U22tUdKxlqj8twAoBrzmzA4Hgo7aXhiZIlpURHvxcrlL/po0Op92YDYinjyTQMV7U3K32cUiirOzKsHjCXnXJ7o/IeY/Q+TocH1YDTyZ9/qZTWffvJA/jmEwdwwXf+F7fe+wae3DuAyYhxf95MULMSL11Ti0NDvrzIysgnvZ5gWuV0gLHbDGhtxDeJ6aicWd5eD2c2VmBtfTke3JH7ZXWHBn1otBfDZrXAYjbhW+/dgAFvCD/UafEJlz8MADqX1KkBJ22PHXrcgZT7N6kuXVOLE6P+mabdevD4w/AGp5jhpAEGnAzEXlKIRnsxA05p6vUEUVRgQm15EVbWxj7YHB9J/sOpesZgsYDTeocNoakoTqQQ1MpVb/V40FxVjJqyU1OF376uHhazwFN7uVodZVePOwhfKIL3bm4EABxOo4+TuuRvMv2bVK2OCphNAntSWKnu0OAELGZxWqBL/ZDXNxaY62GGcXhoAvW2IthLTh6gL4XSumhUom8siOvanfj4JSuxv38cn7r/TZz7rW342iMd2NM7lnaJ6FKgZiWe01IFKYGdXcxy0lKvJ5j2h8zmyhKUFRUwUz8Bau8dp44ZTkII3LilCbt6xnB0OLez0g4OjmNdw8ns4LOXV+GWc5fh5y93Yl9/6ivHpso9EQs46ds0PPa7M6BhHycp5UyGUzouW1sHALpmOXW61MVhGHBKFwNOBrPeYdPljTNT3uz24IUsv9n0uANorCyGEAI1ZYUotxak1DhcfQNfPOAU+wdopDN6b3WPnVJOp6ootuCiM2rwVMcgPyBRVu1V+jddvrYOFcUWHB5OPcNJXYEllYBTcaEZa+vLU1qp7vCQD6tqy2CZVbLSUGGFSSyBDKch30w5XTyjl9YN+2Ll2VtaqvDFrevw0h1vx323notL19TigTd6cO2PXsI7f/gC7nnhGIZTKNVcKtSsxM3L7LCYBV4/YbzfFb1MRqYx5AulneFkMgmsd5SzcXgCBpSTmgstTJMN129uRIFJZCTLadgX0uRYcTIyjeMjfqxtOPX/xx1b16GyxIIv/74j61UGLn+srF/Pkrp6mxVCAH0altSNTEwiODWddsCppaYUy6tLdO3jpJZhr2BJXdoYcDKYNqcNJ0b9mjeA08t3njyA236xAwcHs3fw0esJollZ1lcIgZW1ZTg+mvyH076xIEoLzbBZF24qvLquHBazMEzAadAbwoA3hPZm+5z3X73BgV5PcKafDlE2dPR7YTELrGkow+q6srRK6k6uUJfaWa9NzRXY3ZN8VsrhId9pDcMBwGI2od5mRa+BV6qLRiWODM8dcAJipXUNNqshS+vUzDX1w7zZJHDJmlrcfctmvP6VK/Ht956JsqICfPvJgzj/O9vwqft3wqOUa1BMfFai1WLGmY0VbByuoYGxEKSM9b5MV6vDhgMD4+z1uIiTJzX1y3ACgJqyIly+rg4Pv9WHyHRUs/12jvrxtu/+Lx7dnX5/qGPDfkSiEusctlNuryix4KvvasXunjH8+rWutJ8nGW6/muGkX9Nwi9mE+nKrpiV1Pe70VqiLd9maWrx8zKXb//QTo34Ioc372lLHgJPBtDltkPJkc7x8d2zEj/B0FJ/77a6sveH0eAKnnKVbVVOaUoZT/1hshbrFmuYVFpiwqrbMMCnku3piZ403L5s74HRVaz3MJoGnOlhWR9nT0efFmvpyFBWYsbq+HIeHfSmfOVV7CqTSNBwANjXZMR6KoNOVeAmcfzKCXk8Qa+vL5ry/0V5s6AynHk8AoanoaQ3TVbHSuo2GLK2L7ys4W0WxBR84bxke/tTbsO1vL8Xtl6zC8/uH8Z4f/dlQ2c7pmp2VeM6KKuzpHTNccFIvvXGr+6ar1WmDPzw9M2c0twFvCMUWMyqKLXoPBTee3YQR36Sm5U+P7e7H1LTEq8fTDwwfGoodX69rOP3/x3XtTlx0Rg2+//ShrGaIngw46ZfhBMQCllqW1Kl/t+mW1wLApWtrEZya1u3kQJfLD2dFMawWsy7PbyQMOBnMzEp1BjjQHAuE4faHcfHqGhwc9OHOZw5l/Dl9oSmMBaZOiWavrC3FgDeUdNZY/1jiy9WqZ/SM4K3uMRSaTTO/i7NVlhbigpXVLKujrJFSoqPPizMbYw2719SXYSwwhdGJ1LJAulwB2KwFsJekdqC/sSkWjN2TRFndEaUEcL4Mn8bK4pRW08wX6qpVq+cJuAHAJWuMWVqnfphvtC98AL+qtgx3XL0OD3z8fESmJW748cv4w1t92RhizpudlXhuSxWmpiV2pdC8n053cnXf9ANO6x1ccTkRA94gHHZryiuBaenydXWoKSvUtKzuMWXlu1QW2Jjt4IAPhWbTzKIh8YQQ+Mb1GzA5HcXXH9+f9nMlyuUPw2IWi1ZBZJrDXqzpKnXdLu2Cz+evrEZhgUm3sroTXKFOMww4GUyjvRjl1gIcTnMFplxwTMkq+ssLW/DhC5bjZ38+gT8fGc3oc6of2JqrTr5RnmwcnlyWk5rhlIhWpw1D45NwpblUey54q3sMrU4bigrmPyOwdUMDToz6Z5Y5J8qkfm8InsAU2pSA0+q6WNDmSIq/f13uWC+YVA/019SXwWoxJfVh9+QKbfMEnOzFGPSGDLXaZTy1yftcJYXxjFha1+sJoKasEMWFiZ1l3bysEo999iJsbLLjcw/swv97bB+mNCx1yZZ9/V5c8v0/apJ1oGYltigZTmcvj/UY3MGyOk30egIwmwQabOmXd62pL4fZZJw2A5nSPxaaWdZebxazCde3N2LbwaGZzJ10HBr0zSwScWjIl/Z7+cFBH1bVnd7/ULWiphSfvuwMPL5nIGtNqt0TYVSWFOoeMGy0F6N/LKjZCeBudwANNqsmWUElhQU4b0UVtuvUOLzL5ecKdRphwMlghBBYVlUyc7Ypn6krw62sLcPfX70eZ9SV4W8f3IWxQOZ6U/S41cj8qRlOAHA8iVXkQlPTcPnDaEywtl49o5fvpZCR6Sj29I3NW06nemdbA4QAnto7mKWR0VLWoTQM36Bk3a1RsmSOpNg4vMvlx7IUGoarCswmbHBWJLVS3aEhH6wW07xp6o2VxYhEJYYM2jT68NAEmiqLUVa08NlgI5bW9XqCaEyyh0RteRHuv+08/NXbWvDzlzrxf376GkZ8+XVCY/uhEXS7A3izO/0Mh5NZibHyFXtJIdbWl+P1TuNkwump1xOEo8KKgnk+0CfDajFjVW0pG4cvYsAbe81zxfu3NGFqWuLRXelnVT6+px8mAXzuyjWYjsq0y4MPDo5j/RzldPE+cdlKrKwtxT/8oSMrJytc/rDu5XRAbJXDyUhUk0AhEOvhlM7x0WyXrqnF0eEJ9Gb5c+1YIIyxwBQDThrRJeAkhPgbIUSHEGKfEOJzym0PCCF2KZdOIcSueR7bKYTYq2y3I7sjzw9NlcUzTdvy2bERPyxmgebKYhQXmvHDm9vh9ofx5d/vzVgplvqGFt8ro6W6FEKcDIAlYsAb+9CXaIbTyYBTfh9gHRz0ITQVxeZlp69QF6+2vAjntFSxjxNlRUefF2aTmPk7qy0vgs1aMJM1k4zIdBR9nuBMpkSqNjXb0dHnTTjz5PCQD6vrYmf+59KovNcYtaxuvhXq5hJfWqdFOYbeej3BlMoTLGYT/vE9bbjr5k3Y3TuG9/zbn/OqhEz9kKnFcuudLj9aZpXTnLOiEm92eQybFZhN8YutaKHVYWNJ3QKmpqMY9k3CkeAxZjasa7DhzMYK/O7N9MrqpJR4fM8ALlhVjSvW1QEAdvWkHnDy+MMYGp88bYW62YoKzPjm9RvQ7Q7gR/97NOXnS5TbP6nrCnUq9XdIq7K6Lrdfk4bhqsvWxn4HspV5pup0pb4aMZ0u6wEnIcQGAB8DcC6ATQDeLYRYLaW8WUrZLqVsB/AQgIcX2M3lyrZbsjDkvNNcWYJej3bpkXo5PjKBZVUlM2fMNjRW4P9etRZP7h3Ew29mpi9FjzuIYov5lLMOVosZjfbipErq1BUfEg04VZUWosFmzfsDrFcYSqEAACAASURBVLeUDzOb51mhLt41GxpweGgCR9NYnp4oER19XqyuK5tJ8RZCYE19eUoZTv1jIUSiEsur0jvrtbGpApORaMJBr9gKdfP3L1IDEkZsHD41HcWxkYmEA05ArLSuwGzC43vSX+FIT9GoRJ8niKY0Pli+d3MTHvrkhSgwC9z0n6/ggTe6NRxh5qgrmaaaiRiv2x047UPQOS1VmJiM5P2JnlzQO2uxlXS1Om0Y8IY0y7owmqHx2KqAzhzKcAKA95/dhI6+8bT+pvb1j+PEqB/v3uhEnc0KR4U1qX6Hsx1UytFnr1A3lwtX1eB9mxvxXy8c0yTQvRC3P6zrCnUqLU9WhaamMTQ+qWnAaVVtKRrtxVnv46SWYc/V94uSp0eG03oAr0opA1LKCIA/AXiveqeIFbPeBOA3OozNEJqrSjAZieZd+vxsx0f9M/2TVLdfshLnrqjCPz66LyNZXOpB0+ya6pW1ZTg+mvhBr/rGnUx9/XpHed4f+O7qHkNNWWFCB55bNzgAAE8zy4kyrKN/HG3OilNuW11fhiNDya9U16muUJfmWa92JSi7O4Ezt97AVOwM7QIBF6eBM5y6XH5MTUusbZg/4DZbudWCdQ3leR/EH52YRHg6mvaH+TZnBR77zEU4b2UVvvTQXnz593sxGcndHlfewNTMakfp9qScmo6i1xM8rTTi3BVVAIDXT7CPUzomI7EPmVouHd7qiL1f5/sxUaaoWfS5lOEEANducsJiFnhoZ+pZTo/t6UeBSWBrWwOA2Kqu6WSqHhqcf4W6uXz5XetRUliALz/cgUgGe9+5/GFU50JJnfI7pMVKdWqViJYBJyEELltbi5eOjiIcyV4vwhOjfgihzWp7pE/AqQPAJUKIaiFECYBrADTH3X8xgCEp5ZF5Hi8BPCuE2CmEuD3DY81LasPrfO7jFJmOosvln+mfpDKbBH5w0yYIAJ9/YJfmqfC9nuCcby4ra0pxYsSf8IfT/rEghADqKxI/e7HeYcPR4Ymc/hCwmLd6PGhvrkyoCWJDhRVnLbPjqQ72caLMGR4PYcQ3iQ2Np57dXF1XDk9gCq4kz6B3uU9d7SpVy6pKYC+xJHTm9rBypnXNAgfMJYUFqCotnFnRzEgODcYCDmqz90S1OW3Y1z+e19m+PZ7T+wqmqrK0EPf+1bn45GWr8OvXuvGBn7yWs/9v1HK6dQ3lODYykdb/+v6xIKaj8rS+Io6KYjRVFuu25LZRqKU4WmY4rXfE/tbZx2luM1n0OZbhVFlaiCvX1+MPu/pSWqhASonHdw/g4tU1qFSCMRubK9DpCqTcv/XgoA+VJRbUlSd2PF5TVoSvvms9Xu904yM/fx2eDGTZhSNR+EKRnOjhVFliQVGBaeZ3Kh3qSQKtgzSXrqmFPzyNHV3Ze6/ucgXgrCjWpPk56RBwklIeAPA9AM8BeBrAbgDx683fgoWzm94mpTwLwNUAPi2EuGSujYQQtwshdgghdoyM6NPdXi9qHb3aADsf9XqCmJqWWFVz+hntpsoSfOP6DdjR5cF//umYps/bM09a+KraUvjDsbN4iegfC6K2rGjBldpma3XaEIlKHMnTFQbHAmEcH/Ev2jA83tUbHNjXP45uV/4GRym37VUahp/ZeHqGE4Ck+zh1jfpRVGBK+OB1PkIIbGyyJ9RT59AiK9SpGu3FhsxwOjTkg0kAZ9QlnuEExPrAjAWm0O/N30bqvRouNw/ETtp8aes6fP26Nuzs8mCXBg25M6FDCThdv7kR4Ug0rYzmmV4cc3wIOrelCm90uvM6KKk3dW60DDhVlxWh3lbEDKd5qBlODTkWcAJiZXWjE+GUSqDe6hlD31gQ797onLmtvSl2TJnMIhvxDg76sLahPKnV4G7c0ozvv38j3jjhwbX//mfNfw89SvAsFwJOQghlpbr0/0+qx/JaZjgBwIVn1MBiFlnt43Ri1M/+TRrSpWm4lPJnUsqzpJSXAHADOAIAQogCAO8D8MACj+1Xvg4D+D1ivaDm2u4eKeUWKeWW2tparX+EnNY0E3DK3w/xavna7Awn1XXtTrxnkxN3PXc4rdrueN7gFHyhyJyNL9XSvkQbh/ePhRLu36TK98bhu5Lo36TauiGWMs3m4ZQpHX3jEOLk35dKDd4kG+DtcgewvLoEpnmadydjU1MFjgxPIBCOLLjd4SEfyooKFj2b3WgvRl8eZ7bO58iQDy3VpUmfaWxVyij39aW3wpGe1Iy1Rg0/zAPAhauqAQCDObqqYUffOJwVVpynlL2l0uBf1a2Uwc5uGg4AW1qqMDoRxokkVqGlU6m/o00af8hk4/D5DYwFUV5UgHKrRe+hnOaSNbWoKSvE71Ioq3tsdz8KC0y4qq1+5rYNTRUQAimV1UWjEoeHfFjXsHj/ptlu2tKMBz5+PsKRKN73Hy/jiT3aHae6JmIBp1woqQNiZXX9GpTUdbuDKCk0o0bjZuhlRQXYsrwqq32cuuZYaIJSp9cqdXXK12WIBZjUjKYrARyUUs75LiWEKBVClKvXAbwDsRI9ilNcaEZNWVFel9SpDbpn93BSCSHwzes2oLa8CJ/77a5FP7AlYqGzdGrg61iCB6X93uBMI75EtVSXothixoGBzDYqzJRdPWMQAtiYRMCpuaoEZzZWsKyOMqaj34uVNaUoLSo45fY6ZaW6I0k2Bu12BbAszYbhqk1NdmXJ54U/VMVWaCtb9AxtY2Usw8lo2RqHFmmYPp/1jnIIgbz+0NrrCaK6tBAlhQWLb5yEBqW/4GCOZn919HvR1lgxk9WWTuPwLlcAVsvcWYnnroitqLqj05Py/pe6Xk8ABSaBBpu22TatzlibgWwsUZ9v+r0hOOy5l90ExFbHvL69EdsODiXV9H06KvHEngFctqYWtrhAms1qwcqaUuxO4eRyjyeAQHh6pkQzWZuXVeKxz1yE9Y5yfPrXb+LOZw5q0srD5Y9VS+RChhMAOCqsmpXULasqSSqbLFGXra3FwUFfVv5neQNT8ASm0l6NmE7SJeAE4CEhxH4AjwH4tJRS/U//F5hVTieEcAohnlS+rQfwZyHEbgCvA3hCSvl0tgadT5qrivO6pO7YiB/2EsuCb8YVJRb8y02bcMLlx7eeOJD2c/Yu0CujwWZFSaE5oQwnKSX6x4JwJnkwYDYJrG0ox/6B/Dwb/1b3GNbWl6OsKLkPRls3NGBXz5gm/+yIZuvo82LDrHI6IBa0Xl1fnlRDYiklutx+zQ5CNjbHxrXQmVspJQ4N+hJaoa3RXozQVNRQKzuFpqbROepfsGH6fEoKC7CipnTRgF4u6/UENM9uAmJnjMuKCmZKc3LJxGQEJ0b92OCsQLnVAmeFNa3VTDtdASyvKp3zQ9Cq2jJUlRbidfZxSlmvJwinvRhmDbI+47U6KhCJSq5kO4cBbxCOJBalybYbzm7C1LTEI7sSX1H6jU43hn2TeM8m52n3bWq2Y1ePN+mTKeoJ3LUpZDip6mxW/Ob283HLuc349z8ew8fu24Hx0FTK+wMw8z+6ukz/VeqAWIbTsG8y7abcPe5AxppsX7o2Vq30p8PDGdl/PHVxmNkLTVDq9Cqpu1hK2Sql3CSl3BZ3+19KKf9z1rb9UsprlOvHlcdsklK2SSm/le2x54vmyhL0juVzhtMEVs2T3RTvwlU1+NjFK3H/a93YdmAoredUe2WoTdfjCSGwoqZ0JvNqIZ7AFEJT0ZQOBtY7bDgwkPzKWXqLRiV29YzNrLyVjKuVsrqnmeVEGhudmMSAN3Ra/ybVmvqypD7MDPsmEZqKalbXX1duhbPCit0L9KYYnQjDE5hKLOBUabyV6o6P+BGVCzdMX0ibsyKvGw/3eYKa9saJ11BhzckMpwMD45ASM43+z6gvTzoTMV63239aw3CVEAJblleycXgaeufpfZkuNg6f38BYKOmTmtm03mHDhkZbUmV1j+/pR7HFjCvW1512X3uzfeb/eTIODfogROx/fTqKCsz49nvPxDeu34AXDo/g+h+9lFYgNPdK6qyQEhhKo8RaSjmT4ZQJa+vL0WCzZqWPU+cCZdiUGr0ynCjDmqtiDeAyuaRnJh0f9WNlgn/of/uONVjXUI4vPbQnreh8ryeIsqICVBTPXRO/srZsprfUQmZWD0lhudpWpw3e4FROnnVeyAmXH97gVFINw1Ura8uwrqGcfZxIc2pmS5tz7oDTGXXlcPvDGJ1IbDGATqWkdpmGZ702NtkX7EN3ZEg9Q5tYhhMQC1IYhdq7J5GA21zanDb0jQVTXuFIT1JK9I0FNV1uPp6jwpqTPZw6lJ5bambi6rpYYDiaQilLNCrR5QosmJV47ooqdLkCGM7B1yIf9GYoKLq8uhQlhea8LonNhNDUNFz+cE5nOAHA+89qwr7+8YQChpHpKJ7cO4gr1tfNWT68UWkcnmwfp4OD41heVaJJSbIQAh86fznuv+08eINTeO+/v5TyiW63PwyzScz7eSPb1M8r6VQajExMIjg1nbGAkxACl66pxYtHRjP+2bZzNDPNz5cyBpwMqrmyBNNRmXeBCwAYD01hxDc5b/+m2YoKzPjU5WdgdCKc1llQ9SzdfLXHK2tK0esJLtpPQM0uSLaHEwC05ukZPXWlo83LKlN6/NUbHNjR5eEBP2lK/eDa1jh3Or161jPRxuFdSp83Lev6NzXb0eUKzLv08iEl4JJID6MmA2Y4HRrywWIWKae2tzljc59v76lA7AB+MhLNXIaTLTcznDr6xlFTVjTTc2lNfRlCU9GZsvdkDPtir+FCQeJzWmKNyVlWl7zQ1DSGfZMZCYqaTQLrGsoNHXD6yQvH8dz+5IIW6t+sIwdXqIt3bXsjLGaBh95cPMvp5WMuuP3hU1ani7feUQ6LWWBXkn2cDg2m1jB8IeetrMZjn70ILTWluO2+Hfi3bUeSDoa7/GFUllg0WXxECzMBpzQah6t9cDMZpLlsbS18oQjeSqGBfDK6XH44K6xJL1RC82PAyaDUGtp8bBx+smF44h8w1JKZfX2pH5j0uBc+k7yythRSxhqQLuRkhlPyBwNqnbleK9V5g1N46eho0o97q8eDsqKChMog53L1mQ2QEnhmH8vq0vX4nv6k+iYYWUefFy3VJac0II23uk5ZqS7BQHW3KwCzSaSUvTifTU2x964986ykdnhoApUlFtQm0OuhotiC0kJzSh/Mc9WRIR9W1pShsCC1w5VWZXXCfOzjdLKvYGYCTo4KK4Z9uZcJva/fiw2NtpmTP2ck+Xca72Qvjvn/t7c5bSgpNOONEww4JUs93snU72ir04YD/eN512YgEXt7vfjWkwfwnacOJPXzqUEBLf8PZUJVaSGuWFePP7zVh6lF3mMe39OPsqICXLZ27lXFiwrMaHXYsKcn8R6nwfA0Trj8CWUHJ8tpL8aDn7gA17c34l+eO4zH9vQn9Xi3fzJnGoYDgLNCzXBK/QREt1ttS5K5gNPbVtfAbBL448HM9nE68f/ZO+/wtq777n8PNogNDhAE95LEqS1b8k4sOx7xiJM6tuPGTeJmtU2zmrR526RtmjqrTdomadrGaRzHruM4iVe8JMtDsq1hDVISJYoUFzgBEHsD5/0DuBBFAcTFxb0gIOHzPHxscV6JwMU5v/Mddh+ayvlNvJLTCi7ZDFemBGhIDk6mSjA4nAnmbsth4NRkrIBaLsEAx/prSmnWHAJmmJItOHzaGYBcIuL0YqKWS9BcWYGTs6uzOfra7wZx73+/k7NH+vCEE/0NOs6hoR01arRWq/DKSeHDAC92frhrGF/77SAvzY2lDtN0lQmTVg6NQsJa4TRm96HeoIRUzN9ZTbbK59NzHnSYNKxaXwghqaa6iwWuDXUMlWo5arUKHJ8uvTKGlYos+MCkUyBOE0qqYiEYiWF43oueJTbYfJrqJpIHRE0rNEtKxCJsaNRjf7mpLmcmBX6Mdpl18ISiF9UQneHbLw4BSByy5tJOPOMsDYUTANy1qR52Xxh7VqizD0fjeGFwFju7TCsqSvrq9Riwuli3xA3Pe0ApODfUZUMhFeP7H+pHlVqO3TkOQBy+cFENnJQyMQwV0rwsdRN2YYfPQKKxcEuzAa/kmdmbjXG7v5zfxDOsVs2EkO3JVrmTyT/3E0J+JOiVlckLs14BESldhZNYRHKqHheJCLrqtBjkuKlY9EfgC8dWnMy3JG8+o7aVg8OnXUFY9JmtedlYZ9auiv3jrM2H545NgxDgr58agC/EbmARCMcwNOvBhgZudjogsVHurNFgJg85b5lErfCY3Q9PKIpnjuZ24nax4fJHMOkInLdxXQ4hBB016lROUDaECMRkKp/T5ThRSnF61pNTQ5tFr7xoNme+UBSTjgCnhrqldNdpS9KWwxRZcLFns4HZsBaT9X5o1oNYnKYCw4GEcs+klbN+ni5l3OGDRESyKo63NBsxNOuGK5Bf+9SlBvMYFVLhBJSmQnEl9p6x4Y1hGz59TRvEIoJnc1DIMOukYs9wAhLNYlVqGZ48NJnxc94YXoA7GE3bTreU/gY9vKEoq7ZoABjioaEuG4QQ7GivxN4z9pxUanZfGJWq4mioY6jTK/MbODn8qNUKb0Pb2VWL03NenM2yF+OKKxCBwxfmNTqhDHuF078AuAGAHQAopUcBXCXURZXJH6lYBLNOmfLUlhKjNi8aDMqcLRQ9dTqcnHFzsgewWTSp5BLUahUYYaFwMufRHrLOrMW4ww8vy4EPX/xkzwgkYhF+dM9GWJ0BfP/l06y+jjlx4hIYvhSDSgaHr7zYzwfrYiAVnP+rdyZW+WpWF2b43JMhv4mh06RhrZwYs/l4a6hbSqbK51l3EJ5QNKeGNotBCWsJHjSkg2kB4tpQx9BVp8XIgi9r/l6xMbUYgKFCCpU8/8DbdNRqE693c0U0cErlri0bFHeaNJxaocbsCeWyJIsqcWuzEZQC746XVU65MLUYgFRMYNIKo7ZZY9JARFCSA+NMUErx0AtDqNMp8Ofv6cD2tko8e2yG9cBi2hWEoUIKpaz482WkYhFuX2/BrpPzsGdQUj5zdBo6pRQ72qtW/F7rGxL3hJVaXZcyNOuBUioWPPh5R1sVbN4QTrNUSgPFp3ACEgPMfA4fJh3+jG2gfLKz2wQAePmEMBEc4+WGOkFgvaOnlC4fT5fWyu0SpN6gTMmdS4nRBR/rwPCl9NZrEYzEsyqQ0sEoAhqyyMJbq1WpjKlMTDsDKT80F7rMWlAKHOdoD+TCtDOApw5P4e4tDXhfrxn3XdaIh/eexREWwXyHJxIL9PUN+Q2cjCopFv3hizKroVCMJFsUb+kz4+iUCwMsF2YXI6mmqxUUTkDCruPwhTMuhhmc/jDcwSjn8OqV6K9PX/l8ajbZ0FbD/n5o0VfAHYzCExR2eBuMxAR/rp7Ks6GOobtOi1icYmiWe6nEamBdFK6hDihOhdPxaRd0SukFhz/tHJvqJux+Vq2SGxoNkIgIDpSDw3NiajGAOr2Ss50+G0qZGC1VqlXLtRSCPwzO4tiUC395fScUUjFu6TNjwuFnHQkx4wyUhLqJ4QOb6hGNUzydRnUdjMTw8ok5vK+nNushc2uVGmq5hHVT3dCsG50mtWCPTYYdHYlBGdv802gsDqc/UnQDJ4tekZcdf9zhK0irW72hAt11Wrx0XBhb3ZidKYcpD5z4hO3AaZIQsh0AJYTICCFfRNJeV6Z4aTBWFFThRCnFHwZm8gogjccpztp8aOUwWWY2loMcBjXMv5Mliyw8MXDyZtxohaNxzHtCeYU5bm01QiEV4fcFtET99PVRUAo8eFUrAODLN65FjUaBr/zmWNawx8MTTjQaK1DJItR4JQwVMsTiFO5gOXuIKyNJBcAXd66BUirGr/aPr/IVrR6D025Y9EoYsizqmGFGttNJpixAiAVVf0P6yufTHAYulgI01XmCEVz2rV144mBmmwQfnJ71QC4R5f1vzqhlSi3HKVuuYL7oK6SQSUSYLaJ20EGr+7zAcIaOGg384VhOj2tKKcbsPlbWCKVMjB6LrjxwyhGhH6MA0FWnK8mWyXREY3F898VT6DSpcefGegDADd21kIgInj02w+p7zLiCnEppVot1Zi16LFo8eejCtrpXh+bhC8ey2umARHRGr0WHoyya6ihNHDDw3VCXDoteiebKCtYDp0V/4jCoUl1cA6c6vRIejodVwUgMc+5QQQZOQMJWd2hiEQse/vMHx5KihUL9XS4V2A6cPgngMwAsAKYArE/+uUwR02CowLwnVDAbwVujdnzq0Xfx3AC7F810WJ0BhKJxTgqn1mo1FFIRBjk01U0tBqBVSKBTpm+zSv2MKjXcwSjsGSrM59xBUJpf5oZWIcXNvXV4+sg06xylfLB5Q3j8wARu32BJnaZrFVL8w+09GJr14Kevj6749UcmnXnb6QCkTnsy1cOXyc6ozQd9hRRNlRW4td+M3x+ZhltgpUuxMmh1ZbXTAeeGOWeyNGAxbVdCNJcwlc/LrQKn57yo0cizDs2Wwtx7rAKqW98YtsHpj+QUdMuF0/NedPBwQl1vUEKjkJTUpjVRZBEQdDNPCIFZpygahVM4GsepWU9aVSITHJ+Lrc7pj8ATjLLeOGxtMeLopKvkrJerydRiAPV6YTdmXWYtrM4AXP7Sfy174uAURm0+fOmGtan7mr5Chis7qvAcS1vdjCtYUgonALhrYz2OT7svuAc/e2wGVWoZtrUYWX2f/gY9Ts64EYqu/Bxd8Ibg8IUFaahLx472Krxz1pH1gBZI2OkAFJ3CyZxcO3B5PWBiSQo2cOo2gVIIEh4+ZvfBrFOUhGW1lGA1cKKU2iil91JKTZTSGkrpfZRSu9AXVyY/GozCn3Qv5Vhys3Qwj6YXxg6XS0Mdg1hE0GXWclM4LfpZVXm2Jq8rk62O+bfOt672nm0N8IaiOQVJcuVnb55FKBrHp65pO+/913eZcFNvLX6wazhjSOOMK4BZdzBvOx2A1Kba4S8PnLgyuuBFa5UKhBDcu60J/nAMvz9sXe3LKjieYARnbb6sdjog2VQnl2RVOE0IqHCSS8RYZ9amVTjlaierL4DCiWnkmRV4UHF61oPOmvw3DIQkXhtKKXjY5g0jFI0LaqkDgFqtomgynIbnPQjH4mmbJTtSTXXsh5zMkJitNWJLsxHhWDy1limzMsFIDAueUAEUTomDg1LPcQqEY/jBrtPY1GTAe9fVnPexW/rqYHUG8O7EyuodfzgKVyCSV07oavD+9RZIxQS/efecyskXimLX0Bxu6jVnzVhj6K/XIRKjWQ87GDv6WoEa6pazo70K3lA0bfnHcuy+hCqn2AZOluRjisvaYSLpEmGzj+KDtbUaNBiVeOk4/zlOQmV1Xuqwban7X0KIfsmfDYSQnwl3WWX4gHniF8pWx/jPD+URuskMNrgonACgx6LD8WlXzjkPbE+S25LXtdIABkDecueNjQZ01Kjx2H5hLSuuQASPvDWOm3rMqb/bUr7+/m4oJCJ89amBtP+mh5OLow2N3BvqGIwVZYVTvizNP+ur16HHosWj70xccrlYzClqT332gRMhBB0mddaN7JjdD5NWLtipV1+9DgPWc/eueJxieM6b88CpWi2HTCwSTOEUj1PsOZUYOM0IaMVyBSKYdQfzDgxn6K7TYWjWzbpSe7URuv2LwaxTYMZdHFmPx5Pq5J66C5WJ+goZqjVyDOcQzMtsgthuHjY3JV7HyrY6djDZl/VGYR+jTK19qQ+cfr5vDHPuEP7qxrUXWEav7zZBJhZlPWScdibuufnkhK4GRpUM71lrwu8OW1MqoFdOziEYieOWvux2OoZM9vPlMA11hbDUAcDlrZUgBNh7JrsWg1E4FWNLHQBOTXVCHsilgxCCG7pqsfeMnfeCpXG7P9VKXoY/2Frq+iilqWc3pXQRwAZhLqkMXzAB2IUKDmcCiodm3ZxvAKMLPmgUElRx9Db3WHTwhWOpk002JKwL/qyB4UDihiyTiDI21aUWA3kqnAghuHtrI45MOgUNy3zkrTF4QtEL1E0MNRoF/ubmdXjnrAP/lyav5fDEImQSEbrM+b+oM6c9jvLAiROeYATznlBKhceonIZmPXh34tJqXhpkBk4sFE5AIh8m20Z2wuETxE7H0F+frHxOBr9PLQYQiMSwpja34btIRGDWKzAlkMLpmNUFmzcMjUIiqDJmOJlftSbPwHCG7rpEqcRZW+5NZ6tBajMvsMLJpFNgzhXK+ZBGCAanXVDJxBkVSR01apzOwVI3ZvODEPan7gaVDB01auw/u7oDp3cnFrNafIuBc0NRYR+jNRoFqtTykrLELsflj+DHe87gurU12JrGPqZVSHH1mmo8PzCz4nOROdRkAv9Libs21cPuC2PPqQUAwDNHZ1CrVaQGvWww6xSo1sizD5xmPajRyAumIjKoZOiu0+JNFjlOxWqpq9EoIBYRzDhzf12fcASglIo57924sLO7FuFYHK8lH0984A5GYPeFBV3rXaqwHTiJCCGpOwIhxAhAmJ7eMrxRo5FDJhFhqgAKJ5c/ggmHH5e3ViJOgSNZZMGZGLV50VqtvuD0hy2p4PAcFiY2bxjBSJzVSbJYRNBSmbmpzuoMwKiSQSHNXwVx5wYLZBIRHt8vTL29PxzFz/aO4do11ehJY2Fg+NDmBlzWasQ/PX8S88sUDUcmneiu02ZtF2EDY6lbLFvqOHE2aUdtrTo3oHh/fx3UcgkefZv7YygcjePZY9MlowwBEvlNJq0c1Rp2J4gdJjXsWZrqxu1+NAl4enfu5DYxuGca2jo4DFwseqVgCqfdQ/MQEeC29XWY9wTzKolYiXN/f25q1+UwtpxSsdUxA6dsRRb5YtYqEI7Fi8LKPGh1obtOB1GGzK5OkwZn5jysFZvjDh9qtYqcXo+3tBjx7vjiqt3vKKV48BeH8PWnT6zKz88Ftu2+fNBVp8358C0aixfN69aPXxuBJxTFl25Yk/Fzbukz+sFJ3wAAIABJREFUY84dWlFhN8PToeZqcPWaalSpZXjy0CRcgQheP72Am/vMGZ/v6SCEoL8+e3D40Kwba3k4CM2FHe1VODyxCH945QN3uzdxrzVUrJwZW2jEIoIGg5KTknDC4UejsYLz3o0Lm5oMMKpkeJFHW924rdxQJxRsd4nfA7CPEPIPhJB/ALAPwLeFu6wyfCASEdTrlZhcFH7gNJhs/7n/8iYQwt1WNzLvQ1seUsYOkxoysQjHc8hxyvWUrrValcqaWs60M8Bbe4hBJcP7emrx28NWBML8h5g+tn8SDl8Yn7m2fcXPI4TgW3f2IRSN4++ePp56fySZdbGhIX87HQCoZGLIxCI4fKUfDLoaMKq7pflnKrkEd2yw4NmBGc5Wxe++dAqf/dVhvHZ6npfrLASDVhd6VxiiLocZ6gxnUE/4w1HMe0KC+vrbqtVQycSphTTTUMdk1+SCRa8ULMPp1aF5bGg0YG2tFnGaCGcVgtOzHqhk4rwKGJbSXqOGTCIqmYGT1emHvkIKtVzYs73apDVH6DyubMTiFCdm3OheIei/vUYNXzjGOtR2wu7P+Tm7tdkITygqqLJ4JU7NeWDzhnB0ylkUqrOVmFoMQComqGE52M+HLrM2kfEVZTfgdvjC2Pkvr+Mrvzkm8JVlZ9YVxMN7z+L29RasW2EI8t51JiikohXb6qZdARACmLSlp3CSikW4fb0Fu07O4/H9EwjH4qza6ZbTX6/HyIIvYyFKNBbH8LwXawsUGM6wo60KkRjNqpC0+0LQV0hZ51YVkuu7THhjeAHOHA8gJhw+NBY490gsInjvuhq8OjTP+r6QjVTuX1U5w4lv2IaG/wLAXQDmAMwDuJNS+oiQF1aGH+qNFZh0CG+pY/KbLmutxBqTBoc4WHh8oShm3cGUJYgLUrEIa82a1PWwgbEcspXdt1arMOHwp73BTTsDvHrrP7y1Ee5gFM/n0fyXjlA0hv96fRTbWozY3Jy9HaSlSoXPvbcDfxicTZ0mDM14EIrGeWmoAxKDLYNKWs5w4sjogg9iEbngRf+ebY0IR+PnhXWyZf9ZB/7rjURLYakE6frDUYwseNHN0k4HAJ1JFQ1j41rOuSwY4U69xCKCHosu1VR3es4Di14JjSL3U1CLQYkFARpK591BDFhduG5tTcrSIdSg4vScF521Gt5OTKViEdaYNDg+XRqPY6Eb6hiE/j2yZXTBi2AkvqINlhm+ns7wPF3OmN2PJmNuz9ktSbvTwVXKcWIyYDzBaE7RAKvB1KIfFr0yJ4UKV7rqtIjEKKuWwmgsjj977F2M2nx46rCVUyYNn/xg12nEKcXnr+9c8fNUcgmuW1uDPwzOZFSOzjiDqFLLeVGVrwYf2FSPaJziey+fRoNRiX4WOYvLYdTAAxnWJGN2H8LReMEHTluajZCJRdg3snKOk8MXLjo7HcOt/XWIxGhOqiFKaUrhVGh2dtXCE4ri7VF+eszGkmKCXF83ymQnlzvWEICnAPwegJcQ0ijMJZXhkwZDYRROA1YX6g1KGFQybGwy4DAHSXrKEsQxMJyhu06HQauLtew+13DW1io1YnGa2oQuZdoZ5FXqvK3FiNYqFR4/wK+t7ql3rZh1B7Oqm5byiStbsc6sxd/+fhDuYARHJhNDRb4GTgBgqJAVhbWjFBld8KHBoIRccr59ZJ1Zi01NBvwqx/BwXyiKL/76KBoMFWg0VmRc3BUbJ2fciFOsaBNdTq1WAY1cklHhNGbLLXyYK+sb9Dg57U7Vw3dytJNZ8qg3XolXk2Hh162tQa3gAyd+GuqW0mXW4sS0uyRC9AtRNw+cGzgJGQDPBkYlvdLzllEishk6+EJR2LwhNOV4Um3RK2HRK3Egj7bdfNh7xgZl0gJY7EP+xFC0MJtMJieSjd3n2y+ewt4zdnzuvR2glOKRt8eFvryMjCx48cTBKdy7rYnVoeYtfXWwecN4J4NKZtoVQF0J5jcxrDNr0WPRIhxNhIVzOVDoSw6pMtnqhpINdWsKPHBSysTY2KTHm8Mr5zjZvWFUFVlgOEOvRYfmygo8c5T9IfeCN4RgJL4qA6crOqpQIRPjpRP82OrG7H7UahWClcNcyrBtqfszJNRNLwN4FsBzyf+WKXLqDRVw+iPwZJCe8sWg1ZV6EdjcZIAnFM2pvhg4ZwnKR+EEJG6Y7mA0lS+QjanFRO6SiqV1gbm+5U117mAE3lCUNwsIkFD9/NGWBhwYW8yovsiVaCyOn7w2gr56Ha7sqGL9dVKxCP98Zy8WPCE89IchHJ5wokot5/Xva1TJygonjowseDMOa+/d1ohRmw9v5XAK9M3nT2Jy0Y/vfrAfm5sMOJaDajAbX3/6OK777h586ddH8cTBSYzZfLwNAQaZpqsVrDnLIYSg3aTOqJyYcBTm1KuvXo9wLI7BaRdGF3ycG9qY3B++c5x2D83DrFNgba0GtUlLB99DLQCweUOw+8K8NdQxdFu0WPRHBLlmPmGKLAqhcKpUyyEWEcy6VlcFMmh1Qy4RnWcJXo5RJUOVWsaqqW482ZrE5Tm7pdmA/WOOgg8mI7E43hm147b1dVBIRSUycCpMllBLlQoKqShrcPjTR6fx09dH8ZHLmvC593ZiZ1ctHts/wbvaky3fe+kUFBIRPnsdu8O9a9fUoEImzthWN+MKwlxiDXXL+aPNDSAkkTHJBX2FDM2VFRmDw4dmPBCLCNo52NHz5Yr2KpyYca9YflPMCidCCG7tr8O+ERsWPOzs8kwT+moMnBRSMa7urMbLJ+Z4sSCP2X2CHyxeqrBVOP0FgDWU0m5KaR+ltJdS2ifkhZXhh4ZkXa2QtjqXP4Jxuz91Mrkp2TiRa47T6IIPhOQf1sZsNAdZbpAnHbkt7JlN/fIcJ0a2zXeY4wc21UMqJnj8wIUtcVx4bmAG43Y/Pn1Ne86nS/0NevzJjhY8+s4EXj45hw2Nel5DAg2qssKJC/E4xVmbD60Z8s9u6jVDXyHFo++wU8rtOTWPX70zgU9c2YqtLUb01uuw4AlhjgcVBKU0kUsWieHlk3P48pPHcM1392DrP+3Cpx89hIf3nsWg1cU57HXQ6kKVWpYaiLClo0adUTkxbk/k6egEDvnsb0jcQ58+Mo1wLM5Z4cMoY6xO/tStoWgMbw7bcO3aGhBCYFTJIBOLeHlMLOf0LL8NdQzdJRIcbvexL7LIF7GIwKSRr/oQbtDqwjqzNmuuSXuNmtVhVmpIzGHzsKXFiAVPKDW0KhRHJ53whWO4urMa3XU6HMsSjLyaBCMx2Lyhgg2cxCKCNbVanJjJvK47Me3Gl588is1NBvy/W7oAAB/d0QynP4LfH7EW5DqXcnTSiecHZvHxK1tRpWanaFHKxHjvOhP+MDiLyDJbHaUUM84AzDzlhK4W925rwst/edWKeVbZ6G/Qpwo2ljM060FrleoCtXch2N6eOMTdN5JZ5eTwhWEsYJtbrtzaX4c4Bf4wyE7lxLg92MaS8M3ObhPm3KGsQfJsGLf70JJHjnCZzLAdOE0CKO6jljJpYdpDhLTVMVJ4JqS30ViBKrUMh3KUpI/afLDolXk3vHWaNJCISOq6smFdDOTUsqJTSlGlll2gcGIGTnwvBqrUcuzsqsVT707lfUoXj1P86NURdNSosbPLxOl7fH5nJ+oNSniCUV7tdABgrCgrnLhgdQYQisYzKpwUUjHu2liPFwdns55aufwR/NVvjqHTpE5lTjDPbT5O3M/afHAFIviL93Tg3a9dj5f/8ip8844e7GirxNFJF77xzAnc8m9vov8bL+H+n+3HL98ez0lpMJBsusp1ENpp0sDmDac9mRS6oY7BoleiUiXD75KbI66WgFqdAoTwq3Daf9YBXziG96ytAZA4Ca3VKQQZVDBKM66WwkysrdWCEBR9vfq5hrrCLOBrdQpBBodsiccpTky7WakSO2o0GJ7zZr0njCWHRVyCbLckcw33FzjHae8ZOwgBLm+rRF+9DoPTLsFaIDMxtehntc7ItWyFD7rMWpycSd9S6PSH8ae/PAidUoof3bcxlXG0rcWItbUaPLx3rKCKNUopHnphCJUqGT5xVWtOX3tLnxlOfwR7z5w/tHAHo/CFY7zmhK4GIhFBe5526f56PWbdwbT3rdVoqGPos+igkUtSWWzLiccpFv1hVBapwglIrIXWmDR45mh6ld1yJuyJ16tCDZ+Xc90aE8QigpdOzOX1fTzBCGzesKBZnZcybAdOowD2EEK+Sgj5PPMm5IWV4Qdm4jyZJm+IL5iAbibskxCCTU2GnIPDRxe8aMszvwlIbK47TBoMWLNvKuJxykkW3lqlxujC+Qona7Kulk+LGcPdWxuw6I/kXf/5ysk5nJrz4NPXtnEO+qyQSfCtO3shE4twRTt7Sx4bDCoZnIFI0VQZlwqM2m4lO8qHtzUiGqd44uDKSrm/fXoQdm8Y3/vg+tTwt6tOCxFBTmH8mTiSlMGvb9RDJCLoMGlw77Ym/OvdG7D3K9dh31euww/uXo/bN9Rh2hnA1343iJ+8NsrqewcjMQzPe3Oy0zGkmurS2OrGHb6CLEIIIehv0MPpj4AQcLYEyCQimDQKTPEYlrt7aB5yiQjb284952u1CkEynE7NeaGvkKKa5/YrlVyClkpV0QeH55ormC9mnXJVFU4TDj88oeiKgeEMHSY1PKEo5twrD87H7X4YVTJoOYTut1eroa+Q4kCWtim+2XvGhp46HfQVMvTX6xGMxDPmygnBWZsP13xnD654aDe+/9KpFYeQ58pWCrfJ7KrTwhWIYHrZYzUWp/izxw5jzhXCj+/bhBrNuUM/Qgge2NGMoVkP3h4t3O/zzTM27Bux47PXtefcNHn1mmpo5JIL2upmXMIcapYijBp4ua3OE4xgajFQ8MBwBolYhG2tlRcMCxmcgQjiFEVrqWO4td+MA2OLrAL3JxyJ3KN8xQJc0VVIcVmrES/luT9iFK0t5YY6QWA7cJpAIr9JBkCz5I0ThJC/IIQMEkKOE0I+l3zf1wkhVkLIkeTbTRm+9kZCyClCyBlCyFe4XsOlgqFCCpVMzDrPiAtLA8MZNjUZMG73s/YAU5q0BOWZ38TQa9HiOIvg8AVvCOFY7taF1mpVWkudVExQzVI6nQs72qrQYFTi8f3cbXWUUvzHnhE0GJW4tY+bd57hyo5qHP/7G9BXz7fCSQpKAVdA2MyxYmLek/9GbzSVf5Z5QNFWrcb2tko8tn8i40Dv+YEZ/P7IND57XTt6l7THVMgkaK9RY4AHyfKRSSdUMjE6Mpxw1umVuG29Bf94ey9e+txVuLW/Dg+9MMTqtO3UrAexOE0psnIh1YC1bIMXjsZhXQwUzNfPZOE1GSvyWsBZDEpeFU6vDs3j8rbK88I0a3UKzAphqZvzoNPEX0PdUrrqtIJb6mZdQbx8Yo6zosKaUjgVZjNvSg4OVytMnU1gOANz38hmqxvPI4tDJCLY3GTEgQIqnHyhKA5PLmJ7eyWAc/eBQtrqHnkrEa7da9Hh3149gx3/vBt/8fhhHE5zeMisKQutcAIuVCh+96VTeGPYhr+/rRsbGw0XfN1t6y0wVEjx831nC3Kd0VgcD70whHqDEvdsy71fSS4R4/puE148PotQ9JzabCZ5qGku4dBwvuiu00EsIhfYqBh17GoNnADgivZKTDj8aQ/6Hb7EnqjYB063JPcImbLEljLh8K1KftNSbuiuxciCj1WhRCaYVtCywkkYWA2cKKXfSPfG5QcSQnoAfALAVgD9AG4hhHQkP/wvlNL1ybfn03ytGMB/AHgfgC4AHyaEdHG5jksFQggajBWpE1MhGLS6Ltjg5ZrjNOsOwh+O5d1Qx9Bj0cHuC2fdDDEvCPU53ixbq1Vw+MJwLskbmnYGUKtTCFIRLBIR3L2lEW+N2lNtfrmyb8SOo5NOfPLqtqw5GWyQ8vA9lsMMLVcKXLyYeHvUjq3f3IV3c1QDLmd0wQeNQoKqLLkA92xrxNRiAK8PL1zwsQVPCH/z2wH0WnRp2wt7LXoMWPNv+Do84URfvR5iFs8TkYjgO3f1YUuzAV/49dGsVeXMxrWbhVJiOWadAmq5BGeWKZyszgDitHCLEKbyuTPP/CKLXgkrTwqn0QUvxux+XJe00zGYdfwPKiilyYGTMIGv3XU6WJ2B8+7dfBCOxvHC4AweeHg/tv/zLnziFwc5KyqmFgPQKaWc1DlcMOsU8IdjcAejBfl5yxm0uiEVE3Sw+J0zn3M6S3B4vjbYTU0GjNn9vD9OMrF/zIFIjKZUw82VKmjkkoIFh/tCUfz60CRu6jXj4Qe24tUvXIOPXN6EXSfncceP9uG2/9iL3x+xIhxNWPymFv2QiUWCHLBlYm2t5gJL7HPHZvDjPSO4Z1sj7t6afrijkIrx4a2NePnEnKBqfyBx//qb3w5i0OrGl29cyzlH6Na+OniCUbxx+pxSZppROJW4pY4PFFIx1tZqLshxOjmzOg11S9mRfA6nUznZvYn7SWWRttQxNFep0F+vY9VWN+Hwc7Iu88l71yUiQl7Ow1Y3ZuOe+1cmO2xb6qoJId8hhDxPCNnNvHH8mesAvE0p9VNKowBeA3AHy6/dCuAMpXSUUhoG8DiA2zhexyVDvaFCsNBwJjB8qRoCSAx8ZGIR6400Y09r4ymsjdlwDmax1TGndA0cLHUAMLLEVjfjDArqrf/gpnqIRQSPH2AX/Lycf999BjUaOT6wsZ7nK+MP5tRn8RIJDv/tu4msnrdzaI9Lx6gt0VCXTRGys6sWVWoZHn37/McQpRRffWoAvnAM3/9Qf9phYq9FC5s3lJeiJRiJ4eSMO6fsL4VUjJ9+ZDMseiU+8YuDKw5cB60u6JRSTlYkQhKtNss3suP2wi5C+uv1EBHknUFhMSgx6wryYk/dPTQPINGgtJRanQLhWJzXAfGsOwhPMMp7YDhDVx37enU2nJn34JvPncDl39qFT/7yXZyc8eATV7WCEHBWyBSqoY6hNqmYEMIeyYbj0y50mjSsNueVKhkMFVKcWUHhFIrGMOMK5DUkZhRGfNiI2bDvjA0ysQibmxL5USIRQW+9rmADp98dscITjOL+y5sAJDacf3drN97+6/fgG+/vhjsQwV88fgQ7HtqNH7wyjBPTblgMSkEO2DKhkkvQXKlKBYefmvXgS08excZGPf7u1pXPnu+7rAmEEPzy7XFBr/HbL57C/x2cxJ9d1865hQ1IDC10Sul5CpMZZxAiAtTwbDUuVfrq9Tg25TyvnezUrAcauUSQaAu2tNeoUaORY+/Ihes65rWy2BVOQCI8fMDqWnHNFYzEMOcOrbrCqU6vRF+9Lq/YkTG7HyatHBWy3CywZdjBVqLwKIAhAC0AvgFgDMABjj9zEMBVhJBKQkgFgJsANCQ/9llCyDFCyM8IIRfqYgELEgHmDFPJ910AIeRBQshBQsjBhYULT/MvJRqMSkwu+gWRyy8PDGeQS8TordexVjixsQTlwjqzBiKSvamOa/AlY/1bGhxudQYEfZGr0SrwnrU1ePLgVOqUkS2Hxhfx1qgdD17Vumo+azYYKi4dhVM4GscLyRfHTPW+bBld8LEa1sokInxocwN2D82d581/8tAUXjk5hy/fsCaVZbSc3qR9Mp8N0PFpF6JxivUNuVkxDSoZHv7olkQex8P7Mz4+Bq2J4GGuVqxOk/qCzJRz9eqFWVAZVTL86hOX4WNXtOT1fSx6JaJxyksY9O6heXSa1Be00DBNgHza6k7NMoHhwgycmKa6fILDfaEo/u/ABO780V689/uv4+G9Y9jSbMTDH92CvV+5Dl993zqsMWnyGDgVrm4eOGfREcIemQ1KKQatLlb5TUBiMNxhSgSHZ2JqkVElcn/O9vBYlMCGN8/YsanJcJ5lta9ej6FZ93m2KiGglOKRt8bRZdam1OkMarkEf7y9Gbs+fzUefmALusxa/Msrp/HGsG1VQoK7zFqcmHHD5Y/gwUcOQiWX4Mf3bco6rKzTK3Fjdy0e2z8Bf1gYJd9PXx/Bj/eM4N5tjanCDa7IJCLc2F2Ll0/MpULcp10BmLQKXhTqFwPrG3RwB6MpKxSQCAxfUyuMHZsthBDsaK/CvjO284ZhQKKBFAAqi7iljuHmPjMA4NkV4gyYPdRqD5wAYGeXCUcmnZzXPGO2wmR1XqqwvWtVUkr/B0CEUvoapfRPAFzG5QdSSk8CeAiJTKgXABwFEAXwYwBtANYDmAHwvTRfnu4OknaKQin9KaV0M6V0c3V1NZdLvWhoMFTAH44JsolfHhi+lE1NBgxMuVg1nows+KCSiWHS8nNyUyGToK1anXXgNOkIoEotz3kI02CsgEREUjlOsTjFrDsoeJjjh7c2wu4L45WT7GWj1mTwsr5Cig9nkJwXCymF0yUwcNp7xgZXIIJqjTxjvS8bfKEoZlxB1vlnH97aCArg8QOJ2b3VGcDfP3MCW1uM+JMdmYccXWYtxCKS9Tm1EocnzgWG50pzlQr/df9mTLuC+MQvDl5wXwlH4zg162GVA5OJjhoNbN7QeY+/cbsfSqmY9wDrlbistRI6ZX52Kib/J19bnScYwf6zDly7zE4HCKOMYQYJQg2cqtRymLRyTjlOM64A/urJY9j6zVfwV78ZgCsQwV/ftBZvffU9+MlHNuHatTUpq+jmZgMOTzhzVphRyhRZFG4Bb2IGhy7hsh4zMe0KYtEfySnov6MmMRjOdIg2wQyJ89g86JRStFSpCpKhZPeGcHLGjR3J/CaG/nodIjGasgkJxf6zDgzNenD/5U0ZN+oiEcG1a2rwv3+yFbu+cDUevKoVD+xoFvS60tFVp8WkI4BP/vIQpp0B/OS+janHbzY+uqMZ7mAUvz1s5f26fn1wEv/0/BBu7jPj72/r4WXgcUu/Gb5wDHtOJRSmM85gOb9pCYz9nMlxopRiaNaDtebVs9Mx7Givgt0XxqllFn1mH8YcrhYzZp0SW5uNeGaFHKeJpEV1+WHUanBDdy0A7ra6MbsfLeWBk2CwHTgxCb4zhJCbCSEbAHD25VBK/4dSupFSehUAB4BhSukcpTRGKY0D+C8k7HPLmcI5NRSS18Cut/ESJtVUJ0BweLrAcIZNTQaEY3FWjUAjC160VKt4PZXotehSCqxMTDm5WRekYhEaKytSCqd5T8K6UiewjPeqzmrU6RR4bD87W92bwzbc8sM3MOnw4/sf6ocqx7aUQpNSOF0Clrpnj81Ao5Dg41e0YNYd5LxpP5tqqGOnDmwwVuDqzmr834EJhKNxfOnXRxGjFN+9q39Fe4RSJkZHjTqvE//Dk05Y9MrzWoRyYVOTAf/6R+txaHwRX/j10fNOD0/PeRCOxVkrJdJxLh/m3CKRCR9ezRNTLtQn70X5Boe/OWxDNE7xnrWmCz7GZInw2XB2as6Dao087WsKX3TX6TgpnL785DH87ogVN/eZ8ZtPXY5XPn81HryqLe0wcnOTEd5QFEOzuf0chy+MQCRWUEsIs2FfjaY6ZoDdncOguKNGDVcgkrGUZIwnG2yvRYeBAiic3kpaqncsa33ta2BUpcIOvX7x9ji0CgluW5/WMHABbdVq/PVN63BdmnuC0DDB4W+N2vH193djU9KCyIbNTQb0WLT4+d4xXhX/Lx2fxVeeGsCVHVX4/of6WeUTsuHy1kpUqmR4JtlWN+MKwLyKVrFio71aDaVUnDqwm3Yl7di1+dnR+YAZHi/PcXL4wtAoJJBJSkOldmu/GafnvCnl8XKY4X4xKJzaa9RoqVLhJQ4DJ08wAps3hKZyQ51gsH3E/yMhRAfgCwC+COC/AXyO6w8lhNQk/9sI4E4AjxFCzEs+5Q4krHfLOQCggxDSQgiRAbgbwNNcr+NSgamtFSIsMV1gOAPTFsLGVje64EvlIvFFt0WHOXdoxRawSUeA82S+tUqdyp5i7ElCD5zEIoIPbWnAG8O2FX+f8TjFf7x6Bvf/7B1Ua+R4+rM7VmVxmCtKmRhKqfiiVziFojG8dGIWN3TXYktLYsF8hKOtboSDHfXebU2Yc4fwyV8ewr4RO752cxer0Mdeiw6DLNofM3FkwslJ3bSUm3rN+Or71uK5YzP49ounUu8/nkPTVSYYO+FSW924w18Ui6lc4UvhtGtoHjqlFBvT/N6q1DKICL8Kp9NzHsHymxi6zFqcWfCyUt8yHBpfxBvDNnxhZye+fVc/NjUZVxxC5lqcwcD8vgppV5JJRKhSy1clw+m41QURAdblsElM9zxdyrjdD7Vcgso8h5Z99TpMu4Ks23a5sveMDRq55IK1VJ1OgUqVTFBb36wriBcHZ/FHWxrOs/MVKz0WHSQigru3NOCeHBXbhBB8dHsLhue92JcmX4cLb4/a8dnHDqPHosNPWFj7ckEiFuHGnlrsPjmfUjLXlRVOKSRiEXotupTC6VRyuL9uFQPDGcw6JVqrVXhz2cDJ7gvnfV8qJO/rNUMsInj6aHpV4IQjAKVUnLWwphAQQrCzy4S3RmxwB3NrumaiE8oKJ+FgO3BapJS6KKWDlNJrKaWbkFAmceU3hJATAJ4B8BlK6SKAbxNCBgghxwBcC+AvAYAQUkcIeR4AkiHjnwXwIoCTAJ6glB7P4zouCRoMjMKJ34ETExieaYNXrZGjqbIi64I7GIlh2hVgbQliS08yqyOTdSIWp5h2cs/KaKtWYdzuRyxOYU3W1RbiVPpDmxsgIsD/HZhM+3FXIIIHHzmE77x4Crf01eG3n97BWzZWITCqZHD4cnuxKDVeP22DJxjFLX1mdJm1kKSp92XL6IIPhOR2mn/tmmqYdQrsHprHNWuq8eGtDdm/CEBvfaL9cZrDxnTeE4TVGcCGHPOb0vHgVa24d1sjfvLaCB59JxECO2h1QyOX5JW1VJdsqhtOKpzicYoJhx/NPJUZFJIKmQRGlSxVjMCFeJxiz6l5XNVZnTY3RCIWoUaj4C37Jx6nGJ7zsmory4fuOi1icZrx1DYdP9jHguuSAAAgAElEQVQ1jEqVDPdd1sTq8+sNStRqFTg4ltvAaTXq5oFk4+AqZDgNTrvRXqPOadjBPD6G59L//sbtiZrufFWJfcncugGrsAqjvWfsuKyt8oLnGCEEffU6QRVOv9o/gRilrB/Xq021Ro5Xv3gN/umOXk6/31v6zKhUyfDw3rG8r2XQ6sLH//cgGo0VePijWwRRkN/SV4dAJIbfvDuFUDRebqhbRn+DDsen3QhH4ynraWcRDJwAYEdbFfafdZyXuerwhUoiMJyhSi3H9rZKPHN0Ju1B40TyQK5YFOA7u02IxCheTRadsGWcBxt2mZVhO3D6N5bvYwWl9EpKaReltJ9Suiv5vo9QSnsppX2U0vdTSmeS75+mlN605Gufp5R2UkrbKKXf5HoNlxIqeWLjwXdTHWNX66vPrCjY1GTAofHFFRURZ20+UMpfYDgD00Z0PEPmzJw7iGicpgZyudJarUI4FsfUoj+lcCqEv75Or8Q1a2rwxMFJRGPnh4efnHHj/f/+Jvacmsff3dqFH9y9vuhtdMsxqKQXfUvdc8emoa+QYkd7FRRSMdaZtZyDw0dtPtQblDnlkEnEInzy6jZY9Eo89IE+1osF5gSei83kSDK/KZeGukwQQvCN93fjmjXV+NvfH8erp+YxOO1CV502r9YkpqmOUU7MuoMIR+MlqXACEgPwfBROA1YXbN4w3pMmv4mhVqfgTRkztRhAIBITXOHEtJiyzXE6PLGI108v4BNXtbJusCGEYFOzAQdzDA5nQlgtBQ5k5vP3mAu5BIYzVKvl0CmlOJ1J4eTw89Iq2V2nBSHCBodPOvyYcPixo60y7cf76vU4M++FL8R/0HU4Gsdj+ydwTWd1SW20GowVnO/zCqkY92xrxK6huVQDKRfO2nz445/th04pxSMf2yrYEGFrixHVGjn+582zAIA6gXNCS42+en0qv/HUrAcWvRJaRX75h3yxo70K/nDsPPW63RuGUVVaLYO39tdhwuFPex+ccPiKIr+JYUODAVVqec62Or5s2GUys+LAiRByOSHkCwCqCSGfX/L2dQDFr70tk6LeoEwtZPlipcBwhk1NBti84VSwXDoYW1obzwonjSIR+pmp1pixpHFVODEDstEFH2acAWgVEmgK9EJ395YGzHtCqbpyAHjq3Snc8aO9CEZiePzBy/DAjpaiOXXIBUOF7KJuqQtGYnj5xBxu7K6FNHmi3d+QqL9e3mjChtEFLyc76h9vb8YbX76WdeAqAKxLqrG4nPgfnnRCIiKpzX6+SMQi/Ps9G7HGpMFnH30Xx6fdednpGDpq1DidDK5mTr2aS2gzthSLXglrHvf9XUPzEBHg6s7MxRu1WgVmeAqbZgJWhT6hrjcooZFLUvXq2fjBrmEYVTJ8JEcVyJYmA6ZdwZyGflOLideSfEPjcyXxeyzswGneHcS8J5RTfhOQbKqrUeNMmqa6WJxi0uHnZYCikkvQXp1fbl02mIyXKzqq0n68v0GHOM3euMuFF47PYsETwv2XN/P+vYuZ+y5rgpgQ/OKtcU5fP+sK4r7/fgcUwC8+tlVQ1ZFYRHBzrzn1WlRWOJ3P+iXB4UOzbqwrgsBwhstbKyEi5+c4lZqlDkiEcUvFBM8sa6ujNKEAL6YhjUhEcH2XCXuG5nNq9xyz+VCjkZfcAX0pkU3hJAOgBiABoFny5gZwl7CXVoZPGgwVeVkr0rFSYDgDmxwLJni7RQDbSo9Fh0Fr+lPsc9YFjgOn5PWOLHhhdQYFz29aynVra1CjkeOx/RMIRWP42u8G8PknjqK/Xo9n/+xKbG5mH6RZbBhVsota4bTn1Dx84Rhu6atLva+/Xg9vKIpRW+aq73TE4zSRf8ZxWJvrKbFCKkaHScNpA3Zkwol1Zm3OjZAroZZL8LOPboFWKUU4Gs+p6SoTnaZzTXXjJX7qZTEkFE5cM7deHZrHhkbDivf4Wp0Cc25+Mm6YsPaOGmEtdSIRwbo6LSuF05FJJ/acWsAnrmzNeTHK3IdzUTkVuqGOoVangCsQEawyPh3Mvz9jf8+FDpMap+c9Fzy2Z1wBRGKUt+dsX70ex6a459Zl480zNtRo5BlLH3otjK2P/4HTI2+NoTFZInEpYdIqcFOvGU8cmMxZOeb0h3H/z96B0x/Gzx/YwrqsIx9u6TsXcSt0E3KpUW9QwqiS4cCYA6MLPqwpEjsdAOgqpOi16FIDJ0opFn1hGIsg7ygXdEopru6swbPHZs47FF3whhCMFJ8CfGe3Cb5wLKectjG7r2QPFkuFFQdOlNLXKKXfAHAZpfQbyf//BwD/TSkdLsgVluGFeqMS1sUAJwVFJlYKDGforNFAI5fg4EoDJ5sPdToFa6tCLvTUaWF1BtKGUE/maV0wqmTQKaUYtfkw7QwUdOAkEYvwoc0NeO30Au768Vv45dsT+NOrWvHox7cVtL5dCC52hdOzx2ZQqZLhstZzQ0HmlO7IZG6bill3EIFIrCCLXoY+DsHhsTjFsSknL3a65dTqFHj4gS24dk01ruzIf+PUzuTDzHsx7vBDIiIlW0Vt0SsRjMQ5PZ/m3UEMWF24bgU7HZCwEXtDUXhyDOlMx+m5hCWiEErR7jothmY8iGV5TfzhrmEYKqS4//LcM27W1mpQIRPnFBw+tegvuJ0OOGcHL6StjlHtdHEZONVo4PRHYF/22J5IZXHwNXDSweYNCZJvFY9TvDVixxXtVRnVyNUaOep0ChzlWWV1fNqFA2OLuP/yprxsyKXKR3c0wxOK4ql3p1h/zaIvjAd+fgBjNj/+6/7NqYwvodnYaIBZp4BUTFBVYnYsoWFyzl46PodonGJtETTULWV7exWOTDrhDUXhDkQRjdOSUzgBiba6WXfwvL0c4xIptoHT9rZKqGRivHR8lvXXjNn9aC431AkK2wynbxFCtIQQFYATAE4RQr4k4HWV4ZkGQwXCsTjmVmhsywVXYOXAcAaRiGBDkwHvZlE4CRVqzVxfupPsqcUATFo551YRQghaq1UYXfBi2hUouLf+j7Y0gCKRJfDjezfiqzetSxvsW2oYVTJ4glFEluVTXQz4w1HsOjmPG3tqz/tdtVaroZZLcs5xYuyofAfur0RPvQ6L/khOisnheQ984VhqsMY3a2u1ePiBrahS578Y70w1YHkwYfejwVhRss+rfJrq9pxaAICsA6daHgcVp2Y96BQ4MJyhu06HQCSGs7bMOS7HppzYPTSPj3NQNwGJg4GNjQbWweGU0qTCqfADp9TvsYDB4YPTLrRUqTgNGJng8NPLgsPHeA5/ZTIqj+Z4GMCGoVkP7L4wtrent9OduwY978Hhj7w1DoVUhA9uYlcYcbGxoUGP/nodHt43lvUg1u4N4aEXhnDFQ7txdNKJH354fdbfGZ+IRAQfu6IF162tuSSHg9nor9cjkGwcXVtECicAuKK9CtE4xf6zdth9CSVwZYkpnADg+i4TlFLxeW11TFRKMWU4AYBcIsY1a2vw8om5rAdKAOANRbHgCZVUjl0pwnYV3UUpdQO4HcDzABoBfESwqyrDO8wNga/gcCaIO5vCCQA2NRpwas6TtqaS0vwsQdnoTp6cMgHnS5la9HMODGdorVLjxLQbTn+koAonIPE7/fkDW/Hcn1+B9/Was39BicDYdy5GW93uoXkEIjHc3Hf+70ssIufV+7KFseAVWuEE5JYpci4w3CDINfFJnU4BlUyM4TkvxpJtV6UK05pp5WCn3jU0B7NOkXUBX6vlZ1ARjcUxuuBLDfyEpsvMtJhmfhz/cNcw9BVS/PH2Zs4/Z1OTAUOzblYKMKc/An84tjqWOu1qKJzcqdfoXOmoSTxOziwLDh93+CCTiGDOIZtuJfLJrcvGvpGE1WZHe/rAcIa+Bh3G7X44eXpNdPkj+N0RK25fb4GuojgClgsNIQQP7GjB6IIPbyyrrmdY8ITwredP4spvv4qfvDaC69aZ8MLnrsKNPYVfb338ylb850c2F/znlgLMQZZMLBIkmiMfNjUZIJOIsPeMPaU0LrXQcCDRevuedTV4fmA2VVY0Yc8vlkRIdnaZYPOGcWQy+2EPE51QbI+diw22R3ZSQogUiYHTv1NKI4QQYQztZQShIXlDmHT4sbUl/3yfYzkMnDY3G0ApcHjCeUFWwIInBE8omspD4ht9hQz1BmXa/INJRwBbmvPbALdWq+AOJjIALAUeOAErh/mWKsaK5MDJF0GNpjStTJl47tgMqjVybGu5cIPR36DH/7w5imAkxjrnaHTBB5VMjJoC2ijX1GogEREcs7pYDzqPTDqhr5CiuQSykAghaDdpcHouoXDa3FT8Q7JM1HNUOIWiMbw5bMNtGyxZiweYENt8A6fH7H6EY/GCDZw6TGrIxCKcmHbjtvWWCz4+MOXCKyfn8cWdnVDnESS6pdmIePL176os9+t8cwXzgVE4FSo4fNEXhtUZwEc4WBUBwKSVQ6OQYHhZcPi4zY8Gg5I3JYhCKkYnx9y6bLx5xobWalXWIOj+pHXr2JQr62OIDb8+NIlgJM753/5i4aZeM775/En8fO/Z89ZS854g/vO1UTz6zjjC0Tje31+Hz17Xjvaa4lLPlEnAqBDba9RFp0ZWSMXY0mzA3jO21N6rFC11QKKt7tljM9g3YsdVndWYcPhRq1XwmsvJF9eurYFUTPDkIStEhCRt/wnrvycYhTsYhTf553JDXWFgu4r6TwBjAI4CeJ0Q0oREcHiZEsFiUIKQc7lF+cImMJyhv0EPEUkEhy8fkIykLEHCKTR6LbqUIoshGotj1h3M+yR5abNeoRVOFysGVeLE9WLLcfKGotg9NI+7tzRAnGYztL5Bh0iM4uSMm7USaCRpRy1kG6FCKsaaWg0GctiAHZ5wor9eXzKtiR01ajw/MAN/OIbGEpZZ65RSqGTinAsjDpxdhC8cw3uy2OkAoEabGHbmq4xhrFGFCn2VikXorFVnDA7/wa5h6JT5qZsAYH1j4vXv4JiDxcApv+bUfKiQJZrxCqVwOhcYzq1ZkmmqW26pG3f4eQ9/7W/Q4fmBWVBKebuHhaNx7D/rwAc21mf9XCYaYMCa/8ApHqd45O1xbG4y8NYYWqrIJCLcu60R//rKMM7afKiQifHjPSN4bP8EonGK29db8Jlr2wRdn5bJn0q1HGtrNdic5wGyUGxvq8J3XjyF4eS9yliiA6erO6uhkUvwzNHp5MCpeBXgWoUU29uq8Nj+CTy2fyLt56jlEmgUibf3rjOlVLNlhIHVwIlS+kMAP1zyrnFCyLXCXFIZIZBLxDBpFLxZ6tgEhjOo5RKsrdWmzXFiLEFCZtD0WHT4w+As3MEItMmsiBlXELE4RYMxv4X90oVIeeDED8aL1FK36+QcQtE4bl7STreU9Q2JxdLRSSfrgdPogm9VFll99ew3YN5QFKfnPXhfb22Bri5/Ok1qPHkokQnRVKQLKjYQQlJNdbmwe2gecokI29uy55QopGIYVbK8LXWn5zwgpLD20C6zFq+cnL/gcTxodeGVk3P4/PWdeQeYq+USrDNrVyzOYDincFqdx5xZpyhYhhNjc+dqqQMStrpXTs6l/kwpxbjdd14hAx/0WvR4bP8kJh0BNPJ0Cn5k0gl/OIYdLLKAdEopWqpUOWf8peO14QWM2/34ws41eX+vi4F7tjXiP149gz995CDG7H7E4xR3brTg09e0o7lssSkZnvzUdkjFxXmgdUV7YuD07LEZAKU7cFJIxdjZXYsXjs/iH+/owYTDjyvai9dl8a07e3FgzJEcKklT/1XLJVDLJWkPfssIx4raQ0LIfcn/fn75G4A/L8gVluGNBqOSF4UT28DwpWxuNuDwxGLK+8swuuCDQipCXRZJeT4wC9oTS06yJ1MnyfktHpsqKyAigIgAphJvhysWGEvdxaZwevbYDGq1iowWrVqdAiatHEdYbioC4RiszkBBN+gMPRYdXIEIqwH2sUknKIVggeFCsPSkq9SbSyx6Zc4ZTruH5nB5WyWUMnZS+VqtIm9lzJl5LxoMFax/Jh901+ng8IUvGLL8cNcwtAoJPrqjmZefs6XZiCOTzqxFCFOLfmgUCaXRamDi4ffIlkGrCxY9O5V0JjpMath9Ydi9iTBemzcMfzjG+5A4FRzOY3D33jM2iAhweevK+U1Lr4EPW98v9o2hSi3Hjd2lcwAgJDUaBe7YYMFZmw8f2GjBq1+8Bt++q788bCox1HIJ5wIgoemx6KBVSDA064FKJi5KCxpb3r++Dp5gFC8dn8OcO1TUNrQ6vRK3rbfgurUmbGk2Ym2tFha9EjqltDxsWgWymV2ZO64mw1uZEqLBUIEpR/4Dp1wCwxk2NRngC8dwapn8fXTBi+ZKlaDNG4xsfGnI8VRyo5xvaLhcIka9oQImraLovOOlij6V4XTxDJzcwQheO7WAm3rNKz7W++v1rOuvmXatQjbUMfRZEsOjdNloyzmcHKCV1MAp2YBFyOqpTfgiV4XT6IIXY3Z/1na6pdTqFHln/4ws+M6zKBcC5jDiuPXcYcSJaTdeOjGHP7miJaWIzZdNTQb4wzGcnFk5iWBqMbAqWYAMZh5+j2w5Pu1GjyW/CvMO0/nB4ROOZBYHz8OCTpMGMomI1f2OLXvP2NBr0bEO7e6r12PWHcR8Hgq0cbsPe04v4J5tjZBJyusVhn+8vRcH/+Z6fOvOvqJr3CpT+ohFBJe3JQbLxhJsqFvK9rZKGFUy/HjPCAAUraWuTPGx4isOpfQ/k//9Rrq3wlxiGb6oN1Zgxh1EOJpf3fwAh4HTxqRFaLmtbtTmQ1uNsAqNao0ctVrF+QOnRT9E5FxQaj5sbjbkpPYqszIyiQgauQSOi8hS9/LxOYRj8Qva6ZbT36DHWZuPVRtRyo5aVXiFU2etGlIxwTEWzU1HJp1orVKlBomlgEWvhEomhrlIAzFzwaKvgCsQgTcUZfX5u4fmAQDXrslt4DSXx0Y4HqcYXfAWXK231qwFITgvx+mHu4ahUUjwwI4W3n4OY3s9OLayrW5qMbCqA85anQI2byjvNUI2PMEIztp8nPObGDqSa4fTyYHTmC1xoMa3wkkmEWGdWYtjPCmcvKEojkw6sZ2FnY6hP6Wy4j70+uXb4xARgnu2NnL+HhcjMonokm3rK1MYrkg+10uxoW4pUrEI7+upxYnk4Ul5QFuGLayOOAgh3yaEaAkhUkLILkKIjbHblSkdGgxKUApM55jnsZxjOQSGM9QblKjRyM/LsQhFY5h0+NFWAOlyj0WHwSWbiqnFAGq1Cl5O+b5zVz9+ct+mvL9PmXMYVLKLSuH03MAMLHolNjaurPJhVEBsrBOjC6tX5SqXiLG2VnveEDcdlFIcnnCWlLoJSGQfddfp0FmgAGshsTBNdSxtdbuH5tFpUue0kDRrFXD4wghGYpyu0eoMIBSNC374sBy1XILmShVOzCQexydn3Hjh+Cwe2NHCq63NrFPColfi4Lgj4+dQSmF1Bla1YtqcPIDJZ3jIBsbenu9BjVmngEomxpmkcnrckThIEmJo12fRYdDqRjyef0Hz/rN2ROM0tQllQ1edFiICDHAcegXCMTxxcAo3dtfyctBWpkwZ9jDD5VJtqFvKrf3nckjLCqcybGG7295JKXUDuAXAFIBOAF8S7KrKCAKzCMu1sWg5uQSGMxBCsLnZgENLBk4Tdj/iVNiGOoYeixYjC174w4lT/slFP+p5ulGKRaTsB+YZg0oGhz+y2pfBCy5/BG8ML+DmPnPWgO1e5hSbRY7TyIIXFr2yoJk3S+lNZopQmnkDZnUGYPOGsD7LoK0Y+fd7N+C7H+xf7cvIG8aiZXVmt1O7gxEcGHPg2hzsdMA5pSjXQcXIQkKhshp5ZF112pTC6d92D0Mjl+BjPKqbGDY3G3BwbDHj84VRoa3mwKk2maUo5MDJF4riD4OzAPIfOBFC0G7SYDipcBq3+1CnVwpiF+ur18EbimI0aWXOh71n7JBJRNiUIc8vHRUyCTpNGs4Kp6ePWuEKRHD/5U2cvr5MmTLcaa1SobVatSoHhHyzpdkIk1YOpVSMqhK3CJYpHGxflZmjvpsAPEYpzXxMV6ZoYRrZ8gkO5xIYzrCx0YCpxUBqMTuyULgMmp46HShFKkMjYV0ot8oVK8YK6UWjcHrx+CwiMYqbe1e20wGJKte2ahWrcNrRBd+q5Dcx9Fp08ASjGLdnvp8wAegbGoqzrnglajQKVKlLW/4OIHWfW0nh5A5G8JPXRnD9919DJEZxQ46BwszAiWvgNPNaUOgMJyCR4zS1GMCBMQeeH5jFR3c0C2Kv2dxsxLwnlPHAZ7Ub6oBE+DsA3nOc/OEonj02jU/98hA2/sPL+Pm+MWxtMaKah6KNzhr1koGTH82VwjyG+uqZ3Lr8bXV7z9iwpdmQs103ERzuXHHInw5KKf533zjWmDTY2sJvg1+ZMmWyQwjB7z+zA1++sfTbIcUigk9d3YY7NlqyHqKWKcMgYfl5zxBChgAEAHyaEFINoDDJkmV4w6xTQiIimMwjOJxLYDgDc5p3aHwRN/WaUxk0hZj4MwOyQasbPRYdZt3BvAPDywiHQSXD6Tnval8GLzw7MINGY0Wq6Sgb/Q16vH7adkFV+1IoTWTefHBzA5+XmhPMPWDA6srY6HN4wgm5RIS15tK3ppUq1Wo5ZGIRptJYqWdcAfzszbN4bP8kvKEodrRX4nsfXJ/K3GMLY8Va3vbGlpEFL/QV0lWpi+4yJ4Krv/DEUajlEnzsCv7VTQBS7ZQHxhxp7YpTqebU1VQ45Tc4XEowEsOrQ/N4dmAGu0/OIxCJoVojx91bGnBzX13Gts5c6TCp8etDU3D6wxi3+/A+FoN9LrRVq6CUinF00oU7NtRz/j4LnhCGZj340g25bzz76vV44uAUphYDOVle95914MSMG9+8o6e8QSxTZpXQ8FRCUQx8VAAVcJmLG1YDJ0rpVwghDwFwU0pjhBA/gNuEvbQyfCMWEdTplZjMw1LHJTCcobtOB7lEdG7gtOBDjUZekJuwSStHlVqGQasLM85qULq6C/syK2OskGHxIggNd/jC2HvGhgevamW90F/foMdT71ox7QpmbKya94TgC8dWVeHUadJAJk40Ny319C/lyKQTvRYdpOUGx1VDJCIw6xXnKZyGZt346eujePrINCiAm3rN+NOrWjlbnBgrFldlzMh8IjB8NTbDTIvphMOPz1zbJli4fadJA41cgoPji7hz44UDC0bhtJoHIVqFBBUyMeffYzASw2unF/DcsRm8cnIO/nAMVWoZPrDJglv66rCl2ci7/byjJjHMPjS+iEV/BM0C1XRLxCL0WLR5N9XtG7EBQE75TQz99ecy/tgOnOJxim/9YQg1Gjnu2GDJ+WeWKVOmTJky+cJq4EQIqQDwGQCNAB4EUAdgDYBnhbu0MkLQYFTmpXAa4BAYziCTiNBfr0/lOI0seAu2YSaEoMeiw4DVVRTWhTIrY1DJ4A/HEIzESrol7IXBWcTi7Ox0DMym4uikM+PAicm8WY2GOoZEc5MGAxkyRcLROAatLnzksnJmyGpj0SthdQawb8SGn74+ij2nFqCUinHfZU342BUteTfNqOUSqOWSvCx1162tzusauFKtkaNGI4cvFMXHr2gV7OeIRQQbmww4OJY+kWBqMQC1XAKtkq3wnH8IIXk1Dn7ql4fw6qkFGFUy3L7Bglt6zdjaYoREwIFzhylxD3zlZKJdsdEo3Jqi16LHr/aPIxqLc/477Ttjh1Yh4TTcXVObGPIfm3JmbTxleObYNI5MOvGdu/pQIVu9x1aZMmXKlLl0YfuK+TCAMIDtyT9PAfhHQa6ojKA0GCpS0n0uDHAIDF/KxiYDjk+7EIzEkhk0hdsw99TpMDzvxZn5RKMNk2lVpvhgrDWlrnJ6bmAaLVUqdNf9//buPD6uu7z3+OcZSaPN0mjGlixZku1YsbN4TazshC2QxUAIUMoS2hRKKS1LSKGsbeGy3bD0tvfSXiAsbVogUAiUfUlDw3KzWUkcW1kd2fIiy7ZsySNrX+Z3/5gziiJLtkYazTma+b5fr3lpdGbOOT+fnyTPPPM8z69y1vucW5d8U3G6xuF7stj/7HQ21Edo7YhPu3LTk4d7GR5LLMqG4bmmvqqUR/af4I1feYDWjjjvfek67v3gi/nY9esztqxxbaRkTgGn+MAox/qGfWkYnvKel6zjEzdsmNMHKeloXhXl6SN9xKdZEOFgzwAN0VLfS55qK0vojKefBT0wMsZvdx/jjy5dxYMfvopPv2ojl5+9bEGDTQArIqWUhQv49ZNHAFi9bOE+SNrUEGFoNDHRMypdzjl+/8wxLmtaOqdMr1SQfzY9/iC5Mt1nfv4kG+orec00WXUiIiLZMNtXAk3Ouc8CowDOuUFAheCLUGOsjGN9IxOrtaVjPg3DU5pXRRkdd9zz1FHig6OsyeKKDRvqKxlPOO5+8igFIZtokCrBE/XKWroXcePwrpPD3Nd2nJfPYnW6yYoLCzh/ReVEw+3ptHX1UVpU4PvP8KaGCCeHx9g3TdbkRMPwNPsBSea96NwaNjdE+NSrNvD7D7yYd121NuPBlbpICZ1zyIxpO+bfCnUpb7xk5bRlbpnWvDrZsPnh/T2nPBaUhSzmGjjcsf8E4wnHVefVLHiQabJQyDi7ZglHeoeBhV2mO9WHb6aszjPZ3z1Ax4lBrphDOd2zY6iitaN32iD/VF/93R4OxYf425edT0gr6YqIiE9m+6pgxMxKAQdgZk3A8FxPamY3m1mrmT1mZu/xtn3OzJ40s51m9gMzm/ZjcTNrN7NdZrbDzFrmOoZ8lXpBO9NKOaczn4bhKRd6jUK/23IQyO6bjFSvjvvajrOiqiSrL4olPRMZTv2nZgIsFr9o7SThmHXpw2RbGqvY1RFnfIY3FakV6vx+E7GxPtVT5NTg2CP7T1BdUcyKiAK7ftu2sY4fvvN53HjJqgUrUV1eWSafDkwAACAASURBVMLhOWTGtHnZIk01/gWcsmVLYxWFIWP7lLI65xwdPYOBKPOui5Rw5OTwjH97ZrK9vQezZ/+Pz6azvZ+d6oriBS0bW720nIriQnbOcaW63z+T7N80v4BThL7hsYlFV2ZypHeIL/6mjWvX13LJmqVzPp+IiMh8nfEdtyU/mv8S8Aug0cy+CdwNvH8uJzSzDcCfARcDm4GXm9la4C5gg3NuE/A08KHTHOZFzrktzrnmuYwhn6XKJ+bSx2k+DcNTYuVh1iwr556nu4DsBpwaoqVESosYSzgaqvx/YS8zi5UnG8l3L+KSup/s7OTsmiWcszz9Fdo2N0YYGBlnt1f+OdWeY31ZLUedydrlSwgXhqb9xH/HgRNsaazyvURIsqMuUkLXyWHGxhNp7dfW1U9RgdEYgOyehVYaLmD9ikpa9j03w6l3cIyTw2MByXAqZTzhONaX3meKLfu6Obe2kkofVmJa5/2NXaiG4SmhkLGxIcLOOWY43fvMcWorS+aV2b258dnG4afzuV8+xdi440Pbzp3zuURERDLhjAEn55wDbgZeDfwJcAfQ7Jy7Z47nPA+43zk34JwbA34DvMo59yvve4D7ARWcL4DUCjhzDTjVV82tYfhkW1dFGU84woUh6rP4AtvMJoJlQXhhLzNLldT1LNKSuiO9QzzY3s3LNqZXTpcyuXH4VEOj4xzsGcxqOepMigpCnF936spNPf0j7D3WzwXq35Q3aiMlJBx0pRmoaOvqY/XS8rzJOG1eHePRAycYGXs2MHfA66sYhP+XUmW66ZTVjY0neHhfDxet9qd8dq2X4bSQDcNTNjZEeKKzl+Gx8bT2G0847m07xhVnL5tXEL6pegll4YLTBpxaO+Lc+fBB3nzFalYt9f//CRERyW+zfYV3P7DGOfdT59xPnHPH5nHOVuD5ZrbUW/1uG9A45TlvAX4+w/4O+JWZPWRmb5vpJGb2NjNrMbOWrq6ueQw3tyxbEqa0qGBOJXW7OuITPQzmY6uXcr96aVnGl0g+k/X1yebNmWqUKwsjUlqE2eLt4XTnwwdxDl6xOf1yOkiWblSWFLLjwKlvKvYdH8A5/xuGp2ysj/DYoef2FNnhldhtaVTAKV+kAhWdafb/aevq87V/U7Y1r4oyPJag9dCzv9up/4/rA5B5WxdJfx6fPHyS/pHxif/bs21tTTLDadUCZzgBbKqvYnTc8dTh6bNPZ/KTnYfoGRjlJefVzOv8BSFjw4rIjI3DnXN8/CePEysL844Xnz2vc4mIiGTCbANOLwLuM7M2r8fSLjPbOZcTOueeAD5DsoTuF8CjwEQHazP7iPf9N2c4xBXOuQuB64B3mNnzZzjPbc65Zudcc3W1P8stB5GZ0RAtnfhEdbYy0TA8JfWi1I8l3TesUIbTYlBYECJSWrQoV6nbd7yfL9z9DC86p5qza9Ivp4Nk6cbmxqppM5zauvxvsjzZRq+nyN7j/RPbduw/gVmywa3kh1ovUHEkjUDF6HiC/ccHaKoJRvA0G7Z6WUAPtT9bVncwSBlOkVSG0+w/lGrxelJd5DVFz7bGWCn/4/r1/GHz1M8uMy/1oVs6ZXVj4wn+8b92c87yCq5ZX5uRMTx+qJfRacpXf/nYYR7c280tL13nS3mjiIjIVLMNOF0HNAEvBl4BvNz7OifOua855y50zj0f6AZ2A5jZTd6xb/RK+abb95D39SjwA5K9oCQNjbEyDnSnl+GUiYbhKU3VS1hTXc4la7L/4vTKtct4yXnLubxp7k07JTtiZeFFl+GUSDje/72dFIaMT79647yOtbmhiqeOnGRw5LmlG3u8gNNZASipg+lXbtpx4ATnLK9gSfHCNfCVYKmLJIMl6WTG7Ds+wFjCBSZ4mg01FSWsWlr2nMbhHScGKQ8XUFXmf4AgVhYmXBBKa8XB7ft6qK8qZUWVPwEzM+Omy1dPBMsWUkO0lGhZUVor1X3/kQ72Huvnr65el5GFHjY1VjE8ljgly2p4bJxP/+xJ1i1fwusvWvjgm4iIyGzMKuDknNs33W2uJzWzGu/rSpK9oe4ws2uBDwDXO+emTb8xs3Izq0jdB64mWaInaZhLhlMmGoanhELGr9/7Qt58xVnzPla6qsrCfPWm5qy8MJX5iZaHF12G0zce2McDe7v525efP/EGfK42N1YxnnA8dui5b2z2dPVTFymhPCDBnLOrl1BSFJr4G+Gcm2gYLvkjWlZEuDDE4TQCFUHL1suWrauiPLSvh9Tnage9FeqC0GA/FDKWR4pn3cPJOUdLezfNPvVvyjYzY2ND1YwlbVONjCX43/+1m431Ea4+f3lGxrA5FeSf0jvv9nvb2d89wN+87Py86YkmIiLB59f/SHea2ePAj4F3OOd6gH8CKoC7zGyHmX0JwMxWmNnPvP2WA783s0eBB4GfOud+4cP4F7XGaBknh8aID8x+yflMNQwXma1oWZju/tn/jPpt//EBbv35kzx/XTWvbZ7/mgepNxU7ppTVtR3rD0z/JkiWP55fVznxif/eY/3EB0fVMDzPmBm1lSVpNZtOBZyC9POcDRetjnHca6wPqYCT/+V0KenM48GeQY70DtPsU/8mP2xuiLD7aN8p2afT+U7LATpODPLeq9dlLKC4MlZGpLSInZOCXsf7hvnC3c/w4nNreP46tZEQEZHg8OUjcufcldNsm7a7oVdCt827vwfYvLCjy32NseQL2wM9A0TKZpex1NoRz0h2k8hsxcqLaO2Y2/LT2ZZION5/56OEzLj11Rsz8saiprKEFZESHp1UuuGcY09XHzdsqZ/38TNpY32E7z50kPGEmwiQbWnMnzegklQbSTPgdLSf5ZXFVORZr5lUcKZlXw9rqpdwsGeAiwOUIVQbKX1OMON0WvYlSwObferf5IeN9RHGE47HO3tP2yh9aHScf/r1bppXRXlBBoNAZsamhgiPTlpU4n/d9TSDo+N8eNt5GTuPiIhIJijnNg81RJMruRzonl1ZXXxwlPbjA2zMwAp1IrMVLQ/TPTDCDO3cAuWbD+7n/j3d/M3LzstoH5OpjcOP9Y1wcmgscBkhGxuqGBgZZ++xPh7Zf4LycAFn1+RXmZQkM2M6e2ffHzDfVqhLaapeQlVZEQ+19xAfHOXk0NjE/8tBUBcpoTM+NKu/vdvbe6goKWTd8rktkLAYpRZDOFNQ7hv37+NI7zDvu+acjJdLbmqI8NSRkwyNjvPU4ZPc8eB+3nTpKv3dFRGRwFHAKQ81xryA0yz7OGWyYbjIbMXKwoyMJRiYRdmCnw50D/A/f/YEV65dxusy3Kh1S2MV+7sHJpqnP1uCFKw3Fam/DTsPxtlx4ASbG6soyEBzXFlc6iIlHIkPzypQ4ZzL24BTKGRsXRll+77uiRXq6gNWUjcylqBnFmX3Le3dbF0Vzavf99pICTUVxadtHN4/PMYX72njeWcv49I1SzM+hk0NqR5/vXzyp49TUVLEzVetzfh5RERE5ksBpzwUKS2isqRwVivVDY6M8+Xf7iFkCjhJdqX6hQV5pTrnHB/8/k4MuPU1mzL+KfZmr/F2KstpT1ey58uagKxQl9JUXU5pUQHb23t4orNXDcPzVG2khJHxxKx+Z7v6hjk5NEZTwLL1smXr6ih7uvonghaB6uHkLapxpvLI+MAoTx/p46I8KqdL2dQQYedpSr7/9d52jveP8FdXr1uQ82/2sqy+8Ovd/G73Md591Vr12BQRkUBSwClPNcbKzpjhFB8c5Y+//gC/3d3FJ27YoBczklWxsuTPW5BXqrvjwQP8v2eO8+GXnUf9AiwJvrE+QsiebRy+p6uP4sLQgpxrPgoLQqxfUcmPHz3EWMIp4JSn6rxARecs+ji1HU0GT5vytAQoFaT54Y5DAIEqqZsIOJ2hPPKh/cn+TafrY5SrNtZX0dbVR9/w2CmPxQdH+fJv2rjq3BouXLkw12Z5ZTHVFcXc81QXZy0r548uXbUg5xEREZkvBZzyVGO07LQ9nI6eHOJ1X76PHQdO8IU3XMCNl+jFjGRX0DOcDvYM8KmfPs7lTUt548UrF+Qc5cWFrK2pmFiCe8+xfs5aVk4ogOUrG+ojE2++tmiFury0vDIZqDjSO4uAk1cemo8ldZAMJocLQty/9zhl4QKiZcFpnD7bwOH29h6KCmwi2yafbGqM4BzTLmzxtd/vpXdojFteujDZTZBsHJ5ayfQj284jXKiX8yIiEkz6HypPNcZKOdgzOG2vjX3H+/mDL97H/u4Bvv4nF/HyTSt8GKHku1h5cDOcnHN86Pu7cMBnFqCUbrLNjREePXBiYoW6oL5B3+S9+amvKqWmosTn0Ygf6iLJzLtZZTh19VEWLqC2Mj9/VkqKCtjYkAxaNERLF/RvSLqqlxQTsjOX1LW0d7OhPkJpuCBLIwuOVIuBqX2cuvtH+Prv97JtYy0bFrgNwU2Xr+YdL2riqvNqFvQ8IiIi86GAU55qjJUxPJagq2/4OdsfP9TLa754H71Do3zrzy7lyrWZW8pXJB2pkrru/jM3rs2272w/wO92H+ND286baMK/UDY3VtEzMEpbVx8HegYDt0JdSuoNmLKb8ld1RTEFITtjoAKgraufNdXBzNbLlmavFC1I5XSQLJGtrig+beBweGycRw/G87J/E8CyJcXUV5VOZJ+mfPm3bfSPjHHLSxYuuynlyrXV/PU15wYqWCkiIjKVAk55qtF7gTu5cfj29m5ed9t9FBUY33v7ZerDIr6qKCmkIGT0BKykruPEIJ/86RNctmYpNy5QKd1kqXKVH+04xHjCBTbgtKZ6CZecFeMVm+r8Hor4pCBkVC8p5vBsSuqOBjdbL1tSvY+C1pMNoDZSetrSyNaOOCNjibzs35SyqSHCrkkldUdPDnH7ve3csKWetcsrfByZiIhIcCjglKcaY8kXuKklme9+4ghv+uoDVFcU872/uJyza/RiSfwVChlVpUV0B6ikLlVKl3COz/7BpqxkZ5xTW0FxYYgf7OgAgtvzpiBkfOfPL+PaDQo45bPaSMkZM5wGR8bpODEY2J/lbGleHSNcGGLd8uBdh7rKktNmOG1v7wGezdLKRxsbIuw7PkB8IJmF+3//u43RccfNV631eWQiIiLBoYBTnmqYyHAa4M6HDvK2f3+Ic2or+O6fXxbIT1slP0XLw4HKcPpuy0F++3QXH7zu3AUvpUspKgixoT4ykY141rJgZjiJQLLhdGf89Kub7TmW3w3DU2LlYX793hfw+ixkSqbrTIHDlvZu1lSXs3RJcRZHFSyp7NOdHSc4dGKQbz2wn9dubWC1/kaLiIhMKPR7AOKPkqICli0p5o4HD9BxYpDLm5Zy2x83s6RYPxISHLGycKBWqbv9vnY21kd4U5ZXbdzcUMVD+3qoqSimoiQ4q1mJTLW8soTf7T522ue0dfUD0FSjN+ZB69+UUhcpoW94jJNDo6f8zUkkHC37erjm/FqfRhcMG1Yk+9btPBjnZ7sOA/AuZTeJiIg8hzKc8lhjrJSOE4Ncu76Wf3nzRQo2SeBEy4sCs0rd0Og4Tx0+yfPWLst6o+NUI+6g9m8SSZkcqJhJ29E+zGD1Uv08B1VtJLl64HR9nPYc6+PEwChbV+dvOR1ApKyI1UvL+EXrYb7bcoA3XrJSGeIiIiJTKOCUx9548Ur+8oVN/PONF1JcmH/LGkvwxcrDgVml7ukjJxlLuInV2LJpS0Mq4JTfJUgSfKlAxenKsdq6+miMllFSpP93gqq2MjmP0/VxSvVvytcV6ibb1FDFro44hQXGX76wye/hiIiIBI5SWvLYa5sb/R6CyGlFy8L0DIzgnPN96efUakSpMopsaoyV8vqLGrl+84qsn1skHZMDFTOt1NXW1U+TsvUCrS6SzNSZPuDUzbIlYVYvDWY5YDZtaojwo0cPcdNlq6nxfvZFRETkWQo4iUhgxcrDjCccvUNjREr97V3U2hEnUlo0scJjNpkZt75mU9bPK5KuVKDi8DSlWJDs/7Onq48rmpZmc1iSpprKZDPw6TLVWtp7aF4V8/1DgCC4Zn0tj+w/wdtfoOwmERGR6aikTkQCK1oWBgjESnW7OuJsqK/UmyyR0zhdoAKg48Qgw2MJmmpUHhpkJUUFxMrDp2Q4He0dYn/3AM153r8ppTFWxj/feCHR8rDfQxEREQkkBZxEJLBi3ov4bp8bhw+PJRuGb/Chf5PIYjJToCKlrasPgCb1Iwu82sqSU5qGt+xL9m9qVv8mERERmQUFnEQksFKfGvud4bT7SB+j486X/k0ii810gYqUtq5+APVwWgTqIiWnBA63t3dTUhRi/YpKn0YlIiIii4kCTiISWDGvpK7b54BTqmG4HyvUiSw20wUqUtq6+qgqK5rIXpTgqo2UcDg++JxtLe09XNAYpahALx9FRETkzHx5xWBmN5tZq5k9Zmbv8bbFzOwuM9vtfZ22QYCZ3eQ9Z7eZ3ZTdkYtINkXLk43Ce3wuqdvVEaeipJBVWpVJ5IymC1SktB3to6l6iXqhLQK1lSX0DIwyNDoOQP/wGI939nKR+jeJiIjILGU94GRmG4A/Ay4GNgMvN7O1wAeBu51za4G7ve+n7hsDPgpc4u3/0ZkCUyKy+C0pLqSowOjuH/V1HK0dcTasiOhNssgsTA1UTNbW1a9yukWiNlICMFEeuePACcYTjq3q3yQiIiKz5EeG03nA/c65AefcGPAb4FXAK4HbvefcDtwwzb7XAHc557qdcz3AXcC1WRiziPjAzIiWhX3t4TQ6nuDJzpNsbFA5nchsTA1UpMQHRjnWN6yG4YtEXaQUYKI8cnt7NyGDC1dW+TksERERWUT8CDi1As83s6VmVgZsAxqB5c65TgDva800+9YDByZ9f9Dbdgoze5uZtZhZS1dXV0b/ASKSPbHysK+r1D195CQj4wk1yRWZpamBipS2Y1qhbjFJBQ4Pe/PY0t7DubWVVJQU+TksERERWUSyHnByzj0BfIZkdtIvgEeBsVnuPl09i5vhPLc555qdc83V1dVzGquI+M/vDKdWNQwXSUttpBg4NcOp7agXcKpRwGkxSAWcOuNDjI0neHh/j/o3iYiISFp8aRrunPuac+5C59zzgW5gN3DEzOoAvK9Hp9n1IMlsqJQG4NBCj1dE/ON3htOujjhLigtZvVR9Z0Rmo3amDKeufooKjMZoqR/DkjQtKS6koriQw/FBnjx8koGRcfVvEhERkbT4tUpdjfd1JfBq4A7gR0Bq1bmbgB9Os+svgavNLOo1C7/a2yYiOSpaXuRrhtOujl7Wr6gkFFLDcJHZeDZQMTXg1MfqpeUUFvjy0kPmoDZSwuHeIba3dwMow0lERETS4tervjvN7HHgx8A7vAbgtwIvNbPdwEu97zGzZjP7KoBzrhv4BLDdu33c2yYiOSpWFubE4CjjiWmrZxfU6HiCJzp7VU4nkqblkZJpA07q37S41Hrz2NLeQ31V6UR/LhEREZHZKPTjpM65K6fZdhy4aprtLcBbJ33/deDrCzpAEQmMaHkY5yA+OEqsPJzVcz9ztI+RsQQbFHASSUtdpITOST2cRscT7D8+wHUban0claSrLlLCk4dP0hkf4vKmpX4PR0RERBYZ5bWLSKClgkzdPpTV7fIahivgJJKe2soSDscHJ77fd3yAsYRThtMiU1tZQtfJYY6eHKZZ/ZtEREQkTQo4iUigRcuSAaceHxqHt3bEKQ8XsGaZGoaLpKM2kgxUjI0ngGQ5HaCA0yJTO6mErln9m0RERCRNCjiJSKD5meHU2hFn/YqIGoaLpKk2UkLCQVffMPBswGlNtYK3i0ldpASAipJC1tVU+DwaERERWWwUcBKRQIt6Aadsr1Q3Np7g8c5e1tdXZvW8IrkgFajo9BqHtx3tZ3llMRUlRX4OS9JU681j86qoAu8iIiKSNgWcRCTQYl5JXXeWS+rauvoZGk1ohTqROVhemQxUHEkFnLRC3aK0oqqUogLjMjUMFxERkTnwZZU6EZHZKg0XUFIUynqGU6phuAJOIumr83r/dMaHcM7R1tXHDVvqfR6VpCtSWsRP3nUlZ6mPnYiIiMyBAk4iEnixsjDd/aNZPWdrR5yycAFrlJUhkrZoWRHhwhCHe4fo6hvm5NAYTerftCidU6veTSIiIjI3KqkTkcCLloezvkpda0ec8+sqKVDfEpG0mRm1lSV0xodoO9oPQFONgrciIiIi+UQBJxEJvFh5OKur1I0nHI8d6mWDyulE5qw2UsKR+NDECnXq4SQiIiKSXxRwEpHAi5ZlN8NpT1cfg6PjCjiJzENdpITO3kHauvooCxdQ6zUSFxEREZH8oICTiARetjOc1DBcZP6SGU7DPHO0jzXV5YRUnioiIiKSVxRwEpHAi5aFOTk0xuh4Iivna+3opaQopCbHIvNQW1nCyHiCR/afUDmdiIiISB5SwElEAi9WXgSQtbK6VMPwwgL9iRSZq7pIsoSub3hMAScRERGRPKR3UyISeNHyMAA9/aMLfq5EwvHYobj6N4nMU22kdOK+Ak4iIiIi+UcBJxEJvFhZMuCUjT5Oe4710z+ihuEi8zW5SXhTjcpTRURERPKNAk4iEngTGU5ZKKlrVcNwkYyoriimIGSYweqlCjiJiIiI5JtCvwcgInImsfLsZTi1dsQpLgyxtkYlQCLzURAyaiqKKSoIUVJU4PdwRERERCTLFHASkcCrKvOahmch4LSrI855ahgukhHn11VSWVrk9zBERERExAcKOIlI4BUXFrCkuJDuBS6pSzYM7+WGC1Ys6HlE8sWX/mir30MQEREREZ/4EnAys1uAtwIO2AW8GbgLqPCeUgM86Jy7YZp9x719APY7565f+BGLiN+i5UULnuHUfryfvuEx9W8SyZAiZQqKiIiI5K2sB5zMrB54N3C+c27QzP4DeL1z7spJz7kT+OEMhxh0zm3JwlBFJEBiZWG6B0YX9Byth3oBtEKdiIiIiIjIPPn10WMhUGpmhUAZcCj1gJlVAC8G/tOnsYlIAEXLwwue4dTaESdcEGLd8oozP1lERERERERmlPWAk3OuA/g8sB/oBOLOuV9NesqrgLudc70zHKLEzFrM7H4zO6XkTkRyU6wsvOCr1O06GOfcugqVAYmIiIiIiMxT1t9VmVkUeCVwFrACKDezN016yhuAO05ziJXOuWbgjcA/mlnTDOd5mxeYaunq6srQ6EXEL9HyMD0L2DTcOUfrobjK6URERERERDLAj4/xXwLsdc51OedGge8DlwOY2VLgYuCnM+3snDvkfd0D3ANcMMPzbnPONTvnmqurqzP7LxCRrIuVhxkYGWdodHxBjr/v+AAnh9QwXEREREREJBP8CDjtBy41szIzM+Aq4AnvsdcCP3HODU23o5lFzazYu78MuAJ4PAtjFhGfRcvCAAuW5dR6KA6ggJOIiIiIiEgG+NHD6QHge8DDwC5vDLd5D7+eKeV0ZtZsZl/1vj0PaDGzR4H/Bm51zingJJIHYuVFAAvWx2lXR5yiAlPDcBERERERkQwo9OOkzrmPAh+dZvsLp9nWArzVu38vsHGhxyciwTOR4dQ/uiDHb+2Ic05tBeFCNQwXERERERGZL72zEpFFIVaeDDh1L0BJnXOO1o5eldOJiIiIiIhkiAJOIrIoRMtTGU6ZDzgd7BkkPjiqFepEREREREQyRAEnEVkUqkoXrofTrg41DBcREREREckkBZxEZFEoLAgRKS1akFXqdnXEKQwZ59SqYbiIiIiIiEgmKOAkIotGrDy8IBlOrR1x1i2voLiwIOPHFhERERERyUcKOInIohEty3yG08mhUXYejKucTkREREREJIMUcBKRRSOZ4TSaseONjSd457ceoW94jFdfWJ+x44qIiIiIiOQ7BZxEZNGIloUztkqdc46P/fgxfvN0F5+8YQOXrFmakeOKiIiIiIiIAk4isojEysN0D4zgnJv3sb72+7184/79/PkL1vCGi1dmYHQiIiIiIiKSooCTiCwa0fIwI2MJBkbG53WcXz52mE/97Amu21DLB645N0OjExERERERkRQFnERk0YiVhQHmtVLdzoMnuPnbj7C5oYp/eN0WQiHL1PBERERERETEo4CTiCwa0fJkwGmuK9Ud7BngT29vYdmSYr7yx82UFBVkcngiIiIiIiLiKfR7ACIisxUrLwLmluHUOzTKn/5rC0Oj43zrrZdQXVGc6eGJiIiIiIiIRxlOIrJoRMvmluE0Op7gHd98mLauPr70pq2sXV6xEMMTERERERERjzKcRGTRiJWnejiNznof5xwf/dFj/G73MT77mk1ccfayhRqeiIiIiIiIeJThJCKLRmVJESGDnjRK6r7yuz1864H9/OULm/jDixoXcHQiIiIiIiKSooCTiCwaoZARLQvTPcuSup/v6uTTP3uSl22q431Xn7PAoxMREREREZEUldSJyKISLQ+fMcPpmaMn+faDB/j3+/dx4coq/v61mwmFLEsjFBEREREREQWcRGRRiZWFp12lbnBknJ/u6uQ72/ezvb2HwpBxzfpaPv7K9ZQUFfgwUhERERERkfylgJOILCrR8iL2Huuf+P6xQ3G+/eAB/nNHByeHxjhrWTkfuu5cXrO1gWVLin0cqYiIiIiISP7yJeBkZrcAbwUcsAt4M/Al4AVA3Hvanzjndkyz703A33jfftI5d/vCj1hEgiJWHubBvd1864H9fHv7fnYejBMuDLFtQy2vv3gll5wVw0zlcyIiIiIiIn7KesDJzOqBdwPnO+cGzew/gNd7D/+1c+57p9k3BnwUaCYZrHrIzH7knOtZ6HGLSDBEy8L0DIzy4R/s4pzlFXz0FefzqgvqqSoL+z00ERERERER8fhVUlcIlJrZKFAGHJrlftcAdznnugHM7C7gWuCOBRmliATOqy+sZyzhuHZDLRc0VimbSUREREREJIBC2T6hc64D+DywH+gE4s65X3kPf8rMdprZ7+FAygAACLFJREFUP5jZdM1X6oEDk74/6G07hZm9zcxazKylq6srg/8CEfHT2TUVfHjbeVy4Mqpgk4iIiIiISEBlPeBkZlHglcBZwAqg3MzeBHwIOBe4CIgBH5hu92m2uenO45y7zTnX7Jxrrq6uzsjYRURERERERETkzLIecAJeAux1znU550aB7wOXO+c6XdIw8C/AxdPsexBonPR9A7MvxxMRERERERERkSzwI+C0H7jUzMosWQ9zFfCEmdUBeNtuAFqn2feXwNVmFvUypa72tomIiIiIiIiISEBkvWm4c+4BM/se8DAwBjwC3Ab83MyqSZbN7QDeDmBmzcDbnXNvdc51m9kngO3e4T6eaiAuIiIiIiIiIiLBYM5N2wIppzQ3N7uWlha/hyEiIiIiIiIikjPM7CHnXPN0j/lRUiciIiIiIiIiIjlMAScREREREREREckoBZxERERERERERCSjFHASEREREREREZGMyoum4WbWBezzexwZsgw45vcgJCs01/lDc50fNM/5Q3OdPzTX+UNznT801/lDc50Zq5xz1dM9kBcBp1xiZi0zdYCX3KK5zh+a6/ygec4fmuv8obnOH5rr/KG5zh+a64WnkjoREREREREREckoBZxERERERERERCSjFHBafG7zewCSNZrr/KG5zg+a5/yhuc4fmuv8obnOH5rr/KG5XmDq4SQiIiIiIiIiIhmlDCcREREREREREckoBZxERERERERERCSjFHCaBzNrNLP/NrMnzOwxM7vZ2x4zs7vMbLf3Neptv9HMdnq3e81s86RjXWtmT5nZM2b2wdOc8ybvuLvN7KZJ2z9lZgfMrO8MY95qZru88/wfMzNv+2u9f0PCzLQ05BQ5NtefM7MnvbH9wMyq5nt9ckmOzfUnvHHtMLNfmdmK+V6fXJJLcz3p8feZmTOzZXO9Lrkol+bazD5mZh3e7/UOM9s23+uTS3Jprr3H3uWN4TEz++x8rk2uyaW5NrPvTPqdbjezHfO9Prkkx+Z6i5nd7811i5ldPN/rk0tybK43m9l93mM/NrPK+V6fRck5p9scb0AdcKF3vwJ4Gjgf+CzwQW/7B4HPePcvB6Le/euAB7z7BUAbsAYIA48C509zvhiwx/sa9e6njnepN56+M4z5QeAywICfA9d5288DzgHuAZr9vrZBu+XYXF8NFHr3P5Mas245OdeVk57zbuBLfl/fIN1yaa69xxqBXwL7gGV+X98g3XJproGPAe/z+5oG9ZZjc/0i4L+AYu/7Gr+vb5BuuTTXU57z98Df+X19g3TLpbkGfjXp/jbgHr+vb5BuOTbX24EXePffAnzC7+vrx00ZTvPgnOt0zj3s3T8JPAHUA68Ebveedjtwg/ece51zPd72+4EG7/7FwDPOuT3OuRHg294xproGuMs51+0d5y7gWu/Y9zvnOk83XjOrI/kG9D6X/Mn/t0lje8I591TaFyFP5Nhc/8o5NzbN2IScm+veSU8tB7RKxCS5NNeefwDej+b5FDk41zKDHJvrvwBudc4Ne8c7msalyHk5Ntep5xjwh8Ads7wMeSHH5toBqUyXCHBolpchL+TYXJ8D/Na7fxfwmllehpyigFOGmNlq4ALgAWB56ofT+1ozzS5/SjICCslfogOTHjvobZtqts+bSb23z1z3F3Jurt8yaWwyRS7MdSodGLgR+Ls0jptXFvtcm9n1QIdz7tE0jpeXFvtce97plQ98PVVWIKfKgbleB1xpZg+Y2W/M7KI0jptXcmCuU64Ejjjndqdx3LySA3P9HuBz3muzzwMfSuO4eSUH5roVuN67/1qSmeh5RwGnDDCzJcCdwHumZBTM9PwXkfyF+EBq0zRPm+4T6tk+b8ZTz3P/vJdLc21mHwHGgG+mcdy8kStz7Zz7iHOukeQ8vzON4+aNxT7XZlYGfAQFFM9osc+19/WLQBOwBegkWX4jU+TIXBeSLPG4FPhr4D9SvUHkWTky1ylvQNlNM8qRuf4L4BbvtdktwNfSOG7eyJG5fgvwDjN7iGR54Egax80ZCjjNk5kVkfxl+KZz7vve5iNeel0qze7opOdvAr4KvNI5d9zbfJDnRjwbgENmdok920Dw+pmed5qxFUza/+Pe/pPLp067vzxXLs211xDv5cCNXvqnTJJLcz3Jt8jTVN7TyZG5bgLOAh41s3Zv+8NmVpvOtch1OTLXOOeOOOfGnXMJ4CskywZkklyZa++x77ukB4EEoAUBJsmhucbMCoFXA9+Z/RXIHzk01zcBqfF/F/0NP0WuzLVz7knn3NXOua0kA8lt6V2JHOEC0Ehqsd5IRjT/DfjHKds/x3Obmn3Wu78SeAa4fMrzC0k2KDuLZ5uarZ/mfDFgL8lPu6Le/diU55ypqdl2kp+UpZqabZvy+D2oaXhOzzXJuuTHgWq/r2sQbzk212snPeddwPf8vr5BuuXSXE95TjtqGp6zcw3UTXrOLcC3/b6+Qbrl2Fy/Hfi4d38dybIP8/saB+WWS3PtPXYt8Bu/r2sQb7k01yR7Er3Qu38V8JDf1zdItxyb6xrva8j7N73F7+vry5z6PYDFfAOeRzJlbieww7ttA5YCdwO7va8x7/lfBXomPbdl0rG2kezC3wZ85DTnfIv3S/UM8OZJ2z9LMsKa8L5+bIb9m0nWk7YB/4T3wgV4lbffMHAE+KXf1zdItxyb62dIvmhNjU0rl+XuXN/pbd8J/Bio9/v6BumWS3M95TntKOCUs3MN/Duwy/u3/IhJASjdcm6uw8A3vMceBl7s9/UN0i2X5tp77F+Bt/t9XYN4y6W59v4tD5EMgDwAbPX7+gbplmNzfbN3/qeBW8nTDwxSF0NERERERERERCQj1MNJREREREREREQySgEnERERERERERHJKAWcREREREREREQkoxRwEhERERERERGRjFLASUREREREREREMkoBJxERERERERERySgFnEREREREREREJKP+PwS+5Vs4hf4uAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "%matplotlib inline\n", "fig, axs = plt.subplots(3, 1, figsize=(20, 15))\n", @@ -346,20 +170,9 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAANOCAYAAABUfxZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3hUZdoG8PtMSWYyKZPee08IIfQOUqQFQVx7Z1ndVWEXdtWPVVexr6vCFlxRVARWXVeFUKQpvSYQgiGFhPTee532/YGgSEmbmZNk7t91cUFmTnkmLzM5ec77PK9gMBgMICIiIiIiIiIiMhKJ2AEQEREREREREdHgwoQTEREREREREREZFRNORERERERERERkVEw4ERERERERERGRUTHhRERERERERERERiUTOwBz0Ov10OkGx2J8UqkwaF4L3RzH2nJwrC0Dx9lycKwtB8facnCsLQfH2nJwrI1DLpfe8DmLSDjpdAbU17eKHYZRqNU2g+a10M1xrC0Hx9oycJwtB8facnCsLQfH2nJwrC0Hx9o4XF3tbvgcS+qIiIiIiIiIiMiomHAiIiIiIiIiIiKjYsKJiIiIiIiIiIiMigknIiIiIiIiIiIyKiaciIiIiIiIiIjIqJhwIiIiIiIiIiIio2LCiYiIiIiIiIiIjIoJJyIiIiIiIiIiMiqZ2AEQERGZy8HsaggCEO1hBxdba7HDISIiIiIatJhwIiIii5BW3oSnt6Vf+drN1gpRHnY//XG3g52CPxaJiIiIiIyBV9ZERGQR1p8ogINChr/eFoWsqhaklTUio6IZBy/WXNnGz1GJ6B8TUNPDXODKWVBERERERL3ChBMREQ166eVNOJpbi99NCMAIXzVG+KoBeAMAGts1yChvRlp5E9LLm5BUWI9dGZX48mwJvnh4JKxkbHdIRERERNRTTDgREdGgt/5EAewVMtwV53XNc/YKOcYEOGJMgOOVx47k1GDF1jR8nlyCh0f7mjNUIiIiIqJBgbdtiYhoUMusaMKR3FrcN8Ibttbdu88yKdgZk4Od8fHJQlQ3d5g4QiIiIiKiwYcJJyIiGtTWnyiEnbUMd8d592i/P0wJgkavx7+O5psmMCIiIiKiQYwJJyIiGrQuVDbjUE4N7u3B7KbLfB2VuHe4D3amVeB8WaOJIiQiIiIiGpyYcCIiokFr/YkC2FpLcU8PZzddtnisL5xVVnjnQA70BoORoyMiIiIiGryYcCIiokEpq7IZBy/W4N7h3rBT9G6NDJWVDE9NCsD5sibsSq80coRERERERIMXE05ERDQorT9ZCFtrKe4d7tOn48yNcke0hx3+eSQPLZ1aI0VHRERERDS4MeFERESDTnZVMw5kV+OeuN7PbrpMIgj407Rg1LR04pNTRUaKkIiIiIhocGPCiYiIBp2PThZCZSXFvSN617vpl4Z42mNetDs+O1OMoro2oxyTiIiIiGgwY8KJiIgGlYvVLfg+qxp3D/eGvUJutOM+NTEAcokEaw7lGu2YRERERESDFRNOREQ0qHx04tLspvuGG2d202UuttZYPNYPh3NqcDK/1qjHJiIiIiIabEyWcFq5ciXGjRuH+Pj4K4+tWbMG8+fPx4IFC7B48WJUVFRcd9+33noL8+bNw5w5c/Dqq6/CYDCgra0Njz32GGbPno158+bh7bffNlXoREQ0QOVUt+D7rCrcFecFB6XxZjdddu9wb/ioFXj3QC60Or3Rj09ERERENFiYLOG0aNEirF+//qrHlixZgu3btyMhIQFTp07F2rVrr9kvOTkZycnJ2LZtG3bs2IHU1FQkJiYCABYvXozdu3djy5YtSE5OxqFDh0wVPhERDUAfnSyEUi7FfSP6tjLdjVjJJPjDlGDk1bbif+fKTHIOIiIiIqLBwGQJp1GjRsHBweGqx2xtba/8u62tDYIgXLOfIAjo7OyERqO58reLiwuUSiXGjh0LALCyskJUVNQNZ0gREZHlya1pwXcXLs1uUptgdtNlk4OdMNbfER8cz0dda6fJzkNERERENJCZvYfT6tWrMWXKFGzfvh2///3vr3k+Li4OY8aMwcSJEzFx4kRMmjQJwcHBV23T2NiIAwcOYNy4ceYKm4iI+rmPTxZCIZfgfhPNbrpMEASsuCUYbRo93j9WYNJzERERERENVDJzn3D58uVYvnw51q1bh82bN2PZsmVXPV9QUICcnJwr5XKLFy9GUlISRo0aBQDQarVYsWIFHnzwQfj6+nbrnFKpALXaxrgvRCRSqWTQvBa6OY615eBY911OVTP2XqjCbyYGIsDLoesd+ihObYMHx/jh05MFeHhiIKI87bvch+NsOTjWloNjbTk41paDY205ONamZ/aE02Xx8fF4/PHHr0k47du3D7GxsVCpVACASZMmISUl5UrC6YUXXkBAQAAeeeSRbp9LpzOgvr7VaLGLSa22GTSvhW6OY205ONZ9t2ZfFqylEvxqiLvZvpcPDffG1pRSPPlZMoKcVdDq9dDqDNAZDNDqDNDqL/3R6Q3Q6vVwsLHCCzND4e/EC5vBju9py8Gxthwca8vBsbYcHGvjcHW1u+FzZi2py8/Pv/Lv/fv3Iygo6JptvLy8kJSUBK1WC41Gg6SkpCsldatXr0ZzczP+/Oc/mytkIiLqp6pbOrE3sxJv7MvG3sxK3DnMC442VmY7v51ChudvDYNSLkVZYzvqWjVo0+ih1xsgl0lgp5DB1dYKPmoFQlxUyK9pxUu7L0CrN5gtRiIiIiIisZhshtOKFSuQmJiIuro6TJ48GUuXLsXhw4eRl5cHQRDg7e2NVatWAQBSU1PxxRdf4LXXXsOsWbNw8uRJzJ8/H4IgYNKkSZg2bRrKy8vx/vvvIygoCLfffjsA4IEHHsCdd95pqpdARET9SHVLJ5KL6pFc3IAzRfXIr20DAKispJgS4oKHR3evzNqYpoQ4Y0qIc7e2PVrYgOX/O4dNSUV4dIyfiSMjIiIiIhKXYDAYBv2tVo1GN2imynHan+XgWFsOjvX1dWr1OJRTgzNF9UguakBe7aXvkcpKimHeDhjh64ARvmqEudlCJrl21dP+xsFBiSc2n8HBizXY9MBwhLiqxA6JTITvacvBsbYcHGvLwbG2HBxr47hZSZ1oPZyIiIhuxGAw4PlvM3Egu/pKgmn+EHcM91UjfIAkmH5JEAQ8Oz0UycUNeHFXJjbcHwe51OyLxRIRERERmQUTTkRE1O9sT6vAgexqPD7eH4+M8RuQCabrUdvI8eeZofhTQjo+OlmI304IEDskIiIiIiKT4K1VIiLqV4rr2/DO/hyM8HXAo4Mo2XTZlBAXzItyw4ZThUgvbxI7HCIiIiIik2DCiYiI+g2t3oAXd12ARAK8NDsc0kGWbLrsj7eEwFllhZd2XUCHVi92OERERERERseEExER9RsbE4vwQ2kjnp0eCg97hdjhmIydQobnZ4Uhr7YV647lix0OEREREZHRMeFERET9Qnp5Ez44UYBbw10xO9JN7HBMblyAExYN9cTm08U4V9IgdjhEREREREbFhBMREYmuTaPDC99mwtlGjmdnhIgdjtksmxIIT3trvLT7Ato0OrHDISIiIiIyGiaciIhIdH8/lIvCuja8NCcc9gq52OGYjcpKhr/MDkdxfTv+dThP7HCIiIiIiIyGCSciIhLVsdxafH2uDPeN8MYoP0exwzG7Eb5q3DvcG1+mlCKxoE7scIiIiIiIjIIJJyIiEk1dayde3nMBIS4qPDExUOxwRPPExAD4OSrxyp4sNHdoxQ6HiIiIiKjPmHAiIiJRGAwGvLY3G00dWrwyNwLWMsv9kaSQS/HS7HBUNndgzcFcscMhIiIiIuozy726JyIiUSWkluNQTg2enBiIEFeV2OGILsbLHg+O8kXC+XIcy6sVOxwiIiIioj5hwomIiMyuqK4N7x7MwUg/Ne4d4S12OP3GY+P84e+oxLsHcqDV6cUOh4iIiIio15hwIiIis9LqDfjLrkzIJBK8OCsMEkEQO6R+w0omwe+nBKGwrg1fnSsTOxwiIiIiol5jwomIiMyitVOHE/m1WLX7As6XNeH/ZoTAw14hdlj9zsQgJ4z2U+PDEwVoaNOIHQ4RERERUa/IxA6AiIgGpzaNDj+UNOJ0UT3OFDUgvaIJOr0BUomAe4Z749YIN7FD7JcEQcAfpgbh/o3J+PhUIZZPDRY7JCIiIiKiHmPCiYiIjKJdo8MPpY0482OCKa28CdofE0xR7nZ4cKQPRvqqMdTbHkq5VOxw+7VQV1vcFuOBL8+W4o5YL/g5KsUOiYiIiIioR5hwIiKiPmvX6HD3htMobeyAVAAiPexw/0gfjPB1QKyXA2ysmGDqqd9OCMC+zCr883Au/rYgWuxwiIiIiIh6hAknIiLqs8M5NSht7MDKGSGYFekGlRV/vPSVi8oKj4zxxXtH83GmqB4jfNVih0RG1qHVw0oqQGDjfCIiIhqE2DSciIj6bFdGJdxsrbBwqCeTTUZ073BveNhZY/XBXOgNBrHDISNqatdizvsn8dmZErFDISIiIjIJJpyIiKhP6ls1OJFfh1kRbpBwpoZRKeRSPDUpEBcqm7EzrULscMiIThbUoalDi49OFqKpXSt2OERERERGx4QTERH1yXdZVdDpDZgdyVXnTOHWCFcM8bTDe0fz0abRiR0OGcmx3BooZBI0dWix+XSR2OEQERERGZ1JE04rV67EuHHjEB8ff+WxNWvWYP78+ViwYAEWL16Miorr37F96623MG/ePMyZMwevvvoqDD+WEpw/fx7z58/HzJkzr3qciAY2nd4ArU4vdhjUC7szKhHkbINQV5XYoQxKgiBg+dRgVLd0YlMSExODgd5gwPG8OkwJccbMcFd8nlyCmpZOscMiIiIiMiqTJpwWLVqE9evXX/XYkiVLsH37diQkJGDq1KlYu3btNfslJycjOTkZ27Ztw44dO5CamorExEQAwEsvvYSXX34Ze/fuRX5+Pg4fPmzKl0BEZvLnHRl46D9n0dCmETsU6oGShjacK23E7Eg3Nj42oaFe9pgZ7oqNScWoaOoQOxzqo/TyJtS1aTAxyBmPj/dHp1aPDYlMJhIREdHgYtKE06hRo+Dg4HDVY7a2tlf+3dbWdt1fUARBQGdnJzQazZW/XVxcUFlZiebmZsTFxUEQBCxcuBDff/+9KV8CEZmBVm/Ayfw6ZFe1YMXWNLSzbGjA2JNRBQAspzODpyYFwmAw4N9H88QOhfroaG4tJAIwLsAR/k42iI/2wNfnSlHe2C52aERERERGI8pSQqtXr8bWrVthZ2eHjRs3XvN8XFwcxowZg4kTJ8JgMOCBBx5AcHAwUlNT4eHhcWU7Dw+PG5bk/ZxUKkCttjHqaxCLVCoZNK+Fbs6Sxvp8SQNaNTrEx3hi5/kyvLA7C+/dFwe51DLazA3UsTYYDNibVYWR/o6I9HMSO5x+r6/jrFbb4NHxAVh3JA+/nhyMGG+HrnciUXQ11icL6xHnq4a/56UxXDErHN9mVGBTcileWzjE5PGllzXipe3p+Pvdw+DpoDD5+Qazgfr5TT3HsbYcHGvLwbE2PVESTsuXL8fy5cuxbt06bN68GcuWLbvq+YKCAuTk5ODQoUMAgMWLFyMpKQnW1tbXHKs7JRw6nQH19a3GCV5karXNoHktdHOWNNaHMy8ljn87zg8x7iq88d1FPP1lCv4yO9wiVj0bqGN9oaIZOVUtWDnDc0DGb27GGOd7Yj3x5elivLI9DevujmUZYz91s7Gubu5AWmkjnpgYcGUbGwCLhnriq+Ri3DXUA/5Oprv4NRgM+MvW8zhX2oi132fhT9NCTHYuSzBQP7+p5zjWloNjbTk41sbh6mp3w+dEnT4QHx+PvXv3XvP4vn37EBsbC5VKBZVKhUmTJiElJQUeHh4oLy+/sl15eTnc3FjGQTTQpZQ0wsveGu521lgU64XHxvtjZ3ol/nmYpUP92a6MSsgkAqaHuYodisWwtZbhtxP8cbakEQcu1ogdDvXCsbxaAMDEoKtnBT46xg9yqQQfHC8w6fn3Z1fjXGkjPOyssTW1HLWtbFZOREREpmH2hFN+fv6Vf+/fvx9BQUHXbOPl5YWkpCRotVpoNBokJSUhODgYbm5uUKlUSElJgcFgwNatWzF9+nQzRk9ExmYwGJBS3IBhPj+VBy0Z64c7h3lh8+lirsrVT+n0BuzJrMT4QCc4KOVih2NRbovxRLCLDf55OBedWq7sONAcza2Fm60VQlyuXtXRWWWFe0d4Y++FKmRVNpvk3B1aPf5xOA+hrir8/Y4h6NTq8UVyiUnORURERGTShNOKFStwzz33IC8vD5MnT8b//vc/vPPOO4iPj8f8+fNx7NgxPPfccwCA1NTUK/+eNWsW/Pz8MH/+fCxYsAARERGYNm0agEur1D3//POYOXMm/Pz8MHnyZFO+BCIysYK6NtS1aTDsZ/1oBEHAH28JxowwV/zjcB52pJXf5AgkhjNF9ahu6cQcNgs3O5lEwB+mBKG4vh1fppSKHQ71QKdWj8SCekwMcr5uOeQDI31gZy3D+8fyTXL+L8+WoLShHb+fEoQgZxWmhbngfymlaO7QmuR8REREZNlM2sPp3XffveaxO++887rbxsTEICYmBgAglUrx8ssv33C7HTt2GC9IIhJVSnEDACDuFw2QpRIBq+aEo7Fdg1f3ZMFBIcekYGcxQqTr2J1RCZWV9JqyIDKPsQFOGOvviE1JRfhVrCcUcqnYIVE3nC2+tEDChBu8b+wVcjw4ygfvHc1HamkjYrzsjXbuutZOfHSyEBODnDDG3xEA8MhoX3yfVY2vUkrxyBg/o52LiIiICBC5hxMRUUpJAxyVcvg7Ka95zkomwVsLohDmZouVOzJwrqRBhAjpl9o1OuzPrsYtoS5MdIjokTG+qG3V4Nv0rldrpf7haF4trKQCRvmpb7jN3XHecLKR4z0jz3L64HgB2jU6/H7yT60MItztMDbAEZ8nl6BdozPq+YiIiIiYcCIiUZ0taUSst/0NV9tSWcnw90VD4G5njeVb0nCxusXMEdIvHc2tRUunDrNZTieq4T4OiPKww3/OlECnN4gdDnXDsdwajPBVQ3mTRK2NlRSPjvHD6cJ6JBbUGeW8uTUt2PJDGe6I9UKA89Ur4D0y+lLictt5Ji6JiIjIuJhwIiLRVDZ1oLShHXE+DjfdztHGCv+8IwYKuQTLvk5FWWO7mSKk69mdUQkXlRVG+t54lgaZniAIeHCkDwrr2nAohyvW9XcFta0oqm/vVhnqoqGecLezxntH82Ew9D2Z+PdDuVBaSfGbcf7XPDfcxwFDveyxKakIWh2b0BMREZHxMOFERKJJ+bFEbpj3zRNOAODloMA/FsWgXaPHsq9TuTqXSBraNDiWV4tbI1whlVx/VhqZzy2hLvB2UGBTUpFREhNkOsfyagHghv2bfs5KJsFvxvkhrbwJh/uYTDyRX4vjeXVYMtYfaptrV5QUBAGPjvFFeVMH9mRW9elcRERERD/HhBMRieZscQNs5FKEudl2a/sQVxVenhuO/No2rlwnku+zq6HVG7g6XT8hlQi4f6QPzpc1IaWkUexw6CaO5tYi0MkG3g7X9qu7nnnRHvBzVOLfx/Kh72UyUas3YM3BXPioFbhzmNcNt5sQ6IRQVxU+TSzq9bmIiIiIfokJJyISTUpJI2K87CDrwUyZCYFOiPG0wyeniqBh+YfZ7c6oRICTEuHdTBKS6c2PdodaKcfGpCKxQ6EbaOnU4mxxQ7dmN10mkwh4fLw/cqpbsbeXM4+2pZYht6YVSycHwUp240s+QRDwyGhf5NW24tBFlmcSERGRcTDhRESiaGzXIKe6pVvldD8nCAJ+Pc4f5U0d2JnGJrfmVNbYjrPFDZgd6XbDJu9kfgq5FHcN88LR3Frk1rCpPgC0aXR4dls6zhTVix0KAOBUQT20ekO3+jf93IxwV4S6qrDueH6P+ys1d2jx/rECxHnb45YQ5y63nxbmCh+1Ap+cKmR5JhERERmFTOwAiMgynStphAHosmH49YwPcESUhx0+OVWI+Gh3yKS9z50bDAZ8dqYEDe0aONpYwVEph6ONHI5KOZxs5FAr5X06/mCyJ6MSADArguV0/c2dw7zwaVIRNicV4y+zw8UOR3TvHc3H/uxqNHdoMaIfNLc/llsDW2spYr3se7SfRBDwxMQALN+Shk2ni/HwaF9Iupns3ZBYhLo2DdZMHdKtBLFMIuChUb54fV82EgvqMSbAsUexEhENRG0aHXKqW5Bd1YKLVS24WN2C+nYtxvipMTPcFUM87XiTjagPmHAiIlGklDRAJhEQ7WHX430FQcCSsX5YsTUN32ZU4rYhHr2O47usaqw5lAsBwI3u6dsrZFD/mIAa5u2Ah0f7wtba8j4+d2dWYqiXPXzU3etBQ+ajtpFjwRAPfPNDGX43MQCuttZihySas8UN+G9yCVxUVkgsrEdxfZuo/2f1BgOO5dVhrL9Tr5LXEwKdMNpPjfeO5uPb9Ao8NMoXsyPdIL/JsUob2vH5mWLMjXJDVA8+Y+dFuePDEwXYkFjIhBMRDSoGgwElDe1XEkvZ1S24WNWM4vr2K9d/NnIpQlxV8HFU4qtzpfg8uQSe9taYEeaKmRGuiHCzZfKJqIcs7zcmIuoXzhY3ItLdDgq5tFf7TwxyQqS7LT45VYi5Ue496gN1WXOHFu8cyEGEmy0+uW8YWjp1qGvToK5Vg7rWTtS1aVDbqkF966W/q1s68GliEbadL8cTEwMwf4hHt2cbDHTZVc3IqW7FM9NDxA6FbuC+kd746lwpvkguwdLJQWKHI4p2jQ4v77kALwcF1iwagrs3nMb28+X43cRA0WK6UNmMmpbOHpfTXSYIAv5+Rwz2Z1VhQ2IRXt6ThXXHC3D/SB8sjPGA8jqfof86kgdBEPBED1+3lUyC+0f4YM2hXKSWNiKmhzOyiIj6qzWHcvHZmRIAgADA11GJMDdbzI1yR6irCiGuKnjaKyARBKjVNiiuaMShizXYd6EKnyWXYNPpYviqFZgR7oqZ4a4IcVEx+UTUDUw4EZHZtWt0yKhown0jvHt9DEEQ8Oux/vhTQhp2Z1QgPrrns5zWHslDXWsn3l0YDZlUAgelBA5KOQJu8nthRkUT3tmfg1f3ZuPrc2X44y3BiO1hH6qBaFd6JaQSATPDXMUOhW7A20GJ6WGu+PpcGR4d42eRs/DeO5qP4vp2vH/XUAQ42WB8oBO2p1XgN+MDepWUNoajubUQAIwP7P2MIZlEwK0RbpgZ7orj+XX4NLEI7x7IwUcnCnB3nDfujPOCWikHAPxQ2oh9F6qwZKwf3O16PtPt9qGe+ORUITYkFuGdhdG9jpmIqL8ob2zHf8+WYkaYCx4Y5YtgZ5sub3jaWsswL9od86Ld0dCmwcGL1dh3oQobE4vwyakiBDgpcWuEGx4a5QvrmyzKQGTp+O4gIrNLK2+CVm/occPwX5oc7IQwVxU+OVUErb5nTW7PlzXi63NluHOYV49KTiLd7fDhPbF4dW4Ealo6seSLc3h+ZwbKG9t7Gv6AoTcYsCezEuMCHKG2kYsdDt3Eg6N80NKpw5YfysQOxezOFjfgi+QS3DXM60rfpgVDPFDV3InjebWixXUstxbRnnZwtLHq87EEQcCEQCd8cHcs1t8Ti1hvB3xwogDzPziFdw/koLyxHasP5sBFZYUHR/n26hw2VlLcHeeNwzk1uFjFJvREZH5anR6fJ5eguqXTKMfbmFQMAcDvpwQh2qPns+sdlHIsiPHEv341FLt+Oxb/NyMEziorfHC8AJtPc4VYopthwomIzO5scQMEALHefSvXEAQBS8b5o7CuDXszK7u9n1anx+v7suFqa4XfTgjo1XlnRbrhq8WjsGSsHw5erMGvPjmND08UoF2j6/Hx+ruzxQ2obO7EnEg2C+/vIt3tMNJPjS+SS6Dp4apmA1m7RodX9lyAp4MCT076qYxsYpATnGzkSEgtFyWu2tZOpJc3YUJg78rpbibW2wHvLIzGFw+PwPQwF3x5tgQL1ififFkTfjcxADZWvStXBoC74ryglEuwIbHQiBETEXXPhh9ncb69/2Kfj1Xd0omE1DLMi3aHh72iz8dztLHCHbFeeP+uWIzwdcDOtAqu7El0E0w4EZHZpZQ0INhFBXtF32fLTAlxRoiLCh+fLISum7OcPk8uQXZVC/44LaRPZUdKuRSPTwjAl4+MxKQgJ3xwvAB3fnIa312oGlQXH7syKmEjl2JycNdLq5P4Hhzpg8rmTuzpQRJ2oPv3sXwU1bfjhVvDrkq0yKQSzB/igWO5Nahq7jB7XMfzamEAet2/qTuCXVR4aU4EtiwZjTuHeWFulBvmRbn36ZgOSjkWDfXCvgtVKK5vM1KkRERdy65qxkcnC+GolOP7rGqkljb26Xj/OV0Mrd6Ah3s56/Nm4qPdUVTfjh/6GCPRYMaEExGZlVZvQGppE4b1cXbTZRJBwJJxfiioa8N3F6q63L6ssR0fHC/ApCAn3BJinASKl4MCb8yPwvt3DYWdQoaVOzLwxFepaGrXGuX4YurQ6vF9VhWmhjr3usE7mde4AEeEuKiwKal4UCU+b+RcSQM+P1OCX8V6YqSf+prnbxviAZ0B2JFWYfbYjuXWwkVlhXA3W5Ofy9NegT9NC8GqORGQGqFf1f0jvSGVCNiUVGyE6IiIuqbV6fHy7izYK2T49IE4OKus8I/Dub3+WVbfqsHX50pxa4QbfB2Nv1rptFBXKOUSbBfh5wvRQMGEExGZVVZlM1o1OsT5GK/R9i2hLghytsFHJwuhv8lFicFgwFvfX5qe/fT0EKOvLjLCV41NDwzHs9NDkFLcgGXfpKK5Y2AnnY7n1aK5Q4fZLKcbMARBwIOjfJBb04rjeXVih9Mt7Rod8mtae7Xfy3uy4GlvfcOV+fwclRjh64CE1PKbfj4Ym1anx4n8OkwIdBqQKxm52lpjfrQHtqeVo1qE2WFEZHk2JhUjs7IZz84Ihae9Ao+N90dKSSMO59T06nifny1Bm0aPR8cYf3YTcKnn3bQwV3x3oWpQtlQgMgYmnIjIrFJKGgCgzw3Df04iCPj1WD/k1bbi+6zqG2534GINjkiLA98AACAASURBVObW4vEJAfA0Qh3/9UglAn41zAtvzo9ERkUzln09sJNOuzMq4WQjxyi/3q+wReZ3a7gr3O2ssTGp/zczNRgMeG5nJu7ccBrP7ehZA/5/H8tHYV0bnp8VdtOeRQtjPFHS0I7ThfXGCLlbzpU2oqVThwkmLKcztQdH+UCrM2Dbed69JyLTuljdgg9PFGBmuCumhboAuDRDNcBJiX8ezuvx4jDNHVp8ebYE00JdEOSsMkXIAID4KHe0dOpw8GLvkmJEgx0TTkRkVmeLG+DloIBbL5brvpnpYa4IdLLB+hMF153F0Nyhxdv7LyLUVYV7hnsb9dzXMyXEBW/ERyK9ohnLvj6Pls6Bl3Rq7tDiaG4NZoa7irakPPWOTCrBvcO9kVzcgLSy/t1b4kB2NQ7n1GCsvyMO5VxqwP/+sXy0dXG3+HIp3R2xnl0mRG8JdYG9QmbW5uFHc2shkwgY7X9tmd9A4aNWIsLdVtRV/oho8LtUSncBdtYyPD0t+MrjMomApyYFoaCuDdtSe7b66v9SStHcocPiMX7GDvcqw30d4GlvjZ0sqyO6LiaciMhsDAYDzpU0Is5I/Zt+Tiq5NMspt6YVB7OvneX0/rF8VDd34s8zQ82WPLkl1AWvz4tAenkjfj8Ak077s6vRqTOwnG6AWjjUA7bWUmw63X978DR3aPG3/TkIc1Vh9aIh+OrRkZga4oyPThbijo+T8G16xXUTyJdL6TzsrbF0cuB1jnw1a5kEcyLdcOBiNerbNKZ4Kdc4mluD4T4OUFn1fmGC/mBcoBNSyxrR2G6e7xsRWZ5Np4uRUdGM/5sRAkcbq6uemxzshDhve6w7XtDt66g2jQ7/OV2MCYFOCHc3bQ89iSBgbpQ7ThXUoaKJ5cdEv8SEExGZTUFtG+raNEYtp/u5GeGu8HdUYv0vejmllTfhy7OluCPWE0M8jZ/suplpYa54dV4kzpc14g/fnEdr58Cp8d+dUQkftQLRHnZih0K9oLKS4Y5YLxzIrkZRXf9caexfR/JQ29qJP98aBplEgIe9Aq/Oi8T6e2LhorLCi7suYPFnKdesUvT+sQIU1rXhhVlh3U7oLIjxgEZnwLfppr8LXVjbivzatgFdTnfZ+ABH6A3AqQLzlSMSkeW4WN2CD44XYEaYK6aFuV7zvCAIWDYlCLWtGvynmzdQvjlXhoZ2LRaPNe3spsvio91hALDLDD9fiAYaJpyIyGzOXu7fZMSG4T8nlQhYPNYP2VUtOPxjLb1Wb8Ab+7LhpLLCk5O6nglhCjPCXfHKvEikljbiD1vOd1kq1B9UN3fgdGE9ZkW4DciGx3TJPXFekEoErDuej8SCOpzKr8PxvFocy63FkZwaHLpYg4PZ1difXY3vLlThWG6t2Va2O1fSgK/PleGuOO9rkpqx3g7YcH8cXpwdhoqmDiz+PAXP77zU3+lcSQM+O1PcrVK6nwt1tUW0hx0SUstN/hoPZl1aMXNikHFWwhRTtKc97BUyltURkdFp9Qa8vPsCbK1leGZ68A23G+Jpjxlhrth8urjLRQw6tHpsPl2Mkb4OGOplnpuMPmolhnnbY0dahUWsDkvUEyab571y5UocPHgQzs7O2LFjBwBgzZo1+P777yGRSODs7Iw33ngD7u7uV+138uRJvPHGG1e+zs3NxerVqzFjxgycOHECb731FvR6PWxsbPDmm2/C39/fVC+BiIwspaQBTjZy+JtgadrLbo1ww/oTBVh/shBTQpzx5dkSXKhsxhvxkbC1Fq+0ZWa4KwwGA174NhPLt5zH6tuHQCm/cZNjse29UAUDwHK6Ac7F1hrzotyxNbUcezKrurXPX+dHXvcuszFpdHq8vi8b7nbW+O2E6/8clwgC4qM9MC3UFZ8mFmLz6WIcvFgDO2sZ3O26V0r3SwtjPPDavmycL2tCjAl/ETl4oQp+jkr4mfCzzlxkEgGj/RxxIr8OBoOBCWgiMprNSUXIqLh0jfbLUrpfenJSAA5erMaHJwqxcmboDbfbfr4c1S2deHluuLHDvan4aHe8ujcbaeVNZp9NT9SfmWyG06JFi7B+/fqrHluyZAm2b9+OhIQETJ06FWvXrr1mv7FjxyIhIQEJCQn49NNPoVQqMWHCBADASy+9hLfffhsJCQmIj4/Hv//9b1OFT0QmkFLcgFhvB5P+wiL7cZbThcpmfHWuDO8fy8f4QEdMD3Mx2Tm769YIN6yaE4GzxQ1YseV8v15Cd3dGJSLdbRHgZCN2KNRHf7wlGOvuHooP7o7F+nti8dG9w7DhvmH49P44bHogDpsfHI7PHhqOzx8aAS97a3xxttTkMW1KKkZuTSuemR7SZUmcjZUUv5sYiP89OgqTgpxR36bB8z0opfu5mRGuUMol2NrD5rM90abR4VR+LSYOgnK6y8YHOqKmpRNZVS1ih0JEZrT2SB5e+DYT+7OqjD47O6e6BR+cKMCMMBfMCO/6JoePWok7Yj2RkFqGvJrW626j1enxaWIRYjztMdLXvAs2TA9zhbVMgh1sHk50FZMlnEaNGgUHh6vLZmxtf2ra1tbW1uUvnXv27MGkSZOgVP50h7C5ufnK325uvPNONFBUNHWgtLEDw0zQMPyXZke6w9tBgbe+vwi9AXhmeki/uSs/O9INL84Ox5miBizfmtYvk075ta3IqGjGrAh+xg4GCrkUw33UiPNxQKz3pRKDaE97RHnYIcLdDuFutgh1tUWIqwq/GuaFs8UNuFDZbLJ4Cuva8NHJAkwPc8Hk4O6XnHk5KPDG/EgcWjoBY/y7X0r3cyorGW4Nd8PezCo0dxi/iX+HVo+/fn8RnVr9oEo4jQu89FpYVkdkOVo7ddh0uhh7Myvx7PYMzHzvBJ5OSMPOtIo+LyKg1Rvw8p4sqKxkeHp6SLf3+/VYPyjkUqw9knfd57/NqER5Uwd+PdbP7Nd9ttYy3BLqgr2ZVejQ6s16bqL+zOz1JatXr8bWrVthZ2eHjRs33nTbnTt34tFHH73y9WuvvYbHHnsM1tbWsLW1xZdfftmtc0qlAtTqwXGXXiqVDJrXQjc32Mb6SOGlhrOTI9zN8rqemhaClVvOY+ktIYj27199VO4bHwil0grPbknFMzsy8PjkYIS728LF1lrs0AAAh86UQBCAX432g9peIXY4g8ZAeE8/NDEIH54oxNa0CrwRZvyEo8FgwN++OQ8rmRSrFgwR5f/XA+MDkHC+HMeKGnD3SF+jHbe4rhVL//cDzpc24qlbQjAjxqvfJLr7Sq22QZSnPZKKG7B8Vv/+P2xuA+F9TcZhaWOdml0Fnd6ADx8cAYVMgr0ZFdibXoGDF2sgkwgYE+iEmVHumBnpBje7nn2Wrzuci/TyJvz9rlgEeXV/JpJabYPfTg7CO99lI7u+HaMCfkrs6/QGbDpdjChPe8yN8+7T529vx/ru0X7YnVGJ5PJmzBni0evzk/lY2vtaDGZPOC1fvhzLly/HunXrsHnzZixbtuy621VWViIrKwsTJ0688tiGDRvwwQcfIDY2FuvXr8cbb7yB1157rctz6nQG1Ndff+rlQKNW2wya10I3N9jG+lhWFWzkUngoZWZ5XdMDHfHJfcMQ5WHXL7+PtwQ64i+zwvDq3mycyE0CADjZyBHmZoswVxXCXG0R6qaCn6MNZBLz/dJqMBiQkFKCEb5qWOv1/fJ7N1ANlPf0nEg3bDtXisfH+EFtIzfqsXekleNkXi3+b0aIaP+//G3lCHaxwWenCjErxDjJ6JP5tXh+Zya0egPeXhCNBSN9B8RY98RoXwdsSipCcUWjqP3w+puB8r6mvrO0sT6YUQmZREC4owJKuRQREwLw1Hh/ZJQ3YX92DQ5erMZL29Oxans6YrzsMdbfET6OCng7KOHtoICTjfy6SZ/cmhb8fX82poW6YJyPfY+/pwuj3LDpZAFe/zYDH9877Mo59mZWIr+mFX+dH4mGhr6tzNrbsY50UsLN1gr/TSzEOB/2cRoILO19bSqurjde0Vq0K4b4+Hg8/vjjN0w47dq1CzNnzoRcfulit7a2FpmZmYiNjQUAzJ07F0uWLDFbvETUNyklDRjqZW+25IkgCP2+aWN8tAcmBzujtFWL5LwaZFW1ILuyGZ8V1kOrv7TKibVMgiBnG4S52WJ2hBtG+pm2J0F6eROK6tvxyGjzLCVM/c9dcV745ocybEktw6NjjPf/oK61E2sO5mKolz1uH+pptOP2lCAIWBjjiXcO5CCrshlhbrZd73QDeoMBG04V4f1j+QhyscFbt0UPikbh1zM+0AkbEouQWFBn8qbyRCS+M0X1iPawu2qBE4kgINrzUln2U5MCkFvTigPZ1TiQXY0PThRctb9CJoG3+qcElLeDAt5qBdafKISNXIpnZ/Su3YFCLsXjEwLwyp4s7M+uxvQwV+gNBnx8qhCBTjaYGipez06pRMDcKHdsSipCdXNHv5m5TiQmsyac8vPzERAQAADYv38/goKCbrjtzp07sWLFiitf29vbo6mpCXl5eQgMDMSxY8cQHHzj5TOJqP9oaNMgp7oVM7vRFNLS2Cvk8PNwQITTT7+kanR65Ne2IruqBRcqm5Fd1YL9WdVISC3HGH81npgYiCiPG99J6IvdmVWwkgqY1g+arJM4gl1UGO2nxlcppXhwpA9kUuO0e1xzKBctnTr8eWYoJCKXms2JdMM/D+ciIbW8R/1Dfq6pXYuXdl/A4ZwazIpwxXO3hvXrlSf7KsbLHrbWUhzPY8KJaLBr7tAis6IJD9/kpoMgCAh2USHYRYUl4/zRrtGhvLEDJQ3tKGlou/R3fTtKGtqRVFiHNs1PfY1emxcBpy5WpbuZeVHu+OxMMdYeycPkYGccy61FTnUrVs0JF/3ny7xod2xILMKujEo8OMp4ZdtEA5XJEk4rVqxAYmIi6urqMHnyZCxduhSHDx9GXl4eBEGAt7c3Vq1aBQBITU3FF198caU8rri4GGVlZRg9evRPgcpkePXVV7Fs2TIIggAHBwe8/vrrpgqfiIzoXGkjAGCYt0MXWxIAyKUShLpeauQ8N8odwKVmxF+llOKTU4V4+D9ncUuoC343IQCBzsarO9fqDdibWYkJQc4smbFwdw/3xh+3puHgxZpurR7UlVP5dfg2vRKLx/gi2EVlhAj7xkEpxy2hLtiVUYmlkwOh6GGi6GJVC57ZlobSxg786ZZg3BU3ePo13YhMImC0nyNO5NfCYDAM+tdLZMlSShqgMwAjfbt/3aaQSxHgbIOA61yXGAwG1LVpUFLfjk6dHiP6uIKcVCJg6eQg/OGb8/jmXBl2plfA20GBW/vBYicBTjaI8bTDzvQKPDDSh5+VZPFM9hvFu+++e81jd95553W3jYmJQUxMzJWvfXx8cOTIkWu2mzlzJmbOnGm8IInILFKKGyCTCIg20awcS2Atk+D+kT5YEOOBz84U4z+nS3DoYjXmRrnjsfH+8DRC8+XThXWobdVgdqT4F2wkrgmBTvB2UOC/Z0v6nHBq1+jwxnfZ8HNUYvFYfyNF2HcLYzyxJ7MKBy5WY06ke7f325NRiVf3ZkFlLcP7dw7FMB/LSaSPD3TE/uxq5FS3IsRV/MQhEZnG6cIGyKUCYozUmkAQBDjZWPVpVtMvjQ9wxEg/Nf55JA8dWj2emxlq1p6XNzMv2h1vfncRmZXNiHTntS9ZNuPMkyciuomUkgZEedj1eBYBXcvWWobHxgdg65JRuGe4N/ZmVuKOj5Pw9v6LqGnp7NOxd2dWwdZaigmBg2c5d+odqUTAXXFeSClpRGZFU5+Otf5kIUoa2rFyRiisZf3nsmO4rwN81Aps/aG8W9u3durw9v6LeP7bTES622LzA3EWlWwCgHE/rgh1PK9W5EiIyJTOFNUjxtO+X1+3CYKAZZMD0aHVw83WCvOiu3/jwNRmhrvCSipgZ1qF2KEQiY41E0RkUu0aHdIrmnH/CB+xQxlUHG2ssHxqMO4d7o31JwvxVUoptp0vx73DvfHgKN8el8S1a3Q4mF2N6WEu/SopQOKZH+2B94/l44uzpXhpdnivjpFd1YzNp4sRH+1u8ob3PSURBNw2xAPvHc1HQW0r/J1s0NqpQ3F9G4rq21BU9+Pf9e0oqmtD9Y8J3ftGeGPppECj9bYaSNzsrBHiosKJ/Fo8NJq9SYgGo6Z2LS5UNmPJuP6/eEikux2enhYCP0cF5P3oM9leIcfkYBfszqjE76cE9avYiMyNCSciMqnzZU3Q6Q2I4/KwJuFhr8Dzt4bhwZE+WHe8AB+fKsL+7Gqsv2cYHJTdX9L+aG4tWjp1LKejK+wUMsyLckfC+XIsmxzY41KIdo0Oq3Znwc5aht9PufEiIWKaH+2OdcfysezrVHToDNfMEnRWWcFXrcDYAEf4OSoR42nf7xJn5jY+0BGfnSlBS6cWKiteRhINNsnFDTAAfe6zZC53xXmJHcJ1xQ9xx3dZVTiaW4tbRFw5j0hsvFIgIpM6W9IAAUCsl2WVnpibv5MNXo+PxMIYD/xhy3k8sy0d/7wjBlbdnK20O6MSLiorDPcZGBeYZB53xXnjq3Nl2PJDGX7dg/5LBoMBr+7NQlZlM95eGA11D5Kf5uRia40HR/niXEkDfB2V8FEr4atW/vhvBRMq1zE+0Akbk4qRVFAv6vLjRGQaZ4rqYS2TGK1/k6Ua4+8IZ5UVdqZVMOFEFo1XUkRkUinFDQhxVcFOwY8bcxjt74i/zArHC99m4pW9WXh5TniXK6Q0tGlwLK8Wd8V5QdpPGm5S/xDobIOx/o74KqUMD4/y7XYZ2cakYuzJrMITEwMwOdjZxFH2zZOTAsUOYUAZ6mUPlZUUx/NrmXAiGoROF9Ujxsu+2zes6PpkEgFzI93wWXIJ6lo74WjEhulEAwk/SYjIZLR6A1LLGhHrxbtk5jQ70g2/mxCA3RmVWHe8oMvt92dXQ6s3sJyOruvu4V6obunE/uzqbm1/JKcGa4/k4dZwVzzCPj+DjlwqwSg/NU7k1cFgMIgdDhEZUX2bBtlVLRjpy1npxjAv2h06vQG7M6vEDoVINEw4EZHJ5FS3oE2jR6w3L1zM7dExvrhtiDs+OlmI7edvvgrX7oxK+DsqEeFma6boaCAZH+gEX7UCXySXdrltXk0rXvg2E+FutnhhVliXs+toYBoX6ITypg7k1baKHQoRGVFycQMAYOQA6d/U3wW7qBDpbosdXVyHEQ1mTDgRkcmcL2sEAAzxtBM5EssjCAJWzgjFaD81XtuXjcSCuutuV97YjrPFDZgV6cbkAF2XRBBwV5w3UssakVbedMPtGts1+OPW87CWSfC3BVH9ejlt6pvxAY4AgON51/9cIaKB6UxhPRQyCaI8eN1mLPHR7siqakFWZbPYoRCJggknIjKZ1NJGONnI4e2gEDsUiySTSvDX26IQ4KTEM9vScbG65Zpt9l2oggHA7AiW09GNxUe7w0YuxZdnS677vFZvwJ93ZKCssQNv3RYFD3u+5wczD3sFAp1tcCKvVuxQ0K7R4aHNyXjsixSsPZKHo7k1aGzXiB0W0YB0uqgew7wdIO9mvz7q2q0RbpBJBHx2pljsUIhEwU8TIjKZ1LImDPG058wZEdlay7Dm9iFQyKVY/s15VDd3XPX8roxKDPG0g6+jUqQIaSCwtZZh/hB37M2sQnVL5zXP/+NQLk4V1GPljFCW0FqI8QFOOFvSgNZOnahxnCtpREZFM2pbNdh0uhjLt6Rh+toTuHvDaby+LwvfpleguL6N/aaIulDb2oncmlYMZ/8mo1Ir5XhgpA92plfe8KYN0WDWZcKpra0Na9euxfPPPw8AyM/Px4EDB0weGBENbPVtGhTWtbGcrh/wsFdgze3RaGjXYMXWNLRpLv2CmFPdguyqFszi7CbqhjuHeUGrN2DLD2VXPb7tfDk+Ty7BPcO9cVuMh0jRkbmND3SERmfA6aJ6UeNILKyHVCJg4wPDcfCp8Xj/rqH43YQAuNtZY9+FKry46wJu/ygJc9adwrPb0nGupEHUeIn6qzNF7N9kKr+bGIApwc5450AOTuSLPzOUyJy6TDitXLkSVlZWSElJAQB4eHhgzZo1Jg+MiAa2tLJLvV6GcoW6fiHC3Q6vzYvEhcpmPLcjAzq9AXsyKyERgJnhrmKHRwOAv5MNxgc64utzZdDo9ACAcyUNePO7bIz2U+P3U4JEjpDMaZi3A5RyCY6LXFZ3uqgeMZ52sLGSQiGXYoSvGovH+uEfd8Tg+yfH4/OHRuDZ6SEY5adGSkkDntmWjpZOragxE/VHZ4rqYSOXItKdC4gYm0QQ8PLcCAS7qLByewbyarjgAlmOLhNOhYWF+M1vfgOZTAYAUCgUnJZMRF1KLWuERAAi3TnDqb+YFOyMP00LwZHcWrx7IAd7Miox2s8RziorsUOjAeLuOG/UtHTi+6xqlDe245lt6XC3s8br8ZGQSVg6a0msZBKM9FXjRF6taNeFTe1aZFY03XBGhkQQEOKqwq+GeeGVuRF49/YhqG3V4NPEIjNHStT/nSmqxzAfe8jYv8kkbKykeHdhNKxlEizfch71rew1R5ahy08UKysrtLe3X+nBUlhYCCsr/nJCRDeXWtqIYBcVbKy4UlV/cucwL9w/wgdfppSitLEDsyNZTkfdNzbAEX6OSnx2phjPbEtHh1aPdxZGw0EpFzs0EsH4QCeUNnagoK5NlPOfKaqH3gCM8u9eCVC0hx1mR7rhP6eLUdbYbuLoftLcocXTCWk4lc9V/ah/qm7uQH5tG8vpTMzDXoF3FkajqrkDz2xPvzJbmGgw6zLhtHTpUixZsgRlZWX44x//iEceeQRPP/20OWIjogFKpzcgrbyJ5XT91LIpgZgR5gK1Uo6poc5ih0MDiEQQcHecFzIqmpFZ0YxX5kYgyFkldlgkknGBjgAgWlnd6aJ6WMskGOLR/Z81T04MgCAIWHskz4SRXe3vh3Jx8GIN/rwzw6yJLqLuuty/aQQTTiY3xNMef5kVjrPFDXhjXzYrh2jQk3W1wYQJExAVFYVz587BYDDgueeeg5OTkzliI6IBKr+2FS2dOjYM76ckgoDX4yPRqtFBZdXljwGiq8yLdkdCajnmRbtjUjATlpbM20EJf0clTuTX4b4RPmY/f2JhPeK8HWAl634JkIe9AveP8MbHp4pw73BvRHua9sZIUmEdtqaWY3akG47k1GDl9gx8eE8sl52nfuV0UT1sraUId2P/JnOYFemG/NpWrD9ZiEBnGzw4ylfskIhMpsufdmlpaSgtLYWrqyvc3NxQVlaGwsJCaLVsuEhE15da2ggAiDHxhTz1niAITDZRr6isZPjPQyNESTBQ/zM+0AnJRfVo/3H1S3OpbulEXk0rRvn1fEbGQ6N94WQjx+qDuSadXdCm0eHVvdnwc1TiuZmh+MusMKSVN+FfZpxdRdQdZ4ouJW+l7MVnNr8Z748ZYS745+E8HLpYI3Y4RCbT5W8bq1atQnp6OsLCwgAAWVlZCA8PR319PVatWoWJEyeaPEgiGljOlzXBXiGDn6NS7FCIiMiExgc64vPkEpwpasCEIPPNgD9dWA8AGNmLhJPKSobfTQjAa/uysT+7GtPDTLNS57+P5qO0oR3r7h4KhVyKaWGuuDuuAZ+dKUGctwOmhrqY5LxEPVHR1IGi+nbcEesldigWRSIIeHF2OEoa2vHCtxn46N5hCHXlDDMafLqc4eTt7Y0tW7bgm2++wTfffIOtW7ciLCwMGzZswN/+9jdzxEhEA8wPZY0Y4ml3ZbEBIiIanOJ81LCWSczexympsA521rJelwDNH+KBEBcV/nE4D51a4zfu/aG0EV8kl+BXsZ4Y7vNTUmzZ5CBEedhh1Z4LKGkQp9k60c+dKfoxecv+TWankEvxzsJo2FnLsGJLGmpaOsUOicjoukw45ebmIjQ09MrXISEhSE9Ph68va02J6FpN7Vrk1bSynI6IyAJYyyQY6avGiXzzJpxOF9ZjhG/vS4CkEgF/mBKE0oZ2/PdsiVFj69Tq8eqeLLjbWeOpyYFXPWclk+D1+AgIELBye4ZJkl1EPXG6sB72ChlC3bgAhBhcba3xzsJo1Ldp8HRCGjr4mUCDTJcJp8DAQLz44otITExEYmIiXnrpJQQEBKCzsxMyGft/ENHV0subALB/ExGRpRgf6Iii+nYU1Zlnxk5xfRtKGzt61b/p58YEOGJCoBM+PlWI+laNkaIDPjpViLzaVqycGXrdXnneDkr8ZVYYMiqa8Y/DuUY7L1FvnCluwHAfB0g4K100Ee52WDU3AqllTfjrd9lih0NkVF0mnN588034+/vj008/xYYNG+Dr64s333wTMpkMGzduvOF+K1euxLhx4xAfH3/lsTVr1mD+/PlYsGABFi9ejIqKimv2O3nyJBYsWHDlT0xMDL777jsAgMFgwOrVqzFr1izMmTPnpucnInH8UNYIAUA0V6gjIrII4wIu9W4yV1ld0o/9m0b5Ofb5WMumBKKtU4cPTxT0+VgAkFXZjE8TizAvyg3jA2/c02pqqAvuHe6N/54txfdZVUY5N1FPlTW2o7ShHSNYTie6aT9+JuxMr0BtK0vraPDoMuGkUCiwePFirF27Fu+99x5+/etfQ6lUQiKRQKW68dTLRYsWYf369Vc9tmTJEmzfvh0JCQmYOnUq1q5de81+Y8eORUJCAhISEvDpp59CqVRiwoQJAIBvvvkGZWVl2LVrF3bt2oV58+b19PUSkYmdL2tEoLMNbK05A5KIyBL4Oirhq1bgZEGdWc53urAeLiorBDj1fWGKIGcVbh/qia/PlSK/prVPx9LqDXhlTxYcFDIsnxrc5fZLJwci2sMOr+zJQnE9+zmR+V1pvs+EU79w2xAP6A3A91nVYodCZDRdJpzy8/OxbNkyzJ07F9OnT7/ypyujRo2Cg4PDVY/Z2v7U2LGtra3LhsJ79uzBpEmToFReuqD4/PPP8eSTT0IiuRS2N2GrVgAAIABJREFUs7Nzl3EQkfkYDAacL2tiOR0RkYUZ4atGSkkDdHqDSc9jMBhwuqgeI/3URluY4rHx/lDIpfh7H8vbNicVIbOyGc9OD4GDUt7l9nKpBG/Mj4RUcqmfE3u3kLmdKaqHWilHkIuN2KEQgGAXGwQ622BfZqXYoRAZTZdTEFauXIlly5bh9ddfx8aNG/HNN9/AYOj9xcTq1auxdetW2NnZdVkSt3PnTjz66KNXvi4qKsK3336Lffv2wcnJCc8//zwCAgK6PKdUKkCtHhwfpFKpZNC8Frq5gTjWuVXNaGzXYkyIy4CLXUwDcayp5zjOlsMSx3pCmCu2ppajskOHSBPedLhQ3oTaVg2mRLgZ7XusVtvgianB+NveLKTVtGJCsEu397081rlVzfjwZCFmRblj0Wj/Hp37rTuG4rf/Sca/TxTipflR3dqvrVMHAFBaSbt9Luqbwfa+NhgMSC5pxNggJzg5smH4z4k51rfFeuEfBy6iTZDA00EhSgyWZLC9r/ujLhNOHR0dGDduHADA29sbS5cuxX333Ydly/6fvTsPj6q+/gf+vrNlkskySWayb2QjARIIOwIBZRMhgFhcWrFiXdpabbFqi7a2fkWtVoH+1NatrSjuFAz7joAoS9gSSCAL2fdtsm8zc39/hESRLJNkJjOTvF/Pw2Myc+fek1xnMnPu55zzeL8OuHr1aqxevRrvvPMONm3a1O1+ysrKkJ6ejhkzZnTe1traCgcHB2zZsgX79u3DM888g08++aTXYxoMInS6gS2TthVqtdOQ+VmoZ/Z4rr9Nb78iE+rmYHexW5M9nmvqO57n4WM4nuuR18rbjqaVwtfRciXVh1JLAACjNeb9HS+N9sLHJ3Lx4s40fHTveJOn36nVTqiqbsDTm5OhlEnwu/gRfY5rgo8z7p0YgE2n8jBK64T5UV7X3V/R0IqM8nqklzUgvawe6eX1yKtugp+bElsemGS2lV7Us6H2vC7QNaG4phn3TggYUj+XOVjzXM8MVuMfIrA1KQ8/nRBglRiGk6H2vLYWrbb73r29viNQKBQwGo0IDg7Gpk2b4O3tjcrKygEHtXjxYjzyyCPdJpx2796NefPmQS7/fkmyt7c35s+fDwCYN28e1qxZM+A4iMh8UorqoFJIMcKTVwqIiIYTX1clfFwccL6wBneN97fYcU7nViNArYSvq3mv/DvIJPhNfCie2ZGGHZdKsDTG1+THbj5fhAtFtfjrrSOhUSn6dfxHZ4TgQmEtXtqfgYZWAwp0TUgvb08wVf1ggp6vqwMitM7wcVXiRE41Khvb+n1MGt46+zcFufWyJQ2mYA8njPRyxr7L5Uw40ZDQaw+nZ555Bk1NTfjTn/6ES5cuYdu2bXj11Vf7dbCcnJzOrw8dOoTQ0NBut925c+cNTcHnzp2LEydOAABOnTplUjkdEQ2elOJajPF14WhdIqJhKC7ADWcLagbUeqEneqOIswU1FmtwPDdSgxhfV/zreC4ar5Ws9aaguhFvHsvGtBB33DbKq/cHdEMmleClxVGQSQS8tD8Dn5wpRHVjG24a4YEnbg7D23fG4uCj07DtoSl4fdlo3D85EACQUV7f72PS8JaUr4OHkxwjPHiR0NbMH6nFpZI6FNZwmADZv15XOBUWFiI2NhYqlQovv/wygPbVR2PHju3xcU888QROnTqF6upqxMfH47HHHsPRo0eRnZ0NQRDg7++P559/HgCQkpKCzz77DC+++CIAoKCgAMXFxZg8efJ1+3z44Yfx5JNPYuPGjXBycurcnmxDq96I/yUXY+kYHzixp8Cw09hqQFZFA+KnBFk7FCIisoJxAW7YnVaGvOomBFvgQ+zl0jo0tBowKcgyCSdBELB6dige+PQ8NhzJwqxwDWQS4ft/Usl130slAl4/chUCBDwzL2LApW0+rkpsWjkedS16hHg4QS7t/rpwhLa9505GWQOmhXgM6Lg0/IiiiDP5NZgQaL7m+2Q+c0dq8caxbOy/XI77+b6a7FyvCad3330XCxcu7PW2H1u3bt0Nt61YsaLLbWNiYhATE9P5fUBAAI4dO3bDdq6urnj33Xd7C5msZPOFIqz/+ira9Ebcd+3KGw0fqSV1MIrghDoiomFqvH97ac65ghqLJJxOd5YAWW6Ee4yfK24b5YWtySXYmlxi0mOenhMOHzOV+Pm4KuFjwnauSjm8XRyQzhVO1A951U2oaGjFxECW09kiPzclYnxdsP8KE05k/7pNOB05cgRHjx5FaWkp1q5d23l7fX09pFKuXqHrNbcZ8OHpAgDAVynFWDkpgFdMhpmU4loAwGjf7pvGERHR0BXs4Qh3RznOF9ZgWazpPZBMdTpPh3CNCh5Olu1Z9NyCkbhnvD/aDCL0RhF6o7H9v53ft99mMIrw0zhjnJd1JnxFaFXIKG+wyrHJvp3Jb0/eTrBQeSoN3LwoL6w7nIWcykaEsDcq2bFuE07e3t4YPXo0Dh06hNGjR3ferlKp2KybbrAluRiVDa24PdYHW5NLcCa/xqJXIMn2XCyuQ5C7I9SO8t43JiKiIUcQBIwLcMO5ghqz77tFb0RyUS2WWyCR9WNSiYAob9MunlhzwlGkVoXvsqvQojfCQdZrW1aiTkn5NdA6KxDk7mjtUKgbcyM1WH84C/uvlOOhm4KtHQ5Rv3WbcIqKikJUVBSWLFkCmcxy423J/nWsbpoYpMYTs8Nw4EoFvkopZsJpGBFFESlFtbgplH0kiIiGs7gANxzOqEBJbbPZyswAILmoBi16o8X6N9mjcK0zDCKQU9mIkd7O1g6H7ER7/yYdJge7sxrBhmmdHRAX4IZ9V8rw4LQgniuyW91mkhISEnp84Pbt280eDNmnjtVNLy2OglIuxW2jvLAluRi6pjaudhkmCmuaUd3UhhiW0xERDWsdfZzOF9biVjMmnJLydJAK7QktatfRODy9vJ4JJzJZclEtqhrbmLy1A/NGavHKwUxkVjQgQsvnONmnbhNOb7/99mDGQXbqh6ubxge0/+FaFuOLz88VYVdqKX46IcDKEdJg6OjfNIYNw4mIhrVwrQoqhRTnCmpwa7SX2fZ7Ok+HUT4ucHbgqvsOgWpHOMgk7ONEffLZ2UK4OMgwN1Jr7VCoF7dEavDaoUzsu1zOhBPZrW4Lvv39/Tv/OTg4ID09Henp6VAqlfD39x/MGMmGdaxuemja9xMUwrUqxPi64KvkEoiiaMXoaLBcLKqDo1yCMI11GqcSEZFtkEoEjPV3NWsfp/oWPVJL6liq/yNSiYBwjQoZnFRHJiqubcahjAosi/GBk4JDoGydh5MCk4Lcsf9KOT9Tkd3qtcPgrl27sGLFCuzZswe7d+/u/Jqoq9VNHZbF+CK7qhHJRbVWio4GU0pxLUb5uEAmYX05EdFwF+fvhuyqRlQ3tpplf+cKamAQwRKgLnRMquOHUTLFl+eKIAC4M87P2qGQieaN1KKwphmppUwsk33qNeH09ttvY/PmzXjllVfw6quvYvPmzfjnP/85GLGRjetqdVOHeVFaqBRSbE0psUJkNJia2wxIL29gOR0REQH4vs/S+ULzXHQ6naeDQiog1o/9m34sQuuMmmY9yurNk9yjoaux1YCvUkpwc4TGrA39ybJmR3hCJhGw73KZtUMh6pdeE06iKMLT07Pze7Vazaso1OPqJgBwlEuxIMoLB66Uo65Zb4UIabBcLq2HwSgihgknIiICMMrHBQ4yidnK6pLydYj1d4ODrNe3rcNOR+PwTPZxol7sTC1FXYsed49naxR74qqUY1qIOw5cKYeRn8HJDvX6l3vmzJn4xS9+gS1btmDLli14+OGHER8fPxixkQ3raXVTh9tjfdCiN2J3GjPyQ1lHw/AYP06oIyIiQC6VYIyvi1kSTlWNrcgob8BkltN16YeT6oi6YxRFfHa2EKN8XBDrxwuE9mZelBZl9a1INtOqUaLB1GvCSavVIiEhAenp6bhy5QruuusuPPXUU4MRG9mo5jYDNp7K73Z1U4cobxdEeTnjq5Riu1wVd7G4FrqmNmuHYfNSiuvg76aEh5PC2qEQEZGNiPN3Q3p5PepbBrbKOSlPB4D9m7rj7CCDn6sDJ9VRj77LrkZedRPuGe8PQWC/TXsTH+YJB5kE+6+UWzsUoj7rNeHU0NCA9957D8nJyQgKCkJcXNxgxEU2bEtyMaoa23pc3dRhWawPMsobkFpSNwiRmU9VYyse+uwCntt12dqh2DRRFJFSVIsxvlzdRERE34sLcINRxICHhyTl66BSSBHlzb8z3YnQOnNSHfXo07MF0DorMCdSY+1QqB9UChlmhHrgQHo59Eb7u4hPw1uvCaff/OY32LlzJ5577jmUlZXh3nvvxf333z8IoZEtMnV1U4cFUV5QyiR21zx83+X2F/TvcqpxMrfa2uHYrNK6FlQ0tLJ/ExERXSfGzxVSiTDgsrrTeTqMD3DjFNQeRGhVyKtuQnObwdqhkA3KqmjAyVwdVozzg1zKPmj2at5ILaoa23A2X2ftUIj6xORXHU9PT2g0GqjValRWVloyJrJhfVndBLQv9Z4fpcW+y2VoaLWf5uG7UksRrlHBz9UB/zhyFQZeTehSSnH7yrUY9gMgIqIfcJRLEe3tjPOF/U84Fdc2o0DXjIksp+tRhJczjCKQVdlo7VDIBn12thAOMgluj/G1dig0ANNHeMBJLmVZHdmdXhNOn3zyCVauXIn7778f1dXVWLt2LbZv3z4YsZGN6evqpg7LYnzR1GbEvsv28QKZXdmItNJ6JIzxxqMzRyCjvAG700qtHZZNulhcCweZpLNpKRERUYc4fzdcKqnr98qb09f6N00OcjdnWENOhKZjUh3L6uh6usY27E4rw8JoL6id5NYOhwZAKZciPtwThzMq0GYwWjscIpP1mnAqKirCM888g507d+Lxxx9HeHj4YMRFNqivq5s6jPF1QZjGCVuTiy0UmXntSi2FRADmR3lh3kgtRvu44F/f5HCpehdSimoR5eXMJdpERHSDuAA3tBlEXOpnH8fTeTq4O8oRpnEyc2RDi79aCSe5lI3D6QZbU4rRojfi7vH+1g6FzGDeSC1qmvU4lcuyOrIfvX5KfPLJJxEdHT0YsZAN6+/qJgAQBAHLYnyRVlqPK2V9u/pW36JHbfPgTYoziiJ2p5VhSrA7NCoFBEHAb2eFoqy+FZ+cKRy0OOxBq96Iy2X1LKcjIqIujfV3hQD0q4+TKIpIytNhYpCaU7V6IREEhGlUSGfCiX6gzWDEl+eLMCVYjTANV6IPBVOD3eHiIMP+K2XWDoXIZFyWQCbp7+qmDgujvaCQCviqD6ucvsupwvJ/n8bKj84OeKyyqc7m16C0rgWLRnl33hYX4IbZ4Z7YeCoflQ2tgxKHPUgvr0ebQUQMJ9QREVEXXJVyhGtV/erjlFPVhIqGVkxi/yaTRHqpkFFeD1Fkz0lqdzC9AuX1rbhnfIC1QyEzUcgkmB3uia8zK9GiZ1kd2QcmnKhXA1nd1MHNUY45kVrsTivrtTRNbzDizWPZePx/F+GilKGkrgUbvr7ar+P21a7UUqgUUswK97zu9t/MHIEWgxHvfZc7KHHYg45R11zhRERE3Ynzd0NyUS30few5svFUHmQSAdNC2L/JFBFaFepbDCipa7F2KGQDRFHEp2cLEeTuiGkj+BwaSuZHadHQasC32VXWDoXIJEw4UY9EUcQbR7MHtLqpw7JYHzS0GnqcrlBS24xHvkjGxlP5uD3WBx+vHI+VkwKReLEE31y17HTE5jYDDmVU4OYIDZRy6XX3BXs44Y5YX3yVXIwcToEBAFwsroO3iwO0zg7WDoWIiGzUuAA3NLUZ+1RSf7ZAh52pZbh3YgB8XJUWjG7oiNA6AwDSy1hWR+1ThFNL6nD3eH9IWJI6pEwMcofaUc5pdWQ3mHCibomiiP93NBtfnC/C3eP9+726qUOcvxuC3R3xVUpJl/cfyazAzz46i6yKBry4KArPzIuEUi7Fw9OCEaFVYe2+DOiaLNfP6UhmJRpaDdeV0/3Qg9OCoJRL8caxbIvFYE9SimpZTkdERD2K829fBXuusNak7fUGI145kAlfVwf8YurALnQNJx2N1TMrOKmOgE/PFMLFQdbte1qyXzKJgDmRGhzNqkRD6+C0HCEaCIslnNasWYNp06Zh8eLFnbdt2LABCQkJWLp0KR544AGUlt44av7EiRNYunRp57+YmBgcOHDgum1eeOEFxMXFWSp0Qnuy6a1vcrApqQA/GeuLJ2aHDnifgiBgaYwPkotqkVXx/RW4Vr0Rrx/OwpOJqfBzVeKje8djfpRX5/0KmQR/vXUkapra8OrBzAHH0Z1daaXwdnHA+EC3Lu93d1Lg/smBOJpViTP5w3s6RHl9C0rqWlhOR0REPdI4OyDI3dHkxuGfni3E1cpG/P7msBtWG1P3VAoZAtRKTqojlNQ243BGOZbF+MBJwefQUJQwxgcteiO2Jnd9EZ/Illgs4bR8+XK8//7719324IMPYvv27UhMTMTs2bPx1ltv3fC4qVOnIjExEYmJidi4cSMcHR0xffr0zvtTUlJQW2vaVTLqv3e+zcXGU/lYHuuLp+aEm21CzOLR3pBJBCReW+WUX92EX3x6Hp+dLcTd4/3x73vGIdDd8YbHRXo546Fpwdh/pRz7Lpt/MkNFQytO5lTj1mivHpce3z3eH94uDvjHkaswDuPGnOevXamOZcKJiIh6EefvhvOFNb3+3Syta8F73+ViRqgH4sM8e9yWbhShdWbCifDl+SIAwJ1xflaOhCxltI8LJgWpsSmpgM3DyeZZLOE0adIkuLldv1LE2dm58+umpqZekxh79+7FzJkz4ejYnoAwGAx49dVX8dRTT5k/YOr03ne5+PeJPCwd44M/zA03a+23u5MCs8M12Jlaip2XSrFy01kU1jTj70tG4fc3h0Eh6/5/yfsmB2K0jwtePZiJinrzNsXcd7kMBhG4bZRXj9sp5VL8ekYI0krrsdcCiS97kZSng0ohRZQ3S+qIiKhn4wJcUdusx9VeeiCu/zoLRhF48pYws13oGk4itCrkVzehqZfhLGQbGlr1aDVzsqCpzYCtySW4OULD/mdD3ANTglDZ0Iodl7jKiWzboPdwWr9+PWbNmoXt27fjt7/9bY/b7ty587qSvE2bNmHOnDnw8uo5KUD9958TeXj321wsHu2NZ+ZHWKTR4LJYH9Q26/HXPVcQ6qnCx/eNx+wITa+Pk0kE/PXWkWjWG/Hi/gyzjv7dlVqGaG9nhHqqet321mgvjPRyxj+P5QzbqwpJ+TrEBbhBJuEHAiIi6llcQPsFyJ7K6r7LqcLB9AqsmhIIf7cbVzpT7yK1KogAMrnKyeZV1Lfgzv8mYcUHSWZt07DzUinqWvS4e7y/2fZJtmlCoBtifF3w4al86I3Dt+qCbJ9ssA+4evVqrF69Gu+88w42bdqExx9/vMvtysrKkJ6ejhkzZgAASktLsWfPHnz00Ud9PqZUKkCtdhpQ3LZCKpVY7Gd55+hV/Ot4DpaO9cMry2MgtVAyYZ6rI25NK8MIjQqP3RwOudT0vOc4tROenB+JF3ddxoGr1VgxIWDA8aSX1uFKWT2evS3K5N/ts4uicd9/TyMxrQwPzxx4f6uuWPJcD0RxTRPyqptw79Rgm4zPHtnquSbz4nkePniur+fm5ggfVyUuldbjoS5+Ly1tBrx++CpCPJ3wm7kj4dDDamdbY0vnekJY+8W7goZWzLSRmIYSc53rFr0Rz3yRjPpWAzTOMvzyi2SsnBqEJ+dFwknR/49mRqOILy8UI9bfDfGjfLhKcABs6Xndk0dvicAvPz6Lb/J0WDaOScb+sJdzbc8GPeHUYfHixXjkkUe6TTjt3r0b8+bNg1wuBwCkpaUhLy8P8+fPB9Bekjdv3jzs37+/12MZDCJ0uqExyl6tdrLIz/JxUgE2HLmKBVFarLklDHW1TWY/xg+9cOtIAEBDXXOfH7skSos9KcVYuzMNozVO8HMb2JLhz0/mQioA8cFqk3+30R6OmBHqgX9+nYX5YZ5QO8kHFENXLHWuB+rgtaW7Y7S2GZ89stVzTebF8zx88FzfaKyfC05mV6G6uuGGD8LvfZeL3KpGvHlHDJrqm2HZdyDmZUvnWgURKoUUybnVWGjCynHqG3Oca1EU8eL+DJzL1+GVhGhMG+GBt45l46MTeTh8uQzPLRjZuSKwL3IqG/HB6XxcrWjAC7dFoabGnp5FtseWntc9ifNWIVyjwj8PZyE+WG2RypShzl7Ota3TartvszKol5BycnI6vz506BBCQ7tfGbJz504sWrSo8/vZs2fj+PHjOHToEA4dOgRHR0eTkk3Uu8/OFmLDkauYG6nBXxdGWWxlk7lIBAHPLRgJQQD+b++VATXvNhhF7Ekrw7QRHvBwUvTpsY/Fj0BTmwHvn8jt9/HtUVKeDmpHOcI0vZcfEhERAe1ldRUNrSisuf5CU4GuCR+czMPcSC2mhLhbKbqhQRAERGhVbBxuw/53oRiJKSV4YEogbonUwlEuxZO3hOPtO2MhisAjn1/AusNZaDahD5coijhboMMTWy9ixQdJOHClHHfF+WFuJJONw4VEELBqSiCyqxpxJLPS2uEQdcliCacnnngCd999N7KzsxEfH48vv/wSr7/+OhYvXoyEhAQcP34czz77LID2yXMdXwNAQUEBiouLMXnyZEuFR9d8ca4Irx/OwuxwT7xwW5Td9OTxc1Ni9exQnMmvwefnivq9nzP5OpTVt2JhdN/7goV6qrAsxhebLxQjr3p4XEkSRRGn83SYGOjGqyhERGSyjlUbZ3/Qx0kURbx2KAsyiQSrZ1umPH24idA6I7OiYVhP0rVV5wpq8NrhLMwI9cDDN4Vcd9+EQDU+uW8CfjLOD5+eLcTPPjqLC4Vd9zzTG0Xsv1KO+z85j0c+T0ZKcR0enhaM7Q9NxpO3hEPWh1YVZP/mRGoRqFbivyfzzNrflshcLFZSt27duhtuW7FiRZfbxsTEICYmpvP7gIAAHDt2rMf9nzt3bmABDjOiKKKmWY+S2mYU1baguKYZ2ZWNSLxYgvgwT7y0ONru/kAtGeODrzMr8daxbEwLcUeIR9/rb3ellkKlkPZ7/PJDNwVjT1oZ/rQzDX+YG4HRPkN7altedRPK6lsxMUht7VCIiMiOjPBwgtpRjnMFNVgyxgcAcCSzEsezq7B6dii8XBysHOHQEKFVoaHVgKKaZgSo2XzdVpTUNuOP21Ph76bE/3VTTeCkkOLpOeG4JUKDF/ZewUOfXcDPJgbgkZuCoZRL0dhqwLaLJfj0TAGKalsQ5O6IP84Nx6JR3lDKpVb4qcgWSCUC7psUiBf3Z+BkbjWmhnhYOySi61ithxNZTkpRLc4X1qC4tgXFtc3t/2pa0Pij5bkqhRS3Rnvhz/Mj+9S421YIgoBn50Xgro1n8NfdV/D+PeP6tEKrqc2AQxkVmD/Sq99/qDUqBZ6dH4FXD2bi/o/PYXa4Jx65KQTh2qFZbpZ0bZLKpCCWPRARkekEQcA4f1ecv7Zqo6nNgNcOZyFco8KdcWx2ay6R195/ZJQ3MOFkI5rbDHh6Wypa9Ea8fedouCh7/vg1MUiNT34+AW8czcampAIcy6rEjFBPbL9UgtpmPcb6uWL17DDMDPO0+TYYNDhuG+WN977LxX9P5jPhRDaHCach5lhWJZ5MvASjCDg7SOHrqkSAmyMmBbnD19UBvq5K+Lkq4ePqAFelzO4nWGicHfCHOeF4dudlfHQ6H6umBJn82K8zK9DUZsTCUX0vp/uh+VFemB7qgU/PFGJTUgGOZJ7B/CgtHr4pBEHuQ+vNXlKeDl7OCgSqB9aonYiIhp+4ADd8nVmJsroWfH6uCKV1LVhrR+X89iBUo4IAIKO8HjezcbjViaKIvx3IQFppPV5bOhojPE1bja9SyPDHuRG4OUKDtXvT8cmZAtwcocHPJgYg1s/VwlGTvVHIJLh3UiDWHc7ChcIajPXve+N5IkthwmkIuVxah2d2pGGklzP+sXwM3PvYBNtezY/ywuGMSrx9PAd1zXo8Mj3EpJHKuy6VwdfVoV/TQH5MpZDhwWnBWDHOD5uSCvDZ2UIcuFKORaO98eC0YPi62n+CxiiKSMqvwfQR7nafqCQiosHX8fd2S3IxPj5TgITR3hhnhr/B9D1HuRSB7o5sHG4jPjtXhJ2pZXj4pmDMCu97+4Ypwe74ctVENLYZ+jzchoaXZTE++M+JPHxwKh/rb+frKtkO+6ujoi6V1DZj9dZLUDvKse724ZNs6vDnBZFYMsYHHyUVYOWms0grretx+4r6FpzKq8bCaC+zNr92c5Tj0Zkj8NWDk7Eizh+708qw/N+n8feDmaiobzHbcawhs7wBuqY29m8iIqJ+idA6Q6WQ4t8n8qBSSPFY/AhrhzQkRXJSnU04nVeNf3zdPpjnF1NNX4H/Y0q5lMkm6pWjXIp7xvvjm6tVuFJWb+1wiDox4TQE1LfosXrrJTS1GbB++RhoVMPvj5KTQopn50fiH8vHoKFFj1Ufn8Pbx3PQZjB2uf2ey+UwisDCUd4WicdTpcDvbw7DlgcmIWGMN/6XXIxl/z6N977NtdsJEh39myYGMuFERER9J5MIiLlWDvTojJBhd3FssERonVFY04z6Fr21Qxm2imqasWZ7GoI8nPDXhSM52ZcGxYpxflAppPjgZL61QyHqxISTndMbjFizIw3ZVY14JWEUwjVDs1m1qW4a4YHPfj4Rt0Z74d8n8nD/x+eQUX5jln9XailG+7j0a7JdX/i4KvHMvEhsXjUR00Lc8e53ubhsp1cdTufpEOTuCJ8hUB5IRETW8ZOxvlgyxhtLY3ytHcqQFXGtcXhWBVc5WUNzmwFPJl6CQRTx2tLRUCnYwYQGh4tShhXj/HAwvRy5VY3WDocIABNOdk0URfz9UBZO5FTjj3PCMSWewdq2AAAgAElEQVSEk8OA9hfbvy6MwmtLR6GioRX3bTqH/5zIg97YvrIoo7weGeUNuG2AzcL7IkDtiOcWjISDTILElJJBO6656I0izhXUcHUTERENyKxwDf68YCSna1lQR8IpnWV1g6q2uQ1nC3T4867LyCxvwNpF0UNueAzZvnsm+EMhk+DD09Zd5SSKIiobWq0aA9kGptzt2KakAmxJLsbPJwdiWSyvFP7YrHANxvq54dVDmfjX8RwcyarEX28diV2pZZBKBMwfOXgJJ6A9EXZzhAZ7L5fhd7NCoZRLB/X4A5FWUoeGVgMmsX8TERGRTfN2cYCLg6zLFd40cK16I3KqGpFZ0YCsigZkVjQgs7wBZfXff7h+PH4Epo/geHoafB5OCiyL8cHmC8V4aFqw1SoT1n99FZ+fK8Q/lo/B1BA+F4YzJpzs1MH0cvy/o9mYG6nFr2eEWDscm6V2kuOlxdG4OUKDVw5k4N6PzkAulWD6CA+oneSDHs/SMT7Yk1aGw5kVWBhtmf5RltDRv2lCIKdeEBER2TJBEBChVSGTK5zMpqS2GWsPZCKlQIfc6iYYrq2al0kEjPB0wvhANcI1KoRrVIjQquDl4mDliGk4u3diADZfKMampAI8eUv4oB9/T1oZPj1bCAeZBH/ZfQUfrxwPjTOfE8MVE052KKWoFn/ZfQUxvq74y62RbERognkjtRgf4IaX92fgSFYlloyxTrJnfKAb/NyU2Hax1K4STqfzdIjQqtjglYiIyA5EaFXYdrEERlHk+8QBatEb8fS2VORWN2FCgBtmhXsiXKNCmEaFYHdHyKTsUEK2xcdViUWjvPBVSgkemBo0qFMOM8rrsXZfOuL8XfHkLeF44NPz+PPuK3jzjhiWUg9TfIW0M3lVjfj9V5egUSnw+rJRdlWWZW2eKgX+vnQUEh+cjFnhGqvEIBEELBnjjaQ8HQprmqwSQ1+16I1ILqpl/yYiIiI7Eal1RlObEQW6ZmuHYvc2fJ2FtNJ6vP6TWKy7fQx+PWME5kd5IUyjYrKJbNZ9kwLRqjfi0zOFg3bM2uY2PJWYClelDC8ljEKklzOeviUcSXk6fHAqb9DiINvCFU52pLa5DQ99ngyDKGLD8jFcbdIPgiDAz826U9YWjfLGO8dzsf1iKX45PcSqsZgipagWLXoj+zcRERHZiQiv9sbhGeX1bFw9APsul2HzhWLcOzEAc6O9odNx8hfZh2APJ8yJ1OLL80UY6eUMQQBEERDR3tC7Q8dtADA+wK3f5aBGUcSfd11GaV0L3rlrLDSq9s+pCWO8cSqvGu9+m4vxAWrEBVi+PceV0npUNrbiJvZRswlMONkJg1HE09tSkV/diDfuiEGIh5O1Q6J+8nFVYmqIO3ZcKsVD04Jtfnnp6XwdpAIG5Q8EERERDVyopwoSoX1S3ZxIrbXDsUs5lY1Yuy8d4/xd8Sj7pZIdWjUlEIcyyrFmR5pJ27spZVi7KKpfTb7f+zYX32ZX449zwxHr59p5uyAIWDMvAqkldfjTzjR8vHKCRfvotuqNeHp7KiobWrH7kalwUTLdYW08A3aivkWP/OomvHx7DCawtMnuLRnjgzU70nAqrxrTbHxyQ1KeDtE+LnB24MsFERGRPXCQSRDs7oSMMk6q64+mNgP+sD0VSpkULy6KZukc2aVIL2d89eBkNLQYgGvXtwUAggAIENB5yVsAGlr0WLsvA7/dchG/mh6Cn08OhGBi/7ejWZV4/0QeEkZ7Y3kXk9NVChleWhyNBz49j+f3XsG6ZaNN3ndfbUkuRlFNeynxztRS3D3e3yLHIdPx1dNOuDnKsePhKVg61s/aoZAZxId5wk0pw7aUUmuH0qOGVj0uldSxnI6IiMjORGhVyKyw3qS6SyV12JZSYrXj95coinjlQAayKxvxwqIoTpwju+brqkS4VtU5RTFMo0KopwojPJ0Q0vHPwwmjfV3xn5+Ow9xILd76JgdrdqShoVXf6/7zqpvw3K7LiPZ2xtNzwrtNJEV5u+C38aH45moVPrFQX6n6Fj3+fSIPk4LUGO3jgi0Xiq8rHyTrYMLJjlgqE0yDTyGTYOEobxzJqoCuqc3a4XTrfEEtDEaRDcOJiIjsTIRWheLaFtQ19/6h0RLeOZ6Dvx3MgN5gtMrx+ysxpQQ7U8vw0LRgTAl2t3Y4RIPGUS7F2kVR+O2sUBzOqMCqT84jr7r7IUeNrQY8ve0SZBIBryzpfZjVnXF+mB3uiTePZeNSSZ25w8dHp/Oha2rDY/EjcMdYX2RXNeJsQc2A91uga8Lct77FkcxKM0Q5/DDhRGQlS8Z4o80gYk9ambVD6dbpPB3kUuG6WmwiIiKyfRFezgCAjIrBL6tr1RtxrqAGbQYR+XY0Ke9KWT3+figTk4PUeGBqkLXDIRp0giDg3okBeOOOGFQ1tOK+TWdxLOvGRIsoili7Lx3ZlY14cVE0fF17H8okCAL+vCASGpUCz+xIQ32L+ZLhFfUt+PhMIeaP1CLa2wXzRmrhqpRh8/niAe9746l81DTrseFIFtrMlEDXG0U0tRnMsi9bx4QTkZVEaJ0R7e2MbRdLbHa5Z1K+DrF+rr1esSAiIiLbEqm9NqmubPDL6lKKa9Gsb/9glmXFsr6+qG/R44/bU+HmKMcLi6JsfqgLkSVNDnbHRyvHI0DtiCe+uoT3vs2F8QefVz45U4j9V8rx6xkjMCXE9JWArko5XlwcjdLaZry4L91sn4He/S4XBqOIX11r8K+US7F4tDcOZ1agoqG13/stq2vBjkuliPZ2RoGuGVsuDDyBJYoiVm+9iD9uTx3wvuwBE05EVrRkjA8yyhtw2Qabeuqa2pBeVs/+TURERHZIo1JA7ShHRvngJ3xO5lZDKgASAVbtI2UqURTxwt50FNc046VF0fBwUlg7JCKr83VV4v27x2LRKC+8+10unvzqEupb9EjK0+GNo1dxS4QG900K6PN+Y/1c8asZI3AgvQJbkweewMmpbMS2lBLcMdYXAWrHztuXx/rCYBQH1Evu4zMFEEURf0sYhUlBarz3Xe6AV2btu1yOEznVmBnqOaD92AsmnIisaEGUFxxkEptsqnk2XwcRYP8mIiIiOyQIAsK1KqSXD/5FrZO5OozxdUWg2tEuVjh9dq4IhzIq8OjMERgX4GbtcIhshlIuxV9uHYmnbgnDtznV+PnH5/DMjjQEujviuVsj+91jeOWkAEwNccfrh7OQMcDXqLe+yYaDTHpDGWywhxMmBamxNbkYBmPfV1Lpmtqw5UIxFkR7wc9NicfjR6CmWY+Np/L7HWt9ix7rj1xFtLczbu9iot9QxIQTkRW5KGW4OUKDPZfL0Gxjdbyn83RwlEsw2sfF2qEQERFRP0RqVbha2divD1v9VdPUhrSSOkwJdkeYpv34tiylqBb/OHIVs8I8ce/Evq/WIBrqBEHAnXH++NeKWNS36NFqMOLvS0ZDpZD1e58SQcDzC0fCVSnHMzvS0Njav89BFwpr8HVmJVZOCuhyZeJPxvqipK4Fx7Or+rzvz88WollvxM8nBwJon7S3MNoLn54tRGldS7/ifefbXFQ1tOIPcyOGTdkuE05EVrZ0jA/qWwz42sYmHyTl6xAX4AaZlC8TRERE9ihS64wWvXFQVxmdubZCenKwGmEaJ+RXN9ncRbUOuqY2rNmRBm8XB/zl1pGcCE3Ug7gAN3x+/0R8ct8EhHg6DXh/Hk4KvHBbFPKqm/C7LSl9LlUTRRFvHsuGh5McP53QdbI4PswTGpUC/7tQ1Kd9N7Tq8fm5IswO90Sop6rz9l/NCIFRFPHO8Zw+7Q9oH0rwxblCLB/rO6wu6Fvsk+SaNWswbdo0LF68uPO2DRs2ICEhAUuXLsUDDzyA0tLSGx534sQJLF26tPNfTEwMDhw4AAD4/e9/jwULFmDx4sVYs2YN2tpsd5w8kanGB7rBz02JxIu2U1ZXVteCnKomTAriOGAiIiJ7NTXEHVIB2H+lfNCOeTJXB5VCitG+rgjXqCACyK6yvVVOoihi7d50VDW24m8J0XBR9n+1BtFwoXaUw8+t94l0ppoYpMYLt0UhubgOj25OQU2T6Z/vj2ZV4XxhLR6+KRhOiq4HHMmkEiyN8cF32dUorGkyed9bLhSjrkWP+6dcX6bn66rEXXH+2HGptE+lgEZRxCsHMuGmlOPX1xqbDxcWSzgtX74c77///nW3Pfjgg9i+fTsSExMxe/ZsvPXWWzc8burUqUhMTERiYiI2btwIR0dHTJ8+HQCwZMkS7NmzB9u3b0dLSwu+/PJLS4VPNGgkgoCE0d5IytP16YWwL07mVGNvWpnJkyCS8nUAgEns30RERGS3PFUKTAlxx560susmTFnSydxqTAhUQyYREKppXxlgi32cdqeV4UhWJX41PQTR3sNntQGRrZkf5YVXl4xCZnk9fvlFMipNmCqnN4p465tsBLk7YukYnx63XRbjA0EAtiabdnG/RW/Ex2cKMTlI3eVKpFVTAuGilOGNo9km7Q8Atl8sQUpxLR6fNQKuSrnJjxsKLJZwmjRpEtzcrm+65+zs3Pl1U1NTr8tW9+7di5kzZ8LRsb3b/KxZsyAIAgRBQGxsbJcrpIjs0eLR3hAAbL9o/v+ny+pa8PS2VPxp12U8s+OySctVk/J0cFPKEOGl6nVbIiIisl0Lo71RUteCcwU1Fj9Wga4JhTXNmBLcfsEqQO0IhVRAZrltrXAqq2vBa4eyMNbPtdtSHCIaPPFhnlh3+xgU6JrwyOcXeu2RtPNSCbIrG/HojJBe23/4uCoxM9QT21JK0Ko39hrLjkslqGxoxaofrW7q4KqU44EpQfgupxonc6t73Z+uqQ1vHM1GnL8rFo3y7nX7oWbQ146uX78eX331FVxcXPDhhx/2uO3OnTuxatWqG25va2tDYmIinn32WZOOKZUKUKsHXmdqC6RSyZD5Weh7arUTZoRrsCutDE8tjIZUIpjtXP9lbzoMoogHZ4zAf7/NQXpFA/5x51iM8e96CosoijhTUIOpoZ7wcGfCaTDweT088DwPHzzXw4c9nOslEwLw8oEMHMqqwpwYP4sea3dGBQBg7hjfzt9LuJcL8mqabeb3JIointyehjajEa/dORaeHqa917GHc03mwXNtHQvUTvBUO+Ghj87gl18kY+OqSQjyuPE8NLUa8N53eRgb4IbbJwWZ1Hvt59ND8MCHZ3CyqBYJsd+/Dv74XOsNRmxKKsS4QDfMifHtdt8Pzg7H5gvF+OfxXMyL8YOkhwbgrx25iPpWA15YFgP3YfjZatATTqtXr8bq1avxzjvvYNOmTXj88ce73K6srAzp6emYMWPGDfc9//zzmDhxIiZOnGjSMQ0GETqdbV1Z6S+12mnI/Cx0vduitFiTWYH9yYWYGuJhlnN9Mqcauy6W4OGbgvHQlEBMDXDFMzvSsOLdE/jtrFDcFed3wwtpga4JRTXNuHdiAP9fGyR8Xg8PPM/DB8/18GEv53p2uCd2XSzG4zNC4CCz3DCQr9PK4O3iAHeZ0Pl7CXFXIilPZzO/p20pJTiSXo7f3xwGtVQwOS57Odc0cDzX1hPu5oC3fhKDx/+XgnveO4G3fhJ7Q4PyD07mobSuBf9320jUmNiOZLTGCQFqJT76Ngczg75vGfLjc70rtRQFuiasnh3a674fuSkYf951GZ+dyMFt3axcSimqxedJBfjZhAB4K6VD9v8rrbb7smSrjZ9avHgx9u3b1+39u3fvxrx58yCXX1/j+Oabb6Kqqgpr1qyxdIhEgyo+zBNuShkSU8xTVteqN+LVQ5kIVCtx36T2cZ5j/d3w8X0TMC3EHa8fzsLT21JR23x9c77TeezfRERENJQsjPZCfYsBx69abiKuwSgiKV+HKcHq6y5mhXmqUFbfesP7DWsoqW3Guq+zMD7ADXfGWXa1FxH1zygfF7x951jojSIe/vwC0su+b86ta2rDxtP5mBHqgfEBpn9WkQgClsf64lxhLTK76SlnFEV8cCof4RoVZoR69LrP+VFaRHk541/f5KCli1I9vVHEKwcz4eWswEM3dV2eNxwMasIpJyen8+tDhw4hNDS022137tyJRYsWXXfbl19+iW+++Qbr1q2DRMJR7TS0KGQSLBzljSNZFdD1YUJDdzYlFSCvuglPzQm/7mqm2lGO15eNxurZofjmahXu/egsUopqO+9PytNBo1Ig2MNxwDEQERGR9U0KcoenSoHdaWUWO8blsnrUNusx+UcTbsO0HY3DrXtlXxRFrN2XDqMo4s8LIiExoQyHiKwjXKvCu3eNhVwq4JdfJONicftnlf+ezENjqwGPzhzR530mjPaBQipgy4XiLu8/mlmJ7MpG3D850KTXB4kg4PFZI1BS14IvzhXecP//zhfhSlk9Vs8Og0oxfKdgWixr88QTT+Duu+9GdnY24uPj8eWXX+L111/H4sWLkZCQgOPHj3f2YEpJSbmuH1NBQQGKi4sxefLk6/b5l7/8BRUVFbjrrruwdOlSvPnmm5YKn8gqEkZ7o80gYs8A3xAW1jThPyfzMCdSg2khN2boBUHATycE4P27x0IA8NDnF/DR6XwYxfark5OC1CbVQxMREZHtk0oELIjS4purVX0aO94Xp641z50UfP2qg7Br5TDWnlS3NbkYJ3N1eDw+FAFqXlQjsnXBHk547+5xcHOU4dEvU7ArtRRfni/ColHeCNf0vReS2kmOOZFa7EotRWOr4br7RFHEf0/lw99NiTkjtSbvc1KQO6aP8MB/T+Zf99paUd+Cfx3PwdRgd8yJ1PQ51qHEYqm2devW3XDbihUrutw2JiYGMTExnd8HBATg2LFjN2yXmppqvgCJbFCklzOivZ2x7WIJHrk5vN/7ef1QFiQCsHp2WI/bjfZ1xaaVE7B2Xzr+39FsHM6oQFVjGyYGsZyOiIhoKLkt2hufnCnEwfRyLB9r/nKyk7nViNSq4OGkuO52bxcHODtIuy1jGQyFNU3YcOQqJgepccdYX6vFQUR94+emxLt3jcWjX6bgL7uvwEEmwcM3Bfd7f3eM9cXutDLsuVyG5bHfvxacztMhtaQOa+ZFQNZDA/Cu/CZ+BH724Rn852Re52evfxzNRqvBiKfmhA/7i/isSyOyMUvG+CCjvAF7LvWvl9ORzEocu1qFh6YFw9vFodftXZQy/C0hGk/PCcflazXSk5hwIiIiGlIivVQY4elkkbK6pjYDLhTWYkqw+w33CYKAME8Vrlop4WQURbywNx0SQcCfFkQO+w9/RPZG6+yAd+6KxeQgNX45PQQ+rsp+7yvWzxXhGhX+d74Ioih23v7fU/nQqBRY3E3z756Ea1RYPNobX54vQmFNE5LydNiTVob7JgUiyJ2rKZlwIrIxt43yxmgfF/zui/PYmtx1jXF3mtsMeP1wJkI9nXDPeH+THycIAlaM88PGn8Xh+YUj4TuAF3IiIiKyPYIgYGG0F84X1qLQxMlOpjpXUAO9Uewy4QQAYRoVsiobr/uAN1g2ny/Cmfwa/G5WKN/fENkpdycF3loRi3snBgxoP4Ig4I6xvkgvb8ClkjoA7ZPkkvJ0uHdiABT9nOL5yE0hkAgC3jiajVcOZsDPTYn7JwcOKNahggknIhvjpJDiX3fGYma4Bi/tz8B73+Wa/AbtPyfzUFzbgj/MDYdM2vend4TWuduxnkRERGTfbo32AoAB94r8sZO51VBIBYz1d+3y/jCNE2qb9SivbzXrcXuTX92EN45mY1qIO5bG+AzqsYnINi0c5QUnuRSbrzUP/+BUPtyUMtwe2/9yWy8XB/xsgj8Oplcgp6oJT90SBqVcaq6Q7RoTTkQ2yFEuxb9+Nh6LR3vj3W9z8bcDmTAYe0465VQ14qPTBbhtlFefxoQSERHR8ODrqkRcgBt2p5aZdbXRqVwdxvq7dfsBK+xag9+sysErqzMYRfzf3iuQSQU8O5+ldETUTqWQYeEoLxy4Uo5TOVU4mlWJu+L84aQYWIJo5aRAeDkrMDdSgxmhnmaK1v4x4URko+RSCZ5bEIn7JwdiS3Ix/rg9Fc1thi63FUURrx7MhFIuwePxoYMcKREREdmLhdFeyK1uQlppvVn2V9HQisyKhm7L6QAgzPNawqmi0SzHNMXn5wpxvrAWv785zKSelkQ0fNwx1hcteiN+/ck5OMoluDNu4IMUnB1k+GLVRLy4ONoMEQ4dTDgR2TBBEPDozBF48uYwHMmsxG82p3Q5znj/lXKcztPhV9NHwFOl6GJPRERERMCcSA3kUsFszcNP5VYDAKYEd7+6Wu0kh6dKMWiT6nKqGvHPb3IwM9QDi9gqgIh+JELrjFg/V9Q0teGOsX5wc5SbZb8qhQwSrqa8DhNORHbgrvH+eGlxNFJL6/DQZxdQUtvceV99ix7rv76KKC9njvolIiKiHrkq5ZgZ6ol9l8ug76Vc3xSn8nRwU8oQ6eXc43bhGqdBm1T3ysFMOMgkeGZeBEvpiKhL900KhI+rEj+bYPqgJeo7JpyI7MTckVq8cUcMyupb8ItPz3deJXzvu1xUNrTij3PDIZXwTRURERH1bGG0F6oa2zpXJ/WXKIo4lVuNSUHuvV7VD9OocLWysdeelANVUd+CpDwd7hnvD40zS+mIqGuzwj1x7KnZfJ2wMCaciOzIhEA13rt7LIwi8NBn57H5fBE+P1uI22N9Mdq368kwRERERD900wgPuCplAy6ry65qRHl9a4/ldB3CPFVo0RtRWNPc67YDcexqFQBgdrjGoschIqLeMeFEZGcitM74z0/HwdNJgVcOZsJFKcevZ4RYOywiIiKyEwqZBHMjtfg6owKNrV0PJDHFyVwdAGBKSPcNwzuEaZwAAFkWLqs7mlUJPzdl5/GIiMh6mHAiskO+rkq8f884LIjS4s8LIs3W6I6IiIiGh4XRXmjWG/F1ZkW/93EqtxpB7o7wdVX2um2opmNSneUSTo2tBpzKrUZ8mCd7NxER2QAmnIjslNpRjrWLohEf5mntUIiIiMjOxPq7ws/VAbtT+1dWpzcYcSZfh8lBvZfTAYCjXAp/N6VFE04nc6vRahAxi++NiIhsAhNORERERETDjEQQcGu0F07lVaOivqXPj08prkNTmxGTg3svp+sQplEhq6Kxz8cy1ZGsSrg4yDDOn30tiYhsARNORERERETD0K3R3jCKwL4r5X1+7MncakgEYGKgaSucACBc44S86ka06o19Pl5vDEYR32RVYnqoB2RSfsQhIrIFfDUmIiIiIhqGRng6IdrbuV9ldadyqzHaxwUuSpnJjwnTqGAQgZwq869ySi6qRU2znq0GiIhsCBNORERERETD1MJR3rhcVo+rlab3Vqpr1uNSSV2fyumAHzQO78OxTHU0qxIyiYBpJkzMIyKiwcGEExERERHRMDV/pBZSAdiTZvoqpzP5OhhFYEofE07B7o6QSQSz93ESRRFHsyoxMVANZwfTV1wREZFlMeFERERERDRMeaoUmBzsjj1pZTCKokmPOZlbDUe5BGN8Xfp0LLlUgmAPR7NPqsutakJedRPiw1lOR0RkS5hwIiIiIiIaxhaO8kJxbQs+OJmP0rreJ9adytNhQqAa8n405w7zVJk94XQkqxIA2L+JiMjGMOFERERERDSMzQ7XYJSPC/51PAeL3z2JlR+dxXvf5eJKWT3EH616Kq5tRl51U5/7N3UI16pQXNuC+ha9OUIH0N6/KcrLGd4uDmbbJxERDRyLnImIiIiIhjFHuRQf/HQccquacCSrEkezKvHet7l499tc+Lg4ID7ME/Hhnhgf4IaTOdUAgCnB6n4dK9SzvXH41cpGxPq5Djj2yoZWpBTV4qGbgge8LyIiMi+LJZzWrFmDr7/+Gp6entixYwcAYMOGDTh48CAkEgk8PT3x8ssvw9vb+7rHnThxAi+//HLn91evXsX69esxd+5c5Ofn44knnkBNTQ1GjRqFV199FQqFwlI/AhERERHRsCAIAkI8nRDi6YSfTw5EZUMrjl+twpGsSiReLMEX54vg7CCFk1wKrbMCIzyc+nWcME3747IqGsyScPrmaiVEsJyOiMgWWaykbvny5Xj//fevu+3BBx/E9u3bkZiYiNmzZ+Ott9664XFTp05FYmIiEhMTsXHjRjg6OmL69OkAgNdeew33338/9u3bB1dXV2zevNlS4RMRERERDVueKgWWxPjg9WWjceDX0/Da0tGYE6GFUQQWRntBEIR+7dfPTQlHucRsfZyOZlXBx8UBkVqVWfZHRETmY7GE06RJk+Dm5nbdbc7Ozp1fNzU19fqHau/evZg5cyYcHR0hiiJOnDiBBQsWAABuv/12HDx40PyBExERERFRJ6VcilnhnvjTgkjs/uVUPBYf2u99SQQBoWZqHN7cZsDJ3GrEh3n2OwFGRESWM+g9nNavX4+vvvoKLi4u+PDDD3vcdufOnVi1ahUAoLq6Gq6urpDJ2kP28fFBaWmpSceUSgWo1f1b9mtrpFLJkPlZqGc818MHz/XwwPM8fPBcDx881/0T7eeKQ1fKB/y7O5hWhha9EbeN87P4eeC5Hj54rocPnmvLG/SE0+rVq7F69Wq888472LRpEx5//PEutysrK0N6ejpmzJjR7b5MvZJhMIjQ6Rr7Fa+tUaudhszPQj3juR4+eK6HB57n4YPnevjgue6fQFcHVDW04mqRDh5O/e/Huiu5ECqFFJFqpcXPA8/18MFzPXzwXJuHVuvS7X0WK6nrzeLFi7Fv375u79+9ezfmzZsHuVwOAHB3d0dtbS30+vYRqiUlJfDy8hqUWImIiIiIyDzCNO39ljLL+19WZzCKOJZVhekjPCCXWu0jDRER9WBQX51zcnI6vz506BBCQ7uv/965cycWLVrU+b0gCJgyZQr27t0LANi6dStuueUWi8VKRERERETm15Fwyqrs/8qCi8W1qG5qw6xwTqcjIrJVFiupe+KJJ3Dq1ClUV1cjPuRws34AACAASURBVD4ejz32GI4ePYrs7GwIggB/f388//zzAICUlBR89tlnePHFFwEABQUFKC4uxuTJk6/b51NPPYXVq1djw4YNiI6OxooVKywVPhERERERWYCnkxxqR/mAGocfzaqCVCJgWoiHGSMjIiJzsljCad26dTfc1l2CKCYmBjExMZ3fBwQE4NixYzdsFxgYiM2bN5svSCIiIiIiGlSCICBM4zTAhFMFJgS4wUU56C1piYjIRCx4JiIiIiKiQRXmqcLVikYYRbHPj82takROVRPiw1hOR0Rky5hwIiIiIiKiQRWmVaGxzYCS2pY+P/ZoViUAIJ79m4iIbBoTTkRERERENKjCPJ0AAJn9KKs7llWJCK0Kvq5Kc4dFRERmxIQTERERERENqs5JdX1MOOka23ChqBazWE5HRGTzmHAiIiIiIqJB5ewgg4+LQ58TTseuVsIospyOiMgeMOFERERERESDLkyjQlZFY58eczSrEl7OCkR5OVsoKiIiMhcmnIiIiIiIaNCFaZyQU9UIvcFo0vbNbQacyKlGfJgnBEGwcHRERDRQTDgREREREdGgC9OooDeKyNM1mbR9Ur4OzXojy+mIiOwEE05ERERERDToOhqHZ5ab1sfpSGYlVAopJgSoLRkWERGZiczaARARERER0fAT4uEEqQBkVfbcx8koikgtqcPRrEpMC3GHQsZr5kRE9oAJJyIiIiIiGnQOMgkC3R1xtYtJdc1tBpzM1eFYViWOXa1EVWMbpBIBy2J9rRApERH1BxNORERERERkFWEaFa6U1QMAyutbcOxqFY5lVeJ0ng4teiNUCiluGuGB+DBPTAtxh5uj3MoRExGRqZhwIiIiIiIiqwjzVOFQegXu23QWaaXtiSc/NyVuj/XFzFAPxAW4QS5lCR0RkT1iwomIiIiIiKxifKAbJCcAmUSCX88IQXyYJ0I9nSAIgrVDIyKiAWLCiYiIiIiIrGJCoBrHfzcTUgkTTEREQw3XpxIRERERkdUw2URENDQx4URERERERERERGbFhBMREREREREREZkVE05ERERERERERGRWTDgREREREREREZFZMeFERERERERERERmxYQTERERERERERGZFRNORERERERERERkVkw4ERERERERERGRWQmiKIrWDoKIiIiIiIiIiIYOrnAiIiIiIiIiIiKzYsKJiIiIiIiIiIjMigknIiIiIiIiIiIyKyaciIiIiIiIiIjIrJhwIiIiIiIiIiIis2LCiYiIiIiIiIiIzIoJJyIiIiIiIiIiMismnAaguLgYK1euxMKFC7Fo0SJs3LgRAKDT6bBq1SrMnz8fq1atQk1NDQBg27ZtSEhIQEJCAu6++25cvny5c19Hjx7FggULMG/ePLz77rvdHnPr1q2YP38+5s+fj61bt3bevn79esyaNQtxcXE9xnzx4kUkJCRg3rx5WLt2LURRBADs3r0bixYtQlRUFFJSUvr9OxmqhtK5fuWVV3DrrbciISEBjz76KGpra/v9exmKhtK53rBhAxISEv4/e/cdHlW1tQH8PTMpkz7pvVeSkNBbqKGJ9CbXgqio14pYr9jBChZA7lXxCjYICggqKEhN6GBCQgik9957n5nz/YHwySVAykySmby/58kjZk7Zc1amrVl7bcyePRsPPfQQiouLO31ddJEuxfqqTZs2wd/fHxUVFR2+HrpMl2K9YcMGjBkzBrNnz8bs2bMRFRXV6euii3Qp1gDw/fffY+rUqZg+fTrWrFnTqWuiq3Qp1suXL7/2mA4PD8fs2bM7fV10kS7FOjExEXfddRdmz56NefPmIT4+vtPXRRfpUqyTkpKwaNEizJw5E4899hjq6uo6fV20mkidVlxcLCYkJIiiKIq1tbXilClTxNTUVHH16tXixo0bRVEUxY0bN4pr1qwRRVEUY2JixKqqKlEURTEyMlJcsGCBKIqiqFAoxIkTJ4o5OTlic3OzOHPmTDE1NfWG81VWVorh4eFiZWWlWFVVJYaHh187XmxsrFhcXCwOGDDglmOeP3++eP78eVGlUolLly4VIyMjRVEUxbS0NDE9PV287777xPj4eDVcHd2iS7E+fvy42NraKoqiKK5Zs+bamOkKXYp1bW3ttW2+/fZb8fXXX+/KpdE5uhRrURTFgoIC8aGHHhLHjx8vlpeXd/Hq6BZdivWnn34qfvXVV2q4KrpJl2J9+vRpccmSJWJzc7MoiqJYVlbW1cujU3Qp1n/3/vvvixs2bOjkVdFNuhTrBx988Nq/IyMjxfvuu6+rl0en6FKs582bJ549e1YURVHcsWOHuHbt2q5eHq3ECqcusLOzQ1BQEADA1NQUXl5eKC4uxuHDhzFnzhwAwJw5c3Do0CEAwKBBg2BhYQEAGDBgAIqKigAA8fHxcHd3h6urKwwMDDB9+nQcPnz4hvOdOHECYWFhkMvlsLCwQFhYGI4fP37teHZ2drccb0lJCerq6jBw4EAIgoA5c+ZcO4+3tze8vLzUcFV0ky7FevTo0dDT07thbHSFLsXa1NT02naNjY0QBKErl0bn6FKsAeD999/Hiy++yDi3QddiTTenS7Hetm0bHn30URgYGAAArK2tu3p5dIouxfoqURSxb98+zJgxowtXRvfoUqwFQUB9fT0AoLa29rbH6mt0KdaZmZkYOnQoACAsLAwHDhzo6uXRSkw4qUleXh4SExMRGhqK8vLya3+cdnZ2bU5t2LlzJ8aOHQsAKC4uhoODw7Xb7O3t25z60t7tbuZ/93dwcOAUm07QpVj/9NNP18ZGN9KFWF8tB96zZw+eeeaZdh+3r9H2WB8+fBh2dnYICAho9/H6Km2PNQBs3boVM2fOxIoVK65NK6AbaXuss7KyEB0djYULF+K+++7j1Jtb0PZYXxUdHQ1ra2t4eHi0+7h9jbbH+pVXXsGaNWswbtw4rF69Gs8991y7j9vXaHus/fz8riWf9u/fj8LCwnYfV5cw4aQG9fX1WLZsGV555ZXrKgpu5syZM9i5cydeeOEFALihBweANr+hbu92N9PV/Um3Yv35559DKpVi1qxZ7T5uX6IrsX722WcRFRWFmTNnYsuWLe0+bl+i7bFubGzEF198wYRiO2h7rAHg7rvvxsGDB/HLL7/Azs4OH3zwQbuP25foQqyVSiVqamqwfft2vPTSS1i+fHmb2/d1uhDrq/bu3cvqplvQhVhv27YNK1asQFRUFFasWIFXX3213cftS3Qh1u+++y4iIiIwb9481NfXX6tW7WuYcOqi1tZWLFu2DDNnzsSUKVMAXCl5LikpAXClzM7Kyura9klJSXjttdfw2WefwdLSEsCVTOjfpzUVFxfDzs4OFy5cuNZA8PDhwzfd7maUSuW1/devX3/D/kVFRSzj7ABdivXu3bsRGRmJjz76iEnHNuhSrK+aMWNGny3lvRVdiHVOTg7y8vKuNZstKirCvHnzUFpaqp6LpCN0IdYAYGNjA6lUColEgoULF3KhjzboSqzt7e0xefJkCIKAkJAQSCQSVFZWquEK6Q5diTUAKBQKHDx4EHfeeWcXr4pu0pVYX21QDQDTpk1j5WIbdCXW3t7e2Lx5M3bt2oXp06fD1dVVDVdHC3VLpygdpVKpxBdffFF85513rvv9Bx98cF1Ts9WrV4uiKIr5+fnipEmTxJiYmOu2b21tFcPDw69rapaSknLD+SorK8UJEyaIVVVVYlVVlThhwgSxsrLyum1u19Rs3rx5Ymxs7E2bFbJpeNt0KdZRUVHitGnT2FT4JnQp1pmZmde2+e6778Snn366fRehj9ClWP/dhAkT+Pj+H7oU6+Li4mvbfP311+Ly5cvbeRX6Bl2KdUREhLhu3TpRFEUxIyNDHDt2rKhSqTpwNXSbLsVaFK+8P7v33nvbfwH6EF2K9R133CGeOXNGFEVRPHXqlDh37twOXAndp0uxvrrQg1KpFF988UVxx44dHbgSukMQRdbmdlZ0dDTuvfde+Pn5QSK5Uiz23HPPISQkBMuXL0dhYSEcHR2xfv16yOVyvPrqqzhw4ACcnJwAAFKpFLt27QIAREVF4b333oNSqcT8+fPx+OOPt3nOnTt3YuPGjQCAxx57DPPnzwcArFmzBnv37kVJSQns7OywcOFCPP300zfsf/HiRaxYsQJNTU0YO3YsXn/9dQiCgIMHD+Ltt99GRUUFzM3N0a9fP2zatEnt10xb6VKsJ0+ejJaWFsjlcgBAaGgoVq1apd4LpsV0KdZPP/00MjMzIQgCnJ2dsXLlStjb26v9mmkrXYr134WHh2Pnzp3XffvX1+lSrF988cVryz47Oztj1apVrFb+G12KdUtLC1555RUkJSVBX18fL730EkaOHKn2a6atdCnWAPDyyy8jNDQUd999t3ovlA7QpVhHR0fjvffeg0KhgKGhId58800EBwer/ZppK12K9bfffouIiAgAwOTJk/H888/3yZklTDgREREREREREZFasYcTERERERERERGpFRNORERERERERESkVkw4ERERERERERGRWjHhREREREREREREasWEExERERERERERqRUTTkREREREREREpFZMOBERERERERERkVox4URERERERERERGrFhBMREREREREREakVE05ERERERERERKRWTDgREREREREREZFaMeFERERERERERERqxYQTERERERERERGpFRNORERERERERESkVkw4ERERERERERGRWjHhREREREREREREasWEExERERERERERqRUTTkREREREREREpFZMOBERERERERERkVox4URERERERERERGrFhBMREREREREREakVE05ERERERERERKRWTDgREREREREREZFaMeFERERERERERERqxYQTERERERERERGpFRNORERERERERESkVkw4ERERERERERGRWjHhREREREREREREasWEExERERERERERqRUTTkREREREREREpFZMOBERERERERERkVrp9fQAuoNKpYJSKfb0MNRCKhV05r7QrTHWfQdj3Tcwzn0HY913MNZ9B2PddzDWfQdjrR76+tKb3tYnEk5KpYiqqoaeHoZayOXGOnNf6NYY676Dse4bGOe+g7HuOxjrvoOx7jsY676DsVYPW1uzm97GKXVERERERERERKRWTDgREREREREREZFaMeFERERERERERERqxYQTERERERERERGpFRNORERERERERESkVkw4ERERERERERGRWjHhREREREREREREasWEExERERERERERqRUTTkRERERERESk9U5klOP7P3MhimJPD4UA6PX0AIiIiIiIiIiIuiKrogEv70lEs0KF/OomvDTRBxJB6JZzK1QiPo3KgK2pAe4e7AI9Sfect7djwomIiIiIiIiItFarUoU3fk+CTE+CmUH22HmhEAqViFcm+2o86SSKIlYfSsXPF4sAAAeTS/HaFD/42Zlq9LzagAknIiIiIiIiItJaX57KRmJxHVbPCsQEH2uYG+lj85kcKFUiXpviB6kGK46+OpODny8W4YFhrgiwN8Waw2m4f2sslgxzxdLhbjDQ67udjJhwIiIiIiIiIiKtdD6vCt+ey8WsYHuE+9oAAB4P84CeRMCXp7KhVIl44w5/jUxz++ViIb48lY3pgXZ4YrQHBEHAYFc51kamY/OZHBxNLcPrU/zQ38lc7efWBn031UZEREREREREWqu2SYE3f0+Gi1yG5yf4XHfbIyPd8cRoD+xLLMGbvydBoVJvI/ETGeV4/2AqRnhY4rUpfhD+mronN9LHymkBWDc3GPXNCizdFoe1kelobFWq9fzagAknIiIiIiIiItI6qw+norSuGavuDICxgfSG2x8c7oanx3jiQHIpXvstEQqlSi3nTSiswct7EuFnZ4rVMwOhJ70xtRLmZYUfHxiCeaGOiIjJx93fxuDPnEq1nF9bMOFERERERERERFplX2Ix/kgqxcMj3RHsePMpa/cPc8Wz471wOKUMK/YmorWLSafsigY8u/sSbEwMsHZucJuJrqtMDfXw8iRffHFXCCQC8MSOi3j3QArqmhVdGoO2YMKJiIiIiIiIiLRGQXUTVh9KQ4iTOR4Y7nbb7e8Z7IIXJngjMq0c//r1MloUnUs6lde3YNmuBADAp/P7w9rEoF37DXaVI+L+wbhviAt+TSjCW/uSO3V+bcOm4URERERERESkFZQqEW/tSwIArLqz/c3AFw1yhlQiYPXhNLz062VsXDy4Q+etb1Fg+a4EVNS34Iu7QuBmadSh/WX6Ujwzzgt3BtpBqeZ+Ur0VE05EREREREREpBW++zMXsfk1WDnNH84WHUv6LBjgBKlEwHsHU/HQd9GYEWiHUCcLOJobXmv63RaFUoWXf01EamkdPp4TjKBbTOG7HV9b007vq22YcCIiIiIiIiKiblVY04SNJ7PgammEqQF2cJHfPnl0qagWG09lY7K/Lab1s+vUeeeGOEJPIuDjyHScy7rSxNvGxAAhTuYIdTZHiJM5/O1Mof9XI3BRFPHOgRScya7E61P8EOZl1anz9kVMOBERERERERFRt0kuqcPyXQmobVagWaHCFyezEehghqkBtpjsbwtbU8Mb9mloUeKN35NgY2KAlyf53LIi6XZmBjvg7pEeiEkvQ3xBzbWfI6llAABDPQn62ZsixMkCNU2t+O1yCf45yh2z+jt0+px9ERNORERERERERNQtzmVX4qVfL8PEQIpv7h0IUwMpDiaX4kBSKdZGZmBdZAYGuVpgaoAdwn1tYGGkDwBYG5mO3MpGfH5XCMxl+l0eh55UAn87U/jbmWLhACcAQGldMy4W1OBCQQ0uFtQgIiYPCpWIeSGOWDri9s3J6XqCKIo6362qtVWJqqqGnh6GWsjlxjpzX+jWGOu+g7HuGxjnvoOx7jsY676Dse47GGvN2p9YgpX7k+FmaYT184LhYC677vasigYcSCrBH0mlyKlshJ5EwAgPS/jZmmDz2VzcP9QVT4/1VMtY2hPrZoUKRTVNcLM06lJFlS6ztTW76W2scCIiIiIiIiIijRFFEVui8/DpsUwMdLHAx7ODYCa7MR3hYWWMR0d54JGR7kguqcMfSaU4kFSCExkVCLAzxWNh7t06bkM9CdytjLv1nLqECSciIiIiIiIi0giVKGJdZAa2nc/HJD8bvDUtAIZ6klvuIwgCAuzNEGBvhqfHeuJyUS2cLWTXGnmTdmDCiYiIiIiIiKiPEkVRY9PFmhUqvLUvGYdSSrFooBOem+ANSQfPJREEBDuaa2R8pFlMOBERERERERH1QcfSy/HJ0XR425hg5TR/mBqqL0VQ26TAC79cwvm8aiwb64n7hriwD1Ifw3o0IiIiIiIioj6kuLYZL/5yCc//fAmCAJzMrMCDEbHIrlBPw/Ti2mY88mMc4gtq8PadAVg81JXJpj6ICSciIiIiIiKiPkChEhERk4e7vo7G6axKPDHaA9sfGIL/LOiPqkYFHoiIxanMii6dIy6vGg9FxKKophnr5wXjjn52aho9aRtOqSMiIiIiIiLScZeLavH+wVQkldRhpIclXproAxe5EQBgsKsc3947EC/8cgnP7k7A02O9cO9g5w5VJRXXNmPDsQz8kVQKezNDbFwUCn87U03dHdICTDgRERERERER6ai6ZgW+OJmFHXEFsDQ2wHsz+mGSn80NySQnCxk23T0AK/cnY31UBlJL6/DKZL/brijX1KrE1pg8fHM2FyKApSPcsGSYK4z0pRq8V6QNmHAiIiIiIp2WWd6AN/clobpJgZEelhjlaYWhbnJ+GCIinSaKIo6kluHjo+koq2vBggFOeGK0xy0bgxvpS/H+jH7YdCYHG09lI6uiER/OCoSdmWGbxz+aVo71kekoqGlGuK8NnhnnBScLmSbvFmkRJpyIiIiISGf9frkY7x9MhZG+FEGOZvjtUjF+ulAIfamAQS4WGOVphVGeVnC3NGJDWyLSCXXNCpzKrMCeS8U4k1UJP1sTfDgrEEGO5u3aXxAEPDzSHT42JnhzXzKWbI3FmlmB6O/0//unldbj48h0ROdUwdvGGJ8vDMEQN7mm7hJpKSaciIiIiEjnNLUq8fHRdPx8sQgDnc3x7ox+sDU1RItChdj8apzKrMCpzAqsjczA2sgMOFnIEOZphVGelhjiKoeM1U9EpEUKa5pwPL0cx9LLEZNbDYVKhKWRPp4d74W7BjpDT9LxhPp4XxtssjTC8z9fwj+3X8Ark30xxssaG09l46cLBTAz1MNLE30wN8SxU8cn3SeIoij29CA0rbVViaoq9Szv2NPkcmOduS90a4x138FY9w2Mc/dSiSIkPVStwlj3vJzKRry85zJSS+uxZJgrHgvzuOmHofzqRpzKrMSpzApE51ShSaGCp5UxIpYMvu0HKMa672Cs+w5tibUoikgqqcOxtCtJppTSegCAu6URxvlYY6y3NYIdzSFVQyKoqrEVK/YmIjqnCsb6UjQplJgf6oR/jnKHhZF+l4/fU7Ql1r2dra3ZTW9jhRMRERFpxIeH05BT2YiHRrhhoItFt503Kq0cb+1PwvMTvDEjyKHbzku9w6HkUrxzIAV6EgFr5wZhtJf1Lbd3tjDCwgFGWDjACc0KFXbHF+Ljo+k4k1Vx232JiLpbbZMCn5/MQlRaGUrqWiARgBAncywb64kx3tbwsDJW+znlRvrYML8/PjueicyKBjw52hM+tiZqPw/pnlu3m9eQY8eOYerUqZg8eTK+/PLLG27/888/MXfuXAQGBmL//v033F5XV4cxY8Zg1apV3TFcIiIi6qCaplb8FF+IczmVePTHC3hyRzwu5Fdr9JyiKGJLdB5e/OUS6pqV+P1yiUbPR71Li0KFDw+nYcXeRHhZG2PL4kEdThgZ6kkwP9QRlkb62JNQrKGREhF13ldnrkxnC3QwwxtT/bD/sRH47z8GYPFQV40km67SkwhYNs4La+cGM9lE7dbtFU5KpRKrVq3C119/DXt7eyxYsADh4eHw8fG5to2joyPef/99bN68uc1jrFu3DsOGDeuuIRMREVEHHU+vgFIl4ou7QpBYXIfvzuXi4R8uYISHJf45yh3B7Wxc2l4KpQprjqRhd3wRwn1tYG1igN3xhahvUcDEgAXdui6/uhEr9iQisbgO9wx2xlNjPKEv7dz3qvpSCaYF2mF7bAEqG1pgaWyg5tESEXVOU6sSey8VI9zXBu/PDOzp4RDdVrdXOMXHx8Pd3R2urq4wMDDA9OnTcfjw4eu2cXFxQUBAACSSG4eXkJCA8vJyhIWFddeQiYiIqIMOp5TCwcwQg1wscN8QF/zyyDA8PcYTiUW1eDAiDst3JeByUa1azlXT1IpluxKwO74IDwxzxfsz+2Ginw0UKhHnsqvUcg7qvaLSyrH4+1jkVjVizaxAPDveu9PJpqtmBjtAoRKxL5FVckTUexxKKUVNkwLzQ516eihE7dLtX/kVFxfDweH/+ynY29sjPj6+XfuqVCqsXr0aa9aswenTp9t9TqlUgFyuufLC7iSVSnTmvtCtMdZ9B2PdN/SlONc2KXA2pwr3DHWFpeWVsns5gGVT/PHQOG9sOZONTSezsGRrLML9bbEs3BdBTp2reMquaMCjP8Yjt7IBH8wNxvxBLgCAseZGMDW8jOj8Gswd6qauu9YufSnWPe1yYQ1e+vUS+jma49NFA+CmpukkQ+TGCHG2wO+JJXg83BfCTRrQ60qsRVHE4aQS9He2gL25rKeH0yvpSqzp9npzrHcnFMPLxgQT+zve9HmJ2q83x1pXdHvCqa1F8dr7YImIiMDYsWPh6OjYoXMqlaLOdJ9nJ/2+g7HuOxjrvqEvxfmPxBK0KFQY7S5v8z7/I9QRMwJs8WNsPrZG52PO56cw2ssKUwJsMcbLGqaG7Xt7EpdXjRd+uQQA2DC/Pwa7Xn++4e5yHE0uQWVlfbe+Me9Lse5Joiji7T2XYGaohw1zg2EmgVqv+7QAW6w+nIYzKSXoZ9/2Cjy6EuujqWV46dfLMJfpYcUkX0zyt+3pIfU6uhJrur3eGuuk4lrE51Xj+QneqK5u7Onh6ITeGmtt06tWqXNwcEBRUdG1/y8uLoadnV279o2NjUVMTAy2bduG+vp6tLa2wtjYGC+88IKmhktEREQddCS1DDYmBuh/i6olU0M9LB3hjkUDnbEtJh8/XyzEiYwK6EsFDHe3RLivDcZ6W990ueXfLxfjnQMpcDSXYe3cYLhZGt2wTZinFQ6nlCGlpB7+9qZqu3/UOxxLr0B0bjVeDPeBmUz9b2mnBthhXVQG9iQU3zThpAuaWpVYF5kOTytjGBtIsWJvIo6ll+OliT7tTv4SkebtvFAImZ4E0wPte3ooRO3W7a8i/fv3R1ZWFnJzc2Fvb4/ffvsNH3/8cbv2/ft2u3btQkJCApNNREREvUhjqxInMyswK9gBknZUFZka6uGRUe5YOtINCYW1OJxSiqOpZTiRUQGpRMBQVznC/Www3scalsYGEEURG09lY9OZHAx2tcDqmYE3TUqN9LQCAJzMrGDCSce0KlX49FgGPK2MMS+0Y5Xv7WUm08N4H2vsTyzBM+O8YKjXI4s7a9yW6DwU1DTjs4X9MdDZAl+fzcWmM9mIzavGW9P8MdhV3tNDJOrzapsU+COxBFMD7DSSYCfSlG7/a9XT08Mbb7yBhx9+GEqlEvPnz4evry/Wr1+P4OBgTJw4EfHx8XjqqadQU1ODo0ePYsOGDfjtt9+6e6hERETUQaczK9CsUCHc16ZD+0kEASFO5ghxMsfycV5ILK7D4ZQyHE0txXsHU/HBoVQMcrGATF+KExkVmBVsj5cn+d6yObSNiQH62ZviREYFHhrRvX2cSLN2xBUgp7IR6+YGQ0+iuemSM4Md8EdSKaLSyjAloH0V+dqkqKYJ35zLxUQ/Gwx1swQAPDLKHSM9LfHmvmQ8vj0e9w5xweNhHjDQ0YQbUWcoliEZwgAAIABJREFUlCr850QWSmqb0axQ/fWjRLNSvPLfa79ToUWhwuKhLnh0lEenz/fb5WI0KVSYP0AzCXYiTemR9Oi4ceMwbty46373zDPPXPt3SEgIjh07dstjzJs3D/PmzdPI+IiIiKhzjqSWQW6kjwEuFp0+hiAICHQwQ6CDGZ4a44HU0nocSS3D4ZRS5FY24ukxnlg81KVdfZlGe1nhq9M5qGpohdy47Uoo0i7Vja3YdCYHI9wtMcrTUqPnGuomh4OZIfYkFOtkwunTY5kAgGfGeV33+2BHc2xZPAjrozKwJToPZ7MrsWpaAHxsTXpimES9zsGUUmyJzoOzhQzGBlIY6klgqCeB3EAKA6kBDPUkkOld+X1GRQM2ncnBeB8b+Nl1vNpWFEXsulCIIAcznZ7eS7qJ9XhERESkFs0KFY6nV2BKgK3aqk4EQYCfnSn87EzxWJgHWpWqDi15H+Zphf+ezsHp7ApM68e+F7rgv6ezUdeswDPjvTTeDF4iCJgRZI9NZ3JQVNMEBx1awS0mtwoHk0vx6Eh3OLZxv4z0pXh5ki9Ge1nh7T9ScP/W83hytCfuHuzcrumyRLpKFEVsi8mHh5URfnxgyG0fD9WNrZi/+U98dCQNGxeFdvh563xeNTIrGvDGVL+uDJuoR7A2loiIiNTibHYlGlqVCPfr2HS6juhIsgkA+jmYwdJIHyczKjQ0IupOWRUN2HmhEHP6O8LHpnuqbWYE20PElSktukKhEvHx0XQ4mhti8VCXW2472ssaPywZjDBPK6yLysCTO+JRXNvcTSMl6n3i8muQWFyHfwxqX/LVwkgfT4zxRGx+DQ4klXb4fDvjCmEu08Nkrh5JWogJJyIiIlKLIymlMJfpYWgvajIsEQSM8rTEmaxKKFViTw+HuujTqAzI9CR4dJR7t53T2cIIQ1wtsCehGCpRN/6GdscXIrW0Hs+M84JMX3rb7S2NDbBmViBen+qHy0V1eHNfUjeMkvqaZoUK2RUNOJNVgd8vF6OmqbWnh9SmbefzYS7T69BqcbODHRBgZ4r1xzLQ0KJs935l9S04mlaGGUH27XqsEvU2nFJHREREXdaqVOFYegXG+lhDr4NVSJoW5mWN3y6XIKGwBqHOnest1axQobSuGS5yIzWPjtrrXHYljmdU4KkxnrA2MejWc88MdsCb+5IRm1et9au2VTW24ouTWRjiatGh5v6CIGBWsAOqGlqx4Xgm0krr2dOJOkShVKGwphkFNU0orG5CYU0T8qubUFjTjMKaJpTWtVy3vbOFDB/ODoSvbddXGW1VXmngbWrYtY+/+dWNiEorw+Khrh1KAEklAl6c6IOl2+Kw+WwOnhrj2a79frlYCKVKxLwQNgsn7cSEExEREXVZdG4VapsVHV6drjuMcLeEVABOZlZ0OuG0an8yjqaVYeviwfC0NlbzCOl2lCoR66Iy4GRuiH8Mcu7284f72mDN4TTsSSjS+oTTFyezUN+swPMTfDrVA2tWfwd8eTobO+IKsGKyrwZGSNpMJYooqW1GblUjciqv/8mvbrqu0lQqAPZmhnC0kGGEuyUcLWRwMpfByUKGZoUSK/en4KGIOLw+1a9LTfvj8qqx8o9ktCpFbH9gCIwNOl8ptD22AIIg4K4BTh3eN8TJHNMD7bA1Og+zgh3gZnnrLzCUKhG744swzE0Odyu+7pB2YsKJiIiIuuxwShlMDKQY7q7ZVcM6w0ymhxBnC5zIqMATo9v3rfLfZVc04GByKUQA7x5IwZf/CGXT5G62J6EIqaX1eG9GPxjqdX8FnUxfiikBtvj9cgleCFd0uUqip6SU1GF3fCEWDnDqdHWS3EgfUwNs8fvlYjw5xgPmMq7+2JcpVSL+SCrBsfTya4mlZoXq2u2GehK4WRrB19YE4b42cJUbwVkug6O5DHZmhrdcYOL7+wbi5T2JePW3JCQV1+GJMZ4dWpCiqVWJz09mYVtMPmxNDVBS14JvzuV06nUAAOqaFfjlYhEm+dnAzsywU8d4aqwXItPK8cnRdKybF3zLbU9kVKC4thnPTfDu1LmIegPtfLUkIiKiXkOhEhGVVo7RXlY9kgxoj9GeVthwPBMltc0d/qDw7blcGOhJ8MhId/z7eCZ2xxdifmjHv92mzqlvUeDzk1kIcTLHJA02pL+dmUEO2B1fhEPJpZijhdNbRFHER0fTYWao1+UeWHcNcMavCcXYe6kY9wy+ddNx0l1nsirw6bFMpJbWw8ncEF42JhjqJoe7pRFcLY3gZmkMW1ODTifobUwN8fldIfjkaDq+j85Dckkd3p3RD3Kj2yc5EwprsHJ/MrIqGjE/1BHLxnrhg0Op2Bqdh9n9HeBs0fHp0XsuFaO+RYm7u/A3b2NigIdHumN9VAaOp5djjLf1Tbf96UIBbE0NMPYW2xD1dr3zXSERERFpjdi8KlQ1tiLcr/euoDPKywrAlWl1HVFU04TfE0swp78D7h/qgiFucmw4diVxRd3j23O5qGhoxXPjvTo1BUxdgh3N4GlljF8TtHO1uoPJpYjNq8YTYzy7XJXkb2+KUCdz7Igr0JlG6tR+ySV1eGpnPJ7+KQH1LUq8Oz0Aux8ehrVzg/HseG/MC3XCUDdL2JsZdrkaVF8qwb8m+eL1KX6Iza/Gki3nkVxSd9PtWxQq/Pt4JpZui0Njqwr/nt8fL0/yhbGBFE+N8YREELDhWGaHx6FUifjhfD5CncwR5GDWlbuERQOd4GFlhE8i06+rBvu7vKpGnM6qxNz+jh2q6iLqbZhwIiIioi45klIGmZ4Eozx633S6q7ytjeFgZoiTGR1LOH3/Zx4A4L4hLhAEAa9M8oVCJeLDI2maGCb9j8KaJmyNzsMd/ewQ5Gjeo2MRBAEzg+1xsbAGWeUNPTqWjmpsVWJ9VAb87UwxO9hBLce8a6AT8qqacDqzUi3Ho96vsKYJb+5LwuLvzyOpuA7PjvfCjgeGYEqAncanGc/q74D/LgqFQiVi6bY47Eu8MfGbVFyL+7eex7fncjEjyB4/LBmM4X97XbIzM8SSYa44nFKGmNyqDp3/eHo5CqqbcPfgrveQ05dK8PwEb+RVNSEiJq/NbXZdKIRUAGb3V8/jlainMOFEREREnaYSRRxNK8coT6tevWSzIAgI87LCuZxKtNzkG+X/VV7fgl8SijA90A4O5jIAgKulER4e4YbItHIcTS3T5JAJwH+OZ0IQBDw52qOnhwIAmBZoD6kA7LlU1NND6ZBvzuWipK4FL0zwhlRN1RITfG1gY2KA7XH5ajke9V41Ta34NCoDCzb/iUPJpVg81BW7lw7DPYNdYNCN06iDHM3x3X2DEOhghjd+T8YnR9OhUIlQKFX48lQWHoiIQ3WjAmvnBuH1qf5t9lq7b4gL7M0M8cnR9OsamN9OxPl8OJobYpyPeqb1jvCwwngfa2w+k4Pi/6mYbVao8GtCEcb6dL5XFFFvwYQTERERdVp8fg3K61swsQd767RXmKcVGltViM2rbtf2ETH5aFWqsGSY23W/v2+IC3xtTfDhkTTUNSs0MVQCcLGgBn8kleLeIS7XEn49zcbEAGFe1vjtcgkUHfiw2pPyqhqx5c9cTA2wxQCXzq3S2BZ9qQTzQhxxKrMSuZWNajsu9R4tChW2Rudh7qY/sSU6D5MD7PDTQ0Px9FhPmMl6phWwtYkBPlvQH4sGOmHb+Xw8uSMeD0TE4b+nczDF3xY/LBmM0V4373kk05di2VhPpJTWY09C+xLHScW1iM2rxl0DndU6vW35eC+IAD6Nyrju94dTSlHdpMD8UO3rFUf0v5hwIiIiok47kloGA+mV6qHebqibHIZ6knb1cappasVPFwowyc/2hqWr9aQSvDrFD+X1Lfj38Y73AtGU2iYFLhXVQtSBnjqiKGJtZAasTQywZKhrTw/nOjOD7FFe34LTHewH1lPWR2VAKhGwbKyX2o89N8QBUomAHXEFaj82dY+mViUyyutxPL0cP5zPx8dH0/Hc7gQs+iYaE/9zCuuiMhDoYIYtiwfhrTv8e0XyV08qwQvhPlg5zR+XimpRWteMNbMCserOAFi0o6H4ZH9bhDqZ4/OTWe360mDb+XwY60sxR83T25wtjLB4iAsOJJdeN8XvpwuFcLM0wlA3uVrPR9QTuEodERFptcZWJbbHFsBCpgdnuQwuciPYmRqqbdoI3ZwoijiSWoYRHlYwMej9bylk+lIMdrXAycyK2y4zvT22APUtSjwwvO1kR5CDGRYNdMa28/mY1s8Ooc7qqxzprPcPpeJgcin62ZvigWGuGOdjo5WPg7TSevz7eCYuFtbg9Sl+MDboXVM1R3tZwcpYH78mFGHm4N6VDPu72iYFNp/NQWRaOZ4Y7aGRqTk2poaY5GeDPZeK8FiYR6+LFd3oUmENdl8sQmZ5A/Krm1Be33Ld7Ub6EjhbGMFVboTh7pYI87LCcPfe2Z/vzkB7DHKxgImBXocqrgRBwHMTvLFkayw2n8nBsnE3T8aW1TXjQFIp5oc6tjlFr6uWDHPF3kvF+OhIOr5fPAgZZfWIL6jBs+O9NN4Xi6g79P53h0RERLfw3blcfHUm57rf6UkEOFnI4GQhg7PFlSSUs4UMrnIjeNsY9+hKV7rkclEtimub8XiYR08Ppd3CPK3w4ZF05FQ23lC5dFVDixI/nM/HGC8r+Nqa3vRYj4V5IDKtDO8eSMWWxYO6tZfJ/yqsacKRlFIMd5ejoLoJ/9qTCHdLI9w/1BXTAu2gL+39Re0F1U3YeCoL+y6XwNRQD8vGemJGsH1PD+sGelIJ7uhnhx9jC1Be34LelmJpVaqw60Ih/ns6G9VNCkwPsse9XVjG/XYWDnDCH0ml2JdYjPmhTho7D3WeUiUiKr0cEdF5uFBQAxMDKQLsTRHmaQlniyuvj87yK6+XciN9rXqN7GzFVaCDGWYE2WPb+XzMDXGE601eD3ZcKIRSJWLRwK43C2+LTF+KZ8d74V97ErHrQgHSyxpgqCfB9MDe99xH1BlMOBERkdaqaGjB1pg8hPva4JlxXsirakR+ddOVn7/+famwFrV/K5mfGWSP16f6adUb6t7qcEoZpBIBY7x7/3S6q0Z5WgFIx8nMCrhZtv0BYnd8IaqbFHhwuFubt19lbCDFvyb5YvmuBHx7LhePjHLXwIjb58fzV6Y0vTbFD7amhjiSWoZvz+Xi7QMp2HgqC/cMdsGcEIdeWYlW2dCCTWdy8NOFQkglAhYPdcGSYa4wl91+akxPmRnsgIiYfPx6oQBzA+16ejgArlQcRqaV49/HM5FT2YghrhZ4ZpwXAuy7toT77YQ4mcPfzhTbYwswL8SRz629SEOLEnsSirDtfD7yq5vgZCHD8xO8MTPYvlc+F3S3J0d74EhKGT49loEPZwfdcHtTqxK7LhRijLf1TRNS6jDB1wZD3eT44mQ2FCoVJvvbtmtqIJE24DMNERFpra/P5qJFocLjoz2uVTS1paapFfnVTdifWIKImHy4WhrdNplAt3Z1Ot0wN3mvTgz8Lxe5ETysjHAyoxx3D7ox4dSsUGFLdB6GuMnR38n8tscL87TC1ABbfH0uB5P8beFpbayJYd9SfYsCP18sxEQ/22vf9k/2t8UkPxucza7Et+dysS4qA5vP5mDhACcsGugES2ODbh/n/6pvUSAiOh9bovPQrFBiZrADHhnprhWrMvnYmCDIwQw7Y/Iwxafnp5QmFNZgXWQGLhTUwNPaGGvnBiHM06pbkj+CIOCugU54+48UnM+rxmBX9p3pacW1zdgeW4Dd8YWobVYgxMkcy8Z6au00W02xMTXEA8Nd8dmJLPyZU4mhbtdPHdyfWIKqxlbcM1gz1U1XCYKAF8K9cc+3MVCKwAI2CycdwoQTEfVpoihi76Vi+NqaaPxbYFKvwpom/HShADOCHeBhdesP+eYyfZjL9BFgZ4rKhlZ8diILzhYyTAnoHZUJ2iiltB751U14YFjv7WFzM2Ge1tgel4+GFuUNPWf2XipCWX0LVt3p3+7jPTfBG2eyKvHugRR8+Y9QdQ/3tn5NKEZ9i/KGD0WCIGCEhxVGeFghobAG357LxaYzOdgSnYc5/R1w92BnOFto7lv7m2lRqLArvhCbz+SgsrEVE/1s8FiYx20fx73N7P4OeO9gKsZvOAULmd61Kbx//6+ThREczQ01NqUxv7oR/zmehYPJpbAy1seKyb6YFeyg1pW02mOKvy0+jcrAj7EFTDj1oOTiOmyNycOB5FKIoohwXxvcM9ilXcnzvuqewS74Ob4QnxzNwPeLB1177IiiiG3n8+Fra4JBalzd8Wa8rE3wyCh3pJTUI9CB70dJdzDhRER92sHkUqz6IwVSAVg6wh0PDneFnhb0OiHgy1PZEAA8MrL905gEQcBrU/xQWNOElfuT4WAuQwjfiHfKkZRSSAVgvI9NTw+lw0Z7WWFrTB7+zKnEuL+NX6ES8d25XAQ7mmFIBz40Wxkb4JlxXlj1Rwp+ji/EQ+N8NDHsNilVIn44n49QJ3MEOd78bznY0Rwfzg5CZnkDvvszFzsvFGJHXAEm/PWBtLseB6cyK7D6UCoKapoxxE2Op8Z4IkhLP1zN6e8AN1szXMypQEFNEwqqm5BcUofItHIoVP+/UqAAwNHcEK9N9buhgqKz6poV+Op0DrbH5UMiCFg6wg2Lh7r0WKWVTF+K2f0dsCU6D0U1Tb1iJbO+oqlViYPJpdgdX4SLhVf6My0a6IRFA51vWvVL/89QT4Jl47zw8p5E/HKx8FofsnPZVcgob8Cbd3TfFPylI3puWjaRpjDhRER9VmldM1YfTkOwoxncLI3w5elsHM8ox8ppAT0yLYbaL6O8Hr9fLsbdg1xg38HpNwZ6Enw4KwgPbovFCz9fwtf3DuiRKg9tJooiDqeUYaCrHHJj7ZlOd1WoszlMDKQ4mVlxXcLpQFIJCmqa8Xy4T4c/YMwIssfviSX49Fgmpg90QXdNCotKL0dBdROeucUqS3/naW2MN+/wx+NhHtgeV4BdFwpxOKUM/R3NcM9gF4z3tdFIdYwoioiIycf6qAx42Rhjw/xgDHe31Op+P4IgYGI/Owx2vL6xvFIlorSu+VoSqqC6Cb9dLsF7B1Px45Ihamku//rvSTiZUYGZwfb45yjNrEDXUfNDnbAlOg+74gvxxGjPnh6OzkspqcPPF4uwL7EYdc1KeFgZ4dnxXpgV7KCR1dR0WbivDQa6WOCLk9mY4m8HOYCI83mwMtbHFH9WQhN1Bb/GJ6I+SRRFvHMgBc0KFVZOC8DKaQFYPbMfCqqbsHjLeWw7nw+VKN7+QNQjPj+RBSN9aaenc8mN9bF2bjCUoohnd11CbZPi9jvRNRnlDciubES4r/ZVNwGAvlSC4e6WOJlRAfGvx7lKFPHN2Vz42ppgjFfHm6ALgoBXJvlCoRKxcm8ilKruef7YFpMHJwsZxnlbd2g/OzNDPDXGE3sfHY4Xw31Q2diKFXsTMW/TOUTE5KGuWX2PiValCu8cSMG6qAyE+9ng63sGYoRH9/QX6glSiQAHcxkGucgxI8gBj47ywMuTfJBX1YTtcQVdPv6JjHKcyKjA02M98fpU/16RbAIAJwsZxnhZY3d8EZoVqp4ejk5qbFXi14tFeDAiFvd+fx6/XCzEGC9rfLkoFNsfGIJ7Brsw2dQJgiDg+fHeqG5sxVdnspFWUodTmZVYMMCpR1cfJdIF0rfeeuutnh6EpqlUIpqaWnt6GGohk+nrzH2hW2OsNevni0WIiMnHc+O9/lq1CvC0NsGdQfZIL6vHj7EFiMurxhBXucbfvDHWHZNQWIP1UZl4aLgbRnUiMXCV3EgfwY5m2HY+H5eLajE1wBYSDfY90aU4/3ShEOdzq/HaFF8Ya+lKR40tSuxLLMF4HxtYmxjgaFo5dsQV4PkJ3vCxNb39AdpgYaQPqUTADzFXqjyyKxohCIC9maFGpupeKqrFFyez8cgo905PidOXShDkaIaFA5wQYG+KzIpG7I4vws64AlQ2tsLDyhhmXXgOrGpoxbM/X0JUWjmWjnDDSxN9YKBD05bb+7h2lRvhclEt9iUWY3awA4z0pbfdpy0tChWe//kSLI308dY0/17XANrCSB+74gvhZmkEP7vOPY56q558Dk8ursNXZ7Kxcn8yDqWUwcRQDw+NcMNbd/hjWqA9HM1lOpvA7S42pgYormvG7vgiZFc0oLC6EW9PD+j0Y5W0gy69N+tJJiY3/+JDO98lEhF1QX51I9ZFZmComxwLBjhdd5uNiQE+mROEXxOK8MnRDPzj2xi8EO6N6YH2fDPXC4iiiP8cz4SlkT7uVsOqMYNd5Xh1si9W/ZGC1YfT8Mpk3z4bZ4VShYMppahtUkAUARVwrfpHFHGt4k8Ugd8uFSPU2Rw2pr2jsqIzriYrT2ZWwNfWBN+czYGrXIaJfrZdOu7ioS7wdTTH3gsFOJRSil8SiiDTk2CEhyXG+9ggzMsKcjUtd70tJg8mBlLMCrbv8rGkEgHjfGwwzscGl4tqERGThx/P5+PH8/mYHGCHJcNc4WNj0qFjZpTX47ndl1Ba14y37wzAHf369tSUZ8Z54e5vo7HxVDZenuTbqWNExOQht6oJG+YHa6wReVcMc5PDw8oIP8bm485Auz77fKoO9S0KHEgqxe74QiQW18FQT4JJfjaYG+KIECdzXlsNeDzMA4eSS3EstQyzgu1h1QtW8yTSdkw4EVGfohJFrNyfAkEA3pjqB0kbb9gEQcDs/o4Y4ibHyn3JWLk/BVFp5Vgx2ZdvPnrYuewqROdW4/kJ3mprjjsz2AG5VY34+mwu3CyNsHio9q26pg7/PZ2NzWdz2739Q8PdNDgazbMxMUA/e1OczKhAgL0pEovr8NoU3y5XjEgEAXf2d8QoVwu0KlWIya1CZFo5jqeXIzKtHFIBCHW2wDgfa4zzse50/7CimiYcSi7FPwapv1F0oIMZ3pneD0+N8cSPsVf6PO1PLMFYb2s8ONwVwbdoTn7VycwKvLo3EYZ6EmxcFNqufXSdp7UxFgxwwo64AiwY4NThBF5JbTM2n83BeB9rjPDofHWnJgmCgIUDnPHhkTRcKqpl3DshsbgWu+ML8UdiKRpalfC2McbzE7xxZ6AdzGXa1zNPm1ibGOCRke7YcDwTdw9y6enhEOkEQRR1v0lJa6sSVVUNPT0MtZDLjXXmvtCtMdaaERGTh7WRGXhjqh9mBjvcdnul6sqyuJ+dyISpgR7evMMfYV2YxtUWxrp9RFHEkq2xqGpsxc4Hh6q1r4JKFPHq3kQcTinD6lmBmKCB3kS9Oc6Z5Q2457sYTPSzwfMTvCFAgCDgys///FsiXEmq6EJfiy9OZuHrsznwszVFZWMrdi8dqpaqkbZirRJFJBbX4VhaGaLSy5FeduX2f45yx8MdWGnxqg3HMrAlOg8/PzwMjhpeEay6sRXb4wrw4/l8VDcpMMRNjgeGuWKYm/yGKourS4mvj8qAj40JPp4TpNMrlnX0cV3V2Ir5m/9EP3tTbJjfv0NVKq/9loijqWX48YEhcJH33oUO6lsUmL7xLMZ6W2PVnQE9PRy10eRzeH2LAn8klmB3fBGSSq5UM032t8XcEEf0dzRjNVM3EkURLVIpDFXsQ9YX9Ob3ZtrE1vbmq82yh5OW4TzTvoOxVr/M8gas2HMZYV7WeGqMZ7vewEkEASFO5hjnY4Nz2ZWIiMmHhZHeLZcf7yjGun2OpJbhh/MFeG68NwLVvIy6IAgY7WWFczlV2HmhECM8LGGr5ulivTXOoiji5T2JqGlSYO28YFgZG0CmL4VMXwpDPSkM9SQw0JPAQCqBvlQCPamk1/WN6SyZvgQ/XyxCWX0LHg/zQIizhXqO20asBUGAnakhhrpZYsEAJ9wZaIfKhiuJHCcLww71u2loUeL135MwxssGc0Ic1TLmW5HpSzHY9coUZLmRPo6ll2PnhUKczKyEpZE+3KyMIAgCWpUqfHAoDd+cy8U4H2usnRcMSx2vCu3o41qmL4WBngQ74woR6GAGN8v2rYgam1eNdVEZeGC4G8K7OO1T0wykEpTVt2DvpWLMDXGEsYFu9MBR93O4+FcS+stTV3ozHU0rh9xIH0tHuOOtO/wxJcAO9maGTDZ1M0EQYGNh1Ctfr0n9eut7M23DHk5E1OcplCq8uS8JxgZ6nerT42Njgk13D8DrvyfhwyPpKKhuxrJxnm1OyespZXXNWLk/BVYm+njrDn+depOqUIn4/EQWPK2NcWdg1/vVtEWmL8VHs4PwUEQsnvv5Er64KwTulkZduo51zQrkVDYiu7IBrYIE03yte13fld8uF+N8XnWfnDLaz94MciN9CABm9799xaM6uciN8NY0f1Q2tuKdA6mwMzXEMHfLdu2791IR6pqVuEcNfcw6wthAinuHuGDhACfsvVyM787l4sVfL8PT2hj3DXHB75eLEZNbjQeHu+KxMI9e9fzYmywMdcRPcQVYF5mBEe6Wt20or1SJ+PBIGuzNDDu9Mmd3WxDqhB9jC/DzxUIsHdHxCj5d16q80vz9dFYlZHoSTAm4Us0U5MBqJiLSLUw4EVGf8PW5XCQW1+GDmf1gbdK5D9UyfSk+mBmItZHp2BqTh6LaJrx1hz9kvWAFkwv51Xh5TyLK61sgAhjvY6ORaWE95bdLRciubMSaWYEara6xNjHAJ3ODsXRbHBZ+HQ1DPQnsTA1gb2YIe3PZlf/+9ePw138NpBLkVTcip6IROZVXfxqQXdmIiobrvzVTTvbF3G6oSGmvqsZWrI/KRH9Hc8zp5oRLbyCVCHhtih9kepIeeRzrSyVYPTMQD/8Qh3/tuYyv/jEA3rfp66NUifjhfD76O5qhfydXpusqAz0J5oU4YlawAw4ll+Kbczl4+48U6EsFrJzmr7GksK7Qk0qwfLwXnt19CTsvFOIfg26dONwdX4jU0nq8P6Nfr3i9aQ8Pa2MMd5fjx/MFmB02Je58AAAgAElEQVTsoNULDGjCR0fScTqrEk+O9sCCAU4aXw2XiKin8NmNiHReUnEtNp3JwdQA2y6vQCWVCHgh3AdOFjKsi8xAaV0LPp4dBLlxzzTyFEURO+IK8UlkOpzMDfH94kFYuT8ZHx1Jw3B3S52YytCsUOHLU9kIcjDDeB9rjZ/P28YE39wzEGezK1FU24zi2mYU1TTjz+xKlNW3QHWbzodWxvpwtzTCGC9ruFkawc3SCO5WxnhjfzK2xxZgTn+HXvMN9r+PZ6K2qRUrJvfvs9Uo47rhb+pWzGR6WDcvGA9GxGH5rgR8fe9A2NwiKX4ioxy5VU14YrRnN46ybXoSAXf0s8OUAFucyaqEtYkB/DswNbAvC/O0wnB3Of57OhvT+tnB4iYrF1Y1tuKLk1kY4mqBiX7a9SXC8nHeeDAiFi/vScTnd4X0uurOnrLrQgF2xRdiyTBXPKDliy8QEd0OE05EpNOaFSq8uS8ZVsb6eGmij9qOe89gFziYGeKNfclY+kMc1s8L7vYmrk2tSnxwKBW/XS7BaC8rrJoWADOZHl6e5Iul2+Lw5alsLB/v1a1j0oSdcQUoqWvBW9O6b5qgh7UxPKxv7K2iUIkoq/v/JFRxbTOaFEq4WhrBzdIYbnIjmMnafmm9f4Q7Xvk5AefzqjHYVa7pu3BbcXnV+OViEe4b4gJfWyYJepKjuQxr5wbh0R8u4LndCdi4KBRGN6lkiYjJh6O5Icb3ogpGiSBglGfvXDWttxIEAcvHe+Pe72Lw39PZeCG87denL05moa5ZgefDfXpNorq9fGxN8PpUP7z6WxLWRmao9TVYW13Ir8aHR9Ix0sMSj4d59PRwiIg0jl81EJFO23gyCxnlDXhtip/alxMO97PFZwtDUN3Yigcj4nCxoEatx7+V/OpGLN0Wh98vl+DRUe74eE7QtURHiJM55oY44IfzeUgtreu2MWlCXbMCX5/NwXB3OYa6ta+/jSbpSQQ4mMsQ6myBqf3scP8wVzw6ygPT+tkjyMHspskmAJgZ4ggLmR62xxZ044jbplCq8P6hVDiYGeLRUeyv0hv0szfDuzP6IbmkDq/uTYSyjVK6pOJanM+rxqKBztDTkcbtfZmPjQnmhjhiZ1wBsspvXCUpuaQOu+MLsWCAE3xuM9Wyt5oSYIf7hrhgR1wB9iQU9fRwelRJbTNe+vUyHM0N8c70AJ1ZfIGI6FaYcCIinRWXV40t0XmYF+KosW/fQ5zMsfmegTAzlOLxHfE4mlqmkfP83emsCty/JRaFNc34ZG4QHhnpfsN0qCdHe8Jcpo/3D6ZBJd5mDlgvtjU6D9VNil4xfairZPpSzO7vgKi0MhTVNPXoWCJi8pFR3oAXwn1uWklD3W+stzWen+CD4xkVWBuZfsPtETH5MP7r74h0wz9HuUOmL8X6YxnX/V4URXx0JA3mMn2tTwo/OcYTQ93k+OBQKi4X1fb0cHpEs0KFl369jKZWFT6cHaT2L8CIiHorJpyISCfVNSuw8o9kOFrIsGycZpMVbpZG2HT3APjZmuBfv17GtvP5GjmPShSx+UwOnvkpAXamhvjuvoEY7dV2/xkLI308M84LFwtr8MtF7fxWuaKhBVtj8jDRzwaBDmY9PRy1WDDACSKAny4U9tgYCqqb8OXpbIzztu7x/kV0o7sGOuGewc74MbbguueSktpmHEguxez+DmwwrEMsjQ3w8Eh3nMiowJmsimu//yOpFHH5NXhytIfWJyf0JALem35lwY6Xfr2MyoaWnh5StxJFER8cSsWlolqsnOZ/24UBiIh0CRNORKRzmlqVeP7nSyisvrKKnImB5j+cWRob4LOFIRjnY41PjqbjoyNpaFGo1Hb8umYFXvrlMj4/mYUpAbbYfM+A2/aMujPQDoNcLPDv45mo0LI3+KIo4sPD6WhWqPDYKI+eHo7aOJrLMNbbGj9fLEKzGv8+2ksUryyvLhGAF8K9u/381D7PjPPCBF8brD2ajsi/qiZ3xBVAFEUsGuTUw6MjdbtrgBNc5DKsjcyAQiWioUX5f+zdd3hUZd7G8XtKKiEJ6Y2WQgmhW1Z6MbAYIs1eXldXV1+xoC666OqurC7i6lpwLayuHbsoEORVIIDYlqah9wiBZFJIh7SZ8/6BZmVpgUwymZnv57q4gJk55/nN+ZGQ3Hme5+jZVXvUMzpImWmeMZstNNBHj1+cqrIj9ZqxaKsaTnf3BQ/ywfcHtWizTTdd0KlN7b0GAK3BJYHTqlWrNHbsWKWnp2vu3LnHPb9mzRpNmjRJqampWrJkSePjBw4c0OTJkzVhwgRlZGTonXfeac2yAbiBertD9y3cog155Xp4XA/1TwhptbH9fSx6LDO1cXbCtW+t1+b85u/r9G3uIV371nqt3lOiu0cm6S8X9WjSMiiTyaQ/XJjy0zcve5tdR2t67d/7tXRHkf53cJcTbt7tzi7rH6eyI/X6fFthq4+9YleJVu85pN8N6qKYYP9WHx9NYzaZNHNcd/WKba8/Lt6mdfvL9HFOvkYkRyg+pHVvToCW52s1685hidpTclif5OTrlW/3qaiqTtNHJXvUPj89otvr/vQUrdtfrjn/tYTQU63bX6a/Z+/WsKRw3XiBey+NBICz0eqBk91u18yZM/Xyyy8rKytLixYt0q5du455TWxsrGbNmqXx48cf83hkZKTeffddffrpp3r//ff1z3/+UzabrTXLB9CGNTgMPbh4m77eW6oZ6Ska2zOq1WuwmE26a0SSnp6cpqraBt3wzvd6duUe1dTbz/hcBRU1unfBFt3+0SaZJD1/WR9dOSD+jO5U1DU8UNeem6CszTat2192xjW4wspdxXp+da7G9ojUded1dHU5TndOx1Alhgfq/Q1HZ6y0luq6Bj2xfJdSItvpiv7Mkmnr/H0senJiL4W389XUD3JUUdOgqwbGu7ostJDhyeEa2DFEL3yVq3nr8pTRK1q944JdXZbTXZQarcv7x2neugNasrX1Q/fmOFzXcEavz6+o0R8WblXHDgF6eFz34/ZaBABv0OqBU05Ojjp37qyOHTvK19dXGRkZWrZs2TGvSUhIUI8ePWQ2H1uer6+vfH19JUl1dXVyOFp/OQKAtslhGHr08x1atqNYd41I1KQ+sS6tZ3DXML33m3N0cVqM3lybp2veXK8fDpQ36di6Bof+9e0+XfLqWn2995D+d3AXvXPdORqQEHpWtdxwfifFBftp9tJdqre37c+bu4qr9dDi7eoZHaQ/junmdrcBbwqTyaTL+sdpW2GVclrxzoZzv/5RRVV1+sOFKbJaWFHvDsICffXMpDS187Oqd2x79fHAAAJHmUxHf1hRWdMgP6tZtw11/xslnMy04YnqHx+sRz7foR2F7nEn1U9y8tX3L0t1xetr9ezKPVq7r+yU/5/W1Ns1/dMtqrc79MSEXuy7BsBrtfpnP5vNppiY/6xHj46OVk5OTpOPz8/P1+9+9zvt27dP9957r6Kjo097jMViUmioZyzJsFjMHvNecGr0uukMw9BfFm/Vos023TEyWbeOSnZ1SZKkUEl/u6yfJg4s1gOfbNJN7/2g637VWXdf2E0Bvv9ZEvfLXq/cUaS/ZG3Vj4cOa2xqtGaM66H40+zV1BQPT0jTTW+u00ebbLpleNvcu+dQdZ2mL9iidn5Wzf2fczxuydcv+3zFr7roH6tzNX+zTcN7tXw4uiW/Qu9tOKjLz+2oYamesSdMW+bMz9/9QgO15I6h8rGYFBro65Rzwnmc2evzQwP16MQ0Rbb3U3L82f2AwV08f81ATXzha923aKvm33JBm/63vb/0sJ5auUdpccEK8rPq3Q0H9ObaPLXzs2hQYoSGd4vQsJRIxYYc/T/LMAzN/DBHO4qq9NLVA9Q3kX2b3A1fg3sPet3yWj1wOtHygTP5CXZsbKwWLlwom82mqVOnauzYsYqIOPUncrvdUFnZ4TOutS0KDQ30mPeCU6PXTffC6r1687v9umpgvK7pH9vmrluv8EC9fe0APbdqr1775kct3WrTH8d008COR7+hCA0N1JYfD+nv2bu1cneJOnUI0JwpafpVlzBJzvn81S+qnUalROi5Fbs1pHPoaTccb20Ndodu+2ijCitq9NLlfeXvcLS5PjbXf39Mj0+N1vvfH9TOvFJFBvm12Lh2h6H7P96oYD+rbjovweOua1vk7M/fPpJkl8rOcEkPWp6ze52eFCZJHv9xapX02Pie+t17P+j2eRv09OS0NrlflcMwNP2DHJkk/ePK/gqUoeq6Bq35sUxf5x7S13tL9cXWo9t7JEUEalCXMDkMaWFOvm4d0kX9o4M8vpeeiK/BvQe9do7IyJPfTbrV59THxMSooOA/t+i22WyKijrzfVaio6OVkpKitWvXOrM8AG7m9X/v17++26+JvWM0bXhim12C1c7XqvsuTNGLl/WRYUi3vJ+j2Ut3quxwveZk79Jlr63Vv/eV6rahXfXudQN/Cpuc6+6RSbKYTHpi+e5W3TuoKZ7M3q11+8v1wJhuSov1jmVDl/aLk8Nh6OMf8lvk/Ifr7Fq6vUj3LdiizQWVmjYi0e1vrw7Ac6TFBuveUcn69sdSvfhVrqvLOaEPNhzUuv3lumtEouJ++kFNO1+rRqRE6P70blp403l697qBumNYV3UI9NU76w/o7XV5Gt0tQr/xwD0IAeBMtfoMp969eys3N1f79+9XdHS0srKy9OSTTzbp2IKCAoWGhsrf31/l5eVav369fvOb37RswQDarA++P6jnvtyrsT0i9YcLU9ps2PRLAzuG6p3rBur51bl6b/0BfZyTL4chXdgtUtNGJCq6fcvNdIlu76ebB3fWUyv2KHtXiUa1kdszf/TDQX34Q76uPSdBF6Wefpm0p+jYIUCDuobp45x83fCrTvJxwr5KZUfqtWp3iVbsLNZ3P5aqzm4oNMBH/3Nugsa5YBN9ADiViX1itcVWqdf+vV9DEsPUN7717ix7OvtKj2jOl3s1qGsHXZx24qXIJpNJSRHtlBTRTtee21HVdQ3aUlCpPnEhbvE1CQC0tFYPnKxWqx566CHdeOONstvtmjJlilJSUvTMM88oLS1No0ePVk5Ojm677TZVVFQoOztbc+bMUVZWlnbv3q3HHntMJpNJhmHohhtuUPfu3Vv7LQBoA7I22/T4sl0alhSuP/+6e5ucin8yAT4W3TMySRd2i9B7Gw7qmgu6KDW8dZa4XdY/Xos22/Tk8l06v3Oo2vm6diPTdfvL9LfluzWoawdN9eBNck/msv5xuvPjTVq6o0jjep5d2GarrNXKXcXK3lmsDXnlshtHw8VJfWI1MiVCfeNDZHWjjw8A3uXuEUn6cvchzVm1V/+8om+bCGrsDkMzl2yXr8WsB9KbfgOLdr5WndupQwtXBwDuw2S0tXUVLaC+3u4xazNZZ+o9vK3Xy3YUac2+MoUF+igs0Ffh7XwVFujz0+++CvzFJtvLdxZrxsItGtgxVE9NSpOf1b3vuNXavd54sEK/fed7Te4bq7tGJLns+h0oP6Lr3tqg0AAfvXZ1f4+/i8+J+uwwDF366loF+1v16lX9m3wuwzC0aLNNH/2Qr80FlZKkrmGBGpESrpEpEeoRFdQmvmnzVt72+dub0WvnmJ+Tr79+sVNPTOil4cnhri5Hb63N0zMr9+jhcd0bZ97Sa+9Br70HvXaOU+3h5Nlf3QNwC8t2FGnGwq3y9zHrSP2JbzMc4GNWWODR8GmrrVK9YoL1xIRebh82uULvuGBN7hurj37I16LNNp3bKVSDuoZpUNcOig9pnZlW1XUN+v0nW+QwpCcneu8to80mky7tF6cns3drc0GlesWc/D/sn9U2ODR76U4t3GxTt8h2unVIF41MjlCXcO6yAsA9ZabF6O21efrHl3s1ODHMpbMyc0sO64XVezUsKZylyADQTN75FT6ANuP7vHI9tHibescF6x+X9JbVbFLpkXodqq5XyeE6HTpcp5Lq+p9+r1PJ4XqNSA7X/endjpn1hDMzfVSyhiaG6+u9h/TV3kNaveeQJKlzhwANTgzToC5h6p8QIt8WCPQchqE/f7Zde0qq9czkNHUO8+6gZHyvaL2wOlfvbzigh8f1OOVrCypqdN/CrdpSUKkbf9VJNw3qLDMzmQC4OavZpKlDu+reBVuUtblAE3rHuqSOBoehPy/ZrgAfi2aku8fekADQlhE4AXCZ3EOH9ftPNysm2F9PTuglf5+jAVJkkF+L3iYeksVs0uDEMA1ODNPvDUP7So/o69xSfb3nkD78/qDmrTugAB+zzukYqiGJYbooNbqxP81R2+DQsyv3aMWuEt01IrFF7sbnboL8rMroFa1PNubrzuGJCgv0PeHr1ueVacbCraptcOiJCakantw2Nn0HAGcYkRyu3rHBmvv1jxrbI8op/+ecqTfX7Nfmgko9mtFDEe1O/LkYANB0rEUB4BIl1XW68+NNMptMemZymkIDuV27q5hMJnUOC9SVA+I155LeWjp1kJ6a1EsZqdHaXXJYs5bu0uWvrVX2zmI1Z9u/73JLdeXra/X+9wd1ef84XTkg3onvwr1d1i9O9XZD83Pyj3vOMAy9u/6Abv1go9r7WfXaVf0JmwB4HJPJpNuHdVVhVZ3e23Cw1cffVVStuV//qNHdIpTePbLVxwcAT8QMJwCt7ki9XXfN36SS6jq9dFkfJYS2zr5BaJoAH4uGJIZrSGK4DMPQuv3leiJ7l+5dsEXndQrV70clq+sZ7BdUXF2np1fs1v9tK1KnDgF67pLeOr8zd/H5pS7hgTq/c6g++iFf153bUVbL0Z8H1dTbNWvpTi3eUqjhSeH687juXrvfFQDP1z8hREMTw/Tav/dpYu8YhQS0zg+jGuwO/XnJdrX3s+q+0ckspQMAJ2GGE4BW1eAwdP+irdpeWKW/ju+pXrHBri4Jp2AymXROp1C9de1A/X5kkrbaqnTlG+v01IrdqqptOOWxdoehD74/qEtfXaPlO4v1uws6a97/DCRsOonL+serqKpO2btKJEn5FTW66d0f9NmWQt08qLMen5BK2ATA4906tKsO19n16nf7W23MV/+9X9sLqzQjPUUdTrKsGQBw5vjKFUCrMQxDf1u2S6v3HNJ9o5M1LMn1tz5G01jNJl0+IF5jekTq+dW5emfdAS3ZWqjbh3XVRanRx21cvd1WpVlLd2pzQaXO6xSqe0cne/3m4KczuGuY4kL89f6GAwoNsOr+RdtUb3foyYm9NJSPFQBeIjminTJSo/X+9wd0+YA4xQb7t+h4221VeuXbfRrbI1IjU1iuDADOxAwnAK3mtX/v18c5+fqfczvqkn5xri4HZ6FDoK8eGNNNr13dX/Eh/np4yQ7d+M732lJQKUmqrmvQ37N363/eXq/8iho9clEPPXdJb8KmJrCYTbq0X5y+P1Ch2z7cqA6BPnr96v6ETQC8zu8GdZZJ0ktf/9ii49T/tJQuNMBH00clt+hYAOCNmOEEoFV8ttWm51fnamyPSE0d2sXV5aCZUmPa6+Ur+2nxFpvmrNqr37y9QWN6RGpDXrmKquo0pW+sbh3SVe39+W/mTFycFq031+xX/4QQPTi2m9r5cv0AeJ+YYH9d3j9eb63N0zUDE5Qc2c6p56+pt2vFrhLNz8nXruJq/X1ir1bbLwoAvAlfyQJocWv2lWrmkh0a2DFED43tftzyK7gns8mk8b1iNCI5Qi9/s0/vbjigpPBAzb44VWnszXVWgv19lHXzr2Q18zECwLv95vyO+mRjgf6xeq+empTW7PPZHYbW7S/T4q2Fyt5RrMP1dsW099PdI5OYSQoALYTACUCL2lVcrXsXbFHHDgH628W95GtlJa+nCfKzatqIRP3mvI5q72+VhbCkWQibAOBoAH/9+R317Kq9Wre/TAM7hp7VeXYVVWvxFpv+b1uhCqvq1M7XovTukRqXGqX+CSH8EAwAWhCBE4AW0+AwdM8nm+VvtejZyWksr/JwoYEsRwAAOM+l/eL07voDmrNqr169qp9MTQyHiqvrtGRroRZvsWlnUbUsZpMu6NJB00ZEa2himPx9LC1cOQBAInAC0II25JXpYHmNZo3vqZgWvssMAADwLP4+Ft08uIv+8n87lL2zWKO6RZ70tQ0OQ1/tOaQFmwr01Z4S2Y2j+w3+fmSSxvSIVIdA31asHAAgETgBaEHLdxTL32rWkMQwV5cCAADcUEZqtN5em6d/rM7VsKRwWS3HLs3fV3pECzYVaNFmm0qq6xTezldXn9NRmWnR6sIdUgHApQicALQIh2Eoe1eJBnVl6joAADg7FrNJU4d21T2fbNaCTQWa3DdONfV2Ld9ZrE83Fmh9XrksJmlQ1zBN6B2rwV07HBdKAQBco1mB07p16zRw4MDTPgbA++QcqFBJdZ1GpUS4uhQAAODGhiaGqX98sOZ+s087iqq1ZGuhquvs6hjqr6lDumh8r2hFBPm5ukwAwH9pVvz/yCOPNOkxAN5n+c5i+VpMGsxyOgAA0Awmk0m3DUtUSXWdFm22aVhSuF68rI8+uuFc/eb8ToRNANBGndUMpw0bNmjDhg06dOiQXn311cbHq6qqZLfbnVYcAPdkGIaW7yzW+Z07KMiPlbsAAKB5+sQF661rBygu2J+73gKAmzirz9b19fU6fPiw7Ha7qqurGx8PCgrSs88+67TiALinLQWVslXW6pbBnV1dCgAA8BDdo4JcXQIA4AycVeB03nnn6bzzztOkSZMUHx/v7JoAuLnlO4tlMZs0LCnc1aUAAAAAAFygWfNR6+rq9OCDD+rAgQNqaGhofPyNN95odmEA3JNhGFq2o1jndgpVsL+Pq8sBAAAAALhAswKnO++8U1dccYUuvfRSmc3cfhSAtKOoWgfKa3TdeR1dXQoAAAAAwEWaFThZrVZdddVVzqoFgAdYvrNYZpM0IpnldAAAAADgrZo1LWnkyJF6++23VVhYqLKyssZfALxX9o5iDUgIUYdAX1eXAgAAAABwkWbNcJo/f74k6ZVXXml8zGQyadmyZc2rCoBb2lNSrb2HDuuSfsmuLgUAAAAA4ELNCpyWL1/urDoAeIDlO4plkjQyheV0AAAAAODNmrWk7siRI3r++ef14IMPSpJyc3OVnZ3tlMIAuJ/lO4vVJy5YkUF+ri4FAAAAAOBCzQqcZsyYIR8fH23YsEGSFBMTo6efftophQFwL/tLj2hnUbVGdYtwdSkAAAAAABdrVuC0b98+3XTTTbJaj67M8/f3l2EYTikMgHtZvrNYkjQqhcAJAAAAALxdswInX19f1dTUyGQySToaQPn6cmcqwBst31ms1Jj2ign2d3UpAAAAAAAXa9am4bfffrtuvPFG5efn65577tGGDRs0a9YsZ9UGwE3kV9RoS0Glbh/a1dWlAAAAAADagLMOnAzDUGJioubMmaMffvhBhmHogQceUFhYmDPrA+AGsn9eTsf+TQAAAAAANSNwMplMmjp1qj7++GONGDHCiSUBcDfLdxQrJbKdEkIDXF0KAAAAAKANaNYeTn379lVOTo6zagHghoqqavXDwQqNZnYTAAAAAOAnzQqcvvvuO11xxRW68MILlZmZ2fjrdFatWqWxY8cqPT1dc+fOPe75NWvWaNKkSUpNTdWSJUsaH9+6dasuv/xyZWRkKDMzU4sXL25O+QCcIHtniSRpVEqkiysBAAAAALQVzdo0/J///OcZH2O32zVz5ky9+uqrio6O1iWXXKJRo0YpOTm58TWxsbGaNWuW/vWvfx1zrL+/v2bPnq0uXbrIZrNpypQpGjJkiIKDg5vzNgA0Q/bOInUNC1TX8EBXlwIAAAAAaCPOOnByOBy6+eabtWjRojM6LicnR507d1bHjh0lSRkZGVq2bNkxgVNCQoIkyWw+dgJW167/uQNWdHS0wsLCdOjQIQInwEVKD9dpfV65rj+/k6tLAQAAAAC0IWcdOJnNZnXv3l0HDx5UXFxck4+z2WyKiYlp/Ht0dPRZ7QOVk5Oj+vp6dep0+m90LRaTQkM9Y/aFxWL2mPeCU3OHXv/frhI5DGnCgIQ2X2tb5g69RvPRZ+9Br70HvfYe9Np70GvvQa9bXrOW1BUVFSkjI0N9+vRRQMB/7k714osvnvQYwzCOe8xkMp3RuIWFhZo+fbpmz5593CyoE7HbDZWVHT6jMdqq0NBAj3kvODV36PWiHw4qIdRfMf6WNl9rW+YOvUbz0WfvQa+9B732HvTae9Br70GvnSMysv1Jn2tW4HTbbbed8TExMTEqKCho/LvNZlNUVFSTj6+qqtLNN9+sadOmqV+/fmc8PgDnqKip15p9Zbp6YMIZh8YAAAAAAM/WrMDpvPPOO+NjevfurdzcXO3fv1/R0dHKysrSk08+2aRj6+rqNHXqVE2YMEHjxo0747EBOM+q3SWyOwyN6hbh6lIAAAAAAG1MswKn/v37N85sqK+vV0NDgwICArR+/fqTD2i16qGHHtKNN94ou92uKVOmKCUlRc8884zS0tI0evRo5eTk6LbbblNFRYWys7M1Z84cZWVl6bPPPtPatWtVVlam+fPnS5Iee+wx9ezZszlvA8BZWL6jWDHt/ZQaHeTqUgAAAAAAbYzJONGmSmdp6dKlysnJ0d133+2sUzpFfb3dY9Zmss7Ue7TlXlfVNmjMC9/o0n5xumtEkqvLcXttuddwHvrsPei196DX3oNeew967T3otXO02B5O/+3CCy/U3LlznXlKACdhGIaezN6tvLIa+VnNJ/llke9Pf+4bF6ykiHbNHrfe7tADWVvVYDc0tkfT918DAAAAAHiPZgVOn3/+eeOfHQ6HNm3axObBQCvZXFCp9zYcVKcOAbKYTaptcPz0y666Bofq7MdOXvSzmvX4xaka1DXsrMe0Oww9tHibvt5bqvvTU5Qac/I0GwAAAADgvZoVOGVnZzf+2WKxKD4+Xi+88EKziwJwep9sLFCAj1lvXPd0QS0AACAASURBVNNf7XyP/1B2GIbqfgqhymsaNGPhFt3zyWb9dXxPjUw5842+DcPQrC92aumOYt05PFGT+sQ6420AAAAAADxQswInh8OhBx54QMHBwZKk8vJyPfbYY5o1a5ZTigNwYofr7PpiW5Eu7BZ5wrBJkswmk/x9LPL3sSgkwEcvXtZXd368UTMWbtGfx/XQr3s2fTmcYRh6euUefbqpQL/9VSddc06Cs94KAAAAAMADmZtz8Pbt2xvDJkkKCQnR1q1bm10UgFNbur1Ih+vtmtA7psnHtPe3as4lvdUvIUQPLd6mT3Lym3zsy9/s07x1B3R5/zjdPKjz2ZQMAAAAAPAizQqcHA6HysvLG/9eVlYmu93e7KIAnNonGwvUNSxQfeKCT//iX2jna9XTk9J0QdcOevSLnXpn/YHTHjNvXZ7mfvOjxveK1t0jk9inDQAAAABwWs1aUnfDDTfoiiuu0NixY2UymfTZZ5/plltucVZtAE5gT0m1NuZX6M7hiWcV/vj7WPTEhF76Y9Y2/T17t2rq7br+/E4nfO2CjQV6asUejUqJ0ANjuslM2AQAAAAAaIJmBU4TJ05UWlqavv32WxmGoeeee07JycnOqg3ACXy6sUBWs0kXpTZ9D6b/5mMx69HxPTVzyXY9vzpXh+vsunVIl2MCrKXbi/ToFzv0q84d9JeLeshqJmwCAAAAADRNswInSUpOTiZkAlpJXYNDi7cUanhyuMICfZt1LqvZpD+P664AH4te+/d+Ham3656flsx9vfeQHly8Tb1jg/X4hFT5Wpu1+hYAAAAA4GWaHTgBaD2rdpeo7Ei9Lk5r+mbhp2I2mfSHC5Pl72PWvHUHVNPg0LieUbp3wRYlRbTT05PTFOBjccpYAAAAAADvQeAEuJFPNxUour2fzu/cwWnnNJlMmjY8UQE+Fr3y7T4t2FigzmEBmjMlTUF+fIoAAAAAAJw5vpsE3ER+RY2+yy3VjRd0ksXJ+ymZTCbdMriL2vtZtWxHsWZl9lSHZi7ZAwAAAAB4LwInwE0s3FQgScp00nK6E7n6nARdfU5Ci50fAAAAAOAd2AkYcAN2h6EFm2w6v3MHxQb7u7ocAAAAAABOicAJcAP/3lcqW2WtJvRuudlNAAAAAAA4C4ET0Ex2hyHDMFp0jE83FijE36phSeEtOg4AAAAAAM7AHk7ACRiGoX9+86O22qpU0+BQbb1DdXaHahvsqm1wHPOrwWEoKshXF6fF6OLeMU5f8lZ6uE4rd5Xosv5x8rWSEQMAAAAA2j4CJ+AEPttaqH9+s09dwwPV3s8qfx+zQgKs8rea5Wc1y9dqlp/VIj+rWX4WszbmV+iVb/fplW/36fwuHTSpd4yGJoXLx9L8gGjxlkI1OAxd3IKbhQMAAAAA4EwETsB/KTtSr6dW7FHv2PZ6+cp+MptMTTouv6JGCzcV6NONBbpv4VaFBfooIzVaE3rHqHNY4FnVYhiGPt1YoN6x7ZUU0e6szgEAAAAAQGsjcAL+y3Or9qqypl4z0ns3OWySpNhgf/1uUBf99led9W1uqT7ZmK956/L05to8DUgI0YTeMRqVEiF/H0uTz5lzsEJ7Dx3WH8eknM1bAQAAAADAJQicgF/YkFeuTzcV6NpzEpQSGXRW57CYTRqcGKbBiWEqrq7Tok0F+nRTgf702XY9vWKP7h6ZpLE9ImVqQpi1YFOBAn0sSu8edVa1AAAAAADgCuxADPyk3u7QrKU7FRvsp5sGdXbKOSPa+eo353fSRzecqxcu7aP4UH89uHib7pq/WQUVNac8trKmQZ9vK1J690gF+jZ9VhQAAAAAAK5G4AT85K21edpbcljTRyUr4AyWvTWF2WTSOZ1C9fIV/XTPyCStzyvT5a+t0/sbDshhGCc8ZvGmfNU0ODShN5uFAwAAAADcC4ETICmv7Ihe+XafRqZEaGhSeIuNYzGbdMWAeL173TnqEx+svy3frZve/UF7Sw4f99oP1uUpMTxQabHtW6weAAAAAABaAoETvJ5hGHp82S5ZTCbdMzKpVcaMC/HXs5PT9PC47vrx0GFd/eY6/fObH1Vvd0iSdhVV64e8ck3oHdOkvZ4AAAAAAGhLCJzg9ZbuKNY3uaW6ZUgXRbf3a7VxTSaTLkqN1vvXn6NRKRGa+/WPuvat9dqUX6FPNxXIx2LSRT2jW60eAAAAAACchbvUwatV1Tboyezd6hEVpMv6xbmkhrBAXz2S0VNje0TpsaU7dcO87+VrNSu9Z7RCA31cUhMAAAAAAM3BDCd4tedX56r0cJ1mpKfIYnbt0rWhSeF67zfnaErfWNkdhq4+v5NL6wEAAAAA4Gwxwwlea3N+hT78/qAu6x+n1Ji2sTF3kJ9V912YontGJikiPEhlZcdvJg4AAAAAQFvHDCd4pQaHob9+sVMRQb66ZXAXV5dzHKuFD00AAAAAgPviu1p4pfc3HNCOomrdMzJJQX5M9AMAAAAAwJkInOB1Cipq9OJXuRrcNUyjUiJcXQ4AAAAAAB6HwAle58ns3XIY0r2jk2UyuXajcAAAAAAAPJFLAqdVq1Zp7NixSk9P19y5c497fs2aNZo0aZJSU1O1ZMmSY5777W9/q3POOUc333xza5ULD1FYWav7FmzRil0luumCzooL8Xd1SQAAAAAAeKRW37zGbrdr5syZevXVVxUdHa1LLrlEo0aNUnJycuNrYmNjNWvWLP3rX/867vgbb7xRR44c0XvvvdeaZcON2R2GPvj+oF78KlcNDkO3Dumia85JcHVZAAAAAAB4rFYPnHJyctS5c2d17NhRkpSRkaFly5YdEzglJBwNA8zm4ydgXXDBBfruu+9ap1i4va22Ss36Yqe22qr0qy4ddN/oZCWEBri6LAAAAAAAPFqrB042m00xMTGNf4+OjlZOTk6LjmmxmBQaGtiiY7QWi8XsMe+lJVXWNOjpZTv11nc/Krydn56+rK8uSotxqz2b6LX3oNfegT57D3rtPei196DX3oNeew963fJaPXAyDOO4x1o6BLDbDZWVHW7RMVpLaGigx7yXlmAYhrJ3FuuJ7N0qrqrTlL6xunVIV7X3t6q8/Iiryzsj9Np70GvvQJ+9B732HvTae9Br70GvvQe9do7IyPYnfa7VA6eYmBgVFBQ0/t1msykqKqq1y4AHOlheo78t36XVew6pW2Q7/e3iVPWKDXZ1WQAAAAAAeJ1WD5x69+6t3Nxc7d+/X9HR0crKytKTTz7Z2mXAw6zZV6q75m+W2SRNG56oywfEy2p2n+VzAAAAAAB4klYPnKxWqx566CHdeOONstvtmjJlilJSUvTMM88oLS1No0ePVk5Ojm677TZVVFQoOztbc+bMUVZWliTpqquu0p49e3T48GENGzZMjz76qIYOHdrabwNtzBv/zlNogI9evqKvYoL9XV0OAAAAAABezWScaFMlD1Nfb/eYtZmsMz1eYWWtMv/5na4/v5NuGdzF1eU4Db32HvTaO9Bn70GvvQe99h702nvQa+9Br53jVHs4mVuxDqBFfLa1UA5DykiNdnUpAAAAAABABE5wc4ZhaNHmAvWNC1bHDgGuLgcAAAAAAIjACW5uS0Glcg8dUUYvZjcBAAAAANBWEDjBrS3abJOf1az07pGuLgUAAAAAAPyEwAluq67Boc+3F2l4UriC/Fr9hosAAAAAAOAkCJzgtlbvKVFFTQPL6QAAAAAAaGMInOC2Fm22KaKdr87v3MHVpQAAAAAAgF8gcHITVbUNumv+Jm06UO7qUtqEQ4fr9HVuqcb1jJLFbHJ1OQAAAAAA4BcInNyEr8WsPcXVuu3dDSo/Uu/qclxuydZC2R0Gy+kAAAAAAGiDCJzchK/VrL9mpqqwslZ/XrJdDsNwdUkulbXZpp7RQUqKaOfqUgAAAAAAwH8hcHIjvWLa6/5xPbR6zyG9uSbP1eW4zM6iKu0oqtZ4ZjcBAAAAANAmETi5mavP66QLu0XqhdV7tT6vzNXluMSizTZZzSaN6RHl6lIAAAAAAMAJEDi5GZPJpD+OTVF8aIAeWLRNJdV1ri6pVTXYHVqytVBDEsMUGuDj6nIAAAAAAMAJEDi5oXa+Vj2W2VOVtQ16cPE22R3es5/TN7mlOnS4nuV0AAAAAAC0YQRObiolMkj3jk7Wmn1levmbH11dTqvJ2mJTaICPBnUNc3UpAAAAAADgJAic3NjFaTEa3ytar3y7T9/mHnJ1OS2u/Ei9Vu0u0dgekfKx8E8XAAAAAIC2iu/a3dx9o5OVGBGoBxdvl62y1tXltKgvthep3m6wnA4AAAAAgDaOwMnN+ftY9FhmquoaHLp/0VY12B2uLqnFZG2xKSkiUN2jglxdCgAAAAAAOAUCJw/QJSxQD4xJUc7BCv1jda6ry2kRuYcOa1N+pTJSo2UymVxdDgAAAAAAOAUCJw8xpkeULukbq7fW5mnlrmJXl+N0WZttMpukcT2jXF0KAAAAAAA4DQInD3LXiCT1jA7Sn5dsV17ZEVeX4zR2h6HFW2z6VZcOigjyc3U5AAAAAADgNAicPIiv1axZmT1lkkl3fLRRRVWesYn42v1lKqyqU0Yqm4UDAAAAAOAOCJw8THxIgJ6enKaS6nrd+kGOSqrrXF1Ss2VttinIz6LhyRGuLgUAAAAAADQBgZMH6hMXrKcm91JBRa2mfpijssP1ri7prFXXNSh7Z7HSu0fKz8o/VwAAAAAA3AHfwXuoAQmhenJiL+WV1ei2jzaqosY9Q6dlO4pV0+BgOR0AAAAAAG6EwMmDnde5gx6/OFV7Sqp1x0ebVFXb4OqSztiizTZ16hCgPnHBri4FAAAAAAA0EYGThxvUNUyzxqdqW2GV7vx4kw7X2V1dUpPtLz2iDXnlGt8rWiaTydXlAAAAAACAJiJw8gLDk8P1aEYPbc6v0N2fbFJNvXuETos2F8hski5iOR0AAAAAAG6FwMlLjO4WqT+P66H1+8v1+083q7bB4eqSTsnuMLRos03nd+6g6PZ+ri4HAAAAAACcAQInL/LrnlF6cGw3ffdjme5bsEV1bTh0WrOvVIVVdcpMi3F1KQAAAAAA4AwROHmZzLQYzUhP0Vd7D+mBrK1qsLfN0GnBJptC/K0anhTu6lIAAAAAAMAZInDyQpP7xGr6qCSt2FWix5btcnU5x6moqdfKXcUa2yNKvlb+iQIAAAAA4G74bt5LXdY/XlcOiNfCTQU6UH7E1eUc4/+2FanObigzjc3CAQAAAABwRwROXuyacxJkMpn03vqDri7lGAs3FSglsp26RwW5uhQAAAAAAHAWXBI4rVq1SmPHjlV6errmzp173PNr1qzRpEmTlJqaqiVLlhzz3Pz58zVmzBiNGTNG8+fPb62SPVJUez+ld4/Ugk0FqqptcHU5kqRdRdXaaqtSZlqMTCaTq8sBAAAAAABnodUDJ7vdrpkzZ+rll19WVlaWFi1apF27jt1HKDY2VrNmzdL48eOPebysrEzPPfec3n//fX3wwQd67rnnVF5e3prle5yrBsarus6uTzcWuLoUSdLCzQWymk0a1yPK1aUAAAAAAICz1OqBU05Ojjp37qyOHTvK19dXGRkZWrZs2TGvSUhIUI8ePWQ2H1ve6tWrNXjwYIWGhiokJESDBw/Wl19+2Zrle5ye0e3VPyFE7204oAaH4dJa6u0OfbalUMOSwhUa6OPSWgAAAAAAwNmztvaANptNMTExjX+Pjo5WTk7OWR9rs9lOe5zFYlJoaOCZF9sGWSxmp7+Xm4Ym6tZ3NmjNwUqNS4s5/QEt5PMtNpUeqdcV53fymH41R0v0Gm0TvfYO9Nl70GvvQa+9B732HvTae9DrltfqgZNhHD+Lpql79ZztsXa7obKyw00ao60LDQ10+nsZEBOk+BB/vfzlHl2QEOzUc5+Jd7/7URHtfNU7sp3H9Ks5WqLXaJvotXegz96DXnsPeu096LX3oNfeg147R2Rk+5M+1+pL6mJiYlRQ8J/9gmw2m6KimrZfT3OOxclZzCZdMSBeOQcrtCm/wiU1FFfX6eu9h3RRarSsZjYLBwAAAADAnbV64NS7d2/l5uZq//79qqurU1ZWlkaNGtWkY4cMGaLVq1ervLxc5eXlWr16tYYMGdLCFXuHzLRotfO1aN66Ay4Z/7MtNtmNo3UAAAAAAAD31upL6qxWqx566CHdeOONstvtmjJlilJSUvTMM88oLS1No0ePVk5Ojm677TZVVFQoOztbc+bMUVZWlkJDQ3XrrbfqkksukSRNnTpVoaGhrf0WPFI7X6sm9o7Vu+vzVFDRVTHB/q02tmEYWrjJpj5xweoSxhpaAAAAAADcnck40cZIHqa+3u4xazNbcp1pfkWNJr38b101MEF3DE9skTFOZFN+ha6f970eSE/RxD6xrTZuW8eaYu9Br70DffYe9Np70GvvQa+9B732HvTaOdrUHk5ou2KD/TUyJVLzN+brcJ291cZdsKlAflazLuwe2WpjAgAAAACAlkPghGNcNTBeVbV2LdpccPoXO0FNvV2fbyvShd0iFOTX6is8AQAAAABACyBwwjF6xwWrd2x7vbP+gOyOll9tmb2rWNV1dmWmxbT4WAAAAAAAoHUQOOE4Vw5MUF5ZjVbvKWnxsRZssikuxF/9E0JafCwAAAAAANA6CJxwnJEpEYpp76d56w606DgHy2u0dl+ZMntFy2wytehYAAAAAACg9RA44ThWs0mXD4jX+rxybbdVtdg4WZttMkka3yu6xcYAAAAAAACtj8AJJzSxd4wCfSyatz6vRc7vMAwt3FygczuFKibYv0XGAAAAAAAArkHghBMK8rMqMy1an28rUlFVrdPPv25/mfIranUxm4UDAAAAAOBxCJxwUlcMiJfdYeiD7w867Zx1DQ4dKD+i9zccVJCfRcOTw512bgAAAAAA0DZYXV0A2q6E0AANTw7Xxz/k64bzO8nfx3LK19f+FCbZKmtVVFmnwqpaFVbVqqiqToWVtSqsqlPZkfrG11/aL+605wQAAAAAAO6HwAmndOXAeK3YVaLFW2ya3DdOdoehgsoa7Ss9on2Hjhz9vfSI9pUeVn5FrYz/Or5DgI8ig3wV1d5PabHBjX+OCvJVv/gQl7wnAAAAAADQsgiccEr940PUMzpIL3z1o97bcFB5ZUdUZ/9PrNTO16JOHQLUOy5Y43sFqmOHAMW091Nke19FtvOTr5VVmwAAAAAAeBsCJ5ySyWTSLYO76Lkv9you2F+Du4apU4cAdQoLUOcOgQoL9JHJZHJ1mQAAAAAAoA0hcMJpDeoapkFdw1xdBgAAAAAAcBOsdwIAAAAAAIBTETgBAAAAAADAqQicAAAAAAAA4FQETgAAAAAAAHAqAicAAAAAAAA4FYETAAAAAAAAnIrACQAAAAAAAE5F4AQAAAAAAACnInACAAAAAACAU5kMwzBcXQQAAAAAAAA8BzOcAAAAAAAA4FQETgAAAAAAAHAqAicAAAAAAAA4FYETAAAAAAAAnIrACQAAAAAAAE5F4AQAAAAAAACnInACAAAAAACAUxE4NUN+fr6uvfZajRs3ThkZGXr99dclSWVlZbr++us1ZswYXX/99SovL5ckLViwQJmZmcrMzNQVV1yhbdu2NZ5r1apVGjt2rNLT0zV37tyTjjl//nyNGTNGY8aM0fz58xsff+qppzR8+HD179//lDVv2rRJmZmZSk9P1yOPPCLDMCRJn332mTIyMtSjRw9t3LjxrK+Jp/KkXs+ePVu//vWvlZmZqalTp6qiouKsr4sn8qReP/3008rMzNSECRN0ww03yGaznfV18USe1OufvfLKK+revbsOHTp0xtfDk3lSr+fMmaOhQ4dqwoQJmjBhglauXHnW18UTeVKvJenNN9/U2LFjlZGRoccff/ysromn8qReT5s2rfFjetSoUZowYcJZXxdP5Em93rp1qy677DJNmDBBkydPVk5OzllfF0/kSb3etm2bLr/8cmVmZuqWW25RVVXVWV8Xt2bgrNlsNmPTpk2GYRhGZWWlMWbMGGPnzp3G7NmzjZdeeskwDMN46aWXjMcff9wwDMNYt26dUVZWZhiGYaxYscK45JJLDMMwjIaGBmP06NHGvn37jNraWiMzM9PYuXPnceOVlpYao0aNMkpLS42ysjJj1KhRjefbsGGDYbPZjH79+p2y5ilTphjr1683HA6H8dvf/tZYsWKFYRiGsWvXLmP37t3GNddcY+Tk5Djh6ngWT+r1l19+adTX1xuGYRiPP/54Y804ypN6XVlZ2fia119/3XjwwQebc2k8jif12jAM4+DBg8YNN9xgjBgxwigpKWnm1fEsntTrZ5991nj55ZedcFU8kyf1+ptvvjGuu+46o7a21jAMwyguLm7u5fEontTrX5o1a5YxZ86cs7wqnsmTen399dc3/nnFihXGNddc09zL41E8qdeTJ082vvvuO8MwDOODDz4wnnrqqeZeHrfEDKdmiIqKUq9evSRJQUFBSkxMlM1m07JlyzRx4kRJ0sSJE7V06VJJ0oABAxQSEiJJ6tevnwoKCiRJOTk56ty5szp27ChfX19lZGRo2bJlx423evVqDR48WKGhoQoJCdHgwYP15ZdfNp4vKirqlPUWFhaqqqpK/fv3l8lk0sSJExvHSUpKUmJiohOuimfypF4PGTJEVqv1uNpwlCf1OigoqPF1R44ckclkas6l8Tie1GtJmjVrlqZPn06fT8DTeo2T86Rev/POO/rd734nX19fSVJ4eHhzL49H8aRe/8wwDH322WcaP358M66M5/GkXptMJlVXV0uSKisrT3sub+NJvd67d6/OPfdcSdLgwYP1+eefN/fyuCUCJyfJy8vT1q1b1bdvX5WUlDT+44yKijrh0oYPP/xQw4YNkyTZbDbFxMQ0PhcdHX3CpS9Nfd3J/PfxMTExLLE5C57U648++qixNhzPE3r983TghQsX6s4772zyeb2Nu/d62bJlioqKUo8ePZp8Pm/l7r2WpLfffluZmZmaMWNG47ICHM/de52bm6u1a9fq0ksv1TXXXMPSm1Nw917/bO3atQoPD1eXLl2afF5v4+69vv/++/X4449r+PDhmj17tu6+++4mn9fbuHuvu3Xr1hg+LVmyRPn5+U0+rychcHKC6upq3XHHHbr//vuPmVFwMt9++60+/PBD/f73v5ek4/bgkHTCn1A39XUn09zj4Vm9fuGFF2SxWHTxxRc3+bzexFN6fdddd2nlypXKzMzUW2+91eTzehN37/WRI0f04osvEig2gbv3WpKuvPJKffHFF/r0008VFRWlxx57rMnn9Sae0Gu73a6Kigq9//77uvfeezVt2rQTvt7beUKvf7Zo0SJmN52CJ/T6nXfe0YwZM7Ry5UrNmDFDDzzwQJPP6008odePPvqo5s2bp8mTJ6u6urpxtqq3IXBqpvr6et1xxx3KzMzUmDFjJB2d8lxYWCjp6DS7sLCwxtdv27ZNf/zjH/X888+rQ4cOko4mob9c1mSz2RQVFaUffvihcQPBZcuWnfR1J2O32xuPf+aZZ447vqCggGmcZ8CTej1//nytWLFCTzzxBKHjCXhSr382fvx4r53Keyqe0Ot9+/YpLy+vcbPZgoICTZ48WUVFRc65SB7CE3otSREREbJYLDKbzbr00ku50ccJeEqvo6OjlZ6eLpPJpD59+shsNqu0tNQJV8hzeEqvJamhoUFffPGFLrroomZeFc/kKb3+eYNqSRo3bhwzF0/AU3qdlJSkf/3rX/r444+VkZGhjh07OuHquKFW2SnKQzkcDmP69OnGI488cszjjz322DGbms2ePdswDMM4cOCAceGFFxrr1q075vX19fXGqFGjjtnUbMeOHceNV1paaowcOdIoKyszysrKjJEjRxqlpaXHvOZ0m5pNnjzZ2LBhw0k3K2TT8BPzpF6vXLnSGDduHJsKn4Qn9Xrv3r2Nr3njjTeM22+/vWkXwUt4Uq9/aeTIkXx8/xdP6rXNZmt8zauvvmpMmzatiVfBO3hSr+fNm2c8/fTThmEYxp49e4xhw4YZDofjDK6GZ/OkXhvG0a/Prr766qZfAC/iSb3+9a9/bXz77beGYRjG119/bUyaNOkMroTn86Re/3yjB7vdbkyfPt344IMPzuBKeA6TYTA392ytXbtWV199tbp16yaz+ehksbvvvlt9+vTRtGnTlJ+fr9jYWD3zzDMKDQ3VAw88oM8//1xxcXGSJIvFoo8//liStHLlSv31r3+V3W7XlClT9L//+78nHPPDDz/USy+9JEm65ZZbNGXKFEnS448/rkWLFqmwsFBRUVG69NJLdfvttx93/MaNGzVjxgzV1NRo2LBhevDBB2UymfTFF1/oL3/5iw4dOqTg4GD17NlTr7zyitOvmbvypF6np6errq5OoaGhkqS+fftq5syZzr1gbsyTen377bdr7969MplMio+P18MPP6zo6GinXzN35Um9/qVRo0bpww8/POanf97Ok3o9ffr0xts+x8fHa+bMmcxW/gVP6nVdXZ3uv/9+bdu2TT4+Prr33nt1wQUXOP2auStP6rUk/eEPf1Dfvn115ZVXOvdCeQBP6vXatWv117/+VQ0NDfLz89Of/vQnpaWlOf2auStP6vXrr7+uefPmSZLS09N1zz33eOXKEgInAAAAAAAAOBV7OAEAAAAAAMCpCJwAAAAAAADgVAROAAAAAAAAcCoCJwAAAAAAADgVgRMAAAAAAACcisAJAAAAAAAATkXgBAAAAAAAAKcicAIAAAAAAIBTETgBAAAAAADAqQicAAAAAAAA4FQETgAAAAAAAHAqAicAAAAAAAA4FYETAAAAAAAAnIrACQAAAAAAAE5F4AQAAAAAAACnInACAAAAAACAUxE4AQAAAAAAwKkInAAAAAAAAOBUBE4AAAAAAABwKgInAAAAAAAAOBWBEwAAAAAAAJyKwAkAAAAAAABOReAEc0E9KAAAIABJREFUAAAAAAAApyJwAgAAAAAAgFMROAEAAAAAAMCpCJwAAAAAAADgVAROAAAAAAAAcCoCJwAAAAAAADgVgRMAAAAAAACcisAJAAAAAAAATkXgBAAAAAAAAKeyurqA1uBwOGS3G64uwyksFpPHvBecGr32HvTaO9Bn70GvvQe99h702nvQa+9Br53Dx8dy0ue8InCy2w2VlR12dRlOERoa6DHvBadGr70HvfYO9Nl70GvvQa+9B732HvTae9Br54iMbH/S51hSBwAAAAAAAKcicAIAAAAAAIBTETgBAAAAAADAqQicAAAAAAAA4FQETgAAAAAAAHAqAicAAAAAAAA4FYETAAAAAAAAnIrACQAAAAAAAE5F4AQAAAAAXqC2waHbP9yobbZKV5cCwAsQOAEAAACAFyioqNG3P5bqq72HXF0KAC9A4AQAAAAAXqCqtkGSlFdW4+JKAHgDAicAAAAA8AJVtXZJ0oGyIy6uBIA3IHACAAAAAC9Q+fMMp3JmOAFoeQROAAAAAOAFfg6ciqrqVFNvd3E1ADwdgRMAAAAAeIGf93CSpAPMcgLQwgicAAAAAMAL/DJwYuNwAC2NwAkAAAAAvEBlrV1Ws0mSdKCcjcMBtCwCJwAAAADwApW1DYoK8lWQn4UZTgBanNXVBQAAAAAAWl5VbYPa+/so2N9HeWXMcALQsgicAAAAAMALVNU2KMjPog4BPtpRVO3qcgB4OJbUAQAAAIAXqKxtUHs/q+JDA3SwvEZ2h+HqkgB4MAInAAAAAPACVbV2BflZlRDirwaHIVtlratLAuDBCJwAAAAAwAscXVJnVUJogCSxjxOAFkXgBAAAAAAezu4wVF1nV3s/ixJC/SVJeeXcqQ5AyyFwAgAAAAAPV13XIEkK8rMqMshPPhaTDjDDCUALInACAAAAAA9XWfufwMliNiku2F95ZcxwAtByCJwAAAAAwMNV1dglSe39rJKkhNAA9nAC0KIInAAAAADAw1X9tKTuP4GTvw6U18gwDFeWBcCDWV1dwIwZM7RixQqFh4dr0aJFkqTZs2crOztbPj4+6tSpk2bNmqXg4GBJ0rZt2/SnP/1JVVVVMpvN+vDDD+Xn5+fKtwAAAAAAbVplzc9L6iySpPjQAFXX2VV2pF4dAn1dWRoAD+XyGU6TJ0/Wyy+/fMxjgwcP1qJFi7Rw4UJ16dJFL730kiSpoaFB06dP18MPP6ysrCy98cYbslpdnpkBAAAAQJv2yz2cJCkh5Kc71bGPE4AW4vLA6dxzz1VISMgxjw0ZMqQxSOrXr58KCgokSV999ZW6d++uHv/P3p3HN1bf98L/HO3L0WZbsrzMjO2xPSsMEGCAIUMaoAUeYBJuSHmeNiQkt0mbTPrccvskpa8+NG3Sh5AXpWloSylrE25600C4FG4ChRRCQ4ZhGTIwq5fxeLzJlmxtR8uRjnSeP46ObI9tWcuRdGR936/XvBjksfWTj3SW7/ku27cDAFwuF7RabW0XTAghhBBCCCENhkut7OEEAJNh6uNECKmOugec1vPss89i//79AICxsTEwDIMvfOEL+OQnP4lHH320zqsjhBBCCCGEEPXjciV11lzAqdNhAgPKcCKEVI+q69EefvhhaLVa3HrrrQCATCaD9957D8888wzMZjM+97nPYffu3bjyyisL/hytloHTaanFkqtOq9VsmNdCCqNt3TxoWzcH2s7Ng7Z186Bt3Tw2wrZOAbAatGhrseYfa7eb4I+nG/61KWkjbOtqSWeyEDIizIaNUWVE27r6VBtweu655/D666/jqaeeAsMwAACv14vLL78cLS0tAID9+/fj+PHj6wacMhkRoVC86muuBafTsmFeCymMtnXzoG3dHGg7Nw/a1s2DtnXz2Ajbej6ShNWgXfY6Ou1GnJnjGv61KWkjbOtqefC1URydjuCff+fiei9FEbStleF229b8mipL6t544w08+uijePjhh2E2m/OPX3311Th9+jQSiQQEQcA777yD/v7+Oq6UEEIIIYQQQtQvygv5huGybqcJk2EqqSPFGQ7EMDTHIZMV670U0iDqnuF099134+2330YwGMT+/fvx1a9+Ff/0T/+EVCqFu+66CwCwZ88e/OVf/iUcDgc+97nP4VOf+hQYhsH+/fvxsY99rL4vgBBCCCGEEEJUjuOFfMNwWbfTjPnYLBLpDMz6jVEmRarHH+UhZEX4OR5eu6neyyENoO4BpwcffHDFY7fffvua//7AgQM4cOBANZdECCGEEEIIIRsKx2fQxhqWPdblkIIGU6Ek+t3W1b6NkLxALAUAmAonKeBEiqLKkjpCCCGEEEIIIcpZvaROal8yGUrUY0mkgcRSAmKpDABgmsowSZEo4EQIIYQQQgghGxzHC2DPmy7W7ZSyVKiPE1mPP5rK/50CTqRYFHAihBBCCCGEkA1MFEWph5NpeYaT3aSH3aSjDCeyLn+Mz/99OkIBJ1IcCjgRQgghhBBCyAaWSGeREbGiaTgg9XGaClEAgRTm56QMp1argTKcSNEo4EQIIYQQQgghG1iUFwAA1lUCTt1OMybDlOFECpMDTns67RRwIkWjgBMhhBBCCCGEbGBcLuC0WoZTt9OEmYg07p6Qtfg5HlaDFv1tVvi5FFJCtt5LIg2AAk6EEEIIIYQQsoEtBpy0K77W7TAjkxXho748pIA5LgU3a0CnwwQRwAy9X0gRKOBECCGEEEIIIRuYXFLHrtbDKTepjvo4kUICHA83a0SnI/d+obI6UgQKOBFCCCGEEELIBsbxGQCrB5y6nWYAoD5OpKA5LgVPLsMJAPVxIkWhgBMhhBBCCCGEbGDRAj2c3KwBBi2DScpwImvIiiICsRTaWCPcrAF6LUMBJ1IUCjgRQgghhBBCyAbGFSip0zAMuhxmTIYow4msLhhPI5MV4WEN0DAMOuwmTFMPJ1IECjgRQghRpZSQhZ/j670MQgghpOFxvACDloFRt/rlX5fTRD15yJrk8zE3awQAdDpMlOFEikIBJ0IIIar0P49M4dNPvYt0hsbuEkIIIZWI8sKq2U2ybqeU4SSKYg1XRRqFn0sBkMovAaCLAk6kSBRwIoQQokpT4SQ4PoOx+Xi9l0IIIYQ0tGgyUzjg5DAhkc5iIZ6u4apIo1iR4WQ3IZwU8qWahKyFAk6EEEJUKZSQTnqH/bE6r4QQQghpbFxKWLVhuCw/qY76OJFV+LkUGACtFj0A0KQ6UjQKOBFCCFElOeA05OfqvBJCCCGksXF84YBTl1MKIFAfJ7IaP5dCi9UAnVYKH1DAiRSLAk6EEEJUaTHgRBlOhBBCSCWiSQGsUbvm1zvtJjCgDCeyujmOhyfXvwlYEnCiSXVkHRRwIoQQokr5kro5jpqYEkIIIRXgUoV7OBl0GnhsRkyGKIBAVgrEUmizLgacHCYdrAYtZTiRdVHAiRBCiOqIoohwIg2bUYdwUshPRyGEEEJI6dYrqQOAbqeJAk5kVXNRHh6bMf//DMOg02GiEkyyLgo4EUIIUR2OzyAjAh/Z5ABAfZwIIYSQcqWELHghWzDDCQC6HWZMhamkjizHC1mEk8KyDCdAKsOkDCeyHgo4EUIIUR25nO6yzU4ANKmOEEIIKReXkkbXrxdw6nKasBBPI5aiUfdkUSDGAwA8rHHZ450OKeBEbQ9IIRRwIoQQojrBXMCpy2lGp8OEoTkKOBFCCCHliCalAJLNtHbTcADodpoBAFNUVkeW8EeltgZu23kZTg4TkkI2f85GyGoo4EQIIUR15Awnl1mPQbcVw1RSRwghhJSF43MZTob1ezgBwCSVSZEl/LFcwMm6MsMJAJXVkYIo4EQIIUR15ICT06zHgNuKc8EEEulMnVdFCCGENB6Ol46f6zYNd8gZTtTHiSzyc1JJnZtdmeEEUMCJFEYBJ0IIIaoTXhJwGnSzEAGMBqisjhBCCClVVM5wMhUOONlMOjhMOppUR5aZi6Zg1GlgP+/902mXAk40qY4UQgEn0lREUcSRyRAyWWpuR4iahRJpGLQMzHoNBjxWAMAQNQ4nhBBCSpYPOBkK93ACpN6Jk5ThRJYIxHi0WQ1gGGbZ4xaDFi6znjKcSEEUcCJN5YQvii/96AM88quz9V4KIaSAUCINp1kPhmHQaTfBatBieI76OBFCCCGlkns42dbJcAKAboeJejiRZea4FDznldPJ5El1hKyFAk6kqUzkUoSfOjyBI5OhOq+GELKWUEKAw6wHADAMgwG3FcOU4UQIIYSUjOMFaBjAol8/w6nbacJsJAkhk63BykgjCHA82ljjql/rdJgwHaGAE1kbBZxIU/HldogddiP+/Ken82NiCSHqImc4yQbdLIb9MWRFKoclhBBCShHlM2CNuhUlUavpcpqREYGZCF+DlRG1E0URc1xqRcNwWafDBF+Ep3YlZE0UcCJNxRflYTfp8Fc374Cf43H/z4frvSRCyCrODzgNuK2IpzOUtk0IIYSUiOMFsOtMqJN1O6VG0JNh6uNEpP5fvJCFp0CGk5AV85PsCDkfBZxIU5mN8mi3GbG7w47/euUWvHzKj5dOztV7WYSQ86wIOHlYANQ4nBBCCClVlBdgKzbg5DADAE2qIwAAP5cCgDUznLpoUh1ZBwWcSFPxRXh4bVKE/nN7N2NPpx3ffnUYM1R7TIhqCFkRkaQAp3nx5HhrqwUaBtQ4nBBCCCmRlOG0fv8mAGhjDTDqNDSpjgBAPnPJXSDDCQBloJM1UcCJNBVfNAlvLhKv0zD4i5u2AQD+/KenqPaYEJWIJNMAAKd58W6aSa/FFpeFMpwIIYSQEnF8pugMJw3DoNNhwhRlOBGsn+HktRvBgAJOZG0UcCJNg+MFcHwmn+EEAF0OM752bT/en4rg++9M1HF1hBBZKCEHnJafHEuT6ijDiRBCCClFtIQeTgDQ7TBRDycCYDHg1GZdPeCk12rgsRlpUh1ZEwWcSNPwRaWUUK99eUrojTs8uH6bG4/8ahwnfNF6LI0QssRiwEm/7PEBtxUzEZ6mSxJCCCElKKVpOAB0O82YCiUh0mTYpjfH8XCYdDDp1y7JpIw4UggFnEjTmM2Nd223LQ84MQyDP7muH21WA/7fn55CIp2px/IIITmhhBRQWhFwyjUOHw5QlhMhhBBSjExWRCyVga3IHk6ANKkuKWQxH0tVcWWkEQS4FNrWKKeTdTpMlOFE1kQBJ9I0fFFpRyj3cFrKbtLjL27cholgAn/z+mitl0aIYl445sMLx3z1XkZF1spw2ua2AgCG5qiPEyGEEFKMWEq6iVNKhlOXkybVEckcx6/ZMFzWZTfBz6XAC9karYo0Ego4kabhi/DQMmvXIH9kkxOfuWwTnvvAh1+MBGq8OkKU8dTbE3jq7cbuRxbOBZwc5wWcWq0GuMx66uNECCGEFCnKlx5w6s5NHqM+TsTPpeBe49pJJk+qo6nfZDUUcCJNYzbKw2MzQqth1vw3v79vC7Z7WHzr34cRoDRi0mCS6QwmgglMBBOIpxq3NDSUSMOi18KoW36IYhgm1zicMpwIIYSQYnBJ6Xyg2Cl1gBRA0DCU4dTshKyIhXgKbts6GU65gBNNqiOroYATaRq+KL9sQt1q9FoNvnnTdiTSGfzlS6epWSJpKGfm4xABiEBDZwGFEukVE+pkA24Wo4EYhCx9NgkhhJD1cLmSulICTnqtBu02IyZDlOHUzBZiKWRFwFNEDyeAAk5kdXUPON1zzz248sorcfPNN+cfu//++3HDDTfglltuwVe+8hVEIpFl3zM9PY2LL74Yjz/+eK2XSxrYbCSJ9lX6N52vp9WC/3ZNHw6dDeJ/n5itwcoIUcZIYDHzZ6iBs4CC8fSKcjrZoMeKVEbEuWC8xqsihBBCGo882ZUtoWk4IPVxmqIAQlPz56o92qyFb9i3sQYYtAwFnMiq6h5wuu222/DYY48te2zfvn148cUX8cILL6CnpwePPPLIsq/fd999+OhHP1rLZZIGl8mKmOVS62Y4yf7Lng7YjDqc9DVulghpPqOBGIw6DRwmHYbmGve9K2U4rRFwckuT6qhxeGM4MhnCT0/MIknTPwkhpC7K6eEESH2cqKSuufmj0oRvj61whpOGYeC106Q6srq6B5wuu+wyOByOZY9dffXV0OmkneJFF10En29x4tKrr76K7u5uDAwM1HSdpLHNx1LIZEV47cUFnBiGgcOsQziZrvLKCFHOiD+GvlYLBj1sQ2c4hRNpuCyrB5x6WszQa5mGLhlsJt/5+Qj+/Gen8X/802E8+Noozi5QZhohhNQSlyq9hxMAdDvNCCXS4HIBK9J85jgpw2m9KXWAVFZHGU5kNaXteerg2WefxY033ggAiMfjePTRR/HEE0/giSeeKPpnaLUMnE5LtZZYU1qtZsO8lloai0gR+q0djqJ/fy1WIxIZsW6/b9rWzUOpbT06H8fHtrnhNOvx9OFzYG0m6LR1v69QsnBSQLvTvObvpN/NYiyYbLjPR7N9pkVRxFQ4iY8NumE1aPHM0Wn8y5EpXNHbgv/r8s24drsHBl3jvT+L0Wzbup54IYsvPf0eDv5GPy7d4qr589O2bh6Nuq0FSMNyujy2ks4JBjulhIBwBuhuwNddiUbd1krjhCy0Gga9HY6CQ5cAoNfN4mfHfA33e6NtXX2qDjg9/PDD0Gq1uPXWWwEADz30ED772c/CarWW9HMyGRGh0Ma4q+p0WjbMa6ml4ekwAIDVoOjfn0WnwQLH1+33Tdu6eSixrRfiKczHUthsN8Jp1oMXsvjg7Dz6WkvbX9YbL2QRS2Vg1jBr/k62tlpw6Gyw4T4fzfaZDnA8kuksLut24NMXd+KrV/fg34758NwHM/jDH/0aLRY9PnGBF5+4sAMdRfTXayTNtq3r6dRsFG+OzmOH24p+R3FZzEqibd08GnVb+8MJWPRacNHSsk9a9FJw6tRkEF0WVV8yKq5Rt7XSzs3H0GrRIxpZv3l8m0mHUCKNydlIyeWb9UTbWhlut23Nr6n23fDcc8/h9ddfx1NPPQWGkSKqR48excsvv4wHHngAkUgEGo0GRqMRv/u7v1vn1RK1m83VIBfbwwkA7CYd1SKThjGSK6Hb2mZFq1WqtR+aizVcwCmckMpY12oaDgADbitePD6L+Vgq/1qJ+sjNZrucUjCp1WrAXXs3487LNuGt8SCe/fU0nnp7Ak8ensC+vhbcedkmXNztKPQjCVlhOLfv8+dKPwghy3G8UHLDcGBx3019nJpXgOOLKqcDlk+qG/Sw1VwWaTCqDDi98cYbePTRR/H000/DbDbnH//hD3+Y//tDDz0Ei8VCwSZSFF+EB2vUlhRxt5t0iCSpbp00BnlC3YDbCrtRB4OWwek5Djfs8NR5ZaUJ5QJOazUNBxYbhw/7ObRaW2qyLlK6fMDJsTx7SathsK+3Bft6W+CLJPHchz48/6EPB5/5AC/9/pWwmVR5akJUSt73zXF8nVdCiDpFeaGs/Spr1MFp1mMytH52C9mY5rgUtrjM6/9DUMCJrK3uzRPuvvtu3HHHHRgbG8P+/fvx4x//GN/85jcRi8Vw11134cCBA7j33nvrvUzS4HxRHl5baSUbUsApjawoVmlVhChnxB9Di0WPFosBOq0GW9usDTmpbjHgtPbJ8YBbytoabuDG6M1gKpQEAxQsl/PaTfiDfT346wM7kcqI+MVooHYLJBsCZTgVNhvl8RcvnUaCJkU2LY4XwBrKC+S7WQPmY/TZalZ+joen1Awnqg4h56n7bcQHH3xwxWO33377ut/31a9+tRrLIRuUL5IsekKdzG7SIysC8VSmoWqRSXMaCcSwtW2xfG7Qw+IXI/MQRTFfltwIislwcpj18LCGhp7E1wymwgm4WQOMRTQG3+m1ocNuxKunA7h5l7cGqyMbgSiKSwJOlOG0ml+NLeDF47P4WH8brulvrfdySB1wfAZtbHnl5y6zHqEEZfs3o0Q6U9J7x2HSwWrQ0qQ6skLdM5wIqYXZKI/2Evo3AcinH1NZHVG7TFbEmfk4+pcGnNwsQol0w931l09sCwWcACmg1ogZXM1kKpxEt7O4VHyGYXDdoBuHx4OIJNNVXhnZKOZjKYQSabRY9AgnBSQpi2eFuVwPy6NT4TqvhNRLlBfKvnHqNOsRSjTWeQRRhnz+WGyGE8Mw6HSY8uX0hMgo4EQ2vHgqg3BSKKlhOCBF6gHQxQ9RvalwEryQXRZw2uaR/j7kb6ygjHxiazetE3ByWzG+EAcvZGuxLFKGqXByRf+mQq7b5oaQFfGLkfkqropUC8cLNS/bGs71b7qqV+rlFqDSnxXkoSlHpyN1XgmpF6mkrvSm4QDgslCGU7OSs0ZLyY7rtJsow4msQAEnsuHlJ9SVOHZbvuANU4YTUTm5aW6/ezHgJP99aK6xys5CCQF2kw46TeEywAE3i4wIjM031utrFsl0Bn4ulZ9yVIwd7Sw67Ua8OuSv4spItfzfPzmGb748VNPnlKdzygEnahy+knwOdHI2SgH6JiSKIrgym4YDUgl7lBcgZOi902xKzXACpD5O0+EkROp/S5aggBPZ8HxRKdJeaoaTfHCOUsCJqNyInwMDoK/Vkn/MatBhk9OE0w1WdhZKpNctpwMWG4dTHyd1kpuGdjmKK6kDcmV129w4PB5COEGZpY0kJWRx3BfFexOhml5oDPtj8LAGbG2T9n3+KGU4nW82ysNq0CKdEXFqNlrv5ZAaS6SzyIiArcySOlfueByic+GmI2c4uUvJcHKYkBSyCNIxnCxBASey4fkicoYTldSRjWkkEMcmlxkm/fKU+UEP24AldcUFnLqdZpj1GurjpFJTITngVFpm6XXb3MhQWV3DGVuII5MVsRBPYyZSuyyjkUAMA242fweeMpyWE0URs1EeH90qNQs/OkVldc0mykuBImsFPZwAIBSnc+Fm4+dSMOs1sJZQjpmfVEdldWQJCjiRDc8X5aFhgLYSUkKBxbtB1DScqN3oeRPqZINuFpOhJDi+cd7DxQactBoG/W3W/IQqoi5y09BSSuoAYLuHRZfDRGV1DWZp4PfYTG2CGulMFmPzcfS7rbAatDDpNA03JKHaoryApJDFdg+LzS4zfk2Nw5uOfPwvO8PJIh2Pg9Q4vOn4OR5u1ljSpGMKOJHVUMCJbHizkSTcrHHdnjDnM+m1MOo0FHAiqpZMZzARTKC/zbLia9s8LIDFPieNIJxIw2ku7sR4wM1i2B+jXgEqNBVOwqzX5MsxisUwDK4ddOPtcyGEKCW/YQz5YzDqNDDqNDjuq03Z1vhCAkJWxECbFQzDwGMzUsDpPHL/pnabEXs67fhgOkL7SxX55Zn5qpc5Lgacymsa7pAznKhxeNOZ41LwlFBOB0hNwwHQpDqyDAWcyIbni/Il92+S2U06CjgRVTszH4cIoN/NrvjaYINNqhNFsegMJ0Dq4xTlhfxFFVGPqVACXQ5zSXdGZddva8uV1QWqsDJSDcN+DgNuK7Z5WByfqU3AaTgg7dfkAQlu1pDvOUIkywJOXXaEkwLGFxJ1XhUBpOPdX7w0hEcPnavq88gldWyFPZyCVFLXdAIcX3J1iMWghcuspwwnsgwFnMiG54vwJfdvktmMOkQaqByJNB85e6l/lZK6NqsBLrO+YSbVJdJZpDJi0QGnwVwGFzUOV5+pcBLdJZbTybZ5WHQ7TXj1NAWcGoEoihiai2HQzWJ3hw2n5riaTLQa8ceg1zLY4pIa07tZIwWczrM8w8kBADg6TWV1ajAfTyOUSMMXqe6FOcdnAJQfcJL7mdIgh+YiiiL8sdIznIDFSXWEyKoScIrH49X4sYSULJtrmNluK+/Cx2HSUdNwomojAamUZbXmzAzDYNBjbZgMJ7mEylFkwKm/zQoGoMbhKiOKIqbCyXwvh1IxDIPrBt1451yQyuoagC/KI8oLGPRYsctrAy9kMRqo/nngkD+G3hYLdFrpVNbDGuCPpahkbIm5KA8tA7RaDdjSYobDpMOvqXG4KowGpBslvipn6EYr7OGk02pgN+lo6liTCScEpDNiyRlOQC7gVOVAKmksigacjhw5gptuugk33XQTAODUqVP4xje+oeRTEFKShVgKQlYsP8PJpKeSOqJqI4EY+lot0K7Ro2zQzWIkEKtJxkGl5OBCsRlOFoMW3U4TNQ5Xmfl4GryQRZfDXPbPuG7QjYwIvD5MWU5qJ2dQDrhZ7OqwAQCO+aof1BjxxzDgXszsdLNGpDMiBSmXmI1KJTFaDQOGYXBhro8TqT854BRJCoilqneeyVVYUgdIx2T6XDUXeeJnuRlOvgiPTJaC/0SiaMDpvvvuw+OPPw6n0wkA2L59O959910ln4KQksh3jhqph5Moijg5G8U7Zxfw4XQEJ2ejGPZzGJuPYyKYwEwkCT/HIxhPNdT0MVIdo4HlF13nG/SwSGdEnG2Avh3BEgNOgNw4nDKc1GQqJL3XSp1Qt9Sgx4pNTppW1wiG/BwYSBmHnXYTXGY9jlW5j1MwnkIgllrWu06+MJqjxuF5Uob34vnPRV0OnAsmsBCn31G9yQEnQGr9UC0cL8CgZWDUlX/J5zTrKcOpycgDGNxlZjgJWZFKnEle+eHuNXR0dCz7f42G2kSR+pH7F5Sb4WSvQ0ndqTkOdz79ftH//r//xlbccUlXFVdE1Go+lsJCPI2tq/Rvki1tHN5fIDClBuEyAk6DHiteGw4glhJgNSh+SCNlkKfTrFbmWSyGYXDdNje+//YEQvE0nJbSpt2R2hma47DJZYbFIE3B2tVhq3rj8JGAnFW1PMMJkEZ5yxM6m91slMf2dlv+//d02QEAH0xF8LGBtnotiwAYCcRhNWgRS2Xgi/AFj+OViPJCRdlNgHRMnqESqaYiB4vcZWQ4dS2ZVOe1l38eQDYORc/OOzo6cOTIETAMg1QqhR/84AfYunWrkk9BSEnku0beMns42U06JNJZpDNZ6LW1CZ6eXZCpSARKAAAgAElEQVR6X3z7k7thAiBksxCyIoSMKP13yf//j/cm8auxBQo4NSn5omu1huGyzS4LjDoNTs9xuGlne62WVhY5Zd9VYoaTCKm8Zk+Xo0orU6cXj/tg1Glx/TZ3vZeyzFQoCQZAR4UnmtcNuvHk4Qm8NhLAJy/sWP8bSF0M+2PY0b4Y4NnlteHNMwvgFLjQLfScwPkBJ8pwWkoURcxxKVzTv3jDbXu7DXotg6PTFHCqp6wo4kwghn19Lfj5UAC+aPWCOdFkpuLPocusxwlfbaZPblR/8K9HcVGXA1/a11PvpRRFznBqs5ZXUgdIAaePbFJ0WaRBKXom8I1vfAN/9Vd/hdnZWVxzzTXYt28f7r33XiWfgpCS+KI8rAYtWKO2rO+3m6QL30hSQGsZO91yyEGyG3d7kVon7X04EMPrwwGIoljW+HHS2OSU/EKZSzoNg/42a0NMcgsl0tAyKOnzOph77cNNGHB67NA5WAwqDDiFE3CzhopKOAApmLDZZcarp/0UcFIpjhcwFU7iwAXe/GO7O2wQAZzwRXH5FldVnnfEH0OLRY8Wy+Jxuc1qAAPAX+UmzI0inBDAC1l4lpTUGXUa7Gi34egUTaqrp+lwEkkhi8u3uPD6yDxmqllSlxLKbhguc+R6ONG5Znl4IYsjk2HEUpnGCTjFeLjM+rJutnvtRjAATaojeYoGnFpaWvDXf/3XSv5IQiriiyTRbjOWfYCUx8FGaxhwmg4n4TTrYTHo1g047fba8PyHPkyEktjsKr9BL2lMq110rWbQY8V/DKk/MBlKpOEw60taY7vNCJtR13SNw5PpDKbDSWg1TE0zMIsxFU6iy1n5/kiaVteGp96eQDCegmud9zmpPflzN7ikl9JOr1TCdbyaAadVetfptBq0WA35O/PNTm4p0H5eD8uLuuz44XtTSKYzMOnLuxlHKjOS/9xY0W4zwlfFcjWOrzzg5LLoIWRFxFKVZ0s1o3PBOLKitL9MCVkYKrwZUwt+LlVWOR0A6LUatNuMFHAieYq+47/+9a8jElmcfhEOh3HPPfco+RSElOT8hpmlsuUCTuEa9nHyRXh0FNlzaneH1I/h2AxNnWlGI4FYwXI62aCbRTgp5C9A1CqUEErq3wRIQYlBj7XpGoePBxMQAQhZMV+GqxZT4WRF/ZuWum6bG1kReI2m1anS0Jz0uVsa/LGb9NjsMletj5OQFXFmPo7+tpV9mjysIT9dqdn51gg4XdjpgJAVcXK2ufaZajI6LwWc+lqt6LAbq9o0PJoUys7ylznN0rkwTaorz9i8dIwWsmK+FYLazUX5ZdmRpep0mCjgRPIUDTidPn0adrs9//8OhwMnT55U8imaFscL+PwPf42z842xo1ILX4Qvu2E4sLykrlZmIsmie5/0tlpg0WurPhGIqE9GvugqohH4YK6B7uk5de8/Qol0yQEnQJ5UF2uqEbzyCSwAVWV3JdMZ+LkUuiuYULdUf5sVW1xmvDpEASc1GvbH4DTrV9wJ391hwzFfFKKo/GdyMpgAL2RXnc7pZo2U4ZSzVobTnk7pPJ3K6upnxB9Hp8MEi0ELr82YDw5WA6dAVpLLLH2+g3EKOJVj6fH65GxjnK8HYqmy+jfJOh0mTFOjeZKjaMApm80iHF48gIVCIWQyGSWfommlMll8OBPBz0/N1XspDSOZziCYSJfdMBwA7LmDdJSvTcBJFEX4osUHybQaBju8LGU4NaHJkHTRVcxkm/42KxhIk+rUrPyAkxVJIYvJUKIKq1KnsfkYtAxg0DKqCjjJvUi6HMqU+DIMg2u3ufHeRIhGuavQkJ/DoNu6ogx2l9eG+ViqKlmVwwV617lZA43izpnjeOg0DFrOm/DotOixxWXG0Wk6b6iX0fnF7GSv3QQ/x0PIZKvyXEqU1FGGU2XGFuLodprgNOtx0qfu8zAASGeyWIin4WEry3DycynwQnXe16SxKBpw+vznP4877rgD3/3ud/Hd734Xd9xxB77whS8o+RRNq8VigIc14NgUnSAUSz7RrSzDSS6pq03AaSGeBi9k0VnCdKfdHXYM+2O0U28yo0VMqJNZDFpscpnz5S9qFS4z4NTXagEglZk1izPzcWxymdHXqq5ywqmwtA2UKqkDgOsHqaxOjYSsiNFADAPulaVtu3Ll3serMNlq2M9BywC9LZYVX/OwRoSTApJputk5G+XhYQ3QrNITb0+XHR9MR5CtQgYaKSwlZHFuIY6tbdL712szIisC/pjyAfWUkAUvZCvOcHLmgpZBCjiVZWw+jt4WC3a0szjRABlO87n3YluZPZyAxXOAGcpyIlA44PSJT3wC3/ve99DW1obW1lb83d/9HT7xiU8o+RRNbUe7DcenKQW6WGv1LygFa9SBARCtUQ8nuXGkt5SAk9cGISvitMqDCURZI4EYGCwGW9Yz6GZVPakuK4q5gFPpJ8byCN5m6hcwNh9Hb6sV/W6rqjKcJkPSNuhSqKQOALa2WdDTIk2rI+oxvhBHKiNi0LMy6D3otsKgZapS7j3sj2FLi2XVxrvyBVKgChfvjaZQD8s9XQ5EkoLq+r81g7MLcWTExZtFcguFalyYcynpZqlSJXVhCjiVTMiKOBdMoLfVih1eG84EYqoPiM/lypIrynCyN995GVmb4m3y+/r6cP311+Paa6+FxWLB9PS00k/RtLa3sxibj4OrUXlXo5uNVJ7hpNUwYI26mvVwms6tudim4YDUKwOgxuHNZiQgZbgUO2Vom8eK6XAS0Rr2IytFNCkgI0rjl0vlMuth0mma5sQmlSsf7G21YMBtxUI8nb8jWW9T4STMeg1cZWzHtUjT6tw4MhlWzeskiyW6co+4pfRaDbZ5WByvwnFpxL9yQp3Mkws4UR+nXIbTWgGnfB8nOm+oNblhuFwO354736tG43D5eG8zVdY03KzXwKBlqIdTGSZDCQhZEb2tZuzwsMiI6uq7uBq5LLncKXVAc94IJGtTNOD0gx/8AFdddRU+//nP40tf+lL+D1HGjnYpsECZLMXxRZNgUFmEHpDK6mpVUidnOBXbNBwA2lgj2m1GahzeZEaLnFAnky8KhwPq3H/IvSHKKaljGKapJqKcCyWQEYG+Fkt+HP2ISk5gp0IJdDnMK3r6VOpamlanOkNzMei1DHpcq/fr2um14eQsB0HBZv7RpABflF+1jA+QmoYDaPo+TllRhJ/j0b5GD8vNLjNcZj31caqDEX8cOg2DLbnPjddWvYCTfIOaNVSW4cQwDJxmfcP3cHrirXP4o+eO1fQ55YbhcoYToP7G4XLAvpKAUxtrgEHLNM15GSmssj3Qeb7//e/jpZdegsvlUvLHkpzt7dIJ1qlZDh/Z5KzzatTPF+HRxhqg11YWV7WbdDXLCpmJ8GCNWthMpX00d3fYqnInmahTIp3BRDCBG7Z7iv4eOeA0NBfDJd3q23/IJ7IuS3mZMc00EWXxBNaSz2AY8nPY21P/Y+9UOIlNTmUahi+1tdWC3hYLXh3y41MXdSr+80nphv0ctrZaoVvjGLu7w44fvT+NM4HYqllQ5Rgp0DAcWLzBNFdhhpMoisiIgE6jbOC0VoLxNNIZEe221S8YGYbBhZ12fECT6mruzHwMPS2W/OfGpNfCZdZXp6SOl0q3Km0aDkg3gxq9h9OLx32YjvAQsmLNPtty2WpPixkWvRYtFj1OzKrzxp/Mz/HQa5mybgDKNAwDr715zstIYYpmOHm9XthsNiV/JFmi1WpAu92o+si4WviifP7OUSXsJh0iNerhNBNJlpTdJNvdYcd0hKcpTk3izHwcIoCta1x0rabNakCLRa/aDMlQQgrqlnuC05XLcKrGGHa1GZuPQcNIWQpOsx4e1pC/EK8nURQxFU4q2r9JxjAMrtvWhiMTYerPowKiKGJoLrZq/yZZvtxbwcbhcinKwBrZnaxRC5NOU3GG01NvT+DAo4dxrkEHEcwW0cNyT5cdE6EklanW2Ig/lm8YLvPajfm+o0qSJyyzJd7EXI3Lom/oHk6ToQQmQklksmK+mqAWzszH0W4zwmrQgWEYKfOzCsMUlDTHpeC2GirOVG6mzHNSmKIBp02bNuEzn/kMHnnkETz55JP5P0Q5uzsdOKXyyLhaSA0zK7/wsZv0NSupKzvg5JX7OKn7IEaUMeovfkLdUoMeVrWT6sIVlNQB0olNLJWp2WdVdnQqjL//z7GaPufYfBxdDlO+f5daGofP56ZsdjmUz3ACgGsH3RBBZXVqEIilEEyk8yWdq+lymOAw6XBCwePSSICDw6Rbs9SDYRh4bEbMRSsLohydimCOS+ErP/6gphenSiku4OQAACqrqyGOl0pCt5537PbaTVV5n+UDTobKejgBjZ/hdHg8mP/7RKh2geSz83H0LhnusqOdxdmFOOIp9TYOD3A82ipsRwIs3ggkRNGAU2dnJ/bt24d0Oo1YLJb/Q5Szq9OOc8EEYil1Nv5VC1GU7mBU0jBcVquSOmnNfEkNw2Xb21loGVBZXZMYCcRg0mlKHj0/6GZxZj6OdCZbpZWVr5IeTkD9JqI896EPT709UdPswjO5CXWyAbc0UKLe23UqdxJfjQwnQGqy29tqoWl1KiBPvBwokOHEMAx2ddhwzKfccWnEH0O/21rwzrubNVSc4TQejGO7hwWXEvCVZz5suCygYgJO2z0sDFoGR6msrmZGA6vfLOqwG+GL8Ipn6Mo9nEpt07Aap1nf0E3D3zobBGuUAm8TwdqcJ2RFEWMLcfS2LA042ZAVodqbf4CU4eSpoH+TrNNuQjgp0LAromwPp4MHDyr548gqdnfaIUJqHK7GPixqEUykkcqIipbUiaKoeCPcpaK8gFgqA28ZGU4mvRb9bhYfUoZTUxgJxNDXZoW2xB4E2zxWCFkRY/NxxXqqKCWUSMOo08C0yqjzYiydiLLTW7vSbrlZ9/BcDHt7Kj9BW488YvmjW1vzjw20Sdv17EJ8zWbKtTCVC/aVGggtxfWDbjx6aByBWApt1ur/vsnq5IulQhlOALDba8ehsXHEUgKsFTYuzooiRgIx3LrbW/DfuVljRb2JUkIW0+EkPrd3M67qceHgMx/i4DMf4h8/fWFZUzTrYS7Kw7BODxaDToOdXhs+oAynmpEDTqtlOCWFLMIJAc4y+xiuhuMFaBjAUuQ020KcZj1iqQzSmWzFvVFrTchk8c65EK7b5sbLJ+cwWaMMJ1+EBy9kV2Q4AcCJ2Sgu6nbUZB2lCnApXNXbUvHPkUuuP5iOKPLzSONSdI+xsLCA+++/H7/3e7+HO++8M/+HKGd3p7RzorK6wuRpH0pkONmMOmREIJ6ubvrrTFhaczkZToDUL+OEL4psE/SwaXYj/hj6z+sBUQz54lAeZ64moUQaDpOu7KCuHHCqRuPVtQiZLM7kRlzX6ncqj1juW3ICK2eZ1LusbiokTQYtpyy4WJdudkIEMKLC93AzGZqLodNhArtOM+KdHTaIUOacZSqURCKdxcA6ves8rAH+WKrsbJHJcAJZEdjiMmNPlwMPfGIXxoNx/LfnjjVMdvlslIfHZlx3f7qny4GTsxySVT6/IZLRQBwWvXbFeV5+Ul1U2eNXlM+ANZZ/XF1KHujRiJPqjvuiiKUyuLLHhU0uc81K6vIDPpZkOLWxRnhYA06q9DqO4wXE0xlFMpwu6nLAqNMsK2ckzUnRgNMf//Efo6+vD5OTkzh48CC6urpwwQUXKPkUTc9tM8Kt4h2VWsjNF70K9HBymKSDbKTKZXXyhXK5F2u7vDbEUpn8RAyyMc3neqecf4e0GJtcZph0GgzNqa/UOZRIVzQRhTXq4DDp8lk2tXA2mEA6I13U1qoZ+9IJdbLNLgsMWqb+AadwAm7WAGOZWWrFkG8iVGOEOCnesJ/DYBFDC3Yp2F9wOD+hrnBWlZs1Ip0Ry74wPrcgXYxuyV0k7t3iwn0378BJXxR//L+ON0RwRuphuf7Nqz2ddmSyIo6rvInxRjESkBqGnx8AkgNQMwrv1zheWDcoXCz5+NyIAae3zgahYYDLNjvR7TTXLMNpTJ5Q17r8BuGOdvU2DvfnJny6FejhZNJrcXGXA4fOUsCp2Sl6VhgKhXD77bdDp9Ph8ssvx3333YejR48q+RQEUt39KZpUV5DcfLFdoR5OABBJVDngFK0sw+mCDjsAahy+0cnTyNa7y78arYbBgNuqykl1lQacgNpPRBnOZdl0Okw1C/bIAaeeJXdMdRoGfa3WfHlfvUgT6qrTMFzmthrAYLFHDam9RDqDc8HEuuV0gHSRuslpwjEF+guO+DkwALa2Fs7ulO/Mz3Hl9V0az02m2+JafC9f09+GP79xG96bCOOeF09CUGEfvKWKDThd2CmdN1BZXfWJoojRQGzVm0XyzVGlJ9VFeQE2hQNOjdjH6a3xIHZ5bbCbpP3RVFiaVldtY/MxtFj0K85tdnhZjAcTquxtJPe/W2swQ6n29rgwNh/fEMfs07NcTd43G5GiASedTtqpeTwevP766zhx4gR8Pp+ST0EgRcbHF6hxeCGzUR4mnQYOBRolys0WI3x1D7Iz4SSMOk3ZF92bW8xgjVocp4BTydKZrOLNOqtlraajxRr0sBjyc6p7vY0YcBrxx6DXMrhu0I3xhXhNMh/OzMfQYTfCfF5Pjn63te6lklPhZFX7NwGATquBmzVUZYQ4Kc6IPwYRi/051rPTK5V7V2rYH5OyNNfpRyPfmS+3cfj4QhytVsOKzJAbd7TjT67rxy/PLODen51W7YVHJivCH0sVFXBymPXobbHg6BQFnKptPpZCOCmsGnBymHUw6TSKT6qTMpwq798ENG6GUziRxglfFHu3uAAA3U4z0hmxJgGQsfnEsmxk2Y52KfNTjTf/lMxwAoArcr/3Ri+rOz3H4XefPoL/fWK23ktpSIoGnP7gD/4A0WgUX//61/H444/jz/7sz/Cnf/qnSj4FgTSRTITUpLYSp+e4DTudxBfh4bWv37+gGLUsqeu0m8pes4ZhsMtrw4c0qa4kQiaLWx99Gz96f7reSynKsF+6Y+aylHf3adBtBcdnFE/dr1QoIVQecLKbMBNJ1qyP2ZA/ht4WC3Z5WWREaXpctY2dN2JZNuC2YiGerts0rWQ6Az+XqnrACZAmb22Eu6WNSs7sK7ZB/e4OO+a4FOYq3GYjgVhRZXxuBTKcNrtWz9S7bU8n/nB/L1457cd9rwyrLnAPAAvxFDJZEZ4iLxgv7LLjg+kI9X+sspECN4sYhoHXbqxCSV1GsQynRu3h9O5ECFkRuKJHCnzIn+1q93ESRRFjC7Fl2ciyfONwFZbVKZ3htLXNgjarAW81eFndf47OAwDePLNQ55U0JkUDTna7HTabDYODg/jBD36An/zkJ3A41NmBv5HJO6qTFUbGv/XyEP7y5SEllqQ6viivSP8mYEmGU5UDTnKQrBK7OuwYDcSQaIAeE2oxEoghEEvh0NnGOIiMBmJlZzcByE+nU9NIXiGTRZRXIODkMCGVEWsWdBn2xzDgYWv2O81kRYwHE+htWbn95RLLepXVyRdKXc5aBJxMFHCqoyF/DKxxZePjtezuyPVxquDiKp7KYDKURH8RAae2XNmlv8z3yPhCfFk53fk+c9kmfOGKzXj+mA9/8/oZ1QWd5M9GMRlOAHBRlx1RXqhJwLyZjQak3+/WNQZ+eO0mxTOcogr2cLKbGjPgdOhsEFaDFrtybSe6c2Xf1e7jFIilwPGZZQM+ZC6LAR12oyr78fq5FFijdkUWdbkYhsHeHhfeHg+qNiu0GG+OSdcIb58LQmjg11EvigacvvWtbxX1GKlMG2tEm9VQUR+nQCyFU3McJkMJ8IK6exGUYzbKK9K/CUC+LK8WGU6VTnfa7bUhKwInqcdX0eSeV8dnoqq7cDhfJivizHy8qIuutfS3WaFh1DWpLpz7bFU6Drojl11Ti7K6hXgK87EUBt1WdDpMsBq0GKpysGcmkgQvZFc9gR1oq+8EwqmwdPLe7ahuDydgMcNJ7Z/XjWpojsOgmy06G3fQzUKnYSoq914sJV4/q0qn1aDFasiXhpQilEgjnBTyDcPX8qWrtuCOS7rwL0em8NBrIyU/TzWVGnDak5t+/MEGzXhXi5FA4exkr82o+DAEJZuG6zQMHCZdQ/VwEkURh88GcdlmJ3QaaX8lD7aYCFb3PGG1fotL7Wi3qfJcfY7jFSunk125xYVwUsApFd3oLEUwnsLxmWi+QuA4VZKUTJGA0/vvv48nnngCCwsLePLJJ/N/HnroIWQylGlRDdvb2Yoi42/lsjmyIjbcVLOUkMV8LJUfM1spo04Dg5ZBJFm9g2w8lUE4KZTdMFwm30mmPk7Fk++6h5MCJkO16/9TDjlAXEmGk0mvxWaXWVWT6uQ7ppVmOHXlAra1mFQnlzRLATypGXu1M5zOrDKhTua06OFmDfmyjVqbyn12apHh5LUbwQvZhrvTvhFksqKU2VdC0Nug02DQw+K4r/yT9OEShyV4WAP8sdIv3s+t0jB8NQzD4I8+1oebd7XjoddG8xeXalBqwKnbaUKLRY+j1Di8qtbLTu6wmxBMpBXrBZjJioilMrAp1MMJkHp+hao8QEdJ48EEfFEeV+bK6QCp/USXw1T1DCd5n7DaDSJAqlaZDCWrem1RjkAsBbdVmXI62eVbnACAww1aVnfobBAigD+8pg8aBjR1rwyKBJzS6TTi8TgymQxisVj+D8uy+N73vqfEU5Dz7GhnMb4QL7t06ldjQei1UrR/tE4XKNUyl6s/rrQ8TcYwDGwmfVUznGZyadSVZji5LAZ0OUw0qa4Ex2ci6Mxlxhyr4IKoFvJ3+SvIcAKAbbnG4WqxGHCq7E5sLTOc5AtgeVLXoJvFsD9W1T4oYwUCToB0MV6raXnnmwwnYdZr4KowaFgM+UKayupqbzKUQFLI5stIi7Xba8NJX/kTfkb8MVgNxZfxtZWZ4TSeuwG3XoYTIF24/p+XdEnrU9F51GyUh1GnyU/YXQ/DMLiw006Nw6tIzk5erWG4TD5nVWoggjxYSKkMJwBwmfUIJerTJ7Acct+gvUsCTgCwyWnGuWoHnBbiYI1atK4RvNnhlW4Qq62sbi7Kw63QDXuZy2LAdg+bT3ZoNL88s4AWix6XbXZil9fe8P2o6kGRgNPll1+OgwcP4kc/+hEOHjyIgwcP4stf/jJuv/129PT0KPEU5Dzb26XSqXLuqGeyIg6PB3HtoBs6DbPh6vbllGSlejgBgN2kq0nASYkg2e4OmyIjqJtBNCng7EICN+9qh0mnUX1m2LA/Bg0D9BZxMVTIoJvFTIRHWCUZImGFMpyMOg3arIbaBJz8HNysIV8GOOC2Ip7O5DN9qmFsPgYPu3J6lqy/jcXYfBzpOoxsnwol0OUwKzKoYT35CzOVNb5vBnLZ6LYiG4bLdnXYEE9nMFZmRvWwn0N/m7Xo95fHZiyrSfl4MAGthkFnkcfizS4zGEZdmeJzUR7tttKGplzU5cBUOIlAmZP9SGHT4eS62cnyfm1Wof1alJfOWZVqGg5Ix+hGynA6PB7EJqcJXeeVenc7zZgKJap+g6i3Ze19Vr4fr4oah2dFqQemR6GG4Utd0ePCBzNRcHzjvH8AQMiKeOtsEPt6W6BhGFzZ48IJX5QyrEukaA+nBx98EBzHIR6P46abbsINN9yAxx57TMmnIDn5HVUZkfHjvigiSQH7t7ZiS4t5w2U4+aLKBW9kdqMOkSruJOWGu50KTHjapdBEoGYgTwi5sNOOHV6b6jPDRgIxdDvXHwu+HnmceTHZMKF4Gm+PB6va602pkjpA+gxNK9x4dTXnlxXJGR/DVcwcO7PGhLr8GtxWCFmxLhe/U+FkTSbUAZThVE9Dcxy0Gqbg+3A1u7xyuXfpN0NEUSrjKyWz080aEE4KJe+3xhfi6HaYoNMWd3ps0mvR6TDlM6PUYDYXcCrFni6poTKV1VWHnAG3tcB7WM5wn1Ho+MXxUgWEkhlOTosewQa50E4JWbx7LoQrelpWfG2zSxowUs3z5LMLcfS2rl2aazfp0e00qSrDaSGeRkYE2qzKZjgBUsApkxXx3kRI8Z9dTR9MhxHlBVzdJ72Prux1QQTw9jhlOZVC0YDTyMgIWJbFq6++imuuuQavvfYann/++YLfc8899+DKK6/EzTffnH/s/vvvxw033IBbbrkFX/nKVxCJSAfAN998E7fddhtuueUW3HbbbTh06JCSy28obtaI1jIbh/9qbAEaBrh8sxN9rdYNm+FU7EjgYthNOkSqeJD1RZLQa5k1U29Lsdtb+USgZnHMFwED6WJot9eGIT+HVA2b6E+GEvj0k+/ikTfOFJWVUumEOpk8zny1sjpRFHFmPoZ/fnsC//Vffo3f+sdD+MozH+LWRw/jqcPnqnJ3Sr5j6jApFHCqcoZTOpPF2Hx82Vj4vlYLtAxwukolbaIo5k5g197+8gV5rcvqRFGUAk416N8ESGUdBi1DAac6GPbH0NtigUFX2unjZpcZdpOurKC+L8ojlsqU1DdKbnrrLzFjZzyYKKqcbqm+NhbjC9UtzylFOQGnbR4WRp2GyuqqZCQQA4O1+/kAgNtqgIZRrqSOq1qGU7ohBjZ8MB1BUshi7xbXiq8tTqqrzrlCKJHGQjxd8HgNqK9xuLy/rEaG04Wddpj1moYrR3vzTBBaDYPLc++jHe02OEw66uNUIkUDToIgIJ1O49VXX8W1114LvV6/bkrvbbfdtiILat++fXjxxRfxwgsvoKenB4888ggAwOVy4eGHH8YLL7yAb3/72/ja176m5PIbzo4yG4f/amwBuzvscJj16Gu1YDqcRDy1cZq7+6I8Wq2Gkk+IC7Gbq9vDaTosnSBqFChHGfTIE4FKP3H0RZL42cnZitfQKI7NRNHTYgFr1GF3hw3pjFjT3kavnPZjbCGOB14Zwu/84EjBOz+JdPFjwdfTajWgzWrIl+QKmSzeOSPeWwAAACAASURBVBfEg6+N4pOPv4Pffuo9/N1/jiEpZPH5vZvx7Vt2YNDD4u9/eRY3/9NhPPTGmKKlF8FEGlaDVpHPbKfDhNkoD6GKZWVj83EIWREDS4J/Jr0WW1osVWscPhvlkUhnC2aWbGmxwKBlyg44CZksXjntL7nPznw8DV7I1izDiWEYtNuMil2YkeIN+bl8hmQpGIbBTq8Nx8u4ESK/n0sJtssXTKX0ccpkRUyGEus2DD9fb5sV54IJVVyEC1kRgViq5ICTXqvBTq+NMpyq5Ewghi6nqeCoeZ1WAzdrhE+hDKdoUvmAk8usRyYr5rOn1OytcSlQ8JFNjhVf25T7jE9UqY/TWbnf4jrB6x3tUnuDYFwdfbHk/aW7CgEnvVaDj2xy4nCDZQa9OTaPi7vs+UxBrYbBZZtdODweVMU+v1EoGnD67d/+bXz84x9HIpHAZZddhqmpKbBs4Tr/yy67DA7H8p3B1VdfDZ1O2rAXXXQRfD4fAGDnzp1ob28HAAwMDCCVSiGVUseHtB62e1icLbFx+EI8hZOzHK7qlSK1cgPDcvsqqNFshFdsQp3MbtTl6+GrwRdNVtwwXGbUabDNw5Z1J/lb/z6Ee396GgsqOfhVkyiKOD4Txa7cZL9dHVJJQS3L6t46G8Sg24p//J1LwKcz+P1//QB//rNTmI+t/P2fmY9DRGkXXYUMeqx4dyKMP33xJK5/+BC+/OMP8ezRaWxpMeNPruvHi1/ci6c/cwm+tK8H1w668dB/uQBP/+4luKq3BU+/O4FbH3sb/98rQ5gIVn7CFkqk4VCo2XSX3YSsqNxd4tXI5RED5114D3rYqgWc5EzUvgInsDoNg75WK0bKDDi9cHwWf/riSfzHcKCk75vKnbSf3yejmtrtJspwqrFgPAU/l1qW2VeKXV4bRgOxkoedyO/n0krqSs9wmokkkc6I2NJS2vu4L9e/rZwm5UoLcDyyotTDqlQXddlxeo5TbEoaWTQSiGHrOtkuAOBVMJAun7NaFZxSJ5e9N0L/msNng7iw075qSaGHNUKvZao2qe7MQuEBH7KdKmscLu8v3QpWiCx1xRYXJkLJqk8IVIovksRoII59fa3LHr+yxwU/l8JoYONcO1ebcmFvAHfeeSfuvPPO/P93dXXh+9//fkU/89lnn8WNN9644vGXX34ZO3bsgMGwfhRWq2XgdFbWZFcttFpN/rVc2teGx946h5mEgEvctqK+/xdnpQyK37qgE06nBRf1Sh+imXga+zbI72gulsJgO6voNvc4zYilMrDaTNAX2duhFLPRFK4ZbFu25qXbulSX9LjwzHtTYG3F96L45UgAh8el98d0XEBfp7Os524UE8E4gok0LutrhdNpgdNpQbvNiKH5eE32Fxwv4IPpCL6wrwe/ucuLq/pa8fAbo3jsl2P45ZkF3H39IO64dBO0GinrbXpUmu5xSW69lbq0txW/GgviyGQYN+zy4uPbPNjX3wqLYe3Dwl6nBXu3eTA+H8Njb57FT96fwvMf+nDDLi+++NFe7OpceSexGLF0Fm2sUZHXNdglrSGSQdW247kID4NOgwt7Wpd9vvZsduGlk3PI6nVoWaU8tpLPtC8uZR7u6WuF07L2cW9nlwNvDPvLep6fj8zn/3v73i1Ff18od1zZsclZs2PtplYLDo0uqPbYXsm2VqvjuaDnJb3l7YP29rfh8bfOYSKWxuU9xZ2zAMB4OIlNLjO6PPaiv2fAKF0YRzNi0Ws9OicFtnZucpX0+vpz/dsCqSwG67zNz+RaCmz12kveRlcNevDk4QmMcyns7W1d/xuaUDmfaz6dwUQoiZty592FbG6z4v2JkCL7jkzu2NTtsRU8ZpSiOxdsFlS+f5vneJya4/BH1w6suc5NLgtmuPSaX69kHz7DpWDWa7F9kwsazdqVC5ebpO0yFuZxkwp+n5G0CA0D9HU6ir52KMVvXtiJB14bxQdzMezuUc8+Zq1t/dMh6ebbjXuWf3avv7AT3/z3Ifx6lsOlA+6arbORKRJwev7553HgwAE8+eSTq379rrvuKuvnPvzww9Bqtbj11luXPT48PIwHHngATzzxRFE/J5MREQptjCik02nJv5ZNrHRC9c5IAH1FNsh+5fgMWix6dFp0CIXisGsAg5bBsXMhXNe3srFeoxFFEdOhBK7Y4lR0m8uH6snZCFwKHbhlvJCFn+PRYtItW/PSbV2qgRYzEukMjowGihpfnRVF3P+zU2izGhCIpfD+2Dx2t9X/4FdNh07PAQC2Okz53/OOdhbvnwvWZH/xi5EAhKyIiztsyGSy4OM8Pn9pNz7e24L7/2ME33jhBP71nQn8yXX92NFuwwfngjDpNLBpoMj6Pn2BF1ducqCv1ZIv5UzFU0gVkd3m0DL47/t78dmPdOF/HpnCM7+exk+P+bB3ixN/9puD8JaYrReIJuGy6BV5XXat9FqGpkLYWaBhZyU+nAhha6sFXHR56cMmm7RveHfEn6/3X6qSz/SJyTBaLHowKQGh1NrZllscRgS4FEanQiX1hJuN8nh7bAE2ow6/GPJjfCZcdNbZ0EwYDAAro8x7sxguow5z0SQCCzHoCpzQ10sl21qtjpyRApKdZl1Zr60n9/k4POzHYAn9vk5Mh7G1tbTfpyiKMOk0OOfniv6+4xNSqUerQVPSc8k9n45PBKu2zynWyHQYAGAt4zix1W6EQcvgh2+NY1uJZYXNopzP9ek5DpmsiG6bYd3vbTHpMBNOYn4hlr/ZVC5/LvtYSKYLHjNKoc9KpeoTfg69Cg7mUdorJ6Xzuz1eds3feZfdiLEC+4dK9uGnpiPY4jIjElk/k2eLy4z3zy4gFOoo67mUNDnPocViWHFuoxSnFuiwG/HayVncNNhWlecox1rb+pXjPnQ6TGjRMcu+bobUj+21k7P41O72Gq5U3dwFkl8UCV8mEtIHKhaLrfqnHM899xxef/11PPDAA8v6QPl8Phw8eBD3338/Nm/erMTyG5abNaDFosfJIks4MrnRjlf0uPIXmFoNg54WC0bnN8akunBSQFLIlnzBux67SZf/+UqT6/U7FVzzbm+uPKzIfhmvnPLj1ByHr+7vlbJ8atx0uB6OzURh1GmWTY3Z3WHHZCiJULz66eKHzgZh0WtxYefyu/Y9rRb8w6cuwLdu2o7ZKI/PPv0+vvPzERyfiaCvzapIny9AKr3sr/DntVkNOPjRXrz4xb04+NFeHJkM4+l3J0v+OaFEGi6FSuo8NiO0DKo2qU6emLVaA+PB3GPV+PysN6FOJq+r1LK6V077IQK45/oBCFkRPx/yF/29U+Ek3KwBRgX75q3HazMiK4LGuNfQkD8GD2uA01LeZ9VlMaDTYSqpj1MyncG5YKLkUmKGYeCxGTEXLb7M7VwwAZtRV/K+qN1mhEWvVcWkOrnMtJy2AjaTDr99cRd+dmKuaqXBzUieBL21iJt4HXYjMllx1bL6UkV5ARa9VtGAfL6krgbnSJV4azwIh0mH7QVuuG5ymTERqk7vtbGF4o7XALDDq57G4XNcqir9m2QMw+CKHhfeOReqap9NJSTTGbxzLoSre1tW7Ud9RY8L70+FSy4Rb1aKnB3ecccdAICDBw+u+qdUb7zxBh599FE8/PDDMJsX77JEIhF88YtfxN13342PfOQjSiy9oTEMgx3ttqIn1Z2cjSKcFHDVeSNCt7ZZcSawMQIMs5HyT7YKkQNO1WgcLk/V8yp4t6jbaYLDpCuqcXg6k8U/vHkWA24rbtjhwaDbqujJ5t+8Popf5u6Mq8mxmSh2tLPLTsZ25/o5ldPYthSiKOLQ2SAu3exctUSTYRj81g4PnrnrUnz64k48e3QaH85ElzWpVhPWqMNnL9+Ene22snoRKNnDSadh0G6v3qS6+XgawUQa/av0sXFZDPCwBgwr3HheFEWMLcTWbUAKAANt0rqGS9ynv3RyDju9Nlw32IaeFjNeyt0hLsZUKIEuZ20zIuSmyNTHqXaG/VxRGbOF7PbaSuqTN7YQR1ZESRPqZG7WUFIPJ2lCnXndYTfnYxgGW1rMqphUN8elYNFrYTWU17fnc3s3wWbS4aH/HFN4Zc1rNBCDXstgcxH7SK9NuvE4o8ANE44XwCrYvwkAXBb193ASRRGHzwZx+RZXwSyxbqcZvJBFQIHg3lKxlIDZKF98wKmdxRyXqvvNk3AijYlgomr9m2RXbHEhlsqU3S/Vz/GIKZSxV8iRyTB4IYt9a1T/XNXTgnRGxJGJcNXXshEoejvyO9/5DjiOQzqdxmc/+1ns3bsXzz//fMHvufvuu3HHHXdgbGwM+/fvx49//GN885vfRCwWw1133YUDBw7g3nvvBQA8/fTTOHfuHP7hH/4BBw4cwIEDBzA/r74L2Vra3s5ibD5eVJPHQ2NBMAD29iwv9ehrtWCOS1Vl3Hmt+XJpoEoGb4DFgFO0CgEn+cRCqabhgHQCvLvDXtQO/SdHZzAdTuLgR3uhYRgMeliMLxT3nlqPn+Pxw/em8LV/O4HDKhohms5kcXouil3e5dlFO9pt0DDAsTIm/JViIpTEdDiJK3pWll0txRp1+OOP9+P7v3MJfmOgDTfu9FR1XZXa6bXh9BwHoYQpZ8l0Bol0Nn/nVAmdjuoFnORg0uAaF8ADbhZDc8oG8AOxFDg+s+6IZQBwWvRwlxj0GpuP4/Qch9/a7gbDMLhhhwfvT0WKvuiZCidrNqFOJu/j5YA9qS5eyOLsfHzN932xdnXYMBvli764yk+oK6NRuZs1lhRwOrcQL3lCnWxLiwVnVZLh1G4zlhw0k9lNety1dzPeOhtsuGlSajUSiKGnxVJUTxx5v6ZEID3KC7CZFG3VC5NOA6NOg6CKA06jgTgCsdS651ebcmW9Sk+qO5sLPBdzgwgAdrbXt3G4n+Px3dfP4JZHD2MqnMS+3sK/t0pdutkJDSNloZUqGE/hjn9+D3/z+pkqrGy5N88swKjT4JLu1XuTXtTtgFGnwaGzC1Vfy0ag6J7ozTffxNe+9jW88sor8Hq9+Nu//VvceeedOHDgwJrf8+CDD6547Pbbb1/13375y1/Gl7/8ZcXWuxHsaGeRFaVU9/NLc873q7ML2NVhW3FhJ0+qGw3EsKervKa/auGrWoaT9DsLJ5U/yM5EktAy5U2VKWRXhw2/GlvI3eVa/aPO8QIee+scLt3kwJW5g/Ogh0VGlEp45Aka5Trhkw6gNqMO/8+/Hcfff+pCXLDO+7QWhv0xpDJiPqNJZjFo0ddqLboUsVxv5Q5QV65zQiTb1s7iO7furOaSFLHTa8O/HJnCmUCs6EwIuUxVyYBTl92E/6xSVt1wLpi0VsbFoMeKt8aD4IWsYiVm+Ql1Rd4xHXBb8xfqxXj51BwYAL+5TWp++VvbPfjHN8fx8sk5fG5v4dL1ZG46V60DTpThVFtn5mPIiKg4w2mXdzGL9Jr+9Y95w/4YTDpNWe8vD2vA/8/ee4fHVd5p//eZ3ps0zapWsyT3hm1sCDbFpoYQyCYhyUJ+YZcNpC2QDXmzu7+UN+VNNtcbIJDChmwIkAIhEAgYU43BFq7YVrfKqM1oRpre23n/mDljydZozpk5Z2Zkz+e6uJLLtqzjmdE5z3M/9/e+HYEoSJLMKcAEownY/VHUa/PLLmzQplyB4VgCEiG7rhImUIJTIdy2bhn+dHwSD+8fwebPaFgb475YGZoJYn2WTeu5UIKTlQUh3R+JQ7FICUg+EAQBjVRY1oITJQBsWSBHcS61acfZhCuMDbXsff+RdERJI83ndZtBAR6RmkK5rLl4QdoT7hB+d3gcL3VPI5kkcU27AZ+7pI61JuRsqCRCrDSp0GVx4e7tjYy+9pfvW+ANx/EBx2I4SZI4MOLE5npN1vs5JUYdKqPD9HKGVYdTPJ7aOLzzzju4/vrrodFc2C1X5UB7WhnPNVbnDsbQbfWdN04HAE3puXJqU7OUsfkiEAt4rG5eAW5H6qzeCPQKMevBt6vMSpAAehYRT546MgF3KIZ7L2/KLMgzOTQsjNX1TPvAI4D//tQ6VMlF+Orzp/OubGcTyvl1ruAEpIS6HpuPk7l+ioOjLtRpJJkFz4VChzG1GWWSR0BZ89l2ODmDMU7qvQccfhiV4owIfS5tegUSSTKz6GSDkVl6FcsULdUp52uMRkYCSZLY22fHpnoNqtNW+lqNFKvNKrzal3usjtoY1TAIgWYDuUgApVjAWoV4hcU5K7QWJjitMCjA5xG0xynOOPxorpbnFaCsV4gRS5C0xn/GXKmfsQZdfvfkxrSbYcxV2rE6NgQnsYCHu7c3ot/ux2t99LPcKpyPL5war2qmee+WiwRQSQSZbM9C8EcSrDucgNSz2lPGglOXxYXlVbKcPwcmlQR8HoExlh1OI7MhCHgE7fWdTMRHo05WNIfTgN2P//VSLz7+m8N4uXsaN60y4bn/bzO+c10752ITxdZGDXpsPkafowG7H8+ftEKvEMHqjbAydpqNUWcIU54wduQo09raqIXFFeL0Wi4UWBWcdu7ciT179uD06dPYtm0bnE4nxOLybTG4EDBQweE5blSHLC6QAC5dwCppVkkgFfIywYZLGZu3MDt5NpRi7kbqbN4wzBy0fcw9SV6ImUAUTx2dwFVt1Zk/C6Q263IRn5Xg416bD01VctRqpHjk1tUQC3i497lTmGD5Ac+UbpsXOplwwQXJKpMS3nCcs41DNJ7EkTE3ti4g/i516rRSKMT8jLONDlT4KNuCE8DOKfG5ZAsMp6AcIGyO1Y3MBqGWCKCjGdbcppcjniRpZcr02HyYcIexp2P+uOaeDgOGZoI5R/MmPanvUaMuvnhqVIorDqciMeDwQyrkobZAYVEi5KNNL8fxCQ9cweiiwj4V0N+S5xifIR1+a/fnzmihflYa8nU4pYWqUo7VxRJJOANRGJSFh/5SeY6PHRhBNF4+4b7hWAI/2DeYEeHLneFZaiSU/mfYpBSzIqT7FnG3F4JWKoSrTEPDw7EEjk94aLnHBTwCNWoJ6+vRkdkA6rVSRofIHSbuDzo/nPTga8+fxu1PHsN7I058ZlMtXrhrC75xVWvRn99bG3VIksDhMTetP0+SJH769hCUYgG+e107AHCanfTeSMolt3354uv0bel1/ME8XU6hWIKVgoClAKuC0/33348//vGPeO655yAUCiGRSPDoo4+y+S0qnANBEGg3KtCXQ3B6f8QJjVSIjgVGpHgEgeVV8gvC4TTtC7M+Tgek2vwUYj4nI3VT3gjMHIyjqCRC1GulWU+S//ugBdF4Ev+yY/m8X+cRBFpZCA4nSRK90/6M66VGLcXDH1+NeCKJe549xShbg21OW31YZVYtKEyuMqdG/rgKDv9wyoNwPEl7nG4pwUsXGSzmqjsXrhxOAFjPcYrGk7A4g4sKTrWalIA/wGJwONV4Q1dIb8m05eW+hlf7HBDxCexqnV9RfPWKavAJ5AwPn3SnXuNij9QBqfETNpwAFXIzYPejVa9gZbxqbY0aH055cc1jh3D5Q+/hticO40vPncL39w3gia4x/L1nGscnPOid9sMTjuddlkCF387QEJzGXCEQQN6CWp1GCgKp4PFS4fBHQQIFO5yA1L38y5c3YcobwbMfThV+cSzx+KEx/OWkFXtpuC/LgTPpg1wmzhGTSsJKNl1qpI798U61VFC2oeHHJz2IJsic43QUdRopxln+mR1xBmmPv1N0GhVwBmO0xHGmhGMJ3PvsSXzhDx/itNWHu7c34MW7LsGXLm9CtZy7RrrF6DQpoRDzaY+jvXVmFkfHPbh7eyPW16qhlghwbIKeWJUP7w3PorlalrPxvFEnhVEpxsER5jlOJEni3mdP4d//3pfvZS4pWJW+Q6EQnnrqKVitVnz3u9+F3W7HyMgIdu7cyea3qXAO7UYlukbHsmYHJEkSh0Zd2NqozbpYbK6SZRTdpYzNF+FsI68SC+BjOVg9nkjC4Y/kvKnlyyqzEodGXedlWIy5Qnj+lA03rzGjfoGQ1Da9IjXXTZJ5bzCs3gjcodi8HKjmajl+dssqfPHPp3Dvs6fwq39Yy1o7GV284RjGXCHcsNK44O8vr5JBJuTjtNWH6zoX/jOFcHDEBQGPwMa6C3PkuMOoxNNHJ2hnGJ0VnNh7HFGC0yTLgtPIbBAJcvGxopRgq2C16XFkNoidrfSzHRp0Mgj5RM7x1USSxGt9dmxvqjrvJFwrE2Frow57+xy4J10osBCTnjCkQh5t9xWbGJVinJriNuC/HCBJEt98qQ/HJz1QiPhQSgRQiARQiAVQiPlQis/+f4VYgHajAk00AuaZfP8BR+A8F1y+3L29ARtr1bD6IrB5w7B6U//bP+1fMBsmX4eTPuNwyr15t7iCMKvEeecvSYR8mFViWErocKLcfmwITkCqYGZrgxa/OTSGG1eaOBnPYsIZRwC/PzIBgJ2R/2JwxhGAXMRn9J6YVWIcHS9sM02SJPwchIYDqWdDuQpOh0ZdEPGJrEHP51KrkeD4hIdWzhsdwrEEpjxh7Glndq/soILDbT7Wfn4p3jozgy6LG3dvb8CnN9ZCWsKMOQoBj8Dmem1q+ibHax+JJ/Gzt4fQUi3HzWvM4BEE1tWocWyCG4eTPxLH8Ukvbt+YO9iLIAhsa9RiX78D8USSVjEAxat9dpyc8uI/drcVcrlLBlbvRA8++CBWrlyJ48ePAwBMJhO+8pWvVAQnjulIhzwPOgILBjL3pRdxiwkxTdVy/K17Gu5gDJoSbBzYIJZIYsYfzdTKso1KImQ9w8nujyJJAmYOXFlAyq3z9x47rN5IZhMOAI8dGIWQR+AL2xoW/Lo2gxzBE6kHZ745Q1SOz7muupVmFX5ycye++pfT+Orzp/HzW9dAxsEpXDYo59LKLIHofB6BDpOCs6a6QxYX1tWoivpvLiYrTQrEkyTOOPxYac4dEO8OxUAAUGbJRMqHKpkQYgGPdYcT5RjKVdHeppfjlV47K4tYVzAKdyhGq6GOQsAj0FSVOzj8yLgbzmAMe9r1C/7+ng4D/v3vfTg+4ckqkKYa6phXybOBUSmGJxwveVAz1+zrd+D1AQd2NOkgEfDhj8Thj8Zh9Ybhjybgj8QRmTP2JOQTePIzGzKFIIUy5Q0jEE0UHBhOIRcJcMU5jjqKcCwBmzcCqy8lREXjSazLs8ykWi4CAdBy01qcobwDwynqdTJaY6xccVZwYm8NdO/ly/HZJ4/htx+M40uXL8/9BRyRJEl8f98gFCI+OoxKRqUIpWRoNojmajmj+6NRKUYgmoAvnL9gFIolkSDPxkGwiUYqQCCaQDSehIilYgy26LK4sK5GTft5UKeRIhhLwBmMoYoFt8+YK4QkST9vkaJVLwefAHrt/qz3xnx5tdcOk1KMO7fUl1UBwNZGLd4anMGoM7To6/X00QlMeSN49La2zJjihjo13hmaZSWz7lw+sLiQSJI585sotjVq8ddTNpy2+rCOptAZiiXwyP4RdBgVuD7L4feFBqt3irGxMdx1110QCFI3OIlEwuk8aoUU7Zmg3oVPfN4fcYLA4o1YlP1ziMWg22Jj90dSdnIO8pCAVHC4J8Su4EQFzXExUgecDcWeK55023x4fcCB2zfVZrXTns2hyf8Uscfmg4BHLDgOsblei+/f0IFemw/3v9Bd1IyI01YfCGDRBr6VJhUGHYF5mzg2cPgjGHQEMnPfFyKdmewwep8ddygGlUTAamg+QRAwq8SYYnncatARgFjAQ10OEbbNoEAgmmDl+2ca6mhWLFO06uU5R+r29tohF/FxaZacgo+0VEEq5C06VjfhDpVknA446+S4kIPDA9E4/u87w1hhUOAnH12JH9zYgYdvXY0nPr0ez35+M169eysOfGUH3vvKDuz9l6146rMbIBcJ8N29A4gn2Vl/UXlkK/J0GjFBIuSjsUqGbY063LLGjE9uqMkrMBwABHwetDJhzjEVkiQx5grlHRhO0aiTweIKlmzda0//HLCR4USxwqDAtZ0G/OHYREnHV58/acUpqxdfu6IZm+o1sPki8HIQccAmJEliaCaA5mpm925z2vFu8+X/elNufDlHGU4Ays7lZPdFMDQTxFYGUw61aYc/WzlOVIYbU8FJIuSjqVqOXpajHJzBKLpGXdjdYSgrsQkAtjSkDrEOLdI4Z/dF8ETXGHa2VmNz/dn3lXKwcTFWd2DYCaVYQLtRe3O9FnwCOMigOe93H4zD7o/ivp3NZfe+cAWrgpNIJEI4HM4o+WNjYxCJSjMfejFhVIqhlQqzNtW9P+JCh0kJrSz7e0GdhC7lHCdq5p1ttZtCJRHAF2H3AZsRnDgaqWutlkMs4GVcPSRJ4pH9w9BIhfjMpux20aaq1GlLfwGniD3TfrTq5VlPwD7SUo1/370Ch8fc+Nbf+1jbHOWi2+pDY5Vs0TDNVWYl4kkS/Szb9ql5dSYLoqUGdT+i21TnDsVZb5UEUmN1bDucBmcCtBqzzjY9Fi7gU+G4dCuWKVr1cjiDsayBlJF4Em8OzmBna3XW02CpkI+PtFTjjYGZBUVhkiRTDqciN9RRUBXi0xyEw5cL/31wDA5/FF+/smXRz51IwINOJkKbQYEHdjWj2+bD0+nxo0IZsPvBI8CaY6qYGBTinA4nhz+KYCxRsMOpQStFKJbkJIeFDtO+CBRiPuQidkWGu7c3gkSqkrwUzPgjeOTdEWyq1+C6TgPaDKnPYbm7nGYCUXjDccbNX9R9rZDSC39acOLG4VSeglNXesNPN78JQObwaJwlwWl4NggegbzuJZ1GJXqn/awK1vv6HEiQYG0cmk1q1FLUa6XoWiTH6ecHRhBPkvjyOe7KVr0CCjGf9eDwJEnivREntjZqaR+CKiUCrDSraOdRWb1hPHlkArvb9Vibp3t3KcKa4ESSJD75yU/iC1/4AqxWK+677z7ccccdeOCBB9j6FhWykAkOX2Bz7AnF0G3z4tIcG1yDQgS5S8tabAAAIABJREFUiF9QU10knsSv3h/NPOiKDWUn5yI0HOBmpM7KsUgm4POwwqDIBIcfsrhwZNyDL2ytX1RwEQt4aKyS5e1wSpIk+qZ9i7qIAOD6lUb8685mvDU4g++/NoAkxyfDJEnitNWLVTmuayFnGBscGnWhSi7KOZK1lCEIAp0m+sHh7nCMG8FJxa7gRJIkBu1+Wu9dc7UcPIKdnJGR2SDkIn6mcYsu1HVmy3F6b8SJQDSRM2tiT4cBvkgc7y+Q8TcbjCEST5bc4XShNtUNzwbw9LFJ3LTKiDU0T1sB4OoVeuxsrcYv3x/FKAuHSIOOVOvSUhxb1CtEcOQQgKhGUjYcTgBKluPExXgJkDoQ+4f1NXi5ezpnLhwX/Ndbw4jGk3jwqlYQ6Yw8AKw06XIJFRjOVKilMj0LCQ4/Kzix/zNLxW4slLdWSrosLuhkQkbrq2UqMfgEWAsOH3UGUaOW0MqvPJd2owLuUIxVx+6rfXa06uWMRc9isbVBi6Pj7gUPtE5bvfh7jx23b6w9L9qDz+Mmx6nf7oczGKM9TkextVGLXpsv07q8GA/vHwEA3HtZ6UaUSwFrghNBEPjd736Hhx9+GD/84Q9xww034Nlnn8WWLVvY+hYVFqHDqMDwTADhWGLer3dZXEiSwLYc1Y4EQaC5urCmuv1Ds/j1wTG8Ozyb999RCFw7nJQSAbzhOKunD1ZPGNVyUV4PJ7qsMivRb/cjEk/i4f0jWKaW4Ja15pxfV0jw8bgrBH8kkWmoW4xPbajBXdvq8bfuafyK4xPUSU8YnnA8IyhlQ68Qw6AQoTtLw18+JJIkuiyp8P5S5N0Ukw6jAqPOIILRRM4/6wlxJDipJfBF4vCxJBI7/FF4wvGMe2kxJEI+GrQyVjZEwwwb6ihaq1M/e4NZDhH29tqhkwmxsX7x8PotDVpopUK8ukAr1GT6VLjYlcoUBoUYBAobPSlXSJLEj98cgkzIZ7wwJQgC/3ZlC6RCPr6ztx+JAt2jAw4/2hYJyi9nDEpxZtQsGxZXat3TsECBBhMowWq0RDlOXAlOAHDHJXVQiAV4+N1hTv7+bLw37MTrAw58fmt9puCkWi6CTibEYJkHhw/NpD5XTAUnnUwIIZ8oaISRGqlb7GAxX6jntaeMBKckSaLL4ma8vhLweTCrJRh3s/MMGZ4NMspbnAuVd8rWWN2YK4TTVh+uLUN3E8WWRi3C8SQ+nJovHCVJEv/11hCq5SLcsaVuwa/dUKvGmCuEGRYbrw8M546gWYhtjVqQOOuyy8aJCQ/29Tvwuc21nJVFlSus7nLXrl2L8fFxXHHFFdi5cyd0ugs3p6TcaDcqkSDPnqhQvD/qgloiyBqQPJemKhmGZwJ5CyqULXKshIstrVTI2SmsWiJAPEkiFGMv18fqi8DMUeYUxSqzCpF4Eo+8O4JBRwBf3N4IIY0mhTa9HHZ/lJZify5UnlguhxPFXdsacFVbNf5wbJL13KS5UE4vOmHWq8wqnGZxnr5v2gdPOI5tDOzeS5VOkxJJErRGEt0cCU6U64YtlxM1vrFYQ91c2gxy1hxOyxnmNwGpU2i9QoTBBXKc/JE4DgzP4uoV+py2cQGPwNUr9Hh3aPY89yrVAlgqh5OQz0OVXHRBOpz29TtwZMyNf9nRuOg4fDaq5CLcv6sFp6w+PHNsMu/reGtwBlZvJJMVudTQK0TwhOOLPlcszhDEAh4MBYo11XIRZEI+xlwXlsMJANRSIe7cUof3R1w4PEY/q6QQQrEEfvTGIJbrZPjc5vmbzja9ougOJ5IkMZwjF28uZ2YCqJaLGD/feAQBk1JckNPFH0kd9nAhOFEZTq481oZc0W/3wx2KMRqno6jVSFnJcIonkhh3hTJOR6a0Vssh4BHoyZLHy5S9vXYQAK5h2JhXTDbVaSDgEeeNo73aa8dpqw/3XrY864jw2Rwn9lxO7w07sdK8eATNQnQYlVBLBIvmOCVJEj99ewgGhei8+9nFAKuCU1dXFz75yU/iqquuwo033pj5rwL3dCwQHJ4kSRwccWJLg5ZW6GZztRyecByzeTxESJLMBL+NsWRNZYrNF87MvnOBKt0WwmZQpc0b5lzlptw8fzg2iRUGBa7O0kh1LpngcAYLLIoemw9iAY/2SQ9BELh5tRmBaALvLTC6wxanrV5IBDxaJ46rzEpMecJwBdnJ4zg46gIBZvkCSxXqpC7XWB1JknCHYlBz5HACgEmWgm7pNtRRtOkVsPkiBZ0Ce0KpDCamAaQULdULN9W9NTiDaIKkneuwp8OAaILEm4Mz836dEpy4Kj2gg0klvuAEp7lB4besye1Gzcbudj0+0lyFX7w3mgmzZcLbgzN48KVerDaraLliyxG9IrUmWCzHyeIKol4rLTi8lSAINOikeb3WhRKJJ+EKxWBQcLcG+sT6GpiUYjy8f4Tz8XcA+NX7Fli9ETx4det5h2StejmGZwOIJ4pXOPL8KRt2P3QA//lKHwLR3M7ZIQfzwHAKk0rCisOJiwwnlUQIAuWV4UQJFvmsr+o0Uoy7QwVPL0y4w4gnyUwJE1NEAh5aWAoOJ0kSr/bZsbFOzZkIzQYyER9rls3PPwpGE3h4/whWmpS4tjP7GmWFUQmZkM+a4OQMRtFj82F7jomgheDzCFzSoEXXqCvr5+il7mn0TvvxpcubluR4eqGweif69a9/zeZfV4EBRqUYaolgXnD4QHoWNVsD0blQN8nh9KkMEyzOEKZ9ERAooeDkjWQs11xA1bZ7w3GY6MdpZCVJkrB5I9jFcgXquZiUYuhkQjiDMXzpsuW0F9WZ4GNHAJcwfIj3TvvQplcwah7bWK+BTibEvj47Z69Jt82HDiO961qZyXHy4bLmqoK/98HRVHg/lX9wIVMtF8GgEOUMDg9EE4glSGik7C+Kl7HscDrjCMCsEtM+MZ4bbLspx9haNqiNa1OeFv1WvQKHxyYQSyTnbdj29tlRo5bQcr4CKfG1ViPBq7123LTKlPn1SU8YBgW3I8G5MCrFJcmV4RIqKPxHN3bm3dAGpASQb1zVgn/4n6P47t4B/Oof1tL++945M4NvvNSLTqMCD318FetB1MWCyj5z+KPn5YBQWJwhdBjp/SzkokEnwwmWc0XoQAlqXG4uxQIe/mVHI/7zlX683u/g1DnRb/fjmaMT+OhqE9YvUDXeapAjliAx6goVJZ+GJEn84dgkdHJRxn3x/es7sCKL8y+RJDHiDOLjeQq1JqV40fauXPg5HKnj8wioJALOM5ySJImnjkxgJhBFPEEiQZKIJ0kk0v/N/f890z606eWoYrh3AYBajQT+SAKeULyg9dmIM7+Cj7l0mBR4vX8GJEkWFL3QY/NhzBXC5zZnLwcqF7Y2avHogVHMBqKokovw2w/GMBOI4v/c1LnofkXAI7CmRsWa4HRwxAUSYJzfRLG1UYt9/Q6cmQmc54QPRON49MAoVptV2E3z0P9Cg9VVYk1NzYL/VeAegiDQkW44oDjIsBGLcn0M5ZHjRD0YdzTpMOYq/KSAKWRavOHSLaTOOJzYyYSZ8UcRT5KcNdRREERqJOaqNj22MJhL1spSosFCIzmLEU+S6Jv2o9PEbARDwCNwZZse7w47aZ0eMiUaT6Lf7qc1TgekLLJ8AqyM1fnCcXRbvRd0O9250AkOp05IuRipU0mEUIj5rI7U0R2nAzAn2DZ/ezyVqZevw6lNL0c8ScIyZ8x5JhDF4TE3dncYaC9oCYLAnnYDjoy55zlFptwh1GTZxBcLozLlcCpVFT3bzA0Kp1vLvBjVCjHu29mMk1Ne/PE4vdG6/UOz+MbfetFuUOChj6/mZNNaLHI5nKLxJKzecMGB4RSNOilsvghCsdz5dWxCufy4djPs6TCgVS/Hzw+MLhj0ywaJJInv7xuEWio8r52KgsoUY2NsmQ7HJjwYmQ3igWva8Ngn1iAcS+DOZ47jj8cmF7z3TLhDiMSTeTc7mlUSzPijiOXp4PJH4hDxCc4OAzRSIecZTj02Hx7aP4K/fGjF3j473hqcwfsjThwZc+PklBf9dj9GnUFMeVNZqLcv0ry8GNRBdaFNdZlG2QLuJR1GJXyReMY9nC+v9Noh4hPY1Vr+4ga1Lu6yuDDpCeGpIxO4rtNA6/m3oVaNkdkgK5MIB4adqJKLMtMdTNmaPphfqK3uia5xzAaiuG9X8wWf4ZqNpbuKqHAe7UYFnjwygUg8CbGAh/dHnGg3KGgr/jqZEGqJAMN5NNV1WVyo00iwtVGHd4edmA1EUc2htftc/JEEgrEEZw11wFlrspelFj5r2i7NteAEAPfvasnr69oMCsbV7qPOIMLxJO38prnsbtfjzyem8M6ZWVzXaWT89Ysx6PAjliBzBoZTSIV8NFXL0c1CU93hMRcSJHK2RV5IdJqUePvMLLzhGFSShQUlD4eCE8BeU104loDFFcSuNvrOuyq5CNVyUUE5IyOzQUgEvLxHhVsyLkV/5v+/3u9AkkTOdrpz2dNhwOOHxvBanyOzsJ/whEs+ImpUihGOJ+EJxzn7HBULkiTx4zfO5BUUvhjXdhiwr9+BRw+MYkdT1aJO4APDs/i3F3vQZlDg4SUuNgHIjJjZszTVTXhCSJKFN9RRNKTr0MdcIazIc+OSD8USnHgEgS9fvhxfeu40/nxiKu9N/mI89+EUemw+fO+69qzPjgadDCI+seDIMBc8e2IKKokA168yIxKM4KnPbsS39/bjJ28N4ci4G9+6pm3eaDh1cJuv+8qoEoNE6n3N5sxbDF8kzunPrlYm5NzhdHjMDQB48a5L8sqxowv1+o67QwWJ/CPOIIxKcUFu0E7j2TiCfN53IHXou6/fgR1NVVBKyv/+vcKggEYqRJfFhXfOzIJHELhnB73nH5XjdHzCg11t+YtrsUQShyxO7Gqtznu02qAUo7lahoOjLnx2TkbThDuEp49O4PpOA21X+YVI6XzwFVinw6hAIknijMMPXziOU1NeXLqc/maAaqqjmjXoEkskcXTcjS0N2kzLi6XIY3VUS1FRMpxYeshSrXpcXnOhtOnlGHEGGQV5U/PnnXmMKKxepoJJKca+fgfjr81FJjCcwQ1/lVmJHpu/4LyK90ddUIj5tN1VFwLU+9+7SACmO5QSbzkTnNTsCE7Ds0EkSdBqqJtLq76w4PCRdENdvgugBp0MQj4xb+Rsb58dbXo5Y9dUg06GDqMCr/am2urCsQQc/mjJAsMpqEOGCyHHaV+/A0fGPfhinkHh2SAIAg9e1Qohn8D39vZnvZ+9N+LE11/sQatejkc+vnpJbFZyoRDzIRHwsjqcKPdfvTb/MZi5UIHBliLnOBVLcAKArY067GjS4ecHRlg5kJmL3RfBowdGsbVBi2sWGT0R8Ag0VckZO7DzweGP4K0zs7hxpQlSUSp7RSMT4qc3r8TXrmjCgWEnbn/yGD6cPDvaM+QIgADyzvOhymSodSJTfOEEp4KTRirkPMPp6LgbLdVyTsUmIHUwxSNS7cqFMDIbzNuNTNFUnRJSF1s35eIDiwvOYIx2RmOp4REEtjRo8MbADN4cnMGdW+ppFzh0mpQQC3gFj9UdH3fDH0lge1Nh8RlbG3Q4MemZ53D92TvDEPAI3MPiIdJSpCI4XUC0z9ngdVnSjgqG4WdNVTIMzzJrqjs55UUolsTWRm3mlLDoghMl3nC42KJOr9gaqZsqosMpX1r1KRFzZJb+KWKPzQe5iI/6PE6Meenxv4OjLtYXM6dtPlTLRYwW5KtMKvgi8YJyyUiSxKFRFzbXaxllWi11OtIjlYuN1XE5UgekBSdvuOBxK0qwaWFYDd9mUGBkNpj3WEShC9izm7LU9Y+na5LzXYju6TCgz+7H6GwQ1vQ9t0ZT2vuXMX3/zHdjVi5QQeHtBgU+VkBQeDYMSjH+9YpmHJ/04s/Hp877/fdHnPj6C91orpLjkVsvDLEJSIltBqUYdt/CDidKGGpgKf+xViMBAcwbYy0G074I1BJB0cJo/3PPClTLRfj6iz1wslSsAQA/eWsI8SSJf7uqJefoSaoJNP9mZbr89aQNiSR5Xh4TQRD49MZa/Pen1kHIJ/DPf/wQT3SNIZEkMTQbQK1Gkvf7YVKm7mvWPIPD/dE4J4HhFBqpkNOWumg8iROT3rzzD5kgEvBgUooLGqlLkiRGncG8BUYKIZ+HVr0C3QVEObzaa4dSLMgr/LpUbGnQIhJPYplKjE9vpB/FI+TzsGZZ4TlOb/c7IOARuKTAz9u2Ri1iCRJHx1PuvCNjbrx9ZhZ3bqnPjHdfrFQEpwsIs4oKDvfj4KgTSrGAsaOiuVqOQDTB6LS4y+ICnwA21mlgUIohFvAwVuTFFrX5MXIo3kgEPAh4BGsjdTZvaoEoE5VvW0GmqY7BWF3vtB/tRkXerozd7QYkkiTeOqcRq1C6rV6sMisZzU9TweHd1vwf/qPpQP1tF9E4HZDKUKrTSGgJTlqOgtRr1BJE4sm8mjfnMuDwQyrkoZahuEJlKA3nkYvnj8Qx7YtgeZ4VyxStejkG02PSe/tS7qSrV+RnPb+m3QAeAbzSZ8ekJ3WPr1GXPsMJWPoOp8fTQeFfv7KloKDwxbhhpRGXLtfikXdH5tWAHxp14oEXutGok+GRW1dnHWNaqugVouwOJ1cIVXIRa24QiZAPs0oMi6v4Die6rgA20EiF+PFNK+EJx/Hg33pZaYt758ws3hqcwRe21tMaJ2rVK+BKN3lyRTyRxPOnrNjWqEVdFlGy06TEk5/ZgCvb9Hj0wCi+9Nwp9Nh8eec3AWfva7Y872v+CPeCkycU40zs67b5EIknsanu/MB4LqjVSDHhzt8NbfWGEYknMw7HQtjSoMHxCQ+O5yGihGIJvH1mBle2VUNUwjIPpmxv0sGsEuP+XS2MRdoNtWqccQQKyhR7e8CBdbXqgp8D62rVEAt4ODTqQiJJ4qdvD6VFtPIPb+eapfNprJATgiDQblSgZ9qHg6MubGnQMHZUNKUrXJlskA6NurB6mQoKsQA8gkCdRoqxIi+2Tlm90MmE0HHYAEYQqWYOb5idUx2rN1zW7iYgdVorFfJoBx/HEkkMOPwFNf60GeSo10rxWnpzzAbuUAzj7jDj+elGnQwyIR+nCxgbODjqBICLTnACcF6Rwbm4QzHweQTkHImubDXVDToCaKmWMxZRzwq2zO3xlPNieZ4NdRStejlmA1E4g1G82mvH+lp13uUK1XIRNtdrsLfXnlmcl3qkTicTQsgnMO1jJxy+FAzPBvDMsUl8dJWJlaDwbBAEgW9e3QY+j8B39w4gSZLoGnXh/hd60KCT4ee3rZmXQ3OhoFeI4cgiSoy5Qqy5mygadDKMlsDhVOz68xVGBb55dSuOTXjw0P6Rgv4ufySOH795Bi3VcnyGZi5U65wmXa54Z2gWDn8Ut65btuifU4gF+N717fjWNa04OeWF1RspSHASCXiokotgy9Ph5AvHoRBzd5iplQmRIFNZUVxwZMwNHgFsqOXe4QQAdVrpPBGeKaOzqa8t1OEEAHdsqccytQTf3duPMMPygXfOzCIUS+LazqUxTkehk4nw4l1b8mqE3linAQngxGR+LierN4xBux87WHCEiQU8bKxT4+CoCy+csmLQEcCXP9JU0ibfcqHyClxgtBuVGHQE4PBHsS2PHx6qfnuIZnC4OxhD37R/XnBsvVZa0AgSU5IkiQ8sLmyu1+TtqqGLSiKAj6WROqs3DHOJN2u54BEEWvUK2hvmoZkAYgkyr8BwCoIgsLtdj6Pjnqyn0kyh7MmrGDr++DwCnabC7M0HR11YrpNx2qBYrnSalJj2RbKeQLtDMWikQs5aO9gQnEiSZNxQR1GnkUIi4OW1ISq0oY6C2pS93D0NiyuEPQVW8u7pMGDSE8bePjskAh6nIj8deAQBg0K8ZB1Oc4PC77mskfPvZ1SK8bUrmnBswoP//doA7nuhG/VaKR69dc2SD13PhkEhwox/4SZDizPIWmA4RYNOBoszWHD2HxPsJRCcAOC6TiP+Yf0yPHNsMpPvxhS7L4K7/3QSDn8ED17dCgGf3takGE11z56YglklpjWeRBAEPrrajN99Zj2ubKteNIOKDmaVOO9RYX+U+wwnAJyN1R0ed2OFQVG00d46jRSecDxvl8xwOnaCDYeTVMjHv1/ThnF3GL94z8Loa1/pnYZRKca6muI4w8qBlQXmOL2ezoxlawRxa2Oqrf2h/SNYX6vGrlb6ZTMXMhXB6QKjw3h2U5RPI5ZGKkSVXETb4fTBmAskMK/uvV4rxYQnjHiyOIutM44AnMFYUSrnVRIhPCwITiRJwuqNZIIhy5k2vRwDDno5CdT41NzPYT5cs8IAEsDrA+yM1XVbvSBwNleICSvNKgw4AoxPmoBUsPLxCU9RPpvlCCU8ZhurSwlO3C0ol6kKF5ymfRH4IvGMcMMEPo/IOzh8ZDYIEZ/IiGb50lqd+sz/9oNx8HlEQU0uAHBFSzXEAh5OW32o0UjKouLXVMDGrNRwFRS+GDetMmFrgxYvnp5GnSYtNpVYOOQSvUKMaIKEJzT/2e0OxeAJx1kLDKdo1EkRjidhL5IIGo4l4AnHSyI4AcBXP9KE9bVqfO+1AfQzvNf1Tvtwx9PHMeEO4ac3r8IaBg4/pUQAs0rMWVPd8GwAR8Y9uGWNmdGYa1OVHD+8sTNzgJsvJqW4rEfqAHASHB6OJXDa6sWmuuK4m4CzTXX5upxGncFU0zdLov2meg0+vtaMZ45N4NQUPYe9MxhF16gLu9sNnB++lxMiAQ+rzEocG2cuOEXjSTx9dBLbmnRoZMGdBgDb0gaMYDSB+65oLos1UjlQEZwuMNrTG/02vRzVeQaUpYLD6QlOXRYXlGLBvBGqeq0UiSTJSjsU3WsAUJR67tRIXeGCkzsUQySeXBKulzaDAoFoIhNyvhg9036oJYKCx2waq2Ro08tZG6s7bfWhqVqWV13tKpMSiSTJeCENAMcnPYjEkxet4LTCoACPSG0qFsKTdjhxhUTIh04mLOheRG1m8hGcgNTPz4DDzzjrYsQZRINOVnDQvEYmhF4hgjccx7ZGbcGvt0IswGXpJpfaEuc3URiVS9PhxHVQeDYIgsB/7GnD5zbX4tHbVl/QYhOQynACAPs5jlm2A8MpGtICVrHKU4rZULcQAj4PP7ihA2qJAF9/sYe2S+StwRn80x8+BJ8g8Pgn12F7E3OHQatewZng9NwJK4R8Ah9dbeLk78+FSSWBLY/Si2g8iUg8yanDicpd5EJw+nDKi1iCLEpgOEWdNrVmHc8zx4mNhrpz+dLly2FQiPGdvf20mqJf73cgQWLJjdOxwYZaNQYcfvgZjni+1DONmUAUd1/ezNq1NOikaNXL8Yn1y7CiwMP3C4mK4HSBsUwlwXKdrKA6zOZqOYZnAjnt4FT71iUNmnmnPw1pS2mxcpy6LC40VcmK0gCQGqkr/AE7lT6NX7YUHE4MgsN7bT50GJkFc2djd7sBp62+gubqgdTntMfmY5zfRLGKCg7PY6zu0KgLYgEPG2ovHnvzXGQiPhp1MvTYFhbrXBwLTkBqrG4yzxwM4Kzg1JKv4KSXwx9JMD6pHp4NFhwYTtGSzhK5lqWaZOr5UuqGOgqTUgyHP4JEkVy1bPGbQ+Nw+KN4gMOg8GzoFWJ86fKmormqSgm1NnD454/2UoJQA0s/ZxSNVFtvkXKcSi04AUCVXIQf3dQJhz+Cb73ct+jPIkmS+J8PxvH1F3vQopfjt7evL+j+anEF83IgL0YgGsfLPdO4qk1fsp8RsyrlzHMyHFvzR1Ob7mKM1HEhOB0dd4PPI4o6FlajloIA8mqqI0mS1ec1hVwkwDevacWoM4RfH8w9WvdKrx2tennmeX8xsaFWgyTJLMcpniTx5OFxdJqU2JaH2J0NgiDw1Gc34L6d7IlYFwIVwekCgyAI/OnOTfjs5rq8/46mKhnC8WTOOtZRZwh2f/Q8Z1F9+rSwGDlOxR5ZYmukjgqCXAoOp+YqGXhE7pyEcCyBoZlAXmNrC3F1Ov9gX3q+Ol/G3WF4wnHGjY0U1QoxjEoxTufRVHdwxIX1NeqiVVWXI50mJXpsvgVPad2hOPeCk0oCa0EOJz9q1JK83HFAfsHhoVgCVk+YtRPTtTUqqCWCvAI5F+LS5dr0f+VRu2xUipEggRkO26rYxuIM4umjE7h+pZHRGFEF5hiyOJzGXCEIeIWPrZ5LlVwEuYifcVBxTTkITkAqI/GBXS04ZHHhF++NLvhnYokkvrt3AI+8O4JrVujx2G1rUCXPX9BpNSiQJIGhPJpAF+PVXjsC0UTOsHAuMSpTn0umhxVUzqhSwmFoOIcZTkfG3FhpUha1wVks4MGgFOd1wDkTiCIQTbDucAKAbY063LTKiN8fHl+08XfcFcJpq4+1Q6WlxiqzEkI+wWis7o1+BybcYdx5SR3rY28EQVRG6c6hIjhVOA+qWWNoZvEH+KEso2waqRBqiaAogtOJSQ+iCbIo43RAyuEUiCYKzqeyph1OSyHDSSLko0Eryxl8POgIIEECnQU01M3FrJJgzTIVXusrTHCiGuZWFRBkvsqsRDfDpjqbN4wRZ/CiHaej6DAq4QrFzht5SiRJeMMxzluxlqklsPnyd78MOAJ5j9MBqfspAXoOQQqLMwgS7DTeAMA/bq7Dc5/fDClLwqeQz8PPblldtPtuLoxp4T7fRqdiQ5KpumSxgId7L1te6su54KmWi0AA55VQWJxB1GokBY+tngtBEKjXSmEpksubEtKK4fLOxcfWmHHzahN++8E43hycn8HoDsVw77On8LfuaXxhaz2+d317wYcxbel78yCLweEkSeLPJ6awwqDAajM765l8oNaHTO9r1FiRIs9DEjpIhHyIBTy4Q+y21AWicfTYfNhUV3xXeJ1GgnEX82cIWwUf2fjqR5qhk4vwnb39iCUWHq17tdcOAsA17Ren4CQR8rHSpKQdHJ5J5MeNAAAgAElEQVQkSTzxwRiWV8lweQs7B3EVFqciOFU4D2qTM5yjqa5r1IV6rXTB08HUYot7wanL4oaQTxRtZEmVtij7C3Q5WT1hyEV8TkMd2aTNkDv4OBMYXoCwcy672/U4MxOg3Zq4EN1WHyQCHpoKsBmvNCkx5Y3AGaTvoDg0mhJkty0vj015qViZdrydezrni8SRJFGUkbpEkjzP3UCHUCyBcVco04aUD1IhH/VaKQYc9DdEZxew7FjjBXzeBVl3T0E5O5ZKjtO7w068P+LCXdsaUF2Au6MCPQR8HrQyIewLjNSxHRhO0aiTYbSII3VaqbBsqrcf2NWCVWYlvv1Kf6a9y+IM4vNPH8cpqxffuW4F/nl7IysOgGVqCeQifl5NoNk4MenF0EwQt641l9SlYMoITszua/5IaryQ6/WlViqEO8Suq/TEhBcJEkXNb6Ko00rzcjiNUs9rlkfqKJQSAb55dSuGZoL4zaGx836fJEm82mfHhjp1yV2OpWRDrRp90z4Eorn3ZweGnRiaCeKOS+ouqoD1UlIeT6cKZYVCLIBRKV7UohyNJ3F03I2tWU6467VSjBXBTt5lcWFtEUeWVOlGLU+BOU5WbxhmVXk0PNGhTa+AzRdZNAy0d9qHKrkoM77ABle26cEjgNcKGKs7bfOhw6Qs6BR7VXocj8lY3cFRFwwKEWeLkKVCq14BAY9A9zk5TlT2A5ctdQAygng+weHDMwGQyD+/iaLNoGA0UjcyGwSfR6CuTDKSyh3TEhKcIvEkfvrWEBp1UnxifenGdS42DArxPIdTIkliwh1iPTCcokEnxbQvghDL2UILMe2LlNVGUyTg4Yc3dkIi5OGBF3rwzpkZfP6ZE/BHEnjstjW4tsPI2vfiEQRaquUYZCDo5+LPJ6agEPMLykJlA6VYALmInzPe4lx8lMNJwu2zVSMVsu5wOjzmhohPYHWeEQiFUKeRwhWKMQ6eHnEGoRQLChoNzcWOpipc12nAEx+Mn1dg0zPtx5grdNGO01FsqNUgQQInc7T6kSSJ33aNYZlKjGtWFNbaW4E+FcGpwoI0VckWdTidnPIiHE9iS5ZxoXqtDHZ/lNPF1kwgikFHIKvoxQUqccol4GP4QDoXmy+SOb1aCrQZ0rb1RU4Re2x+dBgVrIpoVXIRNtVp8FqfnXFTC5Da3A3Y/QWN0wFAh1EBPgHaY3XxJIkPxlzY1qhbMqIiV4gEPLRUy89rqqPESy3HzhuqMXEyD8FpoMCGOoo2vRxT3gi8NANWR51B1GulEPArj2g6KNIbs6UgOD19dAKTnjDu39kCYeX9LRp6hWheaLjVG0YsQaJBx43g1EiVpxTB5VRughOQch3+4MaO1Gf9hR5UyUV44vZ1WMtBEHSrXo5BR+6iGzrMBKJ4c3AGN640lTx7kSAIGJVixg6njODEcQaSRiaEi+XQ8CPjbqxepirJa1+rSd0LmAaHj8wG0aiTcb7W+9crmqGWCPCdV/sRnzNa90rPNIR8ArtaL27xZE2NCnxe7hynYxMenLL68NnNdZU1VhGpvNIVFqS5Wo5RZzBr7skhiwt8HoGNWeasqUUclzlOH2QypIpnvVVJKIdTYYLTlCeMZUsgMJyiNT1SlG0sKBCNY9QZRCeL43QUu9sNmHCH0TPN/ARzwO5HPElmmubyRSLko7laTtvh1G31wh9JXPTjdBSdJiV6p33zNgRnHU7cCk4mpRg8Ij+H06AjALmIX3CoMBUc3kuz6XB4NshaftPFgknFfGNWbGzeMH5zaAxXtFRlPaypwA0GpRj2OYJkpqGOo5E66u8tRo5TOQpOQMpx8B+723DDSiN+86l1qFFzI+61GRQIRBN53ePP5YVTViSSJD6+1szClRWOWSVhHBpOOXSURXE4sSc4eUIxDNj92FRX/HE6IOVwAlIB3EwYKdLzWi0V4htXtWLAEcD/HB4HkDrc3NfvwI6mKs7f73JHKuSj06jImeP0RNcYdDIhblxlKtKVVQAqglOFLDRVyRBNkFnnmbtGXVizTJW1uakYTXVdFhc0UmFmM1cMKMHJW8BInS8cRyCaWFIOpyq5CFVyUdachH67HyTYCwyfyxWtVRDwCLzWZ2f8tafTG/x8G+rmssqsQrfNl/UUlSRJnJry4oevD+Jf/9oNEZ/A5hLkEJQjnSYF/JHEvIVcsQQnAZ8Hg0Kcp+DkR0u1vOAZf+oe1WfL7pBLkiS6LC58/cUejLlCF2W1cSEYleKydzg9tH8EJICvXVGpSy42eoUInnAckXjKGUA1yHHlcKrTpmrWLRw7nALROPyRBAxlKDgBwHWdRvznnhVQcJgnlAkOLzDHKZ4k8ZcPrdjSoEFDmYzCp4R05qHhPAKQcewS0kqFcLPYUndswgMSKJngVJMeYZ9w03+9Hf4IXKEYGot0QLSztRpXr9Dj8YNjGJoJ4AOLC85g7KIfp6NYX6tBj82HcJbpmh6bD10WN27fWFs2mXcXC5VXu8KCUAHLwwvkOLmCUfTZ/YuOslEnBWMcne6RJIkuixuX1GuKGvhGCU6+AhxO1Dy+eQk5nIDUoi5bDk1POp+nw8S++KeSCHHpch1e73cwtsx3W73QK0SsnP6uNCsRiCbO20BQroVbnziCzz9zAi91T2NboxaPfWItVJILN6iZCR1pIbJ3jkuNyn7gWnACUjlOTAUnkiQx6AgUnN8EpFqydDLhgg4ndyiG3x+ZwK2/OYx7nz2FY+NufHZTLT69sbbg73sxYVJKylpwOjruxr5+Bz63ubZgx1wF5lANblSO05grBKVYwNn9RyzgwayWYJTjLEu7LzUmWI4Op2LRXC0Hj0DBOU7vDs3C7o/itnXlk61mUorhCccRjNKPp/BFElCKBZyPeGmkQgRjiYyIWyhHx92QCHhYWaJmQKmQD71CxGik7omucfAJYEeTjsMrm88Du5qhFAvwnb0DeLl7GkqxANuXF+/7lzMb6tSIJ8msOU6//WAcSrEAt5SJg/Fi4uL231XICmUPHZoJYGdr9bzf+8DiBoBFRwIkQj6MSjFnDqehmSBmA9GijyUo0wJCISN11vTYh3mJbTraDAocPjKBWCJ5XvZIr80Hk1IMnYyb0MTd7XrsH5rF8QkPNjI4/Tpt9WElS2N+1FjeaasXRqUYbw468HKPHUfH3CABrK9V4x8312FXWzWnp7lLkaZqOcQCHnpsvkwQqysYg1jAK0pWwzK1BF3pEVy6WL0RBKKJzOl5obQZFOhNj2SSZGpB9JeTVrze70A0QWJdjQp3XdqAXa36yslbHhiVYrhCMYRjiZJnr5xLPEniJ28OwaQU43Ob60p9ORclVJmFwx9FrUYKizOIBp2U0015QxHaeqd9KSH9YhacJFQTqL0wh9OfT0zBqBRje1P51KSb0geTNl8YTTRbS/2ROORFWINoZKn1sDsUY+Xzd3jMjXU16pJm29Vp6DfVjc4G8ZcPp3DzGnMms60YaGUiPHBlC775Ui96bD7cvNoEUWXNAABYu0wFHpFyy11yjiliZDaItwZn8Pmt9ZU1egmovOIVFkQqTOWWLORwOmRxQS0RoD3HKFu9VsqZnfxQJr+puIKTgEdALuKz5HBaWgvENr0c8SSJ4dkgVpzz3vdMp5rguOKy5ipIBDzs63fQFpycwSgmPWF8bA07JxmNOhnkIj4eP2jBj988g1AsiVqNBHdd2oDrOg2c5VNcCAh4BFYYFPOCw93hWFHcTUBKcHL4o4jEk7TFHOq0nMovK5Q2vRzPHJvEn09M4fmT1kw+1EdXm3HLGjMrTqqLGWrDY/dHMyPd5cJfPpzCmZkAfnRjR9mJYRcL5zqcLK4QLuF45LlRJ8PxCSuSJMmZE5ty9V3MghOQuk/TLfVYiNHZIA6PufHFHY0FNdqyDbVOtHkjtAUnXyQOZTEEJyl7gtNsIIrh2SCu62SvwTAf6jRSvDs8S+vPPrR/GBIhH/90aQPHV3U+V7VVY19rNd4anCl5m2I5oRALsMKwcI7T/xweh0TAw6fW15TgyipUJNEKWWmukmHonKY6Mp0zsrleC36Oh3K9VooxVyivdrFcdFlcWK6TlWSRpZIICspwsnrDEAt4nLdzsQ2VQ3PuWJ03HMOEO4xOI3dZWlIhH5c3V+H1fse8do5sHBiexZ1PnwAAXMJSqDyPILClQQtPOI7d7QY8/sm1+MvnN+OubQ0VsYkGHUYF+qZTIe5AKiC0WIIT1VTHpF56wBEAAbAmBLXpFYglSPyfN86ARxD45tWt+Ps/b8XXr2ypiE0sYMpszAoPDmYTVzCKX7xnweZ6zXlu4QrFw5ARnKIIRhNw+KOc5/Q06KQIx5PzwsrZxu6LgkAqo+pipjXdBJrvYeCzH05BwCNwU5kFCWccTgzua/5IHEox98I2tYZlI8fp6HhqcmJTiXMvazUSOIMxBKKLf46OjLnx7rATd1xSx5mzfzEIgsC3rmnFt69dgQ217Dc/LmU21GrQbfXOG/Wc8oTxas80PrbGnHHmVSguFcGpQlaaquWwuEKIzdngD88G4fBHsbUx90OhQSeDLxJntcUCSFXdH5/wlKzlRyURFjRSZ/NGYFaJOZ+vZ5s6jRQSAe+84HAql4dLhxMAXNNugCccR9eYO+ufsXnDeOCFbnzt+W6I+Tw8dtuaTH4QG3z/hg68/sVt+F/XtGFtjXrJvYelpNOkRDiexGjaNekOxaCRFsdkSzVCMslxGrD7UaeVQsqSI+UjLVX42pWteOLT6/DkZ9bjY2vMkHFcW30xQR0+lFuO02PvjSIYjeP+Xc2V+0UJUYj5kAh4sPsjmWzJBo6dcNSYDZfB4dO+CHRyUUnHkMoB6kBscIZ5jlMolsBL3dO4sq0aVfLyEu6q5SLweQSjpjp/JFGUkaG5DqdCOTLuhlzEP889X2zq0veExYLDkySJn70zDJNSjE9uKJ1bRiUR4rpOY+W5cg4b6tSIJkicnuN4/P2RCRAEgds3VbIxS8XF/YSqsCjN1TIkkuS8HKYuBqNsXDXVnZj0IBJPLhpaziVKiaDgkTrTEgsMBwA+j0DrAsHhPekg5A4OHU4AsK1RC6VYgH0LtNXFE0k8eXgctz1xBAdHXbhnRyOe+twG1k/L+DwCgot8YZ8vnWlBsic9VucuosOJCmmmKzidmQng3WEnqy2DEiEfX7yiGavMqsoCkQMoBwvTCnEu6Z324a8nbfjE+hra4zAVuIEgCBiUYjj80YwAVK/l2OGUXgNZOCpPAVKC08U+TgfMaarLI8fplV47AtFEWYWFU/B5BIwKUSb7kw6+SLwoghPlcHKxIDgdHfdgQ6265OOMtRpKcMq+b3m1144+ux9fvKyxMiJdhqyvUYMAcGw8NVY3G4jixdM2XN9prNwrS0hl51QhK9QCeW6OU5fFhUadlJZgcnaxxa7g9IHFBQGPwIa60thI1RIBvAWGhi+1/CaKVr0CAw7/vDHJ3mk/6jQSzhvZRAIedrZW4e0zs/MqT49NuHH7k8fw0P4RbGnQ4k93bMIdW+ov+hPfcqNeK4VcxM8IlMUUnKoVIoj4BC3BKUmS+OG+QShEfNx9aSP3F1eBFUQCHnQyYdk4nJJJEj9+YwhambAkGR8VzqdaLoLDH4HFFQSB1PgMl1TJRZCL+Bjl2OFU2USl3luNVIhBBzPBKUmSeOboBNr0cqxZpuLo6grDqJLkMVLHveCklAhAoHCHk80bxpgrVPJxOuBsw/Z4ln1LOJbAz98dQYdRgd3tleykckQpEaBVL8exidQ0xDPHJhFLJPG5SyqFHaWksiOrkJVGnQw8Apkcp2g8iaPjHtpB3SaVBAIewbrD6dCoC2trVKyNujBFKRbAG8lPcArFEnCHYjAvQYcTALQZ5PBHEvNcBD02X8a9wjXXrDAgEE3g/REnnMEo/v9X+vDPfzyJUCyB/7p5JX5y88pK5XiZwiMIdBgV6LH5EE8k4Y8kiiY48QgCJpUEUzQW7X87bcOHU158+SNNlVn/JYZJJcE0AycAl7zw4RROWb2457LllUacMkGvEMGedjiZVWLO3QkEQaBBJ4PFyZ3Dye6vCE5A6rVu08sx4GA2Undg2IlRZwif3VxXts5Ts0oMG837WiJJIhBNQFGEDCc+j4BaKixYcDqadqJsYtBAzBUyER9VclHWkbqnj07C7o/iq1c0cVYEUKFwNtRpcMrqw2wgimdPTGFXq77sykQuNiqCU4WsiAU81GqkGYfTh1PpUTaa2UkCHoFajYTVxdZsIIoBR6Do7XRzUUmE8IZjeYWhn22oW5qiSJt+fnD4bCCKaV+E1ZykxdhYr4FOJsQv37fg1t8cwd4+B+64pA5/umMTLm8unyrjCgvTaVJi0BGAIxAFgKIJTkBqrC6Xw8kVjOLh/SNYX6PCjStL25ZTgTlGpbgsHE42bxg/fm0Aq8xK3FD5HJUNBoUYM/4ILK4Q6otUY96glbLu8qbwR+IIRBMwXOSB4RStegWGZgKZYgo6PHl4HGaVGFe1lW+gv0kphsMfofXvosKuiyVya6SCggWnI+NuqCWCsinPqNNIMLbASN1sIIr/+WAcV7RUYUNt6cWxCtnZUKtGJJ7Ed/b2IxBN4I4tFXdTqakIThUWpblannE4HRp1p0bZGNxo67UyVh1Oh9OB0aUUnNQSAWIJEuF47ra0c6Hm8JfqSF2LXg4CwEA6J4Gque8wFSfoUcAjcPUKPYZng1hhkOPpz23EPZctr8zRLxE6jErEkySOpH+Oiyo4qXILTj/bP4JANIFvXN1atqfdFbJjUoph84U5aUalg8UZxHf39uNj/30Y7lAU9+9qqZyClxF6pRjRBIkzMwHOA8MpGnUyTPsiCM0ZA2cLymlccTilaDPIEU2QmVD4XJyc8uLEpBef2lhb1tmMJpUECRKY8ecW031p930xRuqAVI6Tq4CWOpJMrQc21mnK5l5Zq5EumOH0q/ctiCSSuPey5SW4qgpMWF+Tilx5f8SF7ct1JQ+jr1AGgtODDz6Ibdu24YYbbsj82o9+9CPs2bMHN954I+655x54vWeT5n/5y1/i6quvxu7du/Huu++W4pIvKpqqZJhwhxCJJ9FlcWHNMhWjZqUGberGnWBw4rQYhywuqCWCkt48lJLUgzyfHCfbEnc4SYV81GulGdt6r80PAkC7oTgOJwD4lx2N+MUn1uDR29ZgeVVxTqkrsAM1evn+SKp8oNgOJ084Dn+Wcdij42683D2Nz26urQQ8L1GMSjFCsWRm01Us+qf9ePBvPbjtiZTr8pY1Zuz76uVYWaRR4wr0oJxAiSTJeWA4RYMuXZ7CQY7TdEVwmsdZBza9HKcnD49DJRHgo6tMXF5WwZjSB5R0gsP9kZSwWTSHk0xUUGj4pCcMmy9SFvlNFHUaKRz+KILRs8+R4dkA/nrKilvXmtFQJHdkhfzRyIRoqU6t4+6oZDeVBSUXnG655RY8/vjj835t+/bteOmll/C3v/0NjY2N+OUvfwkAOHPmDF5++WW8/PLLePzxx/Htb38biQT7p0YVztJcLUeSBE5MeNBv99Mep6Oo10oRTZCsjDmQJImuURcuadCCX8ImC3VGcGL+kJ3yRCDgEahewhb4NoMiM1LXM+1DY5WsqPXucpEAG+s0FQfKEsSsEkMtEWTaLostOAELN9VF40n8YN8glqkl+PyW+qJdUwV2oTZmdPNOCuX4hAdffu4UPvP7Yzg46sI/XlKHF75wCR64sgU1mkpeRLmhV5wVZighiGuozekoBzlOFcFpPo06KYR8AoM0cpwsziDeOTOLW9eai7p+yQezMvXssvlyZxD6i+xw0kgF8BQgOFFu53LIb6KgygTG54jED70zApmIjy9srRRALBVuWWvGR1eZsK62NAVTFeZTcsFp8+bNUKvnfxh27NgBgSB1s1y3bh1sNhsA4I033sD1118PkUiEuro6NDQ04OTJk0W/5ouJprSD5JljkwCYj7LVU6d7LNQCD88GMROIYktDaR9MhTqcjEpx2ViH86FVL8eUNwJfOF7UwPAKSx+CINBpUmYcKBpp8cKUFxOcnjwyDosrhH+7sqUynrmEoTbeXOY4kSSJ94aduOsPJ/BPf/wQfdN+fHFHI176py2457LlqJIv3cOEC525WUfFGqmr00hBALCwsAY6l+GZAHgEUK2oCE4AIODzsFwnwwCNprqnjk5AyCfwifU1RbiywjDSFNLDsQS6ramYg2KO1HlCMSTzHGM+Mu5GlVyExiIJwHSgwqWp/NkuiwvvjTjx+S31lSKRJcRt65bhW7vbSn0ZFdKUfXXKc889h2uvvRYAMD09jbVr12Z+z2g0Ynp6OuffwecT0GguDAskn88r6r9ltSLVNPfeiBNamRBb2gyM3EWr+anNmyOcKPi6T/bYAQBXr14GTQlPj2tCqc1ygs9n/G9yBGOor5LR+rpiv9d02bC8CjgwimPTfjiDMWxs1JXldS4lyvW95oINjTocHE05nOpNaogExTn36BCmHneuWHLea22ZDeA3XeO4dqUJ162v5fQaLqb3uRS0pXNYvHGSk9f59KQHD/71NPpsPpjVEvzH9R24dUMtpAs4JCrvdfkhV0pAEIBEwEdbrRY8lpzSud7rWq0UU74oa58HqyeM7/29F6/1TOPS5ipU6yojwBSrajXYP+hY9LWe8Ufwco8dH1tfg+YaZgeYpfi51gDQyoRwRuavo0mSxMC0HweGZnDgzAwOj7oQiSehEAvQVqeBRsa9+G3SyZEgAZ5YyPj7kSSJYxNeXNpcBa22fD7DKyUpUWncFcKV7QY88u5x1Gqk+KcrWiCuHEhdkFSe19xT1oLTY489Bj6fj5tuugkAFgwCpTNWk0iQcLu5q6UtJhqNrOj/lnptqqluU50GPi+zHAIBSUIu4qNv0lPwdb/VO41GnRQylPb95MVSgpN11g+3m5m7Z9wZxLZGLa3rL8V7TYcaWeq28UyXBQCwXC0uy+tcSpTre80Fy9NOI7mIj6A/jGL9qwmShEzIx5DNm3mtSZLEt54/DSGPwJd2NHD+HlxM73MpEJAkBDwCI3Yf669zLJHEV/54AqFYAv+xuw17OgwQ8nmIBCOILPCtKu91eaKVClEtF8HLcC2zGLne6zqNBIPThX8m40kSfzo+iV++Z0GCJHHPjkbcvqm28jmbQ4NajBl/FEOT7qxuw18fGEEsnsRtq02MX7tS/VyblGJYHH4MT7nRZXGha9SFLosbM+nG1+VVMtyyxowtjVpsqFWDiMbhjnKfZSchUvuyUZsXjQyzjUZmg3D4I1hjVJTdZ1grFWJkxo+n3h9B37QP//v6doQCEXDTN1mh1FSe1+yg12ffE5et4PT888/j7bffxm9/+9uMqGQymTLjdUDK8WQwGEp1iRcNTVVyDM8GsTWPZjiCIFCvlRbcVBeNJ3FswoObV5c+3DHfkbpoPImZQHTJBoZTVMlF0MmEODruAZ9HoFVfaX+oQJ+V6UbDYuY3Aal70TL1/Ka6ff0OHLK4cP/O5nn5LhWWJjyCgEEpzpQzsMkzRycx5grh/96yCtuX61j/+ysUhw21mqK3xDZoZTg27kGSJPMep++2evGD18+g3+7Hpcu1+PqVLahRl88YUrlABYcPOvyokp//cxqMJvDsh1Z8pKVqSYU/G5VivDs0i92PHQKQyhLd0qDFlkYttjRoS5bjRT3H88lxolqnyykwnKJWI0WvzYc3++xYZVbi6hX6Ul9ShQpLmrIUnPbv349f//rX+P3vfw+p9OwDddeuXbjvvvtw5513Ynp6GqOjo1izZk0Jr/TioM0gxxsD/6+9ew+PsjzzB/6dU2Ymh8lMEiYhIQkSiIkogaxZi0A0qQRimIJBPBRsF3qtle1iEYstWtsVrQrb9VD2UvEn7YVUvFoR1soWKvIrqFWQICZRCQcJh5wDmczkMJPM4dk/khlBEsgkkzm88/38pcM77zx57mTmnfu9n/tpxT8Ps3dShkGL6gbr1Q+8gsoGC3qcbp97SI2GaJUCCrnM54STp69ISoAvdv1NJpMhe0wsDpwxY2JSDNQBWhJF0pAUq4YxNirgCSegr49TvaUv+d1hd+K5faeQmxyLO6emBnwsNDqS49Ro8XMPp9bOHmw6cBazJiQw2RTmnjHlBvw1xydoYXe60dLRgxQfbzh19jjx0kense3zBiTFRuFZUy6KJyVx04xBTBrTtzTreEsXvjP+8r/Vd75ogtXuxA8KwmvnqpIcI+wON/LT4/Gd8QZca4wNiV6ghv7PcXO37wmnw+fakRKnRlp86N2ETTdo8Nf+Nh7PzMvl3xvRCAU94bRq1Sp8+umnMJvNKCwsxIoVK/Dqq6+it7cXS5cuBQDk5eVh7dq1mDRpEkpLS3H77bdDoVDgV7/6FRQKrqcdbXdNS0X+uHifL5Q8Mg3ReK+mFT1O97CTEwdOt0Mpl+GfQmAnC5lMBp1a6fPW2439d91TQ/DD1VfZxhgcOGNGbjKrm8h39xWkQ6UI/AVcarwGh86aIYTASx/Vwtzdi+fvmBzUXS/Jv1Li1Pi83uLXc/7ug1o43W6sKsry63kpMngqac602YZ8HSWEwJ5jrXhu3ym0dfXirmmpeGDG+IBtdx+u4rUqJMepcXyAneqcLje2VtRhapoON6TqgjC64Zt97ZiQrLLx3Dhq97HCyS0EDp9rx6ysxJBM5ozr7xNbPCkJeWnc5YxopIL+yfXcc89d9tiiRYsGPX758uVYvnz5aA6JviUmSjmiN9wMgxYCQF27DVlJw2sM+OkZM25I1YXM9rU6jRIW2/ASTuFe4QR8U7aeyx3qaBjuyQ/OzkCp8RrYHG78o7YNb1c24q5pqchN5u+wlCTHqdHS2QuXW/glkfh5nQW7j7Zg2U3p3i8hRL7wJJxOt3XjpvFXr9Kua7dh3d6TOHDajBxjLJ5bMJm7wfpg0pgYnBhgp7r3j59HU0cPVn93YhBGJU2ehPPuZ+wAABp7SURBVJPZx4TTydYuWOxOFITgcjoAmJqmQ1JsFP591jXBHgqRJAQ94UTSl9G/3elZ8/ASTubuXtS0dGL5jPF+Htnw6TQqWO2+fcDWXrBBpZAhWQK9Ym7KNOCWrEQUTuDyEgofqf3VBf+x6xiSYqPwQAi9p5B/pOjUcLkF2rp7R9yXy+UW+M//fxLJcWr8y00ZfhohRZrEaBViohQ4c5VelubuXvz+4Dls+7wBaqUcDxdlYdHUVFZg+ijbGItPatsuqaoXQmDLoXMYn6DFTF63+I1GpYBGKfe5wqniXF//plBYtTCQggwDPn6kCBYL24QT+QMTTjTq0vvvCp9pG94OAJ+e6ftgGsqdwUDRaZRo6+716TlVDRZclxwHpSL8ex7po1X47YLJwR4GkU88vSIsdieeNeVyeYoEeZrnNll7Rpxw2lHViOOtXXh6Xi603A6bhkkmk2F8QjROD3IN1N3rwtbDdfhjRR1sDhdM16fg/umZMAapEXS4yx4TA5cATl3o8lawfnqmHcdbu/B4SXZI9D6SEkO0yueE06Gz7cgwaIPW7HwoQnGpH1G44tU2jbpYtRKJMVHD3qnu4BkzdBolcoyh0y9Ip1Gi1ocEmt3hwtHmTtwbpKVERNS3pE4hA74zPgHFk5KCPRwaBZ4vMM0dPbhhBOdptznwyj9O48b0eNyWzd8VGpnMBC0q+nfl8nC63Pif6ib8v0/OoK3bgVsnJuLfZl6DaxLDZ/e0UOTZOfdEyzcJpy0V55AUE4W5udzZ2t/0Wt8STk63wJE6C0pyQq8nFRGNDiacKCAyDdphJZyEEDh4xox/ztCHVFm5TqP0aUldTXMnnG6BvLTwalRJJCXRUQr8951TkG2M4d1LiUqJ66tiaxrhTnWv/OM0OnuceLh4In9XaMQyDdH461ct6O51QauS4/3j5/HyR7U4127HtDQd/nP+ZEwJs0bWoWqcXgOtSu5tHH6spRMHz7Tj32ddgyjuqut3eq3Kp13qjjV3oKvXhRtDdDkdEfkfE04UEBkGLfafvODz82rbutHS2YubMkNnOR3Ql3Dq7HENuTFtZYMVAHhBSRRkN4Zok1Lyj1i1AtEqBZpHkHA61tyJ7ZWNuDs/DROHudEF0cXG9/ey/J/qRuw+2oKjzZ3ISorGcwsmY+aEBCY1/Uguk2FiUiyO9zcO33LoHKJVCpRPGRvkkUmTXqvyqWXGnmPnoZDLQrZhOBH5HxNOFBAZBi3MNgesdgd0GtWQn3cwBPs3AfD+DB09Tu8uHVdSWW9BhkELQ3TUaA+NiChiyWQyJOvUaOrfFdRXQvQ1CtdrVbh/eqafR0eRKqN/p7rn951Ccpwav56bjdLc5JCq3JaSbGMM/lbTggaLHe8fa8U9+eMQp+FXntFgiFYNeZe6HqcbO79swi1ZibweJoogfPelgMgw9F1snTPbMHns0BNO+0+eR4ZBi7H9u0uFCl3/hUuH/eoJJyEEqhqsKMxKDMTQiIgiWnKcetgVTruOtqCywYrHS7L5BZX8ZnxCNG6/zoiJSTG4a1qad/c0Gh3ZY2LwdqULz/39a0Amwz35qcEekmTptSrYHG7YHS5orrK5wt9PnIfF7mS1GVGE4SceBUSmoX+nOh/6ONU0d+DwOQvmX58yWsMaNk/CaSh9nM6YbbDYnVxOR0QUACnDTDh19Tqx4YNaTE6Jw7zrk0dhZBSplHIZnijNwX0F6Uw2BYCncfj+ry9gbs4YpITYTUsp8dx0HUrj8O1VjUiL16Agk8vpiCIJP/UoINL0fbtD+ZJw2nKoDjFRCpTnhd6dEM+SOovdedVjq+r7+jflpcWP6piIiKivwqmt24Eep9un52365CzOd/VidXEWt04nCmMTx8TA8xe85Mb0oI5F6jwJJ4vtytfDpy9040idBXdMGcv3V6IIw4QTBYRKIUdqvAZn24aWcKq32PD+8VaUTxmLWHXoLWvQqb9ZUnc1lQ0WxGuUyOxvGkpERKMnRacGALT4UOV0uq0bb35Wj+9dn4zJY1mNShTOtCoFJo2JwawJCZg4ho3/R5OhP+FktvVe8bgd1Y1QyGWYN5nVo0SRJvS+yZNkZRiicdY8tJ0stlbUQy6T4Z78tFEe1fDotH1/OkOpcKqst+KGVB3v6BARBUByXF/CqbmjB+mGqyf6hRD4r79/DY1Kjp/Muma0h0dEAfDyXVMQpeB99dH2zZK6wa+He5xu/O+XzSiamIjEGDYLJ4o0fCemgMkwaHHWbIMQ4orHtXc78M4XTZiba4Sx/4tDqPFWOPVcec16e7cDZ8w25LF/ExFRQKTE9fVraeoY2k51H3x9AQdOm3H/zeORwJ2TiCRBp1FdtYk1jZw+2lPhNPj18N7jrbDYnbiDzcKJIhITThQwGQYt7E43WjuvXHb7VmUDepxuLLlxXIBG5julQo5olQLWq1Q4VTX29W+aksaEExFRIBgvqnC6mkNnzVj7t+OYkBiNRSHYL5CIKJTpNErIZUB79+DX9juqGpGu1+DGDDYLJ4pETDhRwGR4d6obfFmd3eHCn480YOaEBGQlhfa6e51GedUldZX1VijlMlyXHBegURERRTa1Uo6EaBWarFdOOL31eQNWbKtGUkwU/mvBZCi5/IaIyCdymQzxGtWgS+q+Pt+Fz+utbBZOFMF4dUUB40k4nb3CTnXvftmMdpsDPygI/V1F4jTKqzYNr2qwICc5lmXdREQBlBynHrTCyely49n3T2D93pOYfk0CNt07FeP03NSBiGg49NGqQZfU7ahqhErBZuFEkYxNwylgjHFqaJTyQRNOTrfAGxV1uGFsHKaGwRK0eI0SVvvga9Z7nW581dSBO6emBnBURESUHKfGmQE+a9ptDvzi3a9w+JwFPyhIx7/NHA+FnHfdiYiGS69VoX2AhJPd4cJfv2pB0cQkGNgfjyhiscKJAkYukyG9v3H4QP5+4jzqLXbcV5AOWRiU3cZpVFfs4XSspRO9LoG8tPgAjoqIiJLj1Gi29lyyScWpC134lzeOoLrBiidKr8WKwmuYbCIiGiGDVoX27ssTTu8fb0VHjxPl7I9HFNFY4UQBlWnQ4nhr12WPCyGw5dA5ZBi0KMxKDMLIfKfTKK+YcKps6G8Yzh3qiIgCKkWnQbfDhc4eF+I0Snx06gJ++b81UCvleOWuPNzA92UiIr8YrMJpe2UTMg1a5I/jjVeiSMYKJwqoDIMW9e02OF3uSx4/fM6Co82dWHLjuLC543y1JXWV9RakxWuQFMMyYiKiQEq+aKe6LYfOYdWOL5Gu12Lz4mlMNhER+ZE+WgWL3QH3RRWlJ1u7UN3Y1yw8HFYtENHoYYUTBVSGIRouAdRZ7BifEO19/PVD55AQrcLt14VPU8E4tRK9LgG7w3VZU3AhBKoarPjOeEOQRkdEFLk8Caf/2H0Mx1o6cVv2GPx6bjY3cCAi8jO9VgW3AKx2J/RaFQBge1UjohQylLFZOFHEY4UTBdRAO9WdaO3EJ6fNuCc/DWpl+PxK6vo/VAdaVldvsaOt24E83kknIgq4lP6E07GWTvz45kw8PS+HySYiolFg6L8e9vRxsjlc+OtXzSjOHuNNQBFR5GKFEwXUQAmnLYfqoFXJsTDMmgrq1H1/PtYeJ4z9X248Kus9/Zu4bp2IKNCSYqPw/X9Kw9S0eBRNSgr2cIiIJEuv7bse9vRx2lPTiq5eF8qnhNd1PRGNDiacKKDitSrotSqcNXcDAJqsdrxX04K789Og04TXXRCdpj/hNEAfp8oGC2LVCkxIir7s34iIaHTJZTI8dGtWsIdBRCR5Bm1fr1Jzf8Jpe1UjrkmIxtQ0VvkTEZfUURBkGLTeCqc3P6sHZDLcm58W5FH5Lr4/QWa1Xb6krrLeihvG6iBno0QiIiIikqj4iyqcjrV04sumDtyRx2bhRNSHCScKOE/CyWp3YEdVI+bkjEGKThPsYfksTvPNkrqLWe0OnLrQjTze2SEiIiIiCfP0aWq39V3Xq5VylF1nDPKoiChUMOFEAZdh0KK1sxevH6qDzeHGfTemB3tIw/LNkrpLE07VjR0AgDz2byIiIiIiCdOoFNCq5Giw2LH7aAtuy04KuzYZRDR62MOJAi6zv3H4GxV1uPkaAyaOiQnyiIYnJkoBhQzo+FYPp6p6CxQyYPLYuCCNjIiIiIgoMAxaFf5W0wKbw4072CyciC7CCicKuAxDXyNtp1vgBwXhWd0EADKZDHEaFSzfqnCqbLAi2xgLLbfgJiIiIiKJi9eqYHO4kZUUjSmpbClBRN9gwokCbpxeAxmA3ORY5I8L72VnOo3ykiV1TpcbXzR28MOWiIiIiCKCIbpvCV35FDYLJ6JLcUkdBZxGpcCqoizkpenC/kNJp1Gi46KE0/HWLvQ43chLC+9EGhERERHRUCTFREGtlKM0NznYQyGiEMOEEwXFPflpwR6CX+g0Spi7v+nhVNlgBQBWOBERERFRRPjX6ZlYcMNY7w7OREQefFcgGgGdRoUzbTbv/1fVW5ASp0ZynDqIoyIiIiIiCowUnQYpOk2wh0FEIYg9nIhGQKdWoqOnb0mdEAKVDVbkpbG6iYiIiIiIiCIbK5yIRsDTw8ktBJqsPWjt7MWUVPZvIiIiIiIiosjGCieiEYjTKCEAdPY4UdXfv4kVTkRERERERBTpmHAiGoF4Td82sFa7E5X1FkSrFJiYFBPkUREREREREREFFxNORCOg69+Nw2J3orLBiuvHxkEhlwV5VERERERERETBxYQT0Qh4Ek5NVju+Pt/F5XREREREREREYMKJaER0/UvqPq5tg1sAeWwYTkRERERERBT8hNOaNWswffp0zJs3z/vYrl27UFZWhpycHFRXV3sfdzgc+PnPfw6TyYTS0lJs3LgxGEMm8orrr3D66FQb5DLg+tS4II+IiIiIiIiIKPiCnnAqLy/Ha6+9dslj2dnZ2LBhAwoKCi55fPfu3ejt7cW7776L7du3409/+hPq6uoCOVyiS+jUfQmntm4HJibFICZKGeQREREREREREQVf0L8dFxQUXJY0ysrKGvBYmUwGm80Gp9MJu90OlUqF2NjYQAyTaEBRSjm0KjlsDjempLJ/ExEREREREREQAhVOvpgzZw60Wi1mzpyJoqIiLFu2DHq9PtjDoggX11/llJfG/k1EREREREREQAhUOPmiqqoKcrkcH374IaxWK77//e/j5ptvRnp6+hWfp1DIoNdHB2iUo0uhkEvmZ5GKhBg1Wjp7MSs3GXq91m/nZawjB2MdGRjnyMFYRw7GOnIw1pGDsY4cjPXoC6uE086dOzFr1iyoVCokJiYiPz8f1dXVV004uVwC7e3dARrl6NLroyXzs0hFTJQcxtgoRAu3X2PDWEcOxjoyMM6Rg7GOHIx15GCsIwdjHTkYa/8YM2bwjbPCaknd2LFjcfDgQQgh0N3djcrKSkyYMCHYw6IId9+N6Xjo1izIZLJgD4WIiIiIiIgoJAS9wmnVqlX49NNPYTabUVhYiBUrVkCv1+PJJ59EW1sbfvzjHyM3NxebNm3C4sWLsWbNGsybNw9CCJSXlyMnJyfYPwJFuBkTEoI9BCIiIiIiIqKQIhNCiGAPYrQ5HC7JlMqx7C9yMNaRg7GODIxz5GCsIwdjHTkY68jBWEcOxto/JLOkjoiIiIiIiIiIQh8TTkRERERERERE5FdMOBERERERERERkV8x4URERERERERERH7FhBMREREREREREfkVE05ERERERERERORXTDgREREREREREZFfMeFERERERERERER+JRNCiGAPgoiIiIiIiIiIpIMVTkRERERERERE5FdMOBERERERERERkV8x4URERERERERERH7FhBMREREREREREfkVE05ERERERERERORXTDgREREREREREZFfMeFERERERERERER+xYTTCDQ2NuK+++5DaWkpysrKsHnzZgBAe3s7li5dipKSEixduhQWiwUA8Je//AUmkwkmkwn33HMPampqvOf64IMPMGfOHMyePRuvvvrqoK+5Y8cOlJSUoKSkBDt27PA+/vzzz+OWW27BtGnTrjjmL774AiaTCbNnz8ZTTz0FIQQAYNeuXSgrK0NOTg6qq6uHPSdSJaVYr1u3DnPnzoXJZMJPfvITWK3WYc+LFEkp1i+88AJMJhPmz5+PZcuWobm5edjzIkVSirXHpk2bcO2116Ktrc3n+ZAyKcV6w4YNmDVrFubPn4/58+dj//79w54XKZJSrAFgy5YtmDNnDsrKyrB+/fphzYlUSSnWK1eu9P5NFxcXY/78+cOeFymSUqyPHj2Ku+66C/Pnz0d5eTmqqqqGPS9SJKVY19TU4O6774bJZMIDDzyAzs7OYc9LWBM0bM3NzeKLL74QQgjR0dEhSkpKxIkTJ8S6devExo0bhRBCbNy4Uaxfv14IIcThw4dFe3u7EEKIffv2iTvvvFMIIYTT6RTf/e53xdmzZ0VPT48wmUzixIkTl72e2WwWxcXFwmw2i/b2dlFcXOw935EjR0Rzc7OYOnXqFce8cOFC8dlnnwm32y1+9KMfiX379gkhhDh58qT4+uuvxZIlS0RVVZUfZkdapBTrDz/8UDgcDiGEEOvXr/eOmfpIKdYdHR3eYzZv3iwef/zxkUyN5Egp1kII0dDQIJYtWyZuvfVWceHChRHOjrRIKda/+93vxGuvveaHWZEmKcX6k08+ET/84Q9FT0+PEEKI8+fPj3R6JEVKsb7YM888IzZs2DDMWZEmKcV66dKl3v/et2+fWLJkyUinR1KkFOvy8nJx8OBBIYQQb731lnj++edHOj1hiRVOI2A0GjF58mQAQGxsLCZMmIDm5mbs3bsXCxYsAAAsWLAA77//PgAgPz8f8fHxAICpU6eiqakJAFBVVYXMzEykp6cjKioKZWVl2Lt372Wv99FHH2HGjBnQ6/WIj4/HjBkz8OGHH3rPZzQarzjelpYWdHZ2Ytq0aZDJZFiwYIH3dbKysjBhwgQ/zIo0SSnWM2fOhFKpvGxs1EdKsY6NjfUeZ7PZIJPJRjI1kiOlWAPAM888g9WrVzPOA5BarGlwUor1m2++ifvvvx9RUVEAgMTExJFOj6RIKdYeQgjs2rUL8+bNG8HMSI+UYi2TydDV1QUA6OjouOq5Io2UYl1bW4uCggIAwIwZM/Dee++NdHrCEhNOflJXV4ejR48iLy8PFy5c8P5yGo3GAZc2bNu2DYWFhQCA5uZmpKSkeP8tOTl5wKUvQz1uMN9+fkpKCpfYDIOUYv322297x0aXk0KsPeXA7777Ln76058O+byRJtxjvXfvXhiNRuTk5Az5fJEq3GMNAG+88QZMJhPWrFnjXVZAlwv3WJ8+fRoVFRVYtGgRlixZwqU3VxDusfaoqKhAYmIixo8fP+TzRppwj/Wjjz6K9evX45ZbbsG6deuwatWqIZ830oR7rLOzs73Jp927d6OxsXHI55USJpz8oKurCw8++CAeffTRSyoKBnPgwAFs27YNP/vZzwDgsh4cAAa8Qz3U4wYz0ueTtGL98ssvQ6FQ4Hvf+96QzxtJpBLrhx56CPv374fJZMIf//jHIZ83koR7rG02G1555RUmFIcg3GMNAPfeey/27NmDd955B0ajEc8+++yQzxtJpBBrl8sFq9WKP//5z3jkkUewcuXKAY+PdFKItcfOnTtZ3XQFUoj1m2++iTVr1mD//v1Ys2YNHnvssSGfN5JIIda/+c1vsHXrVpSXl6Orq8tbrRppmHAaIYfDgQcffBAmkwklJSUA+kqeW1paAPSV2SUkJHiPr6mpwS9/+Uu89NJLMBgMAPoyoRcva2pubobRaERlZaW3geDevXsHPW4wLpfL+/wXX3zxsuc3NTWxjNMHUor1jh07sG/fPvz2t79l0nEAUoq1x7x58yK2lPdKpBDrs2fPoq6uzttstqmpCeXl5WhtbfXPJEmEFGINAElJSVAoFJDL5Vi0aBE3+hiAVGKdnJyM2bNnQyaTYcqUKZDL5TCbzX6YIemQSqwBwOl0Ys+ePbj99ttHOCvSJJVYexpUA0BpaSkrFwcglVhnZWXh97//PbZv346ysjKkp6f7YXbCUEA6RUmU2+0Wq1evFk899dQljz/77LOXNDVbt26dEEKI+vp6cdttt4nDhw9fcrzD4RDFxcWXNDU7fvz4Za9nNptFUVGRaG9vF+3t7aKoqEiYzeZLjrlaU7Py8nJx5MiRQZsVsmn4wKQU6/3794vS0lI2FR6ElGJdW1vrPeb1118XK1asGNokRAgpxfpiRUVF/Pv+FinFurm52XvMH/7wB7Fy5cohzkJkkFKst27dKl544QUhhBCnTp0ShYWFwu12+zAb0ialWAvRd322ePHioU9ABJFSrOfOnSsOHDgghBDi448/FnfccYcPMyF9Uoq1Z6MHl8slVq9eLd566y0fZkI6ZEKwNne4KioqsHjxYmRnZ0Mu7ysWW7VqFaZMmYKVK1eisbERY8eOxYsvvgi9Xo/HHnsM7733HlJTUwEACoUC27dvBwDs378fTz/9NFwuFxYuXIjly5cP+Jrbtm3Dxo0bAQAPPPAAFi5cCABYv349du7ciZaWFhiNRixatAgrVqy47PnV1dVYs2YN7HY7CgsL8fjjj0Mmk2HPnj148skn0dbWBp1Oh9zcXGzatMnvcxaupBTr2bNno7e3F3q9HgCQl5eHtWvX+nfCwpiUYr1ixQrU1tZCJpMhLS0NTzzxBJKTk/0+Z+FKSrG+WHFxMbZt23bJ3b9IJ6VYr1692rvtc1paGtauXctq5YtIKda9vb149NFHUVNTA5VKhUceeQTTp0/3+5yFKynFGgB+8YtfIC8vD/fee69/J0oCpBTriooKPP3003A6nVCr1fj1r3+N66+/3u9zFq6kFOvNmzdj69atAIDZs2fj4YcfjsiVJUw4ERERERERERGRX7GHExERERERERER+RUTTkRERERERERE5FdMOBERERERERERkV8x4URERERERERERH7FhBMREREREREREfkVE05ERERERERERORXTDgREREREREREZFf/R8PLt2fqZaFjgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "fig, axs = plt.subplots(3, 1, figsize=(20, 15))\n", "plot_fleet = fleet.loc[fleet[\"vehicle_id\"] == 2]\n", @@ -376,26 +189,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 7238\n", - "1 1762\n", - "Name: target, dtype: int64\n", - "\n", - "Percent of failures in the dataset: 0.19577777777777777\n", - "Number of vehicles with 1+ failures: 49\n", - "\n", - "0 0.804222\n", - "1 0.195778\n", - "Name: target, dtype: float64\n" - ] - } - ], + "outputs": [], "source": [ "# let's look at the proportion of failures to non-failure\n", "print(fleet[\"target\"].value_counts())\n", @@ -422,38 +218,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " percentage of failures\n", - "vehicle_id \n", - "84 1.00\n", - "65 1.00\n", - "17 1.00\n", - "71 1.00\n", - "28 0.99\n", - "15 0.92\n", - "3 0.88\n", - "63 0.76\n", - "31 0.74\n", - "40 0.73\n", - "75 0.67\n", - "6 0.66\n", - "73 0.61\n", - "42 0.58\n", - "64 0.49\n", - "85 0.42\n", - "16 0.40\n", - "22 0.38\n", - "39 0.36\n", - "26 0.35\n" - ] - } - ], + "outputs": [], "source": [ "p = fleet.groupby([\"vehicle_id\"])[\"target\"].sum().rename(\"percentage of failures\")\n", "fail_percent = pd.DataFrame(p / 100)\n", @@ -463,123 +230,9 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "target 0\n", - "vehicle_id 0\n", - "datetime 0\n", - "make 0\n", - "model 0\n", - "year 0\n", - "vehicle_class 0\n", - "engine_type 0\n", - "make_code_Make A 0\n", - "make_code_Make B 0\n", - "make_code_Make E 0\n", - "make_code_Make C 0\n", - "make_code_Make D 0\n", - "model_code_Model E1 0\n", - "model_code_Model A4 0\n", - "model_code_Model B1 0\n", - "model_code_Model B2 0\n", - "model_code_Model A2 0\n", - "model_code_Model A3 0\n", - "model_code_Model B3 0\n", - "model_code_Model C2 0\n", - "model_code_Model A1 0\n", - "model_code_Model A5 0\n", - "model_code_Model A6 0\n", - "model_code_Model C1 0\n", - "model_code_Model D1 0\n", - "model_code_Model E2 0\n", - "vehicle_class_code_Truck-Tractor 0\n", - "vehicle_class_code_Truck 0\n", - "vehicle_class_code_Bus 0\n", - "vehicle_class_code_Transport 0\n", - "engine_type_code_Engine E 0\n", - "engine_type_code_Engine C 0\n", - "engine_type_code_Engine B 0\n", - "engine_type_code_Engine F 0\n", - "engine_type_code_Engine H 0\n", - "engine_type_code_Engine D 0\n", - "engine_type_code_Engine A 0\n", - "engine_type_code_Engine G 0\n", - "voltage 0\n", - "current 0\n", - "resistance 0\n", - "cycle 0\n", - "engine_age 0\n", - "dtype: int64\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
targetvehicle_iddatetimemakemodelyearvehicle_classengine_typemake_code_Make Amake_code_Make B...engine_type_code_Engine Fengine_type_code_Engine Hengine_type_code_Engine Dengine_type_code_Engine Aengine_type_code_Engine Gvoltagecurrentresistancecycleengine_age
\n", - "

0 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [target, vehicle_id, datetime, make, model, year, vehicle_class, engine_type, make_code_Make A, make_code_Make B, make_code_Make E, make_code_Make C, make_code_Make D, model_code_Model E1, model_code_Model A4, model_code_Model B1, model_code_Model B2, model_code_Model A2, model_code_Model A3, model_code_Model B3, model_code_Model C2, model_code_Model A1, model_code_Model A5, model_code_Model A6, model_code_Model C1, model_code_Model D1, model_code_Model E2, vehicle_class_code_Truck-Tractor, vehicle_class_code_Truck, vehicle_class_code_Bus, vehicle_class_code_Transport, engine_type_code_Engine E, engine_type_code_Engine C, engine_type_code_Engine B, engine_type_code_Engine F, engine_type_code_Engine H, engine_type_code_Engine D, engine_type_code_Engine A, engine_type_code_Engine G, voltage, current, resistance, cycle, engine_age]\n", - "Index: []\n", - "\n", - "[0 rows x 44 columns]" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# check for missing values\n", "print(fleet.isnull().sum())\n", @@ -588,30 +241,9 @@ "fleet[fleet.loc[:, \"voltage\":\"resistance\"].values == 0]" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---\n", - " \n", - "## Feature Engineering \n", - "\n", - "\n", - "[contents](#2_Contents)\n", - "\n", - "For PrM, feature selection, generation and engineering is extremely important and very depended on domain expertise and understanding of the systems involved. For our solution, we will focus on the some simple features such as:\n", - "* lag features \n", - "* rolling average\n", - "* rolling standard deviation \n", - "* age of the engines \n", - "* categorical labels\n", - "\n", - "These features serve as a small example of the potential features that could be created. Other features to consider are changes in the sensor values within a window, change from the initial value or number over a defined threshold. For additional guidance on Feature Engineering, visit the [SageMaker Tabular Feature Engineering guide](). " - ] - }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -622,7 +254,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -642,135 +274,9 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
vehicle_idvoltage_rolling_mean_4current_rolling_mean_4resistance_rolling_mean_4voltage_rolling_std_4current_rolling_std_4resistance_rolling_std_4
level_1
0014.0340300.173326128.3127600.0542980.0042014.661643
1014.0340300.173326128.3127600.0542980.0042014.661643
2014.0340300.173326128.3127600.0542980.0042014.661643
3014.0340300.173326128.3127600.0542980.0042014.661643
4014.0119340.172462121.8480690.0285050.00339810.347376
\n", - "
" - ], - "text/plain": [ - " vehicle_id voltage_rolling_mean_4 current_rolling_mean_4 \\\n", - "level_1 \n", - "0 0 14.034030 0.173326 \n", - "1 0 14.034030 0.173326 \n", - "2 0 14.034030 0.173326 \n", - "3 0 14.034030 0.173326 \n", - "4 0 14.011934 0.172462 \n", - "\n", - " resistance_rolling_mean_4 voltage_rolling_std_4 \\\n", - "level_1 \n", - "0 128.312760 0.054298 \n", - "1 128.312760 0.054298 \n", - "2 128.312760 0.054298 \n", - "3 128.312760 0.054298 \n", - "4 121.848069 0.028505 \n", - "\n", - " current_rolling_std_4 resistance_rolling_std_4 \n", - "level_1 \n", - "0 0.004201 4.661643 \n", - "1 0.004201 4.661643 \n", - "2 0.004201 4.661643 \n", - "3 0.004201 4.661643 \n", - "4 0.003398 10.347376 " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# create rolling stats for voltage, current and resistance group by vehicle_id\n", "stats = pd.DataFrame()\n", @@ -801,136 +307,9 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
targetvehicle_iddatetimemakemodelyearvehicle_classengine_typemake_code_Make Amake_code_Make B...engine_agevoltage_lag_1current_lag_1resistance_lag_1voltage_rolling_mean_4current_rolling_mean_4resistance_rolling_mean_4voltage_rolling_std_4current_rolling_std_4resistance_rolling_std_4
0002020-01-01 00:00:00Make AModel A12018TruckEngine A1.00.0...214.1034210.177269133.05960314.034030.173326128.312760.0542980.0042014.661643
1002020-01-01 02:00:00Make AModel A12018TruckEngine A1.00.0...214.1034210.177269133.05960314.034030.173326128.312760.0542980.0042014.661643
\n", - "

2 rows × 53 columns

\n", - "
" - ], - "text/plain": [ - " target vehicle_id datetime make model year \\\n", - "0 0 0 2020-01-01 00:00:00 Make A Model A1 2018 \n", - "1 0 0 2020-01-01 02:00:00 Make A Model A1 2018 \n", - "\n", - " vehicle_class engine_type make_code_Make A make_code_Make B ... \\\n", - "0 Truck Engine A 1.0 0.0 ... \n", - "1 Truck Engine A 1.0 0.0 ... \n", - "\n", - " engine_age voltage_lag_1 current_lag_1 resistance_lag_1 \\\n", - "0 2 14.103421 0.177269 133.059603 \n", - "1 2 14.103421 0.177269 133.059603 \n", - "\n", - " voltage_rolling_mean_4 current_rolling_mean_4 resistance_rolling_mean_4 \\\n", - "0 14.03403 0.173326 128.31276 \n", - "1 14.03403 0.173326 128.31276 \n", - "\n", - " voltage_rolling_std_4 current_rolling_std_4 resistance_rolling_std_4 \n", - "0 0.054298 0.004201 4.661643 \n", - "1 0.054298 0.004201 4.661643 \n", - "\n", - "[2 rows x 53 columns]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "fleet_lagged = pd.concat([fleet, stats.drop(columns=[\"vehicle_id\"])], axis=1)\n", "fleet_lagged.head(2)" @@ -938,680 +317,9 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countmeanstdmin25%50%75%max
target9000.00.200.400.000.000.000.001.00
vehicle_id9000.044.5025.980.0022.0044.5067.0089.00
year9000.02016.073.062006.002015.002017.002018.002020.00
make_code_Make A9000.00.400.490.000.000.001.001.00
make_code_Make B9000.00.240.430.000.000.000.001.00
make_code_Make E9000.00.200.400.000.000.000.001.00
make_code_Make C9000.00.110.310.000.000.000.001.00
make_code_Make D9000.00.040.210.000.000.000.001.00
model_code_Model E19000.00.180.380.000.000.000.001.00
model_code_Model A49000.00.130.340.000.000.000.001.00
model_code_Model B19000.00.090.280.000.000.000.001.00
model_code_Model B29000.00.090.280.000.000.000.001.00
model_code_Model A29000.00.070.250.000.000.000.001.00
model_code_Model A39000.00.070.250.000.000.000.001.00
model_code_Model B39000.00.070.250.000.000.000.001.00
model_code_Model C29000.00.070.250.000.000.000.001.00
model_code_Model A19000.00.040.210.000.000.000.001.00
model_code_Model A59000.00.040.210.000.000.000.001.00
model_code_Model A69000.00.040.210.000.000.000.001.00
model_code_Model C19000.00.040.210.000.000.000.001.00
model_code_Model D19000.00.040.210.000.000.000.001.00
model_code_Model E29000.00.020.150.000.000.000.001.00
vehicle_class_code_Truck-Tractor9000.00.670.470.000.001.001.001.00
vehicle_class_code_Truck9000.00.200.400.000.000.000.001.00
vehicle_class_code_Bus9000.00.090.280.000.000.000.001.00
vehicle_class_code_Transport9000.00.040.210.000.000.000.001.00
engine_type_code_Engine E9000.00.310.460.000.000.001.001.00
engine_type_code_Engine C9000.00.270.440.000.000.001.001.00
engine_type_code_Engine B9000.00.180.380.000.000.000.001.00
engine_type_code_Engine F9000.00.090.280.000.000.000.001.00
engine_type_code_Engine H9000.00.070.250.000.000.000.001.00
engine_type_code_Engine D9000.00.040.210.000.000.000.001.00
engine_type_code_Engine A9000.00.020.150.000.000.000.001.00
engine_type_code_Engine G9000.00.020.150.000.000.000.001.00
voltage9000.013.650.4011.5513.3713.7013.9315.94
current9000.00.170.060.010.130.160.190.39
resistance9000.087.0222.9234.3858.7994.69102.61138.36
cycle9000.050.5028.871.0025.7550.5075.25100.00
engine_age9000.03.933.060.002.003.005.0014.00
voltage_lag_19000.013.650.4111.5513.3713.7013.9315.94
current_lag_19000.00.170.060.010.130.160.190.39
resistance_lag_19000.087.0222.9534.3858.8494.69102.64138.36
voltage_rolling_mean_49000.013.650.4111.7713.3613.7013.9315.87
current_rolling_mean_49000.00.170.060.020.140.160.190.39
resistance_rolling_mean_49000.087.0322.9335.2258.7594.81102.56136.35
voltage_rolling_std_49000.00.040.040.000.010.030.060.28
current_rolling_std_49000.00.000.000.000.000.000.000.02
resistance_rolling_std_49000.01.020.730.000.520.891.3610.94
\n", - "
" - ], - "text/plain": [ - " count mean std min 25% \\\n", - "target 9000.0 0.20 0.40 0.00 0.00 \n", - "vehicle_id 9000.0 44.50 25.98 0.00 22.00 \n", - "year 9000.0 2016.07 3.06 2006.00 2015.00 \n", - "make_code_Make A 9000.0 0.40 0.49 0.00 0.00 \n", - "make_code_Make B 9000.0 0.24 0.43 0.00 0.00 \n", - "make_code_Make E 9000.0 0.20 0.40 0.00 0.00 \n", - "make_code_Make C 9000.0 0.11 0.31 0.00 0.00 \n", - "make_code_Make D 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model E1 9000.0 0.18 0.38 0.00 0.00 \n", - "model_code_Model A4 9000.0 0.13 0.34 0.00 0.00 \n", - "model_code_Model B1 9000.0 0.09 0.28 0.00 0.00 \n", - "model_code_Model B2 9000.0 0.09 0.28 0.00 0.00 \n", - "model_code_Model A2 9000.0 0.07 0.25 0.00 0.00 \n", - "model_code_Model A3 9000.0 0.07 0.25 0.00 0.00 \n", - "model_code_Model B3 9000.0 0.07 0.25 0.00 0.00 \n", - "model_code_Model C2 9000.0 0.07 0.25 0.00 0.00 \n", - "model_code_Model A1 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model A5 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model A6 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model C1 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model D1 9000.0 0.04 0.21 0.00 0.00 \n", - "model_code_Model E2 9000.0 0.02 0.15 0.00 0.00 \n", - "vehicle_class_code_Truck-Tractor 9000.0 0.67 0.47 0.00 0.00 \n", - "vehicle_class_code_Truck 9000.0 0.20 0.40 0.00 0.00 \n", - "vehicle_class_code_Bus 9000.0 0.09 0.28 0.00 0.00 \n", - "vehicle_class_code_Transport 9000.0 0.04 0.21 0.00 0.00 \n", - "engine_type_code_Engine E 9000.0 0.31 0.46 0.00 0.00 \n", - "engine_type_code_Engine C 9000.0 0.27 0.44 0.00 0.00 \n", - "engine_type_code_Engine B 9000.0 0.18 0.38 0.00 0.00 \n", - "engine_type_code_Engine F 9000.0 0.09 0.28 0.00 0.00 \n", - "engine_type_code_Engine H 9000.0 0.07 0.25 0.00 0.00 \n", - "engine_type_code_Engine D 9000.0 0.04 0.21 0.00 0.00 \n", - "engine_type_code_Engine A 9000.0 0.02 0.15 0.00 0.00 \n", - "engine_type_code_Engine G 9000.0 0.02 0.15 0.00 0.00 \n", - "voltage 9000.0 13.65 0.40 11.55 13.37 \n", - "current 9000.0 0.17 0.06 0.01 0.13 \n", - "resistance 9000.0 87.02 22.92 34.38 58.79 \n", - "cycle 9000.0 50.50 28.87 1.00 25.75 \n", - "engine_age 9000.0 3.93 3.06 0.00 2.00 \n", - "voltage_lag_1 9000.0 13.65 0.41 11.55 13.37 \n", - "current_lag_1 9000.0 0.17 0.06 0.01 0.13 \n", - "resistance_lag_1 9000.0 87.02 22.95 34.38 58.84 \n", - "voltage_rolling_mean_4 9000.0 13.65 0.41 11.77 13.36 \n", - "current_rolling_mean_4 9000.0 0.17 0.06 0.02 0.14 \n", - "resistance_rolling_mean_4 9000.0 87.03 22.93 35.22 58.75 \n", - "voltage_rolling_std_4 9000.0 0.04 0.04 0.00 0.01 \n", - "current_rolling_std_4 9000.0 0.00 0.00 0.00 0.00 \n", - "resistance_rolling_std_4 9000.0 1.02 0.73 0.00 0.52 \n", - "\n", - " 50% 75% max \n", - "target 0.00 0.00 1.00 \n", - "vehicle_id 44.50 67.00 89.00 \n", - "year 2017.00 2018.00 2020.00 \n", - "make_code_Make A 0.00 1.00 1.00 \n", - "make_code_Make B 0.00 0.00 1.00 \n", - "make_code_Make E 0.00 0.00 1.00 \n", - "make_code_Make C 0.00 0.00 1.00 \n", - "make_code_Make D 0.00 0.00 1.00 \n", - "model_code_Model E1 0.00 0.00 1.00 \n", - "model_code_Model A4 0.00 0.00 1.00 \n", - "model_code_Model B1 0.00 0.00 1.00 \n", - "model_code_Model B2 0.00 0.00 1.00 \n", - "model_code_Model A2 0.00 0.00 1.00 \n", - "model_code_Model A3 0.00 0.00 1.00 \n", - "model_code_Model B3 0.00 0.00 1.00 \n", - "model_code_Model C2 0.00 0.00 1.00 \n", - "model_code_Model A1 0.00 0.00 1.00 \n", - "model_code_Model A5 0.00 0.00 1.00 \n", - "model_code_Model A6 0.00 0.00 1.00 \n", - "model_code_Model C1 0.00 0.00 1.00 \n", - "model_code_Model D1 0.00 0.00 1.00 \n", - "model_code_Model E2 0.00 0.00 1.00 \n", - "vehicle_class_code_Truck-Tractor 1.00 1.00 1.00 \n", - "vehicle_class_code_Truck 0.00 0.00 1.00 \n", - "vehicle_class_code_Bus 0.00 0.00 1.00 \n", - "vehicle_class_code_Transport 0.00 0.00 1.00 \n", - "engine_type_code_Engine E 0.00 1.00 1.00 \n", - "engine_type_code_Engine C 0.00 1.00 1.00 \n", - "engine_type_code_Engine B 0.00 0.00 1.00 \n", - "engine_type_code_Engine F 0.00 0.00 1.00 \n", - "engine_type_code_Engine H 0.00 0.00 1.00 \n", - "engine_type_code_Engine D 0.00 0.00 1.00 \n", - "engine_type_code_Engine A 0.00 0.00 1.00 \n", - "engine_type_code_Engine G 0.00 0.00 1.00 \n", - "voltage 13.70 13.93 15.94 \n", - "current 0.16 0.19 0.39 \n", - "resistance 94.69 102.61 138.36 \n", - "cycle 50.50 75.25 100.00 \n", - "engine_age 3.00 5.00 14.00 \n", - "voltage_lag_1 13.70 13.93 15.94 \n", - "current_lag_1 0.16 0.19 0.39 \n", - "resistance_lag_1 94.69 102.64 138.36 \n", - "voltage_rolling_mean_4 13.70 13.93 15.87 \n", - "current_rolling_mean_4 0.16 0.19 0.39 \n", - "resistance_rolling_mean_4 94.81 102.56 136.35 \n", - "voltage_rolling_std_4 0.03 0.06 0.28 \n", - "current_rolling_std_4 0.00 0.00 0.02 \n", - "resistance_rolling_std_4 0.89 1.36 10.94 " - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# let's look at the descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution\n", "round(fleet_lagged.describe(), 2).T" @@ -1622,36 +330,14 @@ "metadata": {}, "source": [ "---\n", - " \n", - "## Visualization of the Data Distributions\n", - "\n", - "[contents](#2_Contents)\n" + "## Visualization of the Data Distributions" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:288: UserWarning: Data must have variance to compute a kernel density estimate.\n", - " warnings.warn(msg, UserWarning)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABEEAAAQ7CAYAAABg2LBzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXRb9Z03/vfVvluWF8lbnM1JnM0JaxhC8mCapBC2hGRoZ8qhtJAp0xmgtHQOp0A7HKBnWqDAM89TmuEp0PZ0fvOwJAEyT1lMaCCEPcRJnJDVjld5kWRZ+3Z/f8h2EuJFtiXfK+n9OifnxPK91x9Z8tW9n+/3+/kIoiiKICIiIiIiIiLKcQqpAyAiIiIiIiIimg5MghARERERERFRXmAShIiIiIiIiIjyApMgRERERERERJQXmAQhIiIiIiIiorygkjqAqUgkEojHJ9fcRqkUJr2vVBhz5mVbvID0MavVSsl+9kRM5XwhB1K/ztONzzf38FwxMXJ/TzC+yZNzbID08fFcIR2pX/vplE/PFcjd5zvZ80VWJ0HicREeT2BS+1qthknvKxXGnHnZFi8gfcwlJWbJfvZETOV8IQdSv87Tjc839/BcMTFyf08wvsmTc2yA9PHxXCEdqV/76ZRPzxXI3ec72fMFl8MQERERERERUV5gEoSIiIiIiIiI8gKTIERERERERESUF5gEISIiIiIiIqK8wCQIEREREREREeUFJkGIiIiIiIiIKC8wCUJEREREREREeYFJECIiIiIiIiLKC0yCEBEREREREVFeYBKEiIiIiIiywu7du7Fu3TqsWbMGW7duPe/7kUgE99xzD9asWYPNmzejra0NAOB2u3HLLbdg+fLlePjhh8/Z5+DBg7juuuuwZs0aPPLIIxBFcVqeCxFJQyV1AETjCYtAIBpPy7EMaiW0QloORUR5YKLnH55jKN9N5jNbo1IiEpvYPvxby0/xeBwPP/wwnn/+edjtdmzatAn19fWYO3fu8DYvvfQSLBYL3n77bezcuROPP/44nnrqKWi1Wtx99904duwYjh07ds5xf/GLX+Dhhx/GsmXLcMcdd2D37t1YvXr1dD89WUjndfdIJvP3noljB/tDCEUyf66Sw7EBQBGKZuzY2YhJEJK9QDSOXUe603KsKxeUQqtRpuVYRJT7Jnr+4Tkm/Xbv3o1HH30UiUQCmzdvxpYtW875/vPPP4+XXnoJSqUSNpsNjz32GCoqKgAAtbW1mDdvHgCgrKwMzz777LTHn28m85l9WU0J9h7rmdA+/FvLT42NjaiurkZVVRUAYP369WhoaDgnCfLuu+/in/7pnwAA69atw8MPPwxRFGEwGHDRRRfh9OnT5xyzu7sbPp8Py5cvBwDceOONaGhoyNskSDqvu0cymb93ABBFEcFoHJ5gDP2hKAKROMKxxDn/rAY1egbCSIgiEmJyn4SI4a/PplQISCRECIPJ1DM5VeGcxxQKAWqFAJVSQLnVAJc/DLVCgEapgFGrglGjhFGrQpFBDZ168uekyf5eUnV1XQX0GTt69mEShIiIiGQplVHf2tpavPLKK9Dr9fjzn/+MX//613jqqacAADqdDjt27JAqfCJKM6fTCYfDMfy13W5HY2PjeduUlZUBAFQqFcxmM9xuN2w2W0rHdDgccDqd48aiVAqwWg2TeRqypVQqoNOqYdBrMvYzVEpFSsePJRJo7g3gtCuAVncAbe4gQrHEedspFQJ0KgW0KiX80TjC0QQUQjJ5oRAEKBSASlBAEAABAgARQ/mQoVVPw/kR8fzvReMiApE4ogkRzoEIApE4YokEovHzl0yZdSqUmrWoKjRgTokRM2wGKITUpqyl+nuZLEEhwGrOrffrVDAJQkRERLKUyqjvihUrhv+/bNkyvPbaa9MeJxFNj5FqdQhfu8lMZZupbD8kHhfh8QTG3S6bWK0GhMJRBIKRjP2MWDwx5vG7B8L4vNWDw04fwoNJj1KTBrV2E4pMWlh1KhTo1TBqldCqFFApzpS4nMhsCoNeM+Hnefbx44lkcsQfiWEgHEOfP4IeX/LfX4/24L2jPTBolFjkMOPCKisKDeoxjz3e72WqxETuvV8BoKTEPKn9mAQhIiIiWUpl1PdsL7/8MlatWjX8dTgcxsaNG6FSqbBlyxZ84xvfyGi8RJRZDocDXV1dw187nU6Ulpaet01nZyccDgdisRgGBgZgtVpTPmZXV9d5x6TM6/NH8N6xXhzt8UOlELDAbsICuwkzCvXQquS39E2pEGDWqWDWqeAAUFNy5nuhaBynXAEc7vLh81YPPj3twZJyM1bPKYZZx9tvOeCrQERERLI0kRHaHTt24ODBg/jTn/40/NiuXbtgt9vR2tqKW2+9FfPmzcOMGTPG/JlymeKuVCpkEcdoRosv2B+a8JTuyUwD12nVsBboJhyfHMg5NkDe8S1ZsgTNzc1obW2F3W7Hzp078cQTT5yzTX19PbZt24bly5fjzTffxIoVK8ac2VFaWgqj0Ygvv/wSdXV12L59O2655ZZMPxUalBBFfNLiwV+P90KlEHDFbBsunGGFfgr1NaSmUytRazej1m7GQCiGT1rc+Ly1H185fVgzvwRLyi0pzTaizGEShIiIiGQplVFfAPjwww/x7LPP4k9/+hM0mjM303a7HQBQVVWFSy65BE1NTeMmQeQyxd1qNcgijtGMFl8oEp/wlO7JTAMPhaPweM6vDzBefHIg59gA6eMba3q7SqXCQw89hNtvvx3xeBw33XQTampq8PTTT2Px4sW46qqrsGnTJtx3331Ys2YNCgoK8Jvf/GZ4//r6evh8PkSjUbzzzjv4/e9/j7lz5+IXv/gF7r//foRCIaxateqcGWWUOeFYHNsbu3CyL4D5pUasW1AKoza3bk/NOhWuml+CC6qs+O8mJ3Y2daPFHcQ1C+1QKpgIkUpuvcuIiIgoZ6Qy6tvU1ISHHnoIzz33HIqKioYf7+/vh16vh0ajgcvlwhdffIHbb799up8CEaXZ6tWrz+vccvfddw//X6vV4plnnhlx33fffXfEx5csWYI33ngjfUHSuPzhGP6/L9rR44/gm7WlWFaR27MjCg1qfPvCCnx40oX3T7owEI5hU105NCrF+DtT2jEJQkSy5vV68cADD+Do0aMQBAGPPfYYZs2ahR/96Edob29HRUUFnnrqKRQUFEgdKhGlWSqjvr/61a8QCASGb4KGWuGeOHECP//5zyEIAkRRxB133HFOQVUiIpJGKBrHf+3rgDsQxd8uK8fsYqPUIU0LhSBg5ZwiFOjV2NnkxCv7O7F5edk5xV1pejAJQkSy9uijj+KKK67AM888g0gkglAohGeffRaXXXYZtmzZgq1bt2Lr1q247777pA6ViDJgvFHfF154YcT9LrjgArz++uuZDI2IiCYoFk/glf2d6PGFsTmPEiBnW1JugSiK2NnUjZ2HnLh+sWP8nSitmHYiItny+Xz49NNPsWnTJgCARqOBxWJBQ0MDbrzxRgDAjTfeiHfeeUfKMImIiIgoBX/8+DROD9bEyMcEyJClFQVYPbcITV0+fN7aL3U4eYdJECKSrdbWVthsNtx///248cYb8bOf/QyBQAB9fX3DxRFLS0vhcrkkjpSIiCZKFEWEY6MXNyWi3HK8x49tX3ZgeWUBlpRbpA5HcpfNLMTcYiMajvbgeLdP6nDyCpfDEJFsxWIxNDU14cEHH0RdXR0eeeQRbN26dVLHkkvby8mSc8vCTJDL851ou8/x2naORi7Pl2g6tHmCePdoLzq9ISRE4J2jvai1GzG7KH9HhYlyXTgWx18Od6PaZsA35hVLHY4sCIKAaxfb8dzeFvzPXcexeVk5O8ZMEyZBiEi2HA4HHA4H6urqAADf/OY3sXXrVhQVFaG7uxulpaXo7u6GzWYb91hyaXs5WVK3LJxucnm+E233OV7bztHI5flm0lhtLyk/iKKI3Sdc+PCUC2atCpdUF0IhAMd7A2hs78c1C0tRV8Ei10S56K/H+zAQjuHn19aizxuSOhzZ0KuVWLugFK/u78Snpz1YMbNQ6pDyApfDEJFslZSUwOFw4OTJkwCAvXv3Ys6cOaivr8f27dsBANu3b8dVV10lZZhERJSC9wcTIEvLLdhyeTWurCnG6rnF+F/fWoZZRQb8d1M3DnUOSB0mEaWZcyCMz1v7cWFVAebZmRD/uvmlJlw6y4b3T/RhIBSTOpy8wCQIEcnagw8+iJ/85Ce47rrrcPjwYfzgBz/Ali1bsGfPHqxduxZ79uzBli1bpA6TiIjGcKhzAHsGEyDXLCyFRnnmElSrVmLTsjJUFOjw1pFu+MK8CSDKJX893gudSoEr5hRJHYpsff/ymUiIIvacYp276SDJcpj7778f7733HoqKivDGG28AAP7t3/4Nu3btglqtxowZM/DLX/4SFgsL5hDlu9raWrz66qvnPf7iiy9KEA0REU2UJxjFm0e6UVGgw9W1pRCE89e8qxQKrF9kx//56DTeOtKDjXVlEkRKROnW6g7iRG8A/2NuEfRqpdThyJbDosOyygJ82daPS6qtsBlSr0dGEyfJTJCNGzfiueeeO+exyy+/HG+88QZef/11zJw5E7/73e+kCI2IiIiI0kQURfy/JidEEbhusQOKMYr+FRk1WDnbhq+6fWjzBKcxSiLKlN0n+mDSKHHRDKvUocje5bNsUAoC9pzkbJBMkyQJcvHFF6Og4NzCVytXroRKlZyYsmzZMnR1dUkRGhERERGlybEeP5pdQayeW4RCg3rc7S+aYYVercDeU+5piI6IMqmzP4TT7iAunVkItZJVGMZj0qqwrLIATV0D8IaiUoeT02TZHeaVV17B1VdfPe52U2l5mY3tCPM15om2qBzLeO0r8/V3TERElG7xhIh3j/WiyKjBBZWpdX3RKBW4qMqK90+60D0QRqlZm+EoiShTPm5xQ6tSoK6CJQ5SddEMKz477cHnrf24soathDNFdkmQ3/72t1Aqlbj++uvH3XYqLS+zsR1hvsY80RaVYx5rnPaV+fo7ngq2vSQiopHsb++HOxDF5mXlYy6D+boLZ1jxcYsbH7e4cd1iRwYjJKJM6Q9GcaTbh0tmWKFVsRZIqqx6NRbYTdjX1o+/mWWDVsUZNJkgq9/qtm3b8N577+Hxxx8fsWgWEREREclfIiHio2Y3Kgp0mFM8sdmKerUSixxmHHH6EI7FMxQhEWXSvrZ+QARrgUzCxdWFCMcSONTplTqUnCWbJMju3bvxH//xH/jtb38LvV4vdThERERENElNzgH0h2K4bGbhpAa2FpdbEEuIOOL0ZSA6IsqkRELEgQ4v5hQbYdGNXwuIzlVu0aLUpMH+DiZBMkWS5TD33nsvPvnkE7jdbqxatQr//M//jK1btyISieC2224DANTV1eHhhx+WIjwiIiIimiRRTM4CKTZqMLfEOKljVBToYDOocaBjAHUVqdUTISJ5ONHnhy8SZy2QSRIEAUsrCvDOVz2sjZQhkiRBnnzyyfMe27x5swSREBEREVE6tbqD6PFFsH5h6aSXNwuCgCXlFvz1eB/cgWhKnWWISB4a270wapSYUzy5JCgBixxm7Drai/3tXqxZUCJ1ODlHNsthiIiIiCj77Wvvh1alQK1jaoWzFw3u/1U3l8QQZYtAJI7jvX4sLjNDOYGCyHQug0aJeaVGHOryIp4QpQ4n5zAJQkRERERp0R+M4itn8gZIrZzaZWaBXg27WYujTIIQZY2j3T4kRGDhFJOglPwdBqMJtLiyq3NlNmAShIiIiIjS4u3D3YiLIpZXpqeOx7wSI9r7Q/CHY2k5HhFl1mHnAAoNyQQmTc3sIgO0KgUOs0B02jEJQkRERERp8c5XPSgv0KHElJ4boJpSEwDgWI8/LccjoswJRGJocQVRazdNuh4QnaFSKlBTYsTRbh+XxKQZkyBERERENGWn+gI42etP6zT4UpMGBToVjvZwJJRI7o44fRAB1Nq5FCZdFthNCMUSONXHJTHpxCQIERHRBHT2h7BtfycOdHghihyZIRry5pFuKASg1m5K2zEFQUBNiQktriBi8UTajktE6Xe0xw+bQY0Sk0bqUHLG7CIjtCoFayOlGZMgREREKdp7yoUXPmnF0R4f3jjkxI4DXUgwEUIEURTx9lc9WFpRAJNWldZjzyoyIJYQ0eoJpfW4RJQ+4VgCp11B1JQYuRQmjZQKAbOLDDje6+fASxql91OKiIgoR7kDUew+0YeaEiPWL7Ljs9MefHDShTnFA1hSbpE6PKK0C4tAIBof8XvB/hBCkTPfO97jw2l3EBuWlac9jhmFeigEoNkVwKwiQ9qPT0RT19wXQFwUMbfYKHUoOWdOsRGHnT50ecMoK9BJHU5OYBKEiIgoBX893gulIGDdglLo1UqsnG3D8R4/PjjZh4UOM5QKjnxRbglE49h1pHvE7xn0GgSCkeGv3z/RBwC4aKYNTW2etMahUSlQadXjVF8AV9ak9dBElCbHe/3QqRSosOqlDiXnzCk2QkDyd8wkSHpwOQwREdE4urwhHHb6cEl1Icy65PiBIAhYNbcInmAMX7b3SxwhkbSO9/hRUaBDgV6dkePPKjLAORCGP8JWuURyI4oijvf6MbvYwAGBDDBolKiw6nCcXbLShkkQIiKicRzsHIBSEHBJtfWcx2cXGVBeoMO+NiZBKH95Q1F0DYRRU5K5afAzbcllMM3skEAkO53eMAKROOZwKUzGzC02omsgjIEQE8HpwCQIERHRGERRxBGnD7OLDdCpled8TxAELHKY0eOLoNcXlihCImkNjU5mMgnisGihUynQ4gpm7GcQ0eQ0u5LJydms2ZMxQ/WQhn7XNDVMghAREY2hzRPCQDg2atvPBYOPH3ayfR3lp+O9flj1ahQZM9cWUyEIqLTqcdrNJAiR3DT3BWA3a2HQsNxkptjNWujVCiZB0oRJECIiojEcdg5ApRAwt2TkJIhJq8KMQj2OMAlCeSiWSKDFFcScYkPG22LOKNTDHYxyOjiRjETjCbR5QphpY0HUTBIEATNtBjS7AmyVmwZMghAREY1CFEV81Z1cCqNVjf6RucBuQq8/wnoFlHc6PCHEEuJwzY5MmlGYvMlq9XA2CJFctHqCiIvTcw7IdzNtBvjCcfT5o1KHkvWYBCEiIhpFqzsIXziOOUVj1zqYNzhL5LMW93SERSQbp1xBCDiToMgku1kLjVLBJTFEMtLcF4RSEFA5DeeAfDeTdUHShkkQIiKiUewfbH07Y5xpvmadCkVGNbvEUN5pcQVQVqA7r2hwJigUAiqtOiZBiGSk2RVAhVUHjZK3lZlm1ath1atxirNOp4zvViIiolHsb+uHWatCoV497rbVhQYc6OhHNJ6YhsiIpBeOxdHhnd5aADMK9ejzR+AORKbtZxLRyELROJwDYVRzFsi0qS7Uo80TZF2QKWIShIiIaASiKGJ/uxfVNn1KBR9n2gwIRRNo6hqYhuiIpHfaHYQoYlprAVRakzdbR/h3lrd2796NdevWYc2aNdi6det5349EIrjnnnuwZs0abN68GW1tbcPf+93vfoc1a9Zg3bp1eP/994cff+GFF7B+/Xpce+21uPfeexEOs+V5Kto8IQBAFZMg06ayUI9QLIEeHxPBU8EkCBHJWn19Pa677jrccMMN2LhxIwDA4/Hgtttuw9q1a3Hbbbehv59LECj9TvQF0B+MpjzCNcOmhwDgk9OezAZGJBOnXUEoFQIqCnTT9jMdFi0UAtDUySRIPorH43j44Yfx3HPPYefOnXjjjTdw/Pjxc7Z56aWXYLFY8Pbbb+O73/0uHn/8cQDA8ePHsXPnTuzcuRPPPfcc/vVf/xXxeBxOpxN/+MMf8Morr+CNN95APB7Hzp07pXh6WafVE4RCAMqn8RyQ71ggOj2YBCEi2XvxxRexY8cOvPrqqwCArVu34rLLLsNbb72Fyy67bMSRIKKp+qI1mcyYkeIot16txJwSIz5lEiStxhv1ff7553HNNdfguuuuw6233or29vbh723btg1r167F2rVrsW3btukMOy+0eoIot2ihmsZaAGqlAnazljOu8lRjYyOqq6tRVVUFjUaD9evXo6Gh4Zxt3n33XWzYsAEAsG7dOuzduxeiKKKhoQHr16+HRqNBVVUVqqur0djYCCCZXAmFQojFYgiFQigtLZ3255aNWt1BlFl0ULMeyLQp0Klg1qrQytpIU6KSOgAioolqaGjAH//4RwDAjTfeiFtuuQX33XefxFFRrmns8KLYqIE1hXogQ5ZVFmBHYycisQQ0Y7TUpdQMjfo+//zzsNvt2LRpE+rr6zF37tzhbWpra/HKK69Ar9fjz3/+M37961/jqaeegsfjwb//+7/jlVdegSAI2LhxI+rr61FQUCDhM8odkVgCzoEwLq0unPafXVGgx4FOL2LxxLQmYEh6TqcTDodj+Gu73T6cyDh7m7KyMgCASqWC2WyG2+2G0+lEXV3dOfs6nU4sX74c3/ve93DllVdCq9Xi8ssvx8qVK8eNRakUYLXmVltYpVIBnVYNg14z7raRWAJd3jD+Zk5RStsPUSkVE9p+IiZybIVCmHAccol9ZrERzX1+6HXqlJbrAoCgEGA159b7dSqYBCEi2fv+978PQRBw88034+abb0ZfX9/wKE1paSlcLte4x8j2ixWlUpHV8U+UHJ7vkW4/FpZbJnTBU1elwcv7OtAejGF5lTXl/eTwfOXo7FFfAMOjvmcnQVasWDH8/2XLluG1114DAHzwwQe4/PLLYbUmX4fLL78c77//Pq699tppfAa5q90TREI8U6NjOlVYdfis1YNjvX7U2s3T/vNJOiMVg/z6TeBo24z2eH9/PxoaGtDQ0ACz2Yy7774bO3bswA033DBmLPG4CI8nt7p0WK0GhMJRBILj15tocQUQF0U4TJqUth8SiycmtP1ETOTYBv3E4p7o8SdqIscuN2twoL0fHS4/Cg2pXaOIidx7vwJAScnkPgOYBCEiWfvP//xP2O129PX14bbbbsPs2bMndZxsv1ixWg1ZHf9ESf18+4NRtLgCuGp+yYQueJYOJj72Hu3GLHPqyROpn+90mMyFSiqjvmd7+eWXsWrVqlH3dTqd4/5MuSRM5ZAYC/aHRk0Cnh5sB13jsECvOdMedzIjpRPdZ67dDBzownF3CJfNt4+4jRx+f6ORc2yAvONzOBzo6uoa/trpdJ63dMXhcKCzsxMOhwOxWAwDAwOwWq2j7vvhhx+isrISNpsNALB27Vrs27dv3CRIvhuqSVFpZT2Q6VY1XBcklHIShM7FJAhltYFQDM2uAPpDUcwtNsJh4Yk419jtyQvcoqIirFmzBo2NjSgqKkJ3dzdKS0vR3d09fOFClC6Hncl6A/PtJnj8qSdBiowalFu0aOzw4u8uzFR0+SOVUd8hO3bswMGDB/GnP/1pwvueTS4JUzkkxkKR+KhJwJa+AIqNGojxOALB+PDjkxkpneg+aoiwGdX4+EQvrltQMuI2cvj9jUbOsQHSxzdWwnTJkiVobm5Ga2sr7HY7du7ciSeeeOKcberr67Ft2zYsX74cb775JlasWAFBEFBfX48f//jHuO222+B0OtHc3IylS5dCoVBg//79CAaD0Ol02Lt3LxYvXpzpp5n1OvpDKDZqoFMrx9+Y0qrYqIFWpUCHJ4il5Rapw8lKkiykvP/++3HZZZedMyWV3R5ooo73+PEfe1vwxiEn3j/hwvMft2J7YydiiYTUoVGaBAIB+Hy+4f/v2bMHNTU1qK+vx/bt2wEA27dvx1VXXSVlmJSDDg0WXZxXaprwvkvKLTjQ4U13SHkplVFfAPjwww/x7LPP4re//S00Gs2E9qWJS4giWl0BVEk0AiwIAhY6LDjADjF5R6VS4aGHHsLtt9+Oa665BldffTVqamrw9NNPDxdI3bRpEzweD9asWYPnn38eP/nJTwAANTU1uPrqq3HNNdfg9ttvx0MPPQSlUom6ujqsW7cOGzZswHXXXYdEIoGbb75Zyqcpe6Ioor0/hArOApGEIAgoL9ChvT8kdShZS5KZIBs3bsR3vvMd/Mu//MvwY0PdHrZs2YKtW7di69atLHRIo2rqGsCOA12wm7W4ZmEpLDo1Pmv1YM9JF5QKAdcusqdcKIjkq6+vDz/84Q8BJAskXnvttVi1ahWWLFmCe+65By+//DLKysrw9NNPSxwp5ZpDnQOYadPDqJ34x+SSMgvePNKDLm+Is9OmKJVR36amJjz00EN47rnnUFRUNPz4ypUr8eSTTw4PqnzwwQe49957pzX+XNXnjyAUS6BcgnogQxY6zPjgRB/6/BEUGTkdPJ+sXr0aq1evPuexu+++e/j/Wq0WzzzzzIj73nnnnbjzzjvPe/yuu+7CXXfdld5Ac5grEEUompjW9th0rvICHT486WIh9kmSJAly8cUXo62t7ZzH2O2BUtXnj+D/NTlRadXhWxdUDLflWjWnCAoBeP+EC3azFpdIULGe0quqqmq4yOHZCgsL8eKLL0oQEeUDURRxqGsAl82c3DlkaUVyampjh5dJkCk6e9Q3Ho/jpptuGh71Xbx4Ma666ir86le/QiAQGL4JKisrw7PPPgur1Yp//Md/xKZNmwAAP/zhD4eLpNLUdHrDAIByCd/ftWXJJRMHOrz4HzXFksVBlI86BmcglDMJIpmKAh1EAJ3eEKpt8qzhI2eyqQky3d0e5Fz0aTT5GvPZhdniCRGvf9IKlVKBb108AwVfa125ZqEDTl8EH5x04eJZReeN4uq0aljHOGHn6++YiM7o9kXgCkSx0DG5iuM1xUZoVQoc7BzA2gVcfjFV4436vvDCC6Puu2nTpuEkCKVPZ38IGqUCRcbU20enW02JCSqFgAOdTIIQTbf2/hC0KgWKOQtLMkMJqPZ+JkEmQzZJkMmYSvEyqYs+TUa+xnx2YbZ9bf3o7A9hw1IH1BBHLKS2erYNzzl9aDjsxDfmn1swLRSOwuMZvWZIvv6Op2KyramI5Oqr7mQdmvmTqAcCJDtdLCg1oamL9QooN3V6Qyi36iRddqpRKbDAbmL9HSIJdPSHUGaR9hyQ7/RqJWwGNdo9rAsyGbJZQDTU7QEAuz3QiMKxBN4/0UlszjQAACAASURBVIdKq27Mm5NikxZLyy34orUf3lB0GiMkolxwrCeZBJlbYpz0MRY6zDjS7UMscX6HEqJsFk+I6B6IoELCeiBDlpRZ0OT0IRZnQXSi6RKJJ9A9EGY9EBmoKNChoz80Yjc0GptskiDs9kDj+bTFDX8kjvp5JeNmni+fbUNcFPFlG0eIiGhijvX4UVGgg1Ez+cmSCx1mhGMJnOz1pzEyIul1D4QRF0V5JEHKLQjHEjjaw78zouni9IYhgvVA5KCsQIdANI6BcEzqULKOJEmQe++9F9/61rdw6tQprFq1Ci+99BK2bNmCPXv2YO3atdizZw+2bNkiRWgkU5F4Ap+2elBTYkwp81ygV2NOsQH7O/qR4EgsEU3AsR4/aqYwCwQAFg3WE+GSGMo1nd7k1OtKOSRBziqOSkTTY+gc4LBoJY6EHObka9A1WKyaUidJTZAnn3xyxMfZ7UF6YREIRONpOZZBrUzLcQCgsd2LUDSBFRPo1rCsogCv7O/E8V4/5k1ybT8R5ZdgNI5WdxDfnGJB00qrDhadCk3OAdyIsjRFRyS9Tm8YerUCVoMaQYmXnNrNWhQbNTjYNYCbJY2EKH90ecMwa1UwTaKFPKVXqVkLAcnXhPc6E8N3L50jEI1j15HutBzryjR1RYgnRHzS4kZFgW5CI09zi40waZX4sr2fJwYiSsmJXj9EYMozQQRBQK3dhEOdnAlCucU5EIbdLI+CiIIgYHGZGYc6OROEaLp0ekMo4ywQWVArFSg2adA1wOKoEyWbmiBEo9l70oX+UAyXTmAWCAAoFAIWl1lwqi+AYJpmtxBRbhuqLVBTOrUkCJCsC3Ki148Qzz+UI+IJEb2+iKymwS9ymNHqCcETZCF0okwLx+JwBaJwWFgPRC7sZi2Xw0wCkyAke/99qAtmrQo1xRO/KZlfakJCTK7xJyIaz7FuH4waJcrTcIG3yGFGXASLNlLO6PNHEBdFlJrkkwRZXGYBABxi/R2ijBu62eZMEPlwWHTwR+LwsTjqhDAJQrLW3h/E56c9qKuwQKGY+NTbMosWFp0KXzl9GYiOiHLN8d5kUdR0TPVfOFgclTdnlCucA8kbILtZPjdAtQ4TFAK4JIZoGgwlQTgTRD6GiqMOFayl1DAJQrK2vbELggDUVVgmtb8gCJhfasIpVwDhWCLN0RFRLhFFESf7AphdNPWlMABQYtKixKRhhxjKGc6BMFQKATajWupQhhk1KswuMuIg6+8QZVynN4QCnQoGTfqaH9DUDCWlnVwSMyEsjErniSdE7GvrR0d/CBCSU7pnFxmmvQhaLJ7Aawe7cMnMQlh0k7/gml9qwqenPTjRyynpRDQ6VyAKbyiGmUWGtB1zod3MJAjljO6BMEpMGihkUBT1bIvKzNh1rBeiKMqiYCtRrnIOhGHnUhhZ0agUKDKq0TXAJMhEcCYInaOzP4QXPj6Nt7/qQasniFO9AfzffR34r30d0z6TYveJPrgCUaxf5JjScSqsOujVCiZBiGhMza4AAGC2LX1JkEVlZpx2BzEQ4lpdym6iKMLpC8tqKcyQxQ4zvKEYTruDUodClLMi8QRcgaisagJRkt2sY3HUCeJMkBwRFpPtbaciGInj528chjcUw8alZZhXakRCBD5v9eDdY734v/vacfPyCmhU05M7e7WxE3azFhdVF2L30Z5JH0chCJhpM+BUXwAJUUxjhESUS072JZMgs9I8EwQAmpwDuLR6Yh2uiORkIBxDKJpAqRyTIGcVR61OYxKTiM7okWFNIEoqs2jR1DUAfyQGo4a396ngbylHBKJx7DrSPaVjbG/sxGl3AH+7vByzBtfEKwXgkupCmLUq7DjQhdcPdWHj0rKMTzdt8wTxcYsHW/6mGspJFET9utnFRhx2+nCq14+iioI0REhEuaa5LwCjRokSkyZtx6x1mAAATV1MglB2k2NR1CGzigwwqJU42DmAaxbapQ6HKCfJ+RyQ74Zeky5vGHOKeXufCi6HIQDJaeCHnT58++Kq4QTI2WodZlxZU4yj3X7sb898BfbtB7qgEIAbFk9tKcyQWYMjQ5+d9qTleESUe066ApiV5vpHFp0aVVYd64JQ1uvxRQAgrUnCdFEqBNQ6TDjIDjFEGdPti0CnUsCi40223AwXR2VdkJQxCUIQRRHvHeuFRafChmUVo253SbUVM216vPNVD9yBaMbiicYTeP1gF1bOLkrbtFuzToUSk4ZJECIaVXNfADMzMJV+oYPFUSn79fgisOhU0Krk2RVikcOCYz1+doIjyhDnQBilZi2LD8uQTq1EoV6NLrbJTRmTIIRjPX50esNYOds2Zr0PQRCwfpEdEICGKdToGM/7gwVRNyxNzyyQIbOLjDjU4UVwirVTiCj3eENR9PojmJ3GeiBDFjrM6PZF0OvjCA1lr15fWJazQIYsLjMjlhDxVbdP6lCIck5CFNHjC7Moqow5LFoWR50AJkEIH7e4YdWrsWSwsNhYLDo1Vs624ViPP2PdVrY1dsFu1uKymba0HnemTY9YQkTjNCznISJ5CouAOxI/71+jM3njVGzRnfN4PA21lBc5ksVRD3Xx5oyyUyIhos8fRYmMb4AWlyX/zrgkhij93IEoonERdrN8E6H5zmHRoj8U42BvirioK8/1+sJo84RQX1MMRYoFSC+eUYj97V6881UPZtoMaSlcOqS9P4iPWtxpK4h6tgqrHgoB+KLNg0tnskAhUT4arYj0/vZ+AECHO4hd4TPfv6ymZMo/c36pCUoh2SFm9dyiKR+PaLq5g1HERRHFRvneAJWYtLCbtTjUyaVnROnWPVhrQo7doSjp7LogmVjam2s4EyTPfdnuhUIAlpSbU95HqRBQP68YrkB0+MYhXbY3JguiXp+mgqhn06oUqCk14fPW9MZMRNmv1xeBSiGgQJ/+sQGdWonZxUY08eaMslTP4FIuOS+HAZKzQTgThCj9un1hKASgWObngHw2tFSph0tvU8IkSB6LxRM40OHF/FITDBPsKT232IhKqw4fnHQhkqYiZLF4Aq8d7MLls2wZa79VV1GAQ10DCHGqGBGdpdcfQZFRA0WGCr4tdJhx2DkAUUzD+hqiadbji0AAUCTjmSBAculZhzcMVyAidShEOcU5EEaRUQOVgreOcmXUqmBQK9E9wPNfKvhOzmMnegMIxRKoqxi/FsjXCYKAK2uK4Y/E8UmLOy3x7D7pGiyIWpaW441kaYUlWRekgyNFRHRGnz+CIqM6Y8df6DCjPxRDez8rt1P26fFFYDWooVbK+7Jx8WBts4OcdUWUVt0DES6FyQKlZg1ngqRI3p9mlFFHun3QqxWoLpzcurFKqx7zS434uMUNfyQ25Xhe/rIDpSYNLpuV3oKoZ1tUbhmsC8IlMUSUFIkn0B+KodiYuQu84eKovDmjLNQj884wQ2rtyfo7h7gkhihtApEYBsIx2GVcGJmSSkxa9PgiSHDW6biYBMlTsUQCx3v8mFdiSrkg6khWzy1GNCFiz0nXlOI52u3Dp6c9+NvlFVCluSDq2YwaFeaXmvBlmmuZEFH26vMnp45mcibInCIDtCoFmpxMglB2iSdEuINRWRdFHaJTKzGn2MiZIERp5BxcXpGppeqUPqUmDWIJEZ5AVOpQZI9JkDx1qi+ASDyB+XbTlI5TZNRgWUUB9rX1T2kN7p8/b4NercCGpekviPp1S8stONQ5gFiCWVIiShZFBZDRmSAqpQLzSkxo6uLNGWUXTzAKUQRsBvknQYDkkphDXQNI8DOeKC3YGSZ7lAwXR2VdkPEwCZKnvur2QatSpKWF0srZNigVAnYf75vU/j2+MN480oPrFztg0WVuJHbIkjILQrEEjvf4Mv6zaOri8ThuvPFG/MM//AMAoLW1FZs3b8batWtxzz33IBLhiZ6mps8fgUIACg2ZPf8sdJhwxOljApayypmZUtmRBFlUZoY/EseJXr/UoRDlBKcvDLNWBYNGKXUoNI5ikwYCkt18aGxMguQhURRxvCeAOcVGKNOw9MSkVeGS6kIcdvrQMYmify983AoRwLcvrJhyLKlYUp4snNbYwRHZbPCHP/wBc+bMGf768ccfx3e/+1289dZbsFgsePnllyWMjnJBrz+CQoMmLedDQRDgjsRH/DezxIhQLIH9XQPDj4WZDyGZG0qC2DKcJEyXpYOf8ftOp6doO1G+6x4Io9ScHUnQfKdWKlBoULM4agqYBMlDXd4wgtE45hRPfRbIkEurC2HQKPHOVz0TagHZ0R/Cq42duGGxAxUF+rTFM5YyixZFRg0OsHCa7HV1deG9997Dpk2bACQTeB999BHWrVsHANiwYQMaGhqkDJFyQJ8/guI01QMJxhLYdaR7xH/uwempr+3vGH4swHbdJHOuQBRGjRI6dXaMAlcX6mHVq/EZkyBEUxZPiOjzR1DKoqhZo9SkZZvcFKikDoCm38m+AABgVlH6kiBalQJX1hRj5yEnvmz3YnllQUr7bd3bAoUAfH/FjLTFMh5BELC03IIDbJMre4899hjuu+8++P3Jac1utxsWiwUqVfLU5XA44HQ6UzqWUinAak3fe366KZWKrI5/ojL1fIP9IRj0Z0a0YokEPMEollQUnPP4EJVSMeLjoxlre51ODZ1KgR5/dHgbnVYNa4Eu715fyh59/kjW1AMBkp/xdeUWfNHikToUoqznCkSQEJPLLCg7lJg0ONLtQySegEbmbc2lxCRIHjrV54fDrIVRk96Xf0mZGQc7vNh1rBdzi43jbv95qwc7Dzlxy0WV015saUmZGbuO9cIVyK6Lu3yya9cu2Gw2LF68GB9//PGo2wlCaksY4nERHk8gXeFNO6vVkNXxT1Smnm8oEkcgeGaEpM+fvMAza5TnPD4kFk+M+PhoxtveYdHitCswvE0oHIXHk8iL17ekxCx1CDQJrkAE80unVkR9utVVWPDXE33o80eyppYJkRwNFQ4v4UyQrFEyeE/V64ugvEAncTTyJbv00AsvvID169fj2muvxb333otwmGua0ikUjaO9P5TWWSBDBEHAutpSJBIith/oRCyeGDOOR946iooCHe74m+q0xzKeoTXDnA0iX1988QXeffdd1NfX495778VHH32ERx99FF6vF7FYDEByuUxpaanEkVI2G+pqlemiqEPKLDr0+MJjnh+J5MIbjCIYTWTdYEFdRXI26n5+xhNNSY8/AgFAUZbUBKJkm1wArAsyDlklQZxOJ/7whz/glVdewRtvvIF4PI6dO3dKHVZOaXEHkRCB2SnM1JiMIqMGVy+0o80Twu8+aB6xPkhCFPHIW0fR5gnhwXXzoJdgnfECuxkqhcDiqDL24x//GLt378a7776LJ598EitWrMATTzyBSy+9FG+++SYAYNu2baivr5c4Uspm7kAUwPS1/ywr0CEhAs4BXpyQ/LV6ggDk2RlmrCLE9kI9NEoBn5z2nPM4CxETTUyvLwKrQQ0Vl1VkDateDbVSYF2QcchuOUw8HkcoFIJKpUIoFOIob5q1uAJQKwRUZHB61KIyMzq9Iexo7IROo8Q9V8yCarDrQiyewK/ePY43j/TgH1fOxIVV1ozFMRatSoH5pSYc6OiX5OfT5N1333340Y9+hKeeegq1tbXYvHmz1CFRFnMFotCpFNCrp+cCr8ySnKba6Q2jwjo9xaCJJqvNnUyC2NJUODidgrEE9h7rGfX7ZQV67D3lwrySM4M+Vy4ohZZtPolS1uMLo0SGSVAanSAIKDFpORNkHLJKgtjtdnzve9/DlVdeCa1Wi8svvxwrV64cdfupFDrMxiJ0Y8X89WJ/o2n1hFBdZIDZOPLavokWARzNdXXlWFBmwR8/Po1PTrlw0wWVAIBXvmjDqb4A/uGKWfjR2vkpHSvV55aKoSKEAHDRLBv+67NWGM06qAcz3Ln2vsgVl156KS699FIAQFVVFdviUtq4AxEUGtQp15aZKrNWBZNGiQ7vxNuJE023NncQCgGw6uSXBBnPDJsBe070IhpPDH/GU27YvXs3Hn30USQSCWzevBlbtmw55/uRSAQ//elPcejQIVitVvzmN79BZWXyOvR3v/sdXn75ZSgUCjzwwAO44oorAABerxcPPPAAjh49CkEQ8Nhjj2H58uXT/tzkJJZIwB2MYoE9u2oCUbI46tFuH0RRnLbrm2wjqyRIf38/Ghoa0NDQALPZjLvvvhs7duzADTfcMOL2Uyl0mI1F6MaK+evF/kYSiMTRPRBGrd006rYTLQI4llsuqcKls2z43++dwONvHwUAzLIZ8JsNi3D5LFvKv/9UnluqhooQAsD8IgNC0QQ+PdaDhY5kwb5ce19MBxY7pGzmCkRRNY0zMgRBQFmBDp39TIKQ/LV6gig0aKBQZN9FdLXNgPePA539Icyw5fZAQT6Jx+N4+OGH8fzzz8Nut2PTpk2or6/H3Llzh7d56aWXYLFY8Pbbb2Pnzp14/PHH8dRTT+H48ePYuXMndu7cCafTidtuuw1vvvkmlEolHn30UVxxxRV45plnEIlEEArxHO3yRyGKLIqajUpNWuxv98IficOkldXtvmzIKjX+4YcforKyEjabDWq1GmvXrsW+ffukDitntA5Oa51ROH0X/OsWOfDC3y3Dm3euwHv//Df4r+9eiJWzi2SRlVxSlrx5Z3FUovwUjSfgDcWmrSjqkDKLDq5AFKFofFp/brbavXs31q1bhzVr1mDr1q3nff/TTz/Fhg0bsHDhQvzlL38553u1tbW44YYbcMMNN+AHP/jBdIWcM9rcwawtiFhlS17rtDHhmFMaGxtRXV2NqqoqaDQarF+/Hg0NDeds8+6772LDhg0AgHXr1mHv3r0QRRENDQ1Yv349NBoNqqqqUF1djcbGRvh8Pnz66afYtGkTAECj0cBisUz7c5ObnsHOMMVcDpN1SgaLo3ZzScyoZJUaKi8vx/79+xEMBqHT6bB3714sXrxY6rByxml3ECqFgDLL9LZLEgRBlpXlHRYdSk0aHOj04mZUSB0OEU0zT3CoKOp0J0GSo2pdXl6cjCeVUd+ysjL88pe/xO9///vz9tfpdNixY8d0hpwzYgkRHf0hXDRDmtpdU2XQqFBs1CQHgGZJHQ2li9PphMPhGP7abrejsbHxvG3KysoAACqVCmazGW63G06nE3V1defs63Q6odPpYLPZcP/99+PIkSNYtGgRfvazn8FgyO8ZRL3+MARBnjWBaGxDs3d6BiKYXZSZZhjZTlZJkLq6Oqxbtw4bNmyASqVCbW0tbr75ZqnDyhmn3QFUWnVQZuG01kxZUm7hTBCiPOWa5s4wQ8oG6xJ1si7IuM4e9QUwPOp7dhJkaK2/QiGrya1Zr7M/hFhCzNqZIABQadXhsJPr4nPJSF0Hv/7ajrbNaI/HYjE0NTXhwQcfRF1dHR555BFs3boV99xzz5ixTKU2oVwplQrotGoY9Bq4gzEUGTWwGNM7eJqu+oNTPbZCIUw4DrnEPh6DHjBpVXCHYsPHFBQCrObcer9OhaySIABw11134a677pI6jJwTjMbR7Ytg1ZwiqUORlcVlFjQc7YUrEJHlbBUiyhx3IDnVd7qXw+jVShQa1GjnNP1xpTLqO5ZwOIyNGzdCpVJhy5Yt+MY3vjHuPnK5sZG66PU+pw8AUG4zjnhhPtoNxGQu5DOxj0IhYHapGV+2ezEQE+GwaM8pji4lqV/b8cg5PofDga6uruGvnU7neZ0kHQ4HOjs74XA4EIvFMDAwAKvVOuq+DocDDodjeJbIN7/5zRGX3n3dVGoTypXVakAoHEUgGEGXN4RSkzZtdfmGpLP+4FSObdBrJhyHXGJPRbFRja7+4PAxxUTuvV+BydcmlF0ShDKj3ZO82K60Sv/hLyeLBguiHuocwBVMEBHlFVcgCoNaCZ16+ltmVln1ONbjQ2KEkUk6I5VR37Hs2rULdrsdra2tuPXWWzFv3jzMmDFjzH3kcmMjddHrplYPAMCgFEa8MB/tBmIyF/KZ2Meg16DUkLzMPd7lhUWtOKc4upSkfm3HI3V8Y93ULFmyBM3NzWhtbYXdbsfOnTvxxBNPnLNNfX09tm3bhuXLl+PNN9/EihUrIAgC6uvr8eMf/xi33XYbnE4nmpubsXTpUiiVSjgcDpw8eRKzZ8/G3r17MWfOnEw/TVmLxRPwBKLDjQMo+xQbtdjf0c+ZcKNgEiRPtPcHIQhnpmFT0gK7CUoBONjFJAhRvnEHotM+C2RIpVWHxg5vsvAkLzJHlcqo71jsdjuAZGvtSy65BE1NTeMmQSipxR2ARaeCQTP9ScJ0serVMGtVaHEFcUFVdtY2oXOpVCo89NBDuP322xGPx3HTTTehpqYGTz/9NBYvXoyrrroKmzZtwn333Yc1a9agoKAAv/nNbwAANTU1uPrqq3HNNddAqVTioYceglKZfH8/+OCD+MlPfoJoNIqqqir88pe/lPJpSq4vEIUIoIRFUbNWiUmDaFxEfygGqz57lzVmCpMgeaLNE4LdrIVGyTXTZ9OrlZhdbERT54DUoRDRNHP5I5hVJM2U76G2vAc6vKhjEmRUqYz6jqa/vx96vR4ajQYulwtffPEFbr/99gxHnDtaXEFUTmM3uUwQBAEzbXoc7/WPOKuIstPq1auxevXqcx67++67h/+v1WrxzDPPjLjvnXfeiTvvvPO8x2tra/Hqq6+mN9As1jPYVaTYxCRIthp67Xp8YSZBRsA74jwQH6zwXlmQ3RczmbK4zIxDXQOclk6URyKxBHyROGwSjXIVGtQwaJQ4xMLMYzp71Peaa67B1VdfPTzqO9QWs7GxEatWrcJf/vIX/PznP8f69esBACdOnMBNN92E66+/HrfeeivuuOOOcwqq0tiaXYHhZF02q7YZEIwm4BxgNyaiVPX6IlAI0184nNJnqLVxry8zNUyyHWeC5IHugTBiCZH1QEaxyGHGtsYutLqDsBWyjRRRPnAPtseVajmMIAiosupxoJNJkPGMN+q7dOlS7N69+7z9LrjgArz++usZjy8X+cIxuALRrJ8JAgAzbcnZXi2uoMSREGWPHl+yYQA7SmYvnVoJs1aFXj+TICPhTJA80Naf/OCvYBJkRIvKLACAQ11cEkOUL1yDnWGkHOWqtOrg9IY5Qk2y0+JKFsWszIGZIGadCkVGDU655FuIlEhuev0RlHApTNYrNmnQw5kgI2ISJA+0e0Kw6FSw6LgebCSzbAbo1QocYl0QorzhDgzOBJFwnWzV4Cj7/vZ+yWIgGkmLOzl4UpUDM0EAYKZNjzZ3ENG49J1hiOQuFI3DE4wOL6eg7FVi1KDPH+GS/xEwCZIHOr0hlLMrzKiUCgG1djNnghDlEZc/ApNGCY1Kuo9Bu0kLnVqBL9u5JIbkpcUVgDKHOsrNtBkQTYg4zM95onGdHkyCsihq9is2aRBLiPAMLgGmM5gEyXGBSAyeYAxllty4kMmUxWVmHO3xIRzjKBFRPnAFoiiUuOCbQiGg1mHGl5wJQjLT4g6iwqqHOkc6ys0o1EMA8GUr/9aIxtPSl1w6VmLSShwJTdXQa8jiqOfLjU83GlWnN7nWvNzCE9lYFjnMiMZFHOniiCxRPnAHorAZpV8iuKTcguM9fng5SkMy0uIKYkaOLIUBkgUCHRYt9rV5pA6FSPaSM8EESZeLUnoMLWliXZDzMQmS4zr7QwAAO2eCjGmoOOr+No4SEeW6UDSOQDQOm0SdYc62qMwCEcC+Vt6ckTwkRBGtniCqCw1Sh5JWM20GHHH64I/EpA6FSNZaXAHYjGoo2Bkm62lUChToVOj1swD71zEJkuM6vCEUGzXQSrjuPRuUmjQoNmrQyCQIUc4bLooq8XIYAFjgMEOpEPBZi1vqUIgAAF3eMMKxBKptuTMTBACqbQbEEyL28XOeaEzNrgCLouaQYpOGy2FGoJrKzuFwGH/+85/x+eefQxAEXHjhhfj2t78NrZZLL+RAFEV0esOYU5xbozmZIAgCFjnMaORU2Yzh+YLk4kx7XOlngujVSiwoNeGzFje+f3Gl1OFkFM8B2aHFnawHkGtJkEqrDmqlgE9Pe7BydpHU4dCgcDiMbdteQmPjfggCsHTpMtxxx208L0jEH47B6Q1jfolJ6lAoTUpMWjT3BRFLJABO7hk2pekBP/3pT3Hs2DF85zvfwd///d/jxIkTuO+++9IVG02RNxRDIBJnUdQULSoz41RfAN4Q1+ZnAs8XJBeuwZkgVpmsd15eWYD9bR6EonGpQ8kongOyQ4sr2Rki15bDqJUKLCkvwJ6TLqlDobM88sjPcerUSWzadDNuuulmNDc387wgoeM9PgBACTvD5IxiowZxUUT7YNcfSprSTJBTp07htddeG/56xYoVuP7666ccFKVHpzdZD4RJkNQscpgBAE1dA1gx0yZxNLmH5wuSC3cgCotOJZvOFxdWFeBPn7XhYOcALpphlTqcjOE5IDu0uAIwaZWwGdTwRHOrY9pls2z4X7tPosUVQLUtt5I82er06Ra8+OJ/Dn99wQUX4fvf/3sJI8pvx7qTSRAuh8kdQ62OT/UFsCDHZvhNxZSuABcuXIgvv/xy+Ov9+/fjggsumHJQlB6d3jCUgoBSM09kqVjoMEMQgIOdA1KHkpN4viC5cAUislgKM2RZRQEUAvBFji/H4zkgO7S4k0VRBSH35k2vmFUIAHifs0FkY968+Th48MDw14cOHeR5QULHu33QKBWwyugzkqZmKKHV3OuXOBJ5mdJMkP3792P79u0oLy8HAHR0dGDOnDm47rrrAACvv/761COkSevsD6HUrIFKIY/RTrkzaVWYXWzEoS4mQTKB5wuSC3cgitrBmV9yYNKqsLDMgs9bc7tgI88B2aHFFcjZGUl2iw41JUbsPtGH71yU2zV4skVT00H85S87Ybc7AABOZxfPCxI61u1DVaEeihxMguYrtVIBq16NU0yCnGNKSZDnnnsuXXFQmg0VRV1cs2xhkQAAIABJREFUJp8L/WxQV2nFriPdEEUxJ0fBpMTzBcmBNxhFKJaQ1UwQALh0lg1//KgF4VgiZ7t58Rwgf8FoHN2+SM7VAznbFbNteOGTVniCUdnUBcpnTzzxP897zGYzShAJAckkiJwGCSg9SkwanOpjEuRsU0qCVFRUpCsOSrM+fxSReAJlBawHMhFLKwvw6r52dHrDKOfvLq14viA5aPMkC4MVyiwJcsksG/7PnmYc7PTiwqrcHIXnOUD+Tg8VRc3hdeOr5hTh9x+34sNTLlyz0C51OHnP4Sg777GSEt6ES8EXjqGzP4Rv8u8i5xQbNfjktAfReEI29dCkxt9CjhoqilpuYYuxiairKAAALokhylHtnuS50WaQV62ki2YUQgDwRY4viSF5a3YNtsfN4ZkgtQ4ziowavH+iT+pQiGTlVF/y739mDidB81WxSYN4QsRpdogZxiRIjurwhqBRCrCxuvOEzHeYoVEKONjplToUIsqA9v4gBMinPe4Qi16N+aUmfJ7jxVFJ3lrcAQgAKq25OxNSIQhYOduGvc1uROO51f2GaCpODi6XqC7K3SRovioxJQfFT7AuyDAmQXJUZ38IDouOhY0mSK1UYH6pGU2cCUKUk9o9IRTo1VAq5HduvKCqAAc7BxCO8caMpNHiCqLMooVOrZQ6lIxaNacI/kicM6+IznKyLwCdWgGHJXeToPmqyKCGQki+xpTEJEgOiidEdA9EUMaT2KQsLjPjsNOHGEeIJBcOh7Fp0yZcf/31WL9+PZ555hkAQGtrKzZv3oy1a9finnvuQSQSkThSyhbtnqDs6oEMuaDSinAsgUNdnIlG0mhxB1Fty/1R4EtmWKFVKbCbS2KIhp3o9WNuiYkDqDlIpVSgwqpnEuQsTILkoO6BMOKiiLIC1gOZjEUOM8KxBE7wRCE5jUaDF198Ea+99hq2b9+O999/H19++SUef/xxfPe738Vbb70Fi8WCl19+WepQKQuIooh2T1BWnWEEQYA7EkdnfwizSk0QAOxpdsMdiZ/3LyxKHS3lMlEUcdodyIskiE6txKXVhfjriT4kRP5hEQHJWQI1pSapw6AMmVlsxEkuhxnGJEgOOlMUlTNBJmPRYFvhQ6wLIjlBEGA0JlvlxWIxxGIxCIKAjz76COvWrQMAbNiwAQ0NDVKGSVmiLxBFMJqQVVHUYCyBXUe68dejPfis2YVSsxZ/PdaLXUe6z/sXiMalDpdyWLcvgmA0gerC/CiKeNW8YjgHwjjQwc96ooFQDD2+COYyCZKzZhcZ0eoJcsntoCm1yM0Er9eLBx54AEePHoUgCHjsscewfPlyqcPKKp3eMAxqJSw62b28WaGiQIcCnQqHugawsU7qaCgej2Pjxo04ffo0/u7v/g5VVVWwWCxQqZLvb4fDAafTOe5xlEoBVmv2jnAqlYqsjn+iMvF8jw12hikr1MOgTy0RolIqUt52KtsrFAIMeg1mlxjxabMbGo0Kqq+1sdNp1bCydTdlSMtQZ5g86Qyxak4RtCoF3jrSM9wZjihfDRVF5UyQ3DWz2IiEmDzXz+PrLL8kyKOPPoorrrgCzzzzDCKRCEKhkNQhZZ2O/hDKCrQQuKZvUgRBwKIyM9vkyoRSqcSOHTvg9Xrxwx/+ECdPnjxvm1Te6/G4CI8ne5c4Wa2GrI5/ojLxfA+3JjuvGJQCAsHU6sjE4omUt53K9ga9BoFgBOVmLWIJESecA6j62oh8KByFx5O9IzglJWapQ6AxtAy2Tszl9rhnM2lVuHyWDe8c7cGPrpwDlQyLJRNNl6El4DWlJkQ56zAnzRrs+nOyj0kQQGbLYXw+Hz799FNs2rQJQLIegMVikTiq7BKJJdDnZ1HUqVrssODk/8/efYfHWV+JHv9OLxpJMyqjXqzmbmMw2KYZG2xjDLEBE7LZZQNZQpYUIAESyoYEspts4YaS3N3FlxtCssteAgFMEGDANhiwMWBsy92WZDVbfWbUps+89w9ZDgYXySrvlPN5Hj2A9M7oDJry/s57fud0eRkIhtUORRyTlpbGvHnz2LFjB729vYTDg3+btrY2nE6nytGJeNDk8aHTakg3x05PkC8aSnw0HVuQCjFRGl1erAYd2bbY2S423pZNycblDbGtSUZTi+RW3zWAxaAlPz05KsGSUVGGFZ1WI2Nyj4mpSpDm5mYyMjK4//772b9/P9OnT+fBBx/Eaj35VYnRlLfHY2n56WL29fixWox0dA+gAJOybSMqyR4y0lLu0zGbDGPy/3nosY1VTKcrJx+K94KKLNZsaaS5P8T8sthOxMXjc3m4XC4Xer2etLQ0/H4/mzdv5lvf+hbz5s1j3bp1rFixgpdffpnFixerHaqIA03uwfGf2hi+4msx6HDajDS5vVxEhtrhiCTS6PZR7LAkVRXphZMySDHqWLe/g3mlDrXDEUI19d1eJmWmxPTnoxgdg05LsUMmxAyJqSRIOBxm7969/OQnP2H27Nn84z/+I2vWrOGuu+466fGjKW+Px9Ly08XsD0bw+oIc7ugHIMOsG1FJ9pCRlnKfjj8QIhKJjvr/89BjG6uYTldOPvT/uDR1MOmy5VAnU2J8f7Taz+XxLHHv6OjgvvvuIxKJoCgKV155JYsWLaKiooIf/OAHPP7440ydOpUbbrhh3GIQiaPZ7aPAHtuvZ4DiDCs7WnqIRBV0ckIqJkiTy8vM/NhO+o81s0HHZRWZbKzt4r5wJUZ9TBVICzFh6ru9LJBEYMIrz7Sy/9haMdnFVBIkNzeX3NxcZs8e7EZ55ZVXsmbNGpWjii+tvX7SzXqsxpj608addIuBSRlWdh6RrvFqmjJlCq+88sqXvl9UVCRjccWIRBWFZo+PWYWx3wCx2GHh0yYPrb1+CuMgaSPinz8UobU3wNXTE7Oq8HSWTnFSvbeDzYddXFaZpXY4Qky4Hl+I7oEg5VkpaocixllZZgrrD3bhD0UwG3Rqh6OqmFopZ2dnk5ubS319PWVlZWzZsoXy8nK1w4orrb1+8mJkeoBGo6G1x48/OLoGSxFljAJiMCb3aeLxfS7eKbmpvF/XRXcgjPYL5cFWgw6TXKAVIm509gcJhKMU2GPj/fF0io4lPhpdPkmCiAnR4vGjkDyTYT7vgmI76WY9bx3olCSISEpD2yPKMpMvCZpsyrOsKMBhl5epOcndrDymkiAAP/nJT7jnnnsIhUIUFRXxy1/+Uu2Q4oY3GMbjCzOnMDZO8n3hKB81dI56K8uCyuwximgwpi2HOk/586EJDQBaDfQHIry4rYVsm+mE4xZNcWIyJncGVYh40nys0WhBuoUe79hsrxsvVuNgc8omt4+L1A5GJIVG97HxuEkyGebz9DotV0zO5rU97XiDEazy2S6SzFCjTEmCJL6yzMFqn/ouSYLEXBJk6tSpvPTSS2qHEZdaewMA5KeZznCkGI7CYxU1LR7/l5IgQoj40uQ5lgSxm2M+CQKDW2JqjvRKXxAxIRpdg6+P4iSsBAG4coqTP+1sZcOhTq6enqt2OEJMqPpuLylGHTmpcq6b6AodFgw6DfXdMiFGOkAlkNYePwA5Mh53TDisBqwGHS0eGVUpRLxrcvkw6jRkx8lJXonDSiiq0NrrVzsUkQQa3V6cNiOWJN0jPrsgjYJ0M9V72tUORYgJV989QFmmNakmQyUrvVZDicMqE2KQJEhCOdrrJyvFiEm6m48JjUZDod1Mi0cWIULEu2bPYH+NL/b3iVVFjsEr8k1uScKK8dfg8lGSkbyl8BqNhhXTcvi0uUcSjyLp1Hd5j2+TEImvPMt6fAtUMpPVcoJQFIXW3gB56fFxlTNeFNoteHwh+gNhtUMRQoxCs9tHsSN+Sv0/3xdEiPGkKApNbi+lSZwEAbhquhOAN/Z2qByJEBPH5Q3i9oUoy0ru138yKctMobU3gHeUgyvinSRBEkRnfxBvMEKebIUZU4X2ob4gshARIl5FogotPb7jU1fiRbHDQovHRyQ6hiOyhPiC7oEg/YEIJXGUJBwPBekW5hSmU723HUWR15xIDkMVATIeN3kMNcA9nOR9QSQJkiD2t/cBSBJkjOWmmdFrNbIlRog41t4XIBRRjm8xiRfFDguhiEKblOeLcXR8PKZcCebqaTk0uX3sau1TOxQhJkRd1+DrX5IgyaPs2N+6Lsn7gkgSJEEcbO9Hp9HgTDWqHUpC0Wk15KWZpBJEiDjWdGz8ZzxthwHpCyImRoNr8PUxKcm3wwAsrsrCpNdKg9QYt2nTJpYtW8aSJUtYs2bNl34eDAa56667WLJkCTfccAMtLS3Hf/bUU0+xZMkSli1bxvvvv3/C7SKRCKtWreLb3/72uD+GWFHXNYDdYiDTalA7FDFBCtLNmPTapO8LIkmQBHGgox9nqhG9Vv6kY63Qbjl2JTmqdihCiLPQ5B6spIi3JEiKUU9WivQFOdOC55NPPuHaa69l2rRpvPnmmyf87OWXX2bp0qUsXbqUl19+eaJCjiv13V5STXoyU+Qiis2kZ1FlFm8f6CQQls/8WBSJRHjkkUd4+umnqa6u5rXXXqO2tvaEY1544QXS0tJ4++23ufnmm3n00UcBqK2tpbq6murqap5++mkefvhhIpG/9EX4/e9/T3l5+YQ+HrXVdQ1QniWTYZKJTquhNEMmxMiKOQFEFYVD7f2yFWacFNjNRJW/jCAWQsSXZo8Pi0FLVhwu8pK9L8hwFjx5eXn88pe/5Oqrrz7h+x6Ph9/85jf88Y9/5IUXXuA3v/kNPT09Exl+XDjcPdgUVRZBg66elkNfIMymum61QxEnUVNTQ0lJCUVFRRiNRlasWMH69etPOGbDhg1ce+21ACxbtowtW7agKArr169nxYoVGI1GioqKKCkpoaamBoC2tjbeffddVq9ePeGPSS2KolDX5aVcJsMknbJMK/VJXgmiVzsAMXqNLh/eUIS8dEmCjIfCY80Umz1+iqVcWIi40+weHI8bj4u84gwLn7X00NYXUDsUVXx+wQMcX/BUVFQcP6awsBAA7RcqIT/44AMuuugi7HY7ABdddBHvv//+l5Ilya7B5eWSsky1w4gZc4vtOG1Gqve0s2RyttrhiC9ob28nNzf3+H/n5OQcT2R8/pi8vDwA9Ho9qampuN1u2tvbmT179gm3bW8f3Pr0i1/8gnvvvZeBgeEvDHU6DXZ7/J4XHvEMrh9mFjuOPw6dTovZZMBqGb+LBnqddtzufyT3rdVqRhxHrMR+NjRaDfbUwb/z9EI7b+zrQGsykGZJzq1QkgRJAHvbBht45afJeNzxYDEMjqpslr4gQsSlZo+Pyuz4vNJVPJSEdSdn2epwFjwjue3Qgud0YmVho9Npxz0OtzeIyxtiWmH6SX+Xr8d/ypPyUy0gzuZEfjxuc7L4zCYD9mFcMLp2TgFPf9hASKcjO3Xsz60m4m87GrEc38km93wxwX2qY071/Y0bN5KRkcGMGTPYunXrsGOJRBQ8nvh9b/7sWLVTnlV//HHY7Vb8gRBeX3Dcfm84Eh23+x/JfVstxhHHESuxnw0l+pfna37KYOJje30XswvSx+13ToTs7NSzup0kQRLAnrY+LAYtGXFY6h0vShxWdhzpIRJV0Gnj72qyEMkqHIlyxONjcWWW2qGclZRjvRoaXcmZhB3OgmesbxsrCxu73TrucexsGdwelGM1nPR3+YORU56Un2oBcTYn8uNxm5PF5w+E8HjO3OvjivJMnnr/MM9vbeRv5haOKK7hmIi/7WioHd/pFjW5ubm0tbUd/+/29nacTueXjmltbSU3N5dwOExfXx92u/2Ut92wYQMbNmxg06ZNBAIB+vv7ueeee473EklUMh43eQ1NA6vv9sZ9EuRsSU+QBLCnrY9Kpw1tHJZ6x4uSDAvhqMIR6QsiRFw50uMnosRfU9TPS+a+IMNZ8IzHbZNF/bHJMGWZsXnVXy2lmVam56ZSvaf9pMk0oZ6ZM2fS0NBAc3MzwWCQ6upqFi9efMIxixcvPt4Ied26dcyfPx+NRsPixYuprq4mGAzS3NxMQ0MDs2bN4u6772bTpk1s2LCBX/3qV8yfPz/hEyAwOCI1N9WEzSTXxJNNXpoZs16b1M1RJQkS5wLhKAc7+pmae3alQGJ4ih0WNECjK3nfLISIR43HJquUxHE/n2KHhWBEobazX+1QJtxwFjyncvHFF/PBBx/Q09NDT08PH3zwARdffPE4RxxfDnd7Meu15IzDlo9YpNFocAcjw/paNDmb2q4B9nQkd/PAWKPX63nooYe49dZbueqqq1i+fDmVlZU88cQTxxukrl69Go/Hw5IlS3jmmWe45557AKisrGT58uVcddVV3HrrrTz00EPodDo1H46qBifDSBVIMtJqNJRlpST1mFxJ/cW5/e19hKMKU3NTCQQjZ76BOCtmg46cNBONLi+XlEsDOSHixVDisiTOK0EAdh7pYX6RXeVoJtbnFzyRSITrr7/++IJnxowZXH755dTU1PC9732P3t5eNm7cyK9//Wuqq6ux2+185zvfOT7t4bvf/e7xJqliUEO3l0mZ1qSpJPWFo2w51DmsY/Ua0Gk0vLq7lRk5leMcmRiJhQsXsnDhwhO+d+eddx7/d5PJxJNPPnnS295+++3cfvvtp7zvefPmMW/evLEJNIaFI1EaXF4WlDrUDkWopCzTypYGt9phqEaSIHFud+tgU9QpOansbPaoHE1iK82w8nGjm2DkzPuJhRCxocntw24xkB7H3c9tJj2ZKQZ2HelVOxRVnGnBM2vWLDZt2nTS265evTqpRl6OVH33AHOLJTF0MhaDjorsFDYc6OJHl5Wj10nxtEgcTR4foYgilSBJrCzTymt72unxheL6HOlsyTt6nNvd2kt+mkmaok6AkgwLUQVa3MnZoFCIeNTo9sV1FciQYruFXUd7CSdhXxAxPvoDYTr6g5TG8Vax8TYzP5UeX4jNSXy1VCSmuq7BKklJgiSvsmN/+2TtCyJJkDi3q7WPmflpaoeRFArtFrSav/QYEELEvkaXl5KMBEiCZFjxBiMc7Ei+viBifDRKU9QzKstMId1ioHrPmUcrCxFP6roG0GqQJGgSKz/23p+sfUEkCRLHOvoCtPcFmJEnSZCJYNRpKUi30CDNUYWIC/2BMC5viBJH/J/kDfUF+ezYSFMhRmvo6t+kTLkSfCo6rYbFVVm8X99Njy+kdjhCjJm6rgGK7BZMelkKJqucVBMpRp1Ugoj4s7t1cH/4zDyZDDNRSjIstPUG6POH1Q5FCHEGx5uiJkAliM2kp9BuZpv0fhJjpMHlxaDTkJ9uVjuUmLZkqpNQROGtA8NrqCpEPKjrGqAiWxKgyUyj0VCWaaW+WypBRJzZ1dqHUaehymlTO5SkMVQ2WHNErsYKEeuOj8dNgEoQgFkF6Wxv6SEifUHEGKjv9lLisKLXJsdkmLNVnpVCRVaKbIkRCcMfitDi8VMuVWBJrywz5Xh/mGQjSZA4tru1l8nOVAzSsXzC5KebMWg17JCSdCFiXqPLi04DBfbEuNI9qyCdgWCEQ53SF0SMXoPLK/0AhkGj0bBieg572vpoSNKycZFY6ru9KEB5lrz+k11ZlhWPL0T3QFDtUCacrJ7jVDgSZV97PzPzZSvMRNJpNRQ6LHwmJelCxLxGt28wcZkgieJZBYP9n7Y1SxJWjI4/FOGIxy9NUYfpyqlOdBp4ba9Ug4j4N9RguzJbKsmTXeWxLVG1ncm3JSYxzgyT0MHOAQLhKDOlKeqEK8u00uz20eKRKTFCxLJGl4+SBLrSnWUzUeywSF8QMWqNbh8KUCpJkDPSaDToDDrOK3ZQvaedLn8YdzBy2q+A7FgTMexg5wApRl3CVEmKs1d1LBF2IAknz+nVDkCcnaGmqDOkKeqEq8hOYf3BLj6sd3HjuQVqh5PQWltb+dGPfkRXVxdarZavfvWrfOMb38Dj8fCDH/yAI0eOUFBQwOOPP056erra4YoYElUUmj0+Liixqx3KmJpTmM6Gg11Eogo66eUgztLQSMSKLOkJcCa+cJQthzrJTzPxcaObZ7c0MukMyaNFU5yYjLoJilCIkTnY0U9ldgpajXyGJLt0i4HcVBMHk3CbrVSCxKldrX1k24zkpJrUDiXpZFiNFNotfHDYpXYoCU+n03Hffffxxhtv8Pzzz/Pcc89RW1vLmjVrWLBgAW+99RYLFixgzZo1aocqYkx7X4BAOJpQlSAA5xWl0xcIJ2Xpqhg7hzoHMOo0FDnif3LSRKnMTsGs17Lr2EUoIeJRVFE41DlwvAJAiMlOW1JWgsRcEiQSibBq1Sq+/e1vqx1KTNvd2suMvDQ0ksVVxbxSB9uaPXiDEbVDSWhOp5Pp06cDYLPZKCsro729nfXr17Nq1SoAVq1axTvvvKNmmCIGHR+Pm2CLvHMLBytbtrXIlhhx9g519lOelSKTYUZAr9MyJcfGwY5+QpGo2uEIcVZaPH68oQiTZbKkOKbKmUKjy4cvlFxrmpjbDvP73/+e8vJy+vuTLyM1XF39AVo8fq6blad2KElr3iQHf9pxlI8b3VxWmaV2OEmhpaWFffv2MXv2bLq7u3E6ncBgosTlOnNVjk6nwW6P36oAnU4b1/GP1Ggfb4e/E4BZpZnYP1cx5+vxY7UYh30/ep12Qo7XajVnvJ3ZZGCSM5XiDCu72vqT6vkgxtahzgEumpShdhhxZ2pOKjuO9FLf5WVyjiwiRfwZuuJf5ZStcGJQVbYNhcHmqDPzk6fXZEwlQdra2nj33Xf5+7//e373u9+pHU7M+uzYeNZzixJrr3s8mZGXRopRxweHXZIEmQADAwPccccdPPDAA9hsZ3fiGYkoeDzxO97QbrfGdfwjNdrHu/9IDylGHfpwGI/nL1c3/MEIXt/wR8GFI9EJOd5qMZ7xdv5ACI8nypz8NDbWduFyD8TVnu7sbOlhFQu6B4K4vCEqsmURNFLFDgtWg4597X2SBBFx6WBHPzqthrJMef2LQUPvZQc7+5MqCRJT22F+8YtfcO+996LVxlRYMWd7Sw9Wg05K2VSk12lZUOrgw3oXUUXawI+nUCjEHXfcwTXXXMPSpUsByMzMpKOjA4COjg4yMuSKpjhRo8tLSYY1IbcMnluUTq9f+oKIszP0vJGeACOn1WqYnGOjtnOAoGyJEXHoQEc/ZZlWjHpZa4lBuakm0sz6pOsLEjOVIBs3biQjI4MZM2awdevWYd1mNOXt8VhaPhTzztY+zitxkJXxlyzuSEu8T2Wkpdxnuq/hlHhPdEynu6/hxms2GVg6I493DnZx1BtmRoF6k0ni8bk8XIqi8OCDD1JWVsYtt9xy/PuLFy/mlVde4bbbbuOVV17h8ssvVzFKEYsa3T7OLUzMiUFDj2tbSw9VkgwXIzQ0BUAqQc7O1Bwb21t6qOsaYGqOVDeJ+HKwc4D5pQ61wxAxRKPRUJWdwsGO5LqwEjNJkM8++4wNGzawadMmAoEA/f393HPPPTz66KOnvM1oytvjsbTcbrfScLSHQx39LKnKOiH+kZZ4n8pIS7nPdF/RqDLq+xvrmE53X8MpSYfBsvRzclLQAG/sPEphimFM4jsbaj+Xx7PEfdu2baxdu5aqqipWrlwJwA9/+ENuu+027rrrLl588UXy8vJ44oknxi0GEX98oQjtfQFKMhKrKeqQ3DQzBelmPmv28FcypluMUG3XAE6bEbtFvc+teFbksJBi1LG/rV+SICKudA0E6R4IUiUJUPEFVU4bf9rZSjiqJE3D7JhJgtx9993cfffdAGzdupXf/va3p02AJKvtR471A0nQK5zxxGE1MiMvjQ8Ou/jWhSVqh5OQ5s6dy4EDB076s2effXaCoxHxosntA6DEkZgVUjD4GbCprpuoosRVXxChvkOdA5RnySLobGk1g1tiao70EgxHZVuBiBsHj213kO304osmO20EwlGa3N6k6Rcj79xx5rOWHkx6LdNy5epDLLikPIO9bX109AXUDkUIcczx8bgJWgkCcF6RnR5/mLqu5CpfFaMTCEep7/YyRZp6jsrUnFTCUYVaef2JOHJ8Moz0AxJfMPScSKa+IDGZBJk3bx5PPfWU2mHEpO0tPczMS8Wgi8k/XdJZdGwyzPpDXSpHIoQYUtftRadJ8EqQomN9QZp7VI5ExJPazn4iUYUpso1jVArtZmxGHfvb+9QORYhhO9gxQH6aiVRzzGwEEDGiNMOCUadJqr4gspKOI72+EAc7+jm3UEbjxorSDCuV2Sm8vb9T7VCEEMfUdw1QaLckXJm6RqPBHYzgDkYwmw3kpJnY2uQ5/r0vfgVkcJX4gn3tg1f5pkolyKgMbYmp6/ISCMuUGBEfDnb2SzNtcVJ6nZbyrJTjW6aSgaQC48i2JjcKMEf6gcSUJZOz+fcPGmjr9ZObZlY7HCGSXn23NyF7HvjCUbYc+kvC1Wkzsq3JzYZ97ScdBbxoihOTUTeRIYoYt7+9n3SzntxUk9qhxL2pOalsax6cEiNblEWsGwiGaXb7uHKqU+1QRIyqyrbxbm0XiqKc9Jwi0STWZbIE93GDG4NOw4w8+bCNJUsmZwPwzkHZEiOE2gLhKC0eH2WZibsVZkixw4ovFKVrYGymZ4nEt7e9j6k5qUlxgjve/rIlJnmunIr4Vds5gII0RRWnVuW00eMP09GfHOcUkgSJIx83uJiem4rZIFf2Ykmh3cLUHBtvH5AtMUKorcntJaqQJEmQwcavjS6fypGIeCBNUceWRqOhKsdGXdcAwYhsiRGx7cCxXg8yHlecymTn4HMjWZqjShIkTniDEfYc7ZWtMDFqyeRs9rb10eKRxYgQaqrvGpwMkwwj3uwWA+lm/fGRwEKczlBTVOkHMnamOm2Eo4pMaRIxb197Hw6LgRzZCidOocppQ6uBfW3J0fBZkiBxYseRHiJRhXMlCRKTrhjaEiPVIEKoqr57AJ3mL1USia7IYaHJ7UNRpAuqOL2hpqgyGWZX8upiAAAgAElEQVTsFDospMiWGBEH9rT1MS1XtsKJU7MYdEzKtLJHkiAilmxtdGPUazmnQJIgsSgvzcyMvFTZEiOEyuq7vRQ5Em8yzKmUOCz4QhHpCyLOaHdrLw6Lgbw0uRI8VrQaDVVOG3WdA4RkS4yIUQPBMA3dXqZLA19xBtNzU9nb1pcUF1aS4ywxAWxtdDO3xCH9QGLYksnZHOwcoNHlVTsUIZJWfbc3KbbCDCnOGOx9IltixJnsau1jZn6aXAkeY1NzbIRkS4yIYfvb+1FAphiJM5qWm0qPP8yRHr/aoYw7SYLEgc7+AHVdXi6uyFI7FHEaV1Rlo9XA63vb1Q5FiKTkC0Vodvsoz0r8pqhD0s160qQviDgDjzdEk9vHTJkuN+aK7BasBtkSI2LX3mPbG6blSj8gcXpD1UJ7k2BLjCRB4sDHjR4ALirPVDkScTrOVBPzSx28tqedSDTxy8iEiAUBBdzBCO5ghO2tfShAvsN6/Htf/Iok2EtTo9FQ7LDQ5JK+IOLUdrX2AjCrIE3lSBKPVqthsjOF2i7ZEiNi0962PvLTTDisRrVDETGuIisFo07D3rbET+rq1Q5AnNlHjW4yrAam5KTS2ytX+2LZyhm5/PjP+9ja6ObCSRlqhyNEwvOGImzc3wHA9pYeADp6/ce/90ULKrMnLLaJUuywsLu1j+6BIFk26fcgvmxXay86rYa8YwnC4Uq0pOF4mZyTyvYjvdR3e5nslKvtIrbsPdYUVYgz0eu0VDlt7G3rVTuUcSdJkBgXiSpsbXAzr9SBViv7eGPdJeWZ2C0GXt3dJkkQISZYe18Ak15Lujm5PtqGJuE0uX2SBBEntetoL2VZVrbUdY/odomYNBwPJQ4LFoOO/e19kgQRMcXtDXK0N8Dqc/LVDkXEiem5qazd1UY4qqBP4LWnbIeJcXvb+nD7QlxSJgvqeGDQaVk+1cl7td14vCG1wxEiqXT0BXDaTEnX+NFuMZBqkr4g4uQiUeXYeEzZCjNejm+J6RwgLFtiRAypOTrY22FWvrz+xfDMzEvDH45S15nYzZ4lCRLjPjjsQqeB+aUOtUMRn6PRaE7Zc+CyydmEowov7W475TGf/wpIubEQo6YoCh39AZypybfneagvSKNb+oKILzvQ0Y8vFGWaNEUdV5NzbAQjCvXdMiFOxI6ao73otRqm5MjrXwzPUO+onUcTe0tMctUMx6EP6rqZVZBOmtmgdijic3zhKFsOdZ7y53lpJl7cfoR0k+6MV6UXTXFiMsroYyFGw+0NEYoo5KQm53aQYoeFPW19uLwhMlOSLxEkTm1b82Bz9VkF6dQc+3cx9kocVswGLfs7Er+hoIgfu472MDXHhkkv173F8OSmmsi2Gak52sNX5yTuNip5RcSwjr4ABzsHuFh6S8SdWflpdPYHaesNqB2KEEmhvX/wteZM1iRIxmBfkEaXXIUWJ9rW3ENphkWSY+NMp9VQlW2jtnOAoGyJGVebNm1i2bJlLFmyhDVr1nzp58FgkLvuuoslS5Zwww030NLScvxnTz31FEuWLGHZsmW8//77ALS2tnLTTTexfPlyVqxYwbPPPjthj2U8hSJR9rb3M1O2wogR0Gg0zMpPY1drYo/JlSRIDPugfrCB2UXSDyTuTMtNRa/VsONIj9qhCJEUOvoCaDSQnaQLPYfFgM2kS8i+IGe74GlpaWHWrFmsXLmSlStX8tBDD0106KoLRxV2HOnhvCK72qEkhSk5NgLhKJ81ScXNeIlEIjzyyCM8/fTTVFdX89prr1FbW3vCMS+88AJpaWm8/fbb3HzzzTz66KMA1NbWUl1dTXV1NU8//TQPP/wwkUgEnU7HfffdxxtvvMHzzz/Pc88996X7jEcHO/oJhKPMliSIGKFZ+Wkc7fHT1Z+4F3MlCRLDNtZ2U2Q3U5ZpVTsUMUJmg47puansbu3DFxr+OEIhxNk52uPHaTOh1yXnx9pgXxArTQnWF2Q0Cx6A4uJi1q5dy9q1a3nkkUcmOnzVHWjvYyAYkSTIBCnNsGLWa9lU26V2KAmrpqaGkpISioqKMBqNrFixgvXr159wzIYNG7j22msBWLZsGVu2bEFRFNavX8+KFSswGo0UFRVRUlJCTU0NTqeT6dOnA2Cz2SgrK6O9vX3CH9tYG+rpIJUgYqSGGunWJHA1SHKeLcaBXn+IT5o8LKrMTrpJB4nivGI74ajCziOJ3VhICLUpikJrb4D8tOTcCjOkxGFhIBjBlUCTqUaz4BHwafNgNeK5hekqR5IcdFoNlc4UttS7CIZlS8x4aG9vJzc39/h/5+TkfClh0d7eTl5eHgB6vZ7U1FTcbvewbtvS0sK+ffuYPXv2OD6KiVFztJe8NBPZMjpdjNBkpw2jTsPOBK5ol8aoMer9OheRqMLiyky1QxFnKSfVRLHDwmfNHi4osaOVZJYQ48LlDREIR8lLN6sdiqqKHIN9QZrcvoTp/3CyRUtNTc2XjjnZggcGFzSrVq3CZrNx1113MXfu3DP+Tp1Og92ufgWmTqcddRw7WnupyLZRXmCntceP1TKy54Vepz3lbbRazUl/drrbnM3vOdvbnCy+iYjtnCIHu472sdfl47Kq7JMeMxZ/2/EUy/GdLMH5xYuFpzrmTLcdGBjgjjvu4IEHHsBms50xllh5rzgZRVHYcaSXiyuyRhSjTqfFbDKM+HUyEmfzOhyP+z7Ve9hY3f9Ijed9A2i0Guypw38uzC6ys6utL2af46MlSZAYtfFQFzmpJqblykireHZeUTov17RR2zlAlfPMH6hCiJE72uMHID/JkyAZVgM2o44mt5c5CXLlfzQLHqfTycaNG3E4HOzevZvvfve7VFdXn3FxE4koeDzqN5i1262jisMXivDxYRerz8nH4/HiD0bw+oIjuo9wJHrK21gtxpP+7HS3OZvfc7a3OVl8ExFbns2IzaTjxU+aOMeZctJjRvu3HW9qx5edfepz39zcXNra2o7/d3t7O06n80vHtLa2kpubSzgcpq+vD7vdftrbhkIh7rjjDq655hqWLl06rDhj5b3iZA53e+keCDIzJ2VEMdrtVvyB0IhfJyNxNq/D8bjvU72HjdX9j9R43jeAEh3Z83V2biq/3dpES3svNlPspgxO935xOrIdJgYNBMN81OhmUWWWbIWJc1XZNtLMej6VJmlCjJujPX6MOk3CVD+cLY1GQ5HDQpMrcfqCjGTBA5yw4DEajTgcDgBmzJhBcXExhw8fnrjgVfZpk4dgROFCmTA3oXRaDZdVZfNubTf9gbDa4SScmTNn0tDQQHNzM8FgkOrqahYvXnzCMYsXL+bll18GYN26dcyfPx+NRsPixYuprq4mGAzS3NxMQ0MDs2bNQlEUHnzwQcrKyrjlllvUeFhj7rOWwfPOcwulH5A4O+cWpRNVSNht/ZIEiUHvHuomEI5yRVWW2qGIUdJqNZxbmE6j20dnAndYFkJNR3v95KWZZcsZUJJhpT+B+oKMZsHjcrmIRAYbUw8teIqKiib8Mahl82EXFoOWOQWJURUUT5ZOcRIIR1l/sFPtUBKOXq/noYce4tZbb+Wqq65i+fLlVFZW8sQTTxzvF7R69Wo8Hg9LlizhmWee4Z577gGgsrKS5cuXc9VVV3Hrrbfy0EMPodPp2LZtG2vXruWjjz46Pk3qvffeU/Nhjtq25h6cNiOF9uSukBRnb2ZeGgadhm3NiXkhN3ZrW5LYm/s7yE8zHe/MK+Lb7IJ0Pqh38WmTh+XTctQOR4iEEgxH6egLcEGJQ+1QYkJpxmBfkMPdsVmiPVKfX/BEIhGuv/764wueGTNmcPnll7N69WruvfdelixZQnp6Oo899hgAn3zyCU8++SQ6nQ6dTsfDDz+M3Z4cV0UVRWHzYRdzi+wY9XK9a6JNzrFRmmHhtT3trJyZp3Y4CWfhwoUsXLjwhO/deeedx//dZDLx5JNPnvS2t99+O7fffvsJ35s7dy4HDhwY+0BVoigKn7X0MLcoXSrKxVkbmnT5WUtiNkeVJEiM6R4I8nGjm29cUCRvXAnCatQxIy+VXa19XFKeGdP76mLN/fffz7vvvktmZiavvfYaAB6Phx/84AccOXKEgoICHn/8cdLT5UpnsjrQ3kdUgYIk7wcyxGE14rAaqOsaUDuUMXO2C55ly5axbNmycY8vFjW6fBztDfC3FyRP5Uss0Wg0XD09l9+8f5hmt+9402IhJkKj20f3QFBGY4tRO7fIzrNbm+gPhBNu/SKXB2LM2wc6iSpw5VTnmQ8WcWNeiYNoVOET6Q0yItdddx1PP/30Cd9bs2YNCxYs4K233mLBggWsWbNGpehELNhx7AqFLDL+ojwrhSa3D38oonYoQiXv1XUDcJH0A1HN8qlOtBp4bW/7mQ8WYgwNnWtKEkSM1nmF6UQU2J6A1SAxlQRpbW3lpptuYvny5axYsYJnn31W7ZAmXPWedqqyUyjLPHlHcRGfMlKMTMmx8VlzjyxMRuD888//UpXH+vXrWbVqFQCrVq3inXfeUSM0ESN2HukhN9WExaBTO5SYUZ5lJRxVqDmSeCctYnjWH+xkem4quWlSIaUWZ6qJeSUOXt/TTjRBGhWL+LC1wU1+moki6QciRml2QTomvZatjW61QxlzMZUE0el03Hfffbzxxhs8//zzPPfcc9TW1qod1oQ50N7P/o5+Vs7MVTsUMQ7mlzoIRqIJu7duonR3dx+fDuF0OnG5XCpHlHwCCriDkWF/DUSHf3xgBGsFfyjCvtY+ijOkCuTziu0WDFoNnzRK5VkyOtrjZ197P5dLc3XVXT09h7a+QMI2FhSxJxyJ8mmzh3mlDtlWL0bNpNdybmE6WxoSLwkSU5t7nE7n8cWNzWajrKyM9vZ2KioqVI5sYqzd3YZRp5GtMAkqN83MpEwrnzR5OL/YjkEXUznIhKfTabDbrWqHcdZ0Om3MxN/a42drY/ewjz+vxMG2YS7IF1ZlY083D+vxbqnvJhRVqMpNw2oZ3nhcvU477GMn8nitVnPG243kvsuyU/ik0U16ukVOhJPMhkNdACyqlCSI2hZWZGEz6Xh1dzvnF0vzZjH+drX2MRCMML9UtsKJsTG/1MFj79ZztMdPfgL1X4upJMjntbS0sG/fPmbPnn3KY0azqImlBQUMXtF8c38HV07PpTj35E0eTxezr8c/ohPvUxnpCfyZ7ms4J/YTHdPp7mu48Z5tTIsmO/nt5gb2dw4wb1ImAGaTAfso3lRi7bk83jIzM+no6MDpdNLR0UFGxvA+6CMRBY8nfidm2O3WmInfH4zg9QWHfXw4Eh328f5ACI8nOqzH++7eNrQacFr1w77/kcQykcdbLcYz3m4k913isPDW/k5qDndTkhEb7w/Z2alqh5AU1h/sZIrTRqFdKqTUZtJrWT41h1d2tfKDy8rIsI7NuYwQp/JRgwudBs6XfiBijCwozeAx6vmo0c11sxJn2lVMJkEGBga44447eOCBB7DZbKc8bjSLmlhYUAQU8B7rD/HWvnb6/GEuKc/kcEffSY83mwz4A6GT/iyiMKIT71MZ6Qn8me4rGlVGfX9jHdPp7ms4C5HRxOS06ilIN/P+oS6mOW3otJrji76zpfZzeaIXNosXL+aVV17htttu45VXXuHyyy+f0N8vzswXiuDyhghHothMeiLR8dkPv7XRQ5XThkkv/UC+qDwrBejkw8OumEmCiPHX5Paxu7WP718ySe1QxDFfPSefF3Yc5eWaVv5ufona4YgE91Gjh+l5aaSaY3KJJ+JQaYYFp83IRw2SBBlXoVCIO+64g2uuuYalS5eqHc648oYibNzfgaIo/GFrM1kpRrr7/GzcHzjp8adboC+ozB7PUMUY0Wg0XFSWwR+3H6XmaC9zCmW06+n88Ic/5OOPP8btdnPppZfy/e9/n9tuu4277rqLF198kby8PJ544gm1wxQMJj5qjvSyq7WXzv4T36f+8Ekzldk2zitKH7NGje19Afa09XHLAllUnIzdYqDIYWHLYTdfP69Q7XDEGPv8RZTPe7GmFa0GLqzIxB088ecR6c2pitJMK/NLHby4o5VvnF+EXrbCinHSNRBkX1sft10on4ti7Gg0Gi6clMHbBzoJhqMY9YnxHhZTSRBFUXjwwQcpKyvjlltuUTucCdPi8dPeF+DKqU7Zu50EyjKtFKSb+bDexcw8KQ8/nV/96lcn/X4yTo6KVeFolE+beth82EUgHKUg3czCikyybUYMWi29gTCBiMKmQ53UHO3lnII0FlVmYR7lNJeNx/oeXFyeQW17/1g8lIRzQYmDV3e14gtFZHpOghm6iPJ5UUXhtV1tTMq0UnOSBtxysUQ9X5tTwF0v7+btg50sn5qjdjgiQb1f140CLKzIVDsUkWAuLc/klV1tbGvxsCBB+s3EVCpn27ZtrF27lo8++oiVK1eycuVK3nvvPbXDGnefNHkw67XMkAVxUtBoNCysyKQvEJZJMSKudfQFeHZrMxsPdVFoN/PN+cX87QVFXDgpg8psG6WZVmblp3HH4gq+e8kkLii2U3O0l2e2NtPed/KKt+HacKiLskwrRQ7Z6nEqF5Q6CEUUPmmSyRTJoMHlpS8QZmZ+mtqhiC9YMMlBWaaV321tlnG5YtxsqusmP91MRVaK2qGIBHN+sR2LQct7tcNvih/rYqoSZO7cuRw4cEDtMCaUayDIwY5+5pU6ZFpIEinJsFKaMViq7gtGcBjlKq2ILzuP9LBuXydmg5bV5+RRmX3q/k0AZoOOyydnMznHxss1rfzh42auPyePSZkjP1nrHgiyo6WHv5tffLbhJ4Xp+WmkGHVsquvm0nK5MpjodrT0YjZoqcyWBVCs0Wo03DyviIdeP8Cm2m5WnS9/IzG2vMEIHze6uX52vlSVizFnNuiYX5rBprpufnR5BdoEeI7JqltlHzW40Wk1XFAsXZyTzaXlmXhDEV7ZeVTtUIQYtlAkyq/freP1vR0UOczcuqDkjAmQzyu0W7hlXjEOq4E/bj/KgY6Rb2V560AnCrC4SkaAno5Rp+Xisgzeq+0mPE7NaUVs6PGFONjRz5yCdPRaObWLRUsmOylIN/PbrU0oUg0ixthHDS6CEUW2wohxc1lFJp39g31nEoF8Uqqooy/ArtZeZhWkkWKKqaIcMQEK7BYqslJ4YfsRev0nn/ojEldAAXcwMqyvQIycL7u8Qb7zQg1/3tXGvBI7N84pwHoWVUw2k56vzy0kN83MKzWtHBxBIiQSVfh/nx1hVn7aiJIvyWpRZRYeX4idR2TrXSL7rKUHNEiz7Rim12r45vxi9rX38+aedrXDEQlmw6Eu0s16ZhfIe4AYHxdNykCn1bD+YJfaoYwJSYKo6I/bWgCYX+JQORKhlksrMhkIRPi/HzWpHYqYYEONDYfzdbIpEBPtUGc/3/iv7exr7+e+pVUsrspGqz37ckiLQcfXzs0nN83MyzWtHBpmImRTXTdHe/z89XkFZ/27k8mFkzIw6bVsSJCTFvFloUiUHS09TM62kW4xqB2OOI0V03KoyErh0bcPEopE1Q5HJAhvMMJ7td1cMTkb/Sg+l4U4nXSLgQWlDt460JkQvY0kCaKSFo+P1/e0Mzs/TU5aklhOqokrp+fw/PajNLi8aocjxEltquvm1v/ZSTiq8NSNs1k8eWymTJj0Om6ck09OqomXalo51Hn6RIiiKPz3py3kp5lYWCFbYYbDYtCxoNTBxtquhDhpEV+2vaUHfzjK+SWyrTbW6bQavn/pJJpcXl7YIVthxdh4r64LfzjKlVOcaociEtyyKU7a+wLsPNKrdiijJkkQlazZ3IhWo+GiMtm7l+xunl+MWa/l8Xfr1Q5FiBMoisIfPmnmnlf2UJJh4dm/nsP03LGdYmU26PjauQU4U028vLONrYddpzz2z3va2Xm0l5vOL0InV7uG7fKqbDr7gwlx0iJOFI5E2drgpsRhodBuUTscMQwLSh0srMziPz9soK3Xr3Y4IgGs29dJbqqJWQUyGUqMr0vLMzHrtaz7woj2eCRJEBUc6OjnzX0drJqdR6pZeoEkO4fVyLcWlPDhYRcf1p96ASjERPKHIvx83UGe3HSYy6uyWHPjbJyppnH5XUOJkGybkUde389bJ/lwPdrj51cb6zi3MJ3rZueNSxyJauik5c198X/SIk6082gv/cEIF5VlqB2KGCaNRsPDX5kOwC/fOSRNUsWouL1BPmpwsXSKMyEmdojYZjXqWFiRyTsHOgmG43tLnyRBJpiiKDy6oZZ0i4GvzS1UOxwRI746J59ih4XH3q2TfcJCdQc6+vnb/97On/e0c+v8Yv7p6qmYDeM7xtli0PG18wqodNp4sHo/97+8i0aXl6ii8GmTh2/9vx0A/PTKyXKiN0LHT1oOdsr7SwIJRqJsrndRaDdT7JAqkHhSYLdw+8WT2HzYzUs1rWqHI+LYa3vaiSiwYrpshRETY8X0HHr8Yd6tje9eY5IEmWBv7e9kx5FevntxKTaZCCOOMei0/PCychrdPv5n2xG1wxFJKqoo/NenLdzy3Hb6/GF+ff0Mvn1R6YQlHSwGHY9eN4O/Pb+Ql3ccZfUzn3Lh4x9w+ws1mA06/uOrs8hPN09ILIlm+bQcev1hNp9mu5GILx83uOkPRlhUmYVGEoMxRaPRnHbiV2uPn6XTc5hbbOd/bajj45aemJkCJuJHVFF4qaaVOYXplGWmqB2OSBLzShzkp5vjPoErq/AJ1OsP8dh79UzNsXHNjFx647yMSIyti8oyuKwikzVbGllYkUlJhlXtkEQS2dbs4fF369nf0c9lFZk8uKQKu3XimzbrdVq+f2kZ315UwfMfNdLrD5ObZmL51JyzGscrBs0rceCwGKje2yFNZROAayDIR41upjht0gskBvnCUbYc6jzlz60WI15fkIsmZXCgvZ8H1u7hP//qHCrkc1+MwCeNHlo8fv7+wlK1QxFJRKvRcN2sPH7z/mEaur2UZsbn+5ZUgkygJ987jMcb5IElldLUT5zUj6+oxKTX8vN1B4lE5bKQGF99/jDVe9r55nM7+Ps/1uDyBvn5VVP4169MUyUB8nnOVDM3nV/Edy+ZxPWz8yUBMkp6rYYV03PYVNdNV39A7XDEKK35sIFIVGFhpTRXj2dWo47rz8nDF4rw4Kt76fOH1Q5JxJEXdx7FbjGwqFIS22JiXTMjB71Ww4s743fKlVSCTJCtDW7W7m7jGxcUMSVnbKcriMSRlWLk7kXl/PSNA/xxx1H+6twCtUMS4ySqKHT1B+n2BgmGo2g1kGLUYzPpsJn0mPTa4yXuGo2G1h4//mAEfyhCa6+fZrePxm4vTS4vXQNB+gNh+gJhQhGFFKMOq0GH1aQn1aQnzTL4T4NOSygSxeUN0dDtpaF7gKgC+elmvrewjKVTnZgNOjyh01epRSQ/F5eunZXHf33awqu72/nm/GK1wxFnaWujmw0HOrmoLIMMq1HtcMQo5aWZuW52Hi/uaOXv/7iTJ6+fSWaK/F3F6TV0e3mvtptb5hVh1Ms1bTGxMqxGlk3JZu2uNm5dUILdou6Fs7MhSZAJ4PYG+dmbB5iUaeVWOfEUZ7B8qpO39nfyv98/zCVlGVLqnGB6fCH+e1sLf97TTld/8JTH6bUabCY9qSYdr+/roHsgiHsgyEAwcsJxdouBdLMes0GL3WxBp9WQbjXS4vbS6wvR3uvHF4rgD0WJKgpajYYUow6H1cj8UgcV2TauP6+Qj2q72FLXPazHsKAye1T/D4Q6ih0Wzi+288quVr5xgYwZjke+UIR/eecQBXYzF5Y61A5HjJFJmSk8fPVUfv76fm79fzv4t5XTqciSHg/i1J79pBmjXsvX5GKZUMlN5xdRvbeD5z87wrcvKlU7nBGTJMg4UxSFn687SI8/xJPXzxj3CQsi/mk0Gu5fUsmNv/uUn71xgP+8cTZ6WazEPUVReHV3G7/edJi+QJi5xQ4uKLbjtJkwG7REFRgIhOkPRo5XdfQHwvQHIgTCUUw6LeVZKTisBuwWA5kpRjKsBgy6L18BWlCZfdr96F8kTRWTx3Wz8rj/tX18UO9iYYVspYg3T7xXT4vHz79eOwOXbGtKKOeXOPj3G2Zx76t7ufm/t3Pv4nK+MiNX3p/Fl7T1+nljXwerZ+fhkGowoZLyrBQWlmfyxx1H+ZvzC0kxxldaIb6ijUO/+7iZ9+td3L2onMpsm9rhiDiRk2ri/isq+YfX97NmcwPfuXiS2iGJUfCHIvzynUO8vreD84rSuWdRBZnpZjbu7zjhuFOVQC+ozGZnSw9e36krR4QYjssqMslLM/GHT5olCRJnPqx38aedrfz1eYXMLkz/0vuHiH8z89P4r5vO5SfV+/jHtw7x1v5OfnBZORXZUhUi/uL/bGlEA/zN3EK1QxFJ7pZ5Rbz3XDfPfXqEb11YonY4IyKbyMbRh4dd/McHDSybks2Nc/LVDkfEmWVTnaycmcvvtjbzYb2MtYxX/YEw3//TLt7Y28FtF5bw7zfMkhNaoRq9TsvfzC1k59FedrT0qB2OGKbWXj8/fWM/FVkp3H5xqdrhiHGUlWLkf98wi/uuqGBPWx9f//02HnhtHw3dXrVDEzHgYEc/f97dzlfn5JObJiPjhbqm56VxeVUWv/+kmc44q06UJMg4OdDRzwN/3kdldgr/sLRKyhnFWblnUTlVThsPVssJUDzq9Ye4/Y817G7t45+unsq3FpSglfcCobKvzMjFYTHwzMdNaocihiEQjvLjV/cSjir8y1emYZImiAlPq9Fw/ex81t56ATfPK+KD+m5ufPZT7nllD5vqugnL9LikpCgKT7xXT5pZz99Jj0ERI753ySQiisJ/fNCgdigjIp+k46DF4+Oul3aTatbz2LXSB0ScPbNBx6MrB096f/jKbtxe2Q4RLwaCYe58aTd13QM8unI6SyZLM1ERG8wGHV8/r4DNh91sa/aoHY44jaii8OUbKmoAACAASURBVLM3DrCvvZ+Hl0+m2CGNspNJusXAdy6exNpbL+Bvzy9iV2svd7+yh2vWbOWxd+v4rMUjCZEk8vreDj5u8vCtBSWkmeNvGodITIV2C1+bU8Cf97TzSZNb7XCGTZIgY+xoj5/b/1hDKBLlietm4Ew1qR2SiHO5aWb+beV0OvqD3PnSbrxfmA4iYo8/FOGHL+9hX1sfv1gxlYvKMtQOSYgTfO3cAnJSTTzxXj1RRRZRsUhRFH6z6TDvHOzkjksnsbAiS+2QxDjSaDS4g5GTfqHX8fV5xfzXzXP52YopVDhTeGH7Ub79fA3L/mML9722j+e2H2V3Rz+uQPiU9+MORgjIyz0udfYH+F8b65idn8bqc2SLvYgtt11YQrHDwj+uOxg36xRpjDqGGrq9fP9PuxgIRviPG2ZRLuPNxBiZlZ/GL66eyo/W7uGul3fz+LUzsBqlwigWBcNRfvTqXra39PDIVVO4rFIWLiL2mA06vntJKQ+9foDqPe1cMyNX7ZDEF/x6Yy1/+LSFG87JlwaIScAXjg57qteiiiwuLM3AYNRRXdPKlnoX6w8M3jbVpKfIYaH42FeG1XDCluxFU5yY5PwhroSjCj994wDBSJSfLKuS8eYi5pgNOn6ytIrbnt/Jv6w/xM+unBzzrSAkCTJGdh7p4e5X9qDTaviPG2YxOUcmwYixdWl5Jo9cNYWHXt/PHX/axa+unS7lkDEmGI7y4z/vZUuDmweWVHLlVKfaIQlxSsumOPnTjlYee7eeeSUOqVyMEYqi8J+bG/ntR01cPT2HexaXx/zJpJh4Jr2WBeVZaKMKiqLQPRCiye2lye2j0eVlb1sfAFajjmK7hSKHhdIMC4pUfsWdX2+q55MmDz9ZVkVJhlXtcIQ4qXMK0/nWhSWs2dzIZKeNr58X28l7SYKMkqIovFzTyr9tqCMvzcST18+k0C57dsX4WDrFiU6r4Sev7+fv/mcHj107A7tdPhBjwVDzwg8Pu7jvigqunZWndkhCnJZWo+GnV07m67/fxs/XHeSJ62dI416VhSNR/nl9LWt3tXHDeYXcfekk+ZuIM9JoNGTZjGTZjJxbZEdRFNzeEE1uH80eH01uH/s7+gF4dU87l5Zlcml5BnOLHeilqiCm/c9nR3hu2xFunJPPV6RiT8S4v5tfzMGOfp54rx6nzcQVMdwPT5Igo9DjC/HLdw6x/mAXC0od/OOKKXJlXoy7y6uycVgN/GjtXr7x39v5l+tmMjcvVe2wklogHOXetXvY0uDm/iWVXCcJEBEnihwW7lxYxr+sr+U/P2zgOxdPUjukpNU1EOT+P+9lx5FevjmviPtWTKOnx6d2WCIOaTQaMlKMZKQYOacwHQCPL8Thbi8ef4hXd7fxwo6jZFgNLJmczfKpTqblpkrFUYz5n8+O8KuNdSyqzOKuhWVqhyPEGWk1Gh5ePoU7X9rFP1TvQ4GYHQwgSZCzoCgKb+zr4In36un1h/neJZP4m7mFskdPTJhzC+387q/ncP+f93H7c9tZOTOXOy6dJEk4FXQPBLl37V52tfby4JJKVkkCRMSZ62fncaCjn2e2NpObauK62dJ0b6JtONjJL9+pxR+K8E8rprB0ilMWpGJM2S0G5hSms2iKE4sGNje4eXNfBy/VtPL89qMUOyxcOcXJ8mlOqTBVWTgS5dGNdfxpZyuXVWTyixVT0OtkloWID1ajjsevm8Gdf9rNA6/to8Hl5e/mF8dcVaMkQUZAURQ2N7h56sMG9rX3MzMvlV9fX0mVU/p/iIlXaLfwf//qHJ7ZdoTffniY9+u6uXVBCdfOzJUPywmyrdnDT984gMcX4p+vmcrlVbGZ7RbidDQaDT++vILO/iC/fKeWHn+Ymy8okkX4BGh0eXn8vXo+qHcxNcfGz5ZPpixTmqqL8WU26FhcmcXiyiz6/GE2HOrkzX0d/J8tjazZ0sh5xXaWVmVxxeRsubgywfa39/HzdQc52DnATXML+e4lk+Qiq4g7KUY9//uGWfzi7YOs2dzItmYPDy6poiiGxrxLEmQYugaCrD/Qycu7Wqnr8pKXZuKnV1Zx1bScmMtqieRi1Gv58bLJLCy186t36/nX9bU8+3EzN87JZ/lUJ1k2aXQ4HtzeIGs2N/Knna0U2s08/bXZTMmRLUkiful1Wv5t5TQefvMA//5BA3vb+vjxFZVkpRjVDi0hHejo57ltLazb14HZoOP7l0zi6+cVSAJbTLhUs56VM/NYOTOPtl4/b+7rYN2BLn75Ti2PbqzjkrJMlk91Mr/UgdkgU2XGS333AL/b2sy6/R04rEb+9SvTWCTT5UQcM+m1/OzKycwpSOfx9+q58dlPWTUzj5vOLyQvzax2eLGXBNm0aRP/9E//RDQa5YYbbuC2226b8BjCkSiHugbYeaSX9+q6+azZQ1SBquwUfnplFcumODHIiYqIIVNyUnnqq7PY3ODmD5808+Smw/x602HOKUzniqoszi92UJJhSaiknRrvFQ3dXl7e1craXW34QxFuOCef7106CYucGIoEYNBpeeSqKUx22vjPDxtY/dtP+OqcfFbPzld1csyZXuvBYJAf/ehH7NmzB7vdzmOPPUZh4WBX+qeeeooXX3wRrVbLP/zDP3DJJZeo8RCIKgr72vrYfNjNprpu9nf0Y9ZrufHcAm46v0iSTSIm5KaZuXleMXcuncxHBzt4fW8Hb+3vYMOhLow6DecW2blwUgZzCtKoyEpRLWk3Hu8JE31OEY4qNLq8bG10s+FgFzuP9mLSa/nr8wq5eV6RVOCIhKDRaFg1K4+LyjL4P1saeammlRd3HGVeiYPLKjM5v9hBod2syvokppIgkUiERx55hGeeeYacnBxWr17N4sWLqaioGJP7VxSFSFQhGFEI9wdo7BrA4wvRPRDkSI+fZvdgB+0DHf34w1EAih0WvjmvmCVTsqVEVcQ0jUbDRZMyuGhSBoe7vbxzsJN3DnTybxvqAEgx6piaY6M8K4W8NDN56WacNiM2o54Uk44Uox6LQRsXJfDj+V4RVRQGAhH6g2E6+gI0un3sbetjW7OHBpcPnVbD5ZVZ3LqghEmZsm9aJBatRsNN5xdxSVkmT21u4Hdbm/nd1mZm5qdxbmE6VU4bOakmclJNZKUYx71Meziv9RdeeIG0tDTefvttqqurefTRR3n88cepra2lurqa6upq2tvbueWWW1i3bh063fgkLSNRhV5/iG5vCNdAkNZeP/XdXuq7vOzv6MfjC6EBpuWmcveicpZPdZJukYWOiD0ajYapOalMzUnlzksnsa25h80NLj6sd/GrjYPnFEadhirn4DlFQbqZgnQzuWlm7BYD6WY9qWb9uCxsxuM9ARi3c4pQJMpb+zvpGgjS6w/h8oao6xqgvttL4NhaoyzTyh2XTuLq6Tk4rJIQFYkn22bigSVVfHNeMa/ubuP1vR388zu1AFgNOsqzUijLtGK3Dr5/5KWZWVyVNa7JkZhKgtTU1FBSUkJRUREAK1asYP369aN6E2rr9XPb8ztxeUOEIlGipxmPnpVipNBuZuXMXGblpzErP43cGCjXEWKkJmVa+daCEr61oIRGl5ddrb3sae1jT1sfr+1pZyD4/9m78/CoyrN/4N9ZMtm3yTKThBAgBAgQgloESgBJZLEhErbXpbaKC9YdUV5EX/AnCqhQC1qLprYo1WorCKgIKGETFEFFwr4vCSETSCaTZTL78/sjZkwkgSwzc2aS7+e6etWcOct9DuecOXOf57kfe5PLyWV1zdeCVUq8Prk/UmK8s96NO+4VAPDwxwX4/nwFfn2bCFYp0D8uFFPS45HVK5rdjKjD6xYVhEU5fVGor8Wmo6X4+nQ5/vV9Eey/+hJVKWR4dEQP3HF9glviaMm1vmXLFjz66KMAgLFjx2L+/PkQQiA/Px/Z2dlQqVRITExEUlISCgoKcN1117U7rjUFF/GP3edhsTlgsTtgtjlga+IBw18pRzd1EDJ6qDE4KRJDkiIREcTEB/kOpUKOwd0iMbhbJJ68KRnFBhMOXqzE4ZJqHNZV4etTZSg3WptcVqWQwU8hh0ohh0opx/VdwjH/d33aFY877gkA3PJMAQAFxZX4fxuPAQD8FDJEBPohSR2EyelxSIkJxnVdwpEQ7j11EojcSRsWgOm/7YYHhibhbHkt9l8w4MSlGpy4VI2vT5eh0mSDzSGgkMvwn5gbkKR238tGr0qC6HQ6aLW/jIGt0WicN6em+PkpEBNz9X74MTGh+PbZm10WoyvFAOiVEOGy9Q3oGulV63Hlujp6TO11tesgJiYUv+mt8WA07tfaewXQsvvFxw8Pc0l8LdHa67+155uvzw9c/bx2zoPW30e9bV9bM7+n7zsxMaG4vlcs5nh0q79oybWu0+kQF1c3KpNSqURoaCj0ej10Oh3S09MbLavT6a65zZbcK6ZnhWJ6Vq/W7EqbNBdHW58f2nL+cJmOt0xLNHvuxYQivad0RcDddU9o7TMF0LJ7xbiYUJy9PvHaO+ZFeiVEuPT3SVPc+V3m7u9JX47dm8TGhuHGPtL9PvGqwhZCXPkWxRea5hORZ/FeQdQ5tORab24e3ieIOh533BN4ryDqfLwqCaLValFSUuL8W6fTITY2VsKIiMgb8V5B1Dm05FrXarW4ePEiAMBms6GqqgoRERG8TxB1QO64J/BeQdT5eFUSJC0tDWfPnkVhYSEsFgvWr1+PzMxMqcMiIi/DewVR59CSaz0zMxNr1qwBAGzatAlDhgyBTCZDZmYm1q9fD4vFgsLCQpw9exYDBgyQYjeIyEXccU/gMwVR5+NVNUGUSiXmzZuH+++/H3a7HZMnT0ZKSorUYRGRl+G9gqhzaO5aX7ZsGfr374+srCxMmTIFs2bNwujRoxEeHo6//OUvAICUlBTccsst+N3vfgeFQoF58+a5bWQYIvIMd90T+ExB1LnIRFMd4YiIiIiIiIiIOhiv6g5DREREREREROQuTIIQERERERERUafQIZIgc+bMwdChQzF+/HjntKVLlyInJwcTJkzAvffe6xwH/NeKi4tx7733OvsIFhUVAQCeeeYZZGZmYsKECZgwYQKOHDniFTHv3r3bGdOECROQlpaGzZs3AwAKCwsxdepUjBkzBjNmzIDFYvHqeL31GAPAq6++iuzsbNxyyy146aWXnMOnHTx4EDk5ORg9enSj6d4c8x/+8AeMHTvWeZzLyspcGjO1344dOzB27FiMHj0aeXl5V3y+d+9eTJw4EX379sXGjRsbfbZmzRqMGTMGY8aMcRaC83Zt3d8jR47gtttuQ3Z2NnJycvDFF194Muw2a8+/LwBUV1dj+PDhmD9/vifCJTdo6t6+YcMGZGdno0+fPjhw4IBz+qefftroe7NPnz5Nfj++8cYbGD58uHO+7du3uzS+V155BePGjUNOTg4eeeQRVFZWOj97++23MXr0aIwdOxZff/11k+t05TNJa+LbtWsXJk2ahJycHEyaNAnffvttk+t01fFrTWxFRUUYMGCAc5vz5s1rcp0VFRWYNm0axowZg2nTpsFgMLQpttbGJ8W5R97hWt9THUFmZqbzeXrSpEkAXHutSa2pa725/RNC4KWXXsLo0aORk5ODQ4cOSRW2dEQHsGfPHnHw4EGRnZ3tnFZVVeX87/fee0/MnTu3yWXvuususXPnTiGEENXV1cJoNAohhJg9e7bYsGGDV8ZcT6/Xi0GDBjljfvzxx8Xnn38uhBBi7ty54oMPPvDqeL31GP/www/itttuEzabTdhsNvE///M/Yvfu3UIIISZPnix+/PFH4XA4xH333Se2bdvm9THfddddoqCgwKVxkuvYbDaRlZUlzp8/L8xms8jJyREnTpxoNE9hYaE4cuSImDVrVqNrRq/Xi8zMTKHX60VFRYXIzMwUFRUVnt6FVmnP/p4+fVqcOXNGCCFESUmJGDZsmDAYDJ4Mv9Xas7/1XnzxRTFz5kzxwgsveCpscrGm7u0nT54Up06duuo9+ujRoyIzM7PJz15//XXxzjvvuC2+r7/+WlitViGEEK+++qp49dVXhRBCnDhxQuTk5Aiz2SzOnz8vsrKyhM1mu2KdrnwmaU18hw4dEiUlJUIIIY4dOyYyMjKaXKerjl9rYissLGw0X3NeeeUV8fbbbwshhHj77bedy7s7voY8de6R9FryPdURjBo1SpSVlTWa5sprTWpNXevN7d+2bdvEfffdJxwOh9i3b5+YMmWKJDFLqUO0BBk0aBDCw8MbTQsJCXH+d21tLWQy2RXLnTx5EjabDcOGDQMABAcHIzAw0L3B/qytMTe0adMmDB8+HIGBgRBCYPfu3Rg7diwAYOLEicjPz/faeD2hrTHLZDJYLBZYrVbn/0dHR6O0tBTV1dW47rrrIJPJkJub69Jj7I6YyfsVFBQgKSkJiYmJUKlUyM7OvuK86tKlC/r06QO5vPEte+fOnRg2bBgiIiIQHh6OYcOGNftW1lu0Z3+7d++Obt26AQA0Gg3UajXKy8s9FXqbtGd/gbrWZ2VlZc7vKfJNTd3bk5OT0aNHj6sut379+kZv9dylqfgyMjKgVNYNIjhw4ECUlJQAAPLz85GdnQ2VSoXExEQkJSWhoKCg0bKufiZpTXx9+/aFRqMBUDcaiMVicWnL2PbE1lL5+fnIzc0FAOTm5jpb0HoyPk+deyS9lnxPdVSuvNak1tS13tz+1U+XyWQYOHAgKisrUVpa6vGYpdQhkiDN+ctf/oKRI0fis88+wxNPPHHF52fPnkVYWBgeffRR5Obm4pVXXoHdbm+0fE5ODhYuXOjWL9DWxNxQwy8ovV6PsLAw55eaVqttttuEN8TbcHlvO8bXXXcdBg8ejIyMDGRkZGD48OFITk6GTqeDVqt1zuepY9yemOs9++yzmDBhAt58802Xd+Gh9vn1eaXRaFp8XrVnWam4KuaCggJYrVZ07drVleG5XHv21+Fw4JVXXsH//u//uis88nJffPEFsrOzm/38gw8+QE5ODubMmePWZtyrV6/GiBEjALTsnPb0M0nD+BratGkTUlNToVKpmlzOE8fv17EVFRUhNzcXd911F77//vsmlykrK0NsbCwAIDY21q3J3uaOnbece+R+vvgs0Vb33XcfJk2ahP/85z8APHutSaG5/ZPyN4236NBJkCeffBLbt29HTk4O3n///Ss+t9ls+P777zF79mysWrUKRUVF+OSTTwAAM2fOxMaNG7F69WoYDAaP9Y+7Vsz1SktLcfz4cWRkZDQ7z7VaZrhCe+L11mN87tw5nDp1Ctu3b8eOHTuwe/du7N27t8nkgSeOMdD2mAFgyZIl+Oyzz/DBBx/ghx9+wLp16zwSM7VMe84rKc/JtnJFzKWlpZg1axYWLVrUZOsJb9Ke/f33v/+NESNGIC4uztVhkQ/Yv38/AgMD0atXryY/v+OOO/DVV19h3bp1iI2Nxcsvv+yWOJYvXw6FQoFbb70VQNvPaXfdm34dX70TJ05gyZIlzdbS8cTx+3VssbGx2Lp1K9auXYtnnnkGTz31FKqrq12+3bbGV89bzj3yDF98lmiLDz/8EGvWrMHf//53fPDBB87n5M6os/ybX413Pz26yPjx4/Hll19eMV2r1aJv375ITEyEUqlEVlYWDh8+DKDui0omk0GlUmHSpEmNipZJGXO9DRs2YPTo0fDz8wMAREZGorKyEjabDQBQUlLizPx5QmvjBbz3GH/11VdIT09HcHAwgoODMXz4cPz000/QarWNmox6+hgDrY8ZgLNZcEhICMaPH39Fs2WS1q/PK51O1+Lzqj3LSqW9MVdXV+PBBx/EjBkzMHDgQHeE6FLt2d99+/bhgw8+QGZmJl555RWsXbsWS5YscVeo5GXWr19/1Tfx0dHRUCgUkMvlmDp1qlu+Q9esWYNt27ZhyZIlzgfklpzTnnomaSq++u09+uijeOWVV5ptLebu49dUbCqVCpGRkQCA/v37o2vXrjhz5swVy0ZFRTmbppeWlkKtVrs0tubiq+cN5x55ji8+S7RF/fNwVFQURo8ejYKCAo9ca1Jqbv+84TeN1DpsEuTs2bPO/96yZUuT/W7T0tJgMBicTYO+++479OzZEwCcJ4wQAps3b0ZKSopXxFzv119QMpkMgwcPxqZNmwDUfbllZma6LVagffEC3nuM4+PjsXfvXthsNlitVuzduxfJycmIjY1FcHAwfvrpJwghsHbtWmRlZXl1zDabzXl+W61WbNu2zSPHmVouLS0NZ8+eRWFhISwWC9avX9/iazcjIwM7d+6EwWCAwWDAzp07r9o6zBu0Z38tFgseeeQRTJgwAbfccoubI3WN9uzvn//8Z2zbtg1btmzB7NmzkZubi6efftrNEZM3cDgc2Lhx41V/iDbsv+2O79AdO3bg73//O5YvX96olldmZibWr18Pi8WCwsJCnD17FgMGDGi0rCeeSZqLr7KyEtOnT8fMmTNxww03NLu8O49fc7GVl5c7u13XH7vExMQrls/MzMTatWsBwC3PGs3FB3jHuUee1Z7vKV9hNBqdra6MRiN27dqFlJQUt19rUmtu/+qnCyHw008/ITQ0tNMlQWSiAxQImDlzJvbs2QO9Xo+oqCg89thj2LFjB86cOQOZTIaEhAS88MIL0Gg0OHDgAD766CMsWLAAQN1QavXN+Pr164f58+dDpVLhj3/8I/R6PYQQ6NOnD1544QUEBwd7RcxFRUW44447sH379kZNwQsLC/Hkk0/CYDAgNTUVS5YsabYfrDfE663H2G6344UXXsDevXshk8kwfPhwzJkzBwBw4MABzJkzByaTCSNGjMDcuXNd2nzM1TEbjUbcddddsFqtcDgcGDp0KObMmQOFQuGymKn9tm/fjoULF8Jut2Py5Ml46KGHsGzZMvTv3x9ZWVkoKCjAo48+isrKSvj7+yM6Ohrr168HAKxatQpvv/02AOBPf/oTJk+eLOWutEhb93fdunV49tlnnclqAHj55ZeRmpoq4d5cW3v+fet98sknOHjwYLNDapJ3a+reHhERgRdffBHl5eUICwtDamoq/vGPfwCoeynz5z//Gf/9738bree5557D7bffjrS0NMyaNQtHjx4FACQkJGD+/PltfohtKr68vDxYLBZEREQAANLT051dS5YvX47Vq1dDoVDg2WefxciRIwEADzzwAF566SVoNBqXPpO0Jr6//e1vyMvLQ1JSknP5f/7zn4iKinLL8WtNbJs2bcLrr78OhUIBhUKBxx57zPljs2Fser0eM2bMwMWLFxEXF4dly5Y51+XO+ADPn3vkHZr6nupICgsL8cgjjwAA7HY7xo8fj4ceesil15rUmrrWb7755ib3TwiB+fPn4+uvv0ZgYCAWLlyItLQ0qXfBozpEEoSIiIiIiIiI6Fo6bHcYIiIiIiIiIqKGmAQhIiIiIiIiok6BSRAiIiIiIiIi6hSYBCEiIiIiIiKiToFJECIiIiIiIiLqFJgEIbcrKirC+PHjAQBHjhzB9u3bJY6IiDqT7777Dj/++KPUYRBRO3344YdYu3Zts5/zWiei9mj4m4U6NqXUAVDncuTIERw8eBAjR46UOhQi8nJ2ux0KhcL5txACQgjI5a3L3+/ZswdBQUG4/vrrXR0iEbVDa6/pO+6446qf81onIqKWYBKE2mTx4sWIj4/H73//ewDAG2+8geDgYFy6dAlff/01ZDIZHnroIfzud79zLmOxWPD666/DZDLhhx9+wIMPPoguXbpg4cKFMJlMCAgIwMKFC9GjRw/U1tbimWeewenTp5GcnIwLFy5g3rx5SEtLw86dO/HGG2/AYrEgMTERixYtQnBwsFSHgohaYO3atfjHP/4BmUyG3r17Q6FQ4KabbsK4ceMAANdddx327duH7777Dn/9618RGxuLI0eOIC8vDw888AAGDx6Mn376CW+++SbOnDnT5D0gMzMTubm52Lp1K2w2G5YuXQp/f3989NFHkMvl+PTTTzF37lz85je/kfhoEHVeRUVFja7pu+++Gx999NEV1/OSJUuwZcsWKBQKZGRkYPbs2XjjjTcQFBSE++67DytXrsRHH30EhUKBnj174qmnnrriWq+srMTy5cthtVoRERGBJUuWIDo6Gm+88QaKi4tRVFSE4uJi3H333fjjH/8I4Mp71eLFi1FeXo7nn38excXFAIBnn30WN9xwg5SHkYia0fAaTkxMxJEjR7Bp0yb4+fmhuroat956KzZt2oTi4mI8//zzKC8vh0KhwLJlyxolZO12O5YsWYI9e/bAYrHg97//PW6//XYJ94xcShC1waFDh8Tvf/9759+33HKL+OSTT8Q999wjbDabuHTpkhg5cqTQ6XSisLBQZGdnCyGEWL16tXjhhRecy1VVVQmr1SqEEGLXrl3i0UcfFUII8c4774i5c+cKIYQ4duyYSE1NFQUFBaKsrEzceeedoqamRgghxNtvvy3eeOMNj+wzEbXN8ePHxZgxY0RZWZkQQgi9Xi9mz54tNmzY4Jxn4MCBQgghdu/eLdLT08X58+eFEEIUFhaK3r17i3379gkhxFXvAaNGjRIrV64UQgjx/vvvi2effVYIIcTrr78u3nnnHQ/sKRFdS8NrurnrWa/XizFjxgiHwyGEEMJgMAghGl/Lw4YNE2azudnPhRCioqLCuY7//ve/YtGiRc75brvtNmE2m0VZWZm48cYbhcViafJeJYQQM2fOFHv37hVCCHHhwgUxbtw49x0gImqzpq7hZ555Rnz11VdCCCE++ugj531gypQp4ssvvxRCCGEymYTRaGz0m+Wjjz4Sb775phBCCLPZLCZOnOh8NiHfx5Yg1CZ9+/ZFWVkZdDod9Ho9wsLCcOTIEWRnZ0OhUCA6OhqDBg3CgQMH0Lt372bXU1VVhdmzZ+PcuXOQyWSwWq0AgB9++MH5VqZXr17Odezfvx8nT550Nom1Wq0YOHCgm/eWJUgPGgAAIABJREFUiNpj9+7dGDduHNRqNQAgIiLiqvOnpaUhMTHR+Xd8fLzzOr/WPWDMmDEAgP79++Orr75y6X4QkWvUX9Nbt25t8noOCQmBv78/nnvuOdx000246aabrlhH79698fTTTyMrKws333xzk9spKSnBk08+iUuXLsFisaBLly7Oz0aOHAmVSgW1Wg21Wo2ysrJm71XffPMNTp486Vy2uroa1dXVCAkJcdUhISIXaOoanjJlCt555x3cfPPN+OSTT/Diiy+iuroaOp0Oo0ePBgD4+/tfsa5du3bh2LFj2LRpE4C63yznzp1r9HxCvotJEGqzsWPHYtOmTbh8+TKys7Nx/vz5Vq9j2bJlGDx4MN58800UFRU5Ex9CiCbnF0Jg2LBheO2119oVOxF5TlPXs0KhgMPhcH5enwAFgKCgoEbzNvz7WvcAPz8/AIBcLofdbm937ETkevXX9NWu51WrVuHbb7/F+vXr8f7772PlypWNPs/Ly8PevXuxZcsW/O1vf8P69euvWMdLL72Ee+65B1lZWc6udvVUKpXzvxUKBWw2W7PPHg6HA//5z38QEBDQpv0lIs9o6hq+4YYb8MILL2DPnj2w2+3o1asXqqurW7Su//u//8Pw4cPdESpJjKPDUJtlZ2fjiy++wKZNmzB27FgMGjQIGzZsgN1uR3l5Ob7//nsMGDCg0TLBwcGoqalx/l1VVQWNRgMAWLNmjXP6DTfcgA0bNgAATp48iePHjwMABg4ciB9//BHnzp0DANTW1uLMmTNu3U8iap+hQ4di48aN0Ov1AICKigokJCTg0KFDAID8/PxGSZCracs94Nf3HSLyDs1dzzU1NaiqqsLIkSPx7LPP4ujRo42WczgcuHjxIoYMGYJZs2ahqqoKRqPxqs8YVxtVpl5T9yoAyMjIwPvvv++c78iRI+3bcSJyi+au4dzcXMycOROTJk0CAISEhECr1WLz5s0A6uoW1tbWNlpXRkYGPvzwQ+fzyZkzZ2A0Gj21K+RmbAlCbZaSkoKamhrExsYiNjYWo0ePxr59+zBhwgTIZDLMmjULMTExKCoqci4zePBg5OXlYcKECXjwwQdx//3345lnnsGKFSswZMgQ53x33nknnnnmGeTk5KBv377o3bs3QkNDoVarsWjRIsycORMWiwUAMGPGDHTv3t3j+09ELZOSkoI//elP+MMf/gC5XI6+ffvi6aefxsMPP4wpU6Zg6NChV7T+aE5b7gGjRo3C448/jvz8fBZGJfIizV3PwcHBePjhh2E2mwEAc+bMabSc3W7HrFmzUF1dDSEE7rnnHoSFhV1xrT/66KN44oknoNFokJ6e3uh5pClN3atefvllPPfcc5g/fz5ycnJgt9vxm9/8BvPnz3fPQSGiNmvuGs7JycHSpUsbDX/76quvYt68eVi2bBn8/PywbNkyyGQy5+dTp07FhQsXMGnSJAghEBkZib/97W9S7Ba5gUw01/aPSEJ2ux02mw3+/v44f/487rnnHmzcuLFR81UiIiIiIqKr2bhxI/Lz87F48WKpQyEvwZYg5JVqa2vxxz/+0dlH9/nnn2cChIiIiIiIWuzFF1/Ejh07kJeXJ3Uo5EV8uiWIw+GA3S5N+AqFTLJttxRjdA3GeHV+fgpJtttabb1f+MK//68xZs9gzK3T0e8V3sQXz8326Ez72xn2lfeKtvHmc4OxtY03xwZ4R3xtvV/4dEsQu12gokKaAjUREUGSbbulGKNrMMari4kJlWS7rdXW+4Uv/Pv/GmP2DMbcOh39XuFNfPHcbI/OtL+dYV95r2gbbz43GFvbeHNsgHfE19b7BUeHISIiIiIiIqJOgUkQIiIiIiIiIuoUmAQhIiIiIiIiok6BSRAiIiIiIiIi6hSYBCEiIiIiIiKiToFJECIiIiIiIiLqFCRJgsyZMwdDhw7F+PHjndMqKiowbdo0jBkzBtOmTYPBYJAiNCIiIiIiIiLqoCRJgkyaNAnvvPNOo2l5eXkYOnQovvzySwwdOhR5eXlShEZEREREREREHZQkSZBBgwYhPDy80bT8/Hzk5uYCAHJzc7F582YpQiMiIiIiIiKiDkopdQD1ysrKEBsbCwCIjY1FeXn5NZdRKGSIiAhyd2jNbFsu2bZbyhdirLbYUStzbS4u2F+BsAA/l63PF46jL8RI5AlmARit9navJ8hPAX+ZCwIiok6htfce3mOoo2rqWqg1mGCyXPv64HVBnuI1SZC2sNsFKiqMkmw7IiJIsm23lC/EWCuTY8P+Cy5d56g+sXCYrC5bny8cRyljjIkJlWS7RE0xWu3YerS03esZ1ScW/iqFCyIios6gtfce3mNcb8eOHViwYAEcDgemTp2K6dOnN/p8xYoV+Pjjj6FQKKBWq7Fw4UIkJCQAAFJTU9GrVy8AQFxcHN566y2Px99RNHUtBAWqYKy1XHNZXhfkKV6TBImKikJpaSliY2NRWloKtVotdUhEREREROTl7HY75s+fjxUrVkCj0WDKlCnIzMxEz549nfOkpqZi9erVCAwMxL///W8sXrwYS5cuBQAEBARg3bp1UoVPRB7mNUPkZmZmYu3atQCAtWvXIisrS+KIiIiIiIjI2xUUFCApKQmJiYlQqVTIzs5Gfn5+o3mGDBmCwMBAAMDAgQNRUlIiRahE5AUkaQkyc+ZM7NmzB3q9HiNGjMBjjz2G6dOnY8aMGVi1ahXi4uKwbNkyKUIjIiIiIiIfotPpoNVqnX9rNBoUFBQ0O/+qVaswYsQI599msxmTJk2CUqnE9OnTcfPNN19zm1LWJmyKt9SHqzWYEBSoajRNLpddMa0pAf5+iAgPcFdoTfKW49YUb44N8P74rkaSJMhrr73W5PT33nvPw5EQEREREZEvE0JcMU0ma7rC5rp163Dw4EG8//77zmlbt26FRqNBYWEh7r77bvTq1Qtdu3a96jalrE3YFG+pYWey2K+o/9HSmiAmsxUVFQ53hdYkbzluTfHm2ADviK+ttQm9pjsMERERERFRa2m12kbdW3Q6nXPUyYa++eYbvPXWW1i+fDlUql9aJmg0GgBAYmIibrzxRhw+fNj9QRORZJgEISIiIiIin5WWloazZ8+isLAQFosF69evR2ZmZqN5Dh8+jHnz5mH58uWIiopyTjcYDLBY6loplJeX48cff2xUUJWIOh6vGR2GiIiIiIiotZRKJebNm4f7778fdrsdkydPRkpKCpYtW4b+/fsjKysLr776KoxGI5544gkAvwyFe+rUKTz//POQyWQQQuCBBx5gEoSog2MShIiIiHxeZWUl/u///g/Hjx+HTCbDwoUL0b17dzz55JO4cOECEhISsHTpUoSHh0sdKhG5wciRIzFy5MhG0+oTHgDw7rvvNrnc9ddfj88++8ydoRGRl2F3GCIiIvJ5CxYswPDhw7Fx40asW7cOycnJyMvLw9ChQ/Hll19i6NChyMvLkzpMIiIikhiTIEREROTTqqursXfvXkyZMgUAoFKpEBYWhvz8fOTm5gIAcnNzsXnzZinDJCIiIi/A7jBERETk0woLC6FWqzFnzhwcPXoU/fr1w3PPPYeysjLnCBGxsbEoLy+/5roUChkiIoLcHbJbKRRyn9+H1vCG/a01mBAUqLr2jD8L8PdDRHhAq7fjDftKROTrmAQhIiIin2az2XD48GHMnTsX6enpeOmll9rc9cVuF6ioMLo4Qs+KiAjy+X1oDW/YX5PFDmOtpeXzm62oqHC0ejvesK/uFhMTKnUIRNTBsTsMERER+TStVgutVov09HQAwLhx43D48GFERUWhtLQUAFBaWgq1Wi1lmEREROQFmAQhIiIinxYTEwOtVovTp08DAL799lskJycjMzMTa9euBQCsXbsWWVlZUoZJREREXoDdYYjIa82ZMwfbtm1DVFQUPv/8cwDAK6+8gq1bt8LPzw9du3bFokWLEBYWJnGkRCS1uXPn4umnn4bVakViYiIWLVoEh8OBGTNmYNWqVYiLi8OyZcukDpOIiFrAYnNgTcFFbD5+CRcrzYgPD8D4vhqM76+BXCaTOjzycUyCEJHXmjRpEu666y7Mnj3bOW3YsGF46qmnoFQqsXjxYrz99tuYNWuWhFESkTdITU3FJ598csX09957T4JoiIiorYoNJjzz2WEc0VUjJSYY13cJx4lLNXjxy+P47FAJlkzoh/BAP6nDJB/GJAgRea1BgwahqKio0bSMjAznfw8cOBAbN270dFhERERE5Aa6KjPu+/An1FrtePXWvhiVEg0AEELgs0M6vLz5BGauPYQ3p6QhwE8hcbTkq5gEISKftXr1atxyyy0tmretw1764nCEnTnm1g5T2ZyWDF/ZmY8zERGRq9Va7fjftYdQa7XjndsHomdMsPMzmUyGW/trEaxSYM5nR/DipuNYMD5VwmjJlzEJQkQ+afny5VAoFLj11ltbNH9bh730xeEIO3PMrR2mstn1tGD4ys58nNuCw14SEdHV/H3XWZy4VI3541MRFR4AvcV+xTzXd1PjD4O7YuV355GREo0h3dUI8lPAn2VCqBWYBCEin7NmzRps27YN7777LmQsjkVERETk04oqavH5gRIM6hqBGpMNW4+WNjuvNkSF6GAVlmw+gQeGJmFsfy38VewaQy3HIXKJyKfs2LEDf//737F8+XIEBgZKHQ4RERERtYPDIbDxSCmiQ1QYkRx1zfkVchnGpcai0mTD3vMVHoiQOhq2BCEirzVz5kzs2bMHer0eI0aMwGOPPYa8vDxYLBZMmzYNAJCeno758+dLHCkRERERtcWhkipcqrZg9thekDtEi5ZJjAxEj6gg7D2vR63Vjki2BKFWYBKEiLzWa6+9dsW0qVOnShAJEREREbmaQwh8c6YcsSEq/LZHFHafvNziZYf1UONfe4uw4ZAO992Y6MYoqaNhdxgiIiIiIiLyuCMlVSg3WjGsh7rVdd66RASia2QgVv14AbYWtiAhApgEISIiIiIiIg8TQuC7cxWIDlahd2xIm9ZxY9cIXK6xYNfpMhdHRx0ZkyBERERERETkUcWVZuiqzLghMbzNo/0lRwdDHeyHtQdKXBwddWRMghAREREREZFH7SuqgEohQ7+4sDavQy6XYWyqBt+cKYeuyuzC6KgjYxKEiIiIiIiIPKbWaseRkmr004bCX9m+n6S39NPCIYD/7r8IvcXe4v+ZWUak0+LoMEREREREROQxR0qqYHMIDOwS3u51RQSrkBgRiPUHSxAfqmpx15pRfWLbvW3yTWwJQkRERERERB5zuKQaUcEqaEL9XbK+VG0IymosuFRtccn6qGNjEoSIiIiIyA3sDgEh2OaeqKEqkw2FFbXoqwlpc0HUX+sTGwIZgCO6apesjzo2dochIiIiInKhilorNh+7hDNlRkQE+uF/rotHeKCf1GEReYUjuioAQKo21GXrDPZXIkkdiCO6KoxIVrssuUIdE1uCEBERERG5iEMIfHqgBOfKa5EWF4pqsw0r9xRCb2QzfSKgrrWGJtQfUcEql643VRMKvdGKUnaJoWtgEoSIiIiIyEX2nqvABYMJY1NjMK6vBncN6gKz3YEdp8qkDo1IctVmG4oNJvTRhLh83SmxwQCAE5fYJYaujkkQIiIiIiIXqLXaseNUGVJigtHv56b+MSH+uCExAodLqlFWwzfU1LmdulwDAOgZHezydQerlIgPD8CJSzUuXzd1LEyCEBERERG5QP2wnxk9GtckGJwUAT+5DLtOl0sYHZH0Tl6qQViAEjEhru0KUy8lJhgllWZUmWxuWT91DEyCEBERERG5wP7iSsSGXDnsZ5BKiYFdwnFYVwWjxS5RdETSsjkcOFNuRHJ0sNsKl9a3MDl5ma1BqHlMghARERERtVNplRkllWYMSAhv8gdeWnwYhACOl7JeAXVOhfpaWO0CydFBbttGTIgK4QFKnGSXGLoKJkGIiIiIiNrpwMVKyGVw1gL5tdgQFSID/ZzDgxJ1NqcuG6GQy9BN7b4kiEwmQ3J0MM6VG2FzONy2HfJtTIIQEREREbXTqcs1SFIHIUilaPJzmUyGVG0IzulrYai1ejg6IumdKzeiS0QA/BTu/QnaPSoIVofAhQqTW7dDvsvrkiDvvvsusrOzMX78eMycORNms1nqkIiIiIiImlVaZUZZjRU9oq7+hruPJhRCADs5XC51MkaLHaXVFiRFuq8VSL2ukYGQyYCz5Ua3b4t8k1clQXQ6HVauXInVq1fj888/h91ux/r166UOi4iIiIioWT+c1wOoewN9NbEhKkQE+uG7sxwlhjqX8/q6hESSOtDt2wrwUyA+LABnypgEoaYppQ7g1+x2O0wmE5RKJUwmE2JjY6UOiYiIiLxcZmYmgoODIZfLoVAo8Mknn6CiogJPPvkkLly4gISEBCxduhTh4eFSh0od0A/nKxDqr0R08NWH/ZTJZOimDkTBhUrYHAJKuXtGyCDyNufKa+GnkCEuLMAj2+sWFYRdp8tRa7Uj0K/pLmrUeXlVEkSj0eDee+/FqFGj4O/vj2HDhiEjI6PZ+RUKGSIi3N+kqultyyXbdkv5QoymKjOCAl07TniAvx8iwl13g/WF4+gLMRIRudt7770HtVrt/DsvLw9Dhw7F9OnTkZeXh7y8PMyaNUvCCKkjsjsE9hUa0D0qqEXDfnaLCsJPFypxpKQKafFhHoiw89ixYwcWLFgAh8OBqVOnYvr06Y0+X7FiBT7++GMoFAqo1WosXLgQCQkJAIA1a9Zg+fLlAICHHnoIEydO9Hj8Hdk5fS0SIwKh8FDir7u6LglyrtyIPpqmixVT5+VVSRCDwYD8/Hzk5+cjNDQUTzzxBNatW4cJEyY0Ob/dLlBRIU0zp4iIIMm23VK+EKOQyWGstbh0nSazFRUVrqsG7QvHUcoYY2L4xUJE3ik/Px//+te/AAC5ubn4wx/+wCQIudzR0mpUmW0tHvGivibCnvN6JkFcyG63Y/78+VixYgU0Gg2mTJmCzMxM9OzZ0zlPamoqVq9ejcDAQPz73//G4sWLsXTpUlRUVOCvf/0rVq9eDZlMhkmTJiEzM5Mtx1ykymRFWY0FAzx4vseHB0ClkONMGZMgdCWvSoJ888036NKli/MtzpgxY7Bv375mkyBERERE9e677z7IZDLcdtttuO2221BWVubsVhsbG4vy8mvXYZCylamrdLbWgVLv7/HDpQCA3nFhCAr0u+b8QYFASmwI9hVXtTpuqffVmxUUFCApKQmJiYkAgOzsbOTn5zdKggwZMsT53wMHDsSnn34KANi5cyeGDRuGiIgIAMCwYcPw9ddfY/z48R7cg47rfHktACAxwjNdYQBAIZeha2Qgzv68baKGvCoJEh8fj/3796O2thYBAQH49ttv0b9/f6nDIiIiIi/34YcfQqPRoKysDNOmTUOPHj3atB4pW5m6ii+0YHQlqfd37+kyxISooIRocevW9IQwrCu4iJJLVQhoRb0CqffVE9rawlSn00Gr1Tr/1mg0KCgoaHb+VatWYcSIEc0uq9Pprro9b0uYekuCrNZguqKre9GZcijlMnTXhEIpb35cDqVC3qZu8s0t11sbipMHS2ByAOom6vUE+Pt5zXFrijfHBnh/fFfjVUmQ9PR0jB07FhMnToRSqURqaipuu+02qcMiIqIOoNZqR1mNBWEBSoQFXPttLfkWjUYDAIiKisLo0aNRUFCAqKgolJaWIjY2FqWlpY3qhRC5yoHiSvTVtu6H+8AuEVi1rxgFxZW4MSnSTZF1LkKIK6Y1V6Nl3bp1OHjwIN5///1WL1vP2xKm3pIgM1nsVyQDz5UZoQ3zh8Vsw9XShDa7o03d5JtbLiHMHwBwpNiA67pc2bXJZLbCbnd4xXFrirf8mzbHG+Jra9LUq4bIBYDHH38cGzduxOeff47FixdDpXJt0Uwi8h1z5szB0KFDGzVHraiowLRp0zBmzBhMmzYNBoNBwgjJF9gcDmw8Uoql207jX3uLsHznWXxxWAezzS51aOQiRqMR1dXVzv/etWsXUlJSkJmZibVr1wIA1q5di6ysLCnDpA7oUrUZJVVmpMa1rtZBv7hQyADsL650T2CdkFarRUlJifNvnU7X5CiT33zzDd566y0sX77c+TujpctS69nsDhQbTOgS4f6hcX9NHeSHUH8lh8qlK3hdEoSIqN6kSZPwzjvvNJpWP9rDl19+iaFDhyIvL0+i6MgXWO0O/Pv7C9hXZMD1ieGYMjAO13UJR0FxJdYUlMDhuPLtH/mesrIy3Hnnnbj11lsxdepUjBw5EiNGjMD06dOxa9cujBkzBrt27bpipAii9jrwcxIjtZUtQYL9lUiODkYBkyAuk5aWhrNnz6KwsBAWiwXr169HZmZmo3kOHz6MefPmYfny5YiKinJOz8jIwM6dO2EwGGAwGLBz586rjlBJLVdSZYbdIZDgwpEbW0omk6F7VBDOlRvhaKK1D3VeXtUdhoiooUGDBqGoqKjRNI72QK3x1dFLuGAw4db+WvSLq/uRkhITgtgQf2w4UorNxy9hTB++7fN1iYmJzgKHDUVGRuK9996TICLqLA5crIKfQobkmGCUVLSuAOOA+DBsOloKu0N4bNjQjkypVGLevHm4//77YbfbMXnyZKSkpGDZsmXo378/srKy8Oqrr8JoNOKJJ54AAMTFxeGtt95CREQEHn74YUyZMgUA8MgjjziLpFL7XKgwAYAkSRAA6KYOREFxJXSVZsRJFAN5HyZBiMintGW0B6DtBcx8sehTZ465YUG2giID9hdXYkRKNAb1iGo0329TYqA32bD7TDkGdY9Cwq+a6Qb4+yHiGg9Lnfk4E1GdA8WV6BMbCpWi9Y2r0xPC8EnBRZwpM6JnTLAbout8Ro4ciZEjRzaaVp/wAIB333232WWnTJniTIKQ6xQZaqEOUiHYX5qfnUk/D119Tl/LJAg5MQlCRJ1CWwuYeUPRp9bqzDHXF2Qz2xxYf/Ai4sMDMLRrRJMF037bLQL7iyqw8eBF3HFDl8brMVtRUeHwSMyeJGXMbS1eRuSt7A6BY6XVyB0Q16blB8TX1RHZX2xgEoQ6rIsGM7pHS3d+h/groQ7yw7lyI4Z0YxFiqsOaIETkU+pHewDA0R6oWd+d1cNosWN07xjIm2lm7q9UYFgPNc6W1+J0WY2HIyQiX1eor4XJ5kDv2Lb9wEsID4A6yA/7L7AuCHVM1WYbqsw2JERI2wIjSR2Eoopa2FkHjH7GJAgR+RSO9kDXUmWyYc85PVI1IYi/RtPX67qEI9RfiT3nKjwUHRF1FMdK60Yk6hUT0qblZTIZBsSH4cBFJkGoYyqpNAMA4iUYGaahJHUgLHaBkkqTpHGQ92AShIi81syZM3H77bfjzJkzGDFiBD7++GOO9kDXtPe8HjYhMLJn1DXnVcrlSE8Iw5kyIypqrR6Ijog6imOl1fBTyNAjqu11dvpqQ1FUYYKB9x/qgOqTDlLX4kiKrEvCnNO3rngxdVysCUJEXuu1115rcjpHe/AOZgEYrfZ2ryfIT+GCaOrUmG3YV1SJVE0IIoNULVomPSEMu06XY/8FA0b2jHZZLETUsR0rrUZyVDCUCjlgb9u9sO/PQ+se0VVhSDd276SO5WKlGVHBKvgrFS55XmirIJUSMSEqnCs34rfdeZ0RkyBERNRGRqsdW4+Wtns9o1w4RO36gyWw2B0YnNTy4mdhAX5Ijg7G/guVyOgRxaEqieiahKgrinpTOxOnfTV1SZDDJdVMglCHU1Jlco7OIrWukYHYf6ESNocDSjk7Q3R2PAOIiKhDsDkE1uy/iG7qQGjDWtf0Nj0hDDUWO86V+9ZoL0QkDV2VGQaTDb1i21YPpF5ogBJdIwNxuKTKRZEReYcqkw3VZjviwvylDgUA0E0dBJtD4KLBLHUo5AWYBCEiog5h56kylNVYcENiRKuX7REVBJVC5ix0SER0NcdK60aUauvIMA311YbiEJMg1MGUVP1cD6SVLyXcJbG+LghfdhCYBCEiog7ik4KLiA5WoWd063+UKBVyJEcH43hpDRyCQ+gR0dWduFSXME1p48gwDfXVhuJyjQWlVXxDTR2H7ueRYWJDvKMlSKCfAppQfxZHJQBMghARUQdQbDBh91k9xvXVQN7Gmh69NSEwWu0o4gMSEV3DqctGJIQHIEjV/sLOfTV1iRR2iaGOpLTajMhAP6iU3vNzMykyEBcqTLDaHVKHQhLznrOSiIh8zlFdFT768QJW7D6PLw7poDdaJIlj3YGLkMmAcf00bV5HclQwlHIZjrJLDBFdw6myGiS3odVZU3rHhkAhAw7rmAShjkNXZUFsqHe0AqnXVR0IuxC4YDBJHQpJjEkQIiJqNZtD4NWvjmNNQQkqjFYE+ClwqKQKed+cw4HiSs/GYndg3UEdfttd3a4HLpVSjm7qIJy8VAPBLjFE1AyLzYHz5Ub0jHbNqBcBfgr0iA5mSxDqMMw2BypqrYgNbdlQ9Z7SNTIQMhlwrpwtPjs7DpFLRNSJmEXd0Lbt9c9vzmHz0UsY1l2NYT3UUMhlqDbb8OnBEnx+SAcASIsPa/d2WmLH6XKU1VgwaUBcu9fVIzoIJy/X4EKFCWpN+/v6E1HHc05vhF3AZS1BgLq6IFtPXIYQAjIZh+km33apuq4eiMZL6oHU81cqoA31x3m9EUCU1OGQhJgEISLqRIxWO7YeLW3XOk5drsF/9xVjTF8Nbkj4JdER4q/E1IHxWPVTMb44rEN0iMojVeHX7L+I2BAVhnZXo8rWvn6+PaLq3ux+f16PNCZBiKgJpy7XjS7Rw8VJkHUHSlBUYXKOYkHkq+qL/HpbdxgASFIHYc85PSysC9KpsTsMERG1mN0h8OXRUkQHq/BARrcrPvdTyJE7IA7BKiU+PVDi9oeMC4Za7D6nR25aHJRtLIjaUGSQChGBfvjhfIULoiOijujU5Roo5DIkuTBZ0U8bCoDFUamKYEWFAAAgAElEQVRjKK0yI0ApR1iA971vT4oMhEOARdA7OSZBiIioxQ4UV6Ki1oZRKdHwVzY9KkKgnwI5/TUoN1qx/USZW+NZW1ACuQy4NU3rsnX2iArCT0UGWNrZqoSIOqZTl2uQFBkIP4XrHqOTo4Lgr5SzOCp1CLpqC2JC/L2ya1eXiEDIZeBQuZ0ckyBERNQidofArjPliA8PQPI1CgImqYNwXZdw/FBU4WwW62o2uwOfHizBsO5qaFzY5LZHVBDMNgcKPFzglYh8w6kyo0vrgQCAUiFHr5gQtgQhn+cQApeqzV5XFLWeSilHfHgAzpUbpQ6FJMQkCBERtcjhkipUmmzI6KFu0dudEclR8FfK8dWxS24ZbWXH6XKUG62YlN7+gqgNdVUHQS4D9haySwwRNWa02FFsMF0zEdwWfbUhOKqrhs3B0anId12qMsNqF4jxsqKoDXWNDEJJlRk1FpvUoZBEmAQhIqIW2X+hEpFBfs7iodcSpFJgZHIUzutrceJSjcvjcRZE7aZ26Xr9lXKkxIRgH5MgRJ2WWQB6i/2K/x34ubtKbFhgo+l2F+Qt+mpDYbI5cKbM9fdLIk8p/LmbSVSwd7YEAYAkdSCEAA5eYIvPzsr7qtUQEZHXKa+xoLCiFjf1jGpVH9+BCeHYe74C205eRs/oYMhdULwU+KUg6vShSVC4aJ0NDegSjrX7i2Gy2hHg13TtEyLquJobSevAz93kLlbUNvp8aEpMu7fZt0Fx1JQYjk5FvumXJIifxJE0LyE8AAqZDPsvGHC71MGQJNgShIiIrqmguBIyGZAWH3btmRuQy2W4qWc0ymqsOHDRdW9c1h1wfUHUhgbEh8FqFzh4kf3ziegXZTUWyGVAZJDrf+B1jQxEsEqBwyXVLl83kacU6msRoJQjyItfIPgp5EiICMBPRQapQyGJMAlCRERXJYTAgYuVSI4KRoh/6xsQ9ooNRnx4AL4+VQ6rC4bMrSuIqnN5QdSG+seHQS4DfmCXGCJqoKzGgsggP7e0QJPLZEjVhrI4Kvm083ojooJVXjkyTENJkYE4dakGFUaL1KGQBJgEISKiq7pgMKHabEdfbduaZ8tkMozqGYUqs80lSYXtp8pQVmPBxAGuLYjaULC/Er1jQ/Aj3xIRUQOXayyIdmOtg37aUJy4XAMzh+gmH1Wor/XqeiD1ktRBEAD2ntVLHQpJgEkQIiK6quOl1ZDL0K4hIbuqg9AjKgjfntGj1mpvVzwffH8B8eEB+G131xZE/bXruoTj4MVKWPhjhIhQN0y4vtbq1h94fbWhsDsETlxilxjyPZUmK/RG914jrhIX7g9/pRy7z5RLHQpJgEkQIiJqlhACx0prkKQOaneB0JtSomGyObC7HW9dCoorceBiJe68PsEtzdEbSk8Ih8UucKyUP0aICNAbLRDCvaNe9NXUtbhjlxjyRefKvb8oaj2lXI6+caH47kyZ1KGQBJgEISKiZl2qtqCi1orese0fqUAT6o9+caH4/nwFKk3WNq3jg++LEBagRE5/9xREbWhAXN1IDa4s6EruZbfbkZubiwcffBAAUFhYiKlTp2LMmDGYMWMGLBb2/aa2u1xTd/64szuMJtQf6iA/HGIShHzQ2XIjACAqyPtbggB1I9gd01VDz7ognQ6TIERE1KzjPzfJTolpe1eYhkYkR0EIYOfp1jc/PXm5BltPXMbk9DgEqdxfdT46xB9xYf7OITHJ+61cuRLJycnOv5csWYJ77rkHX375JcLCwrBq1SoJoyNfV1ZTl7xVuzEJIpPJ0I/FUclHnS2vhVIuQ0Sg97cEAYD0LuEAgB8KWf+rs2EShIiImnWmzIi4MP82jQrTlIhAP1yfGI6CC5UoqTS1atm3dp5FkEqBO2/o4pJYWiItLgwFTIL4hJKSEmzbtg1TpkwBUNeVa/fu3Rg7diwAYOLEicjPz5cyRPJxl2ssCA9QQqVo/+OzTCaD3mJv8n89YkNwtrwWRVVm6C12mIULgifygHPlRiREBEDu5u6qrtIrNgTBKgW+50hwnY5rnmqJiKjDMVntuGAwYWi3SJeuN6OHGodLqrDxSCn+eGNii5Y5UFyJ7afK8KdhSR59w5QWH4Yvj11CSaUJ2rAAj22XWm/hwoWYNWsWampqAAB6vR5hYWFQKusedbRaLXQ6nZQhko8rN1pc1gqk1ubAtycuNfmZ2WIDAPzn+yJ0jwrCqD6x8PdA6zei9jpTbkRXdZDUYbSYUiHHb5IiXTJyHfkWJkGIiKhJ5/W1EALoHuWarjD1AvwUyOoVjU8P6vBjoQFZqZqrzm9zCCzechLqID/ccb3nWoEAdUkQADhwsYpJEC+2detWqNVq9O/fH999912z88lk1347qVDIEBHhOw/xTVEo5D6/D63hjv2tNZgQFPhLwkMIAb3RiqTE4EbT6ykV8ianN+dq8/fQKAAU47LRin5dVAjw90NEeN39p7P925LvsNoduFBRi2HJUVKH0iqDe0Rh+4nLuFxtRnSIv9ThkIcwCUJEPundd9/Fxx9/DJlMhl69emHRokXw9+eXlyudLjNCpZAhIdz1P/77akNx8GIVtpy4jInXxaN7bGiz8/5rbyGO6KqxaHyqR2qBNNQrJhj+SjkOFFdidO8Yj26bWu7HH3/Eli1bsGPHDpjNZlRXV2PBggWorKyEzWaDUqlESUkJYmNjr7kuu12gosLogajdJyIiyOf3oTXcsb8mix3G2l+KJdZYbDDbHAhVKRpNr2ezO5qc3pxrza8O8sO5shoYa8NhMltRUVE3VHdn+LeNiWn++4C8V1GFCXYBJEYGSh1KqwzprgYAfF9owLjUa39HUMfAmiBE5HN0Oh1WrlyJ1atX4/PPP4fdbsf69eulDqvDOVNmRNfIILcMRSuTyZDTX4sgPwVe2nAMZTVN/xj4qciAvG/O4eZe0bhZgiSEn0KOvpoQjhDj5Z566ins2LEDW7ZswWuvvYYhQ4bgz3/+MwYPHoxNmzYBANasWYPMzEyJIyVfVV5fFDXIM93x4sMDUGwwQQgWBCHfUD8yTFcfS4L0jQtDiD/rgnQ2XpcEqaysxOOPP45x48bhlltuwb59+6QOiYi8kN1uh8lkgs1mg8lkatEbXmo5vdGKiloruke5r9l1kEqB3AFaXK624M53vruiUOqB4krMWHMQCeEBmJ2V4rY4riUtPgxHddUw2xySxUBtM2vWLKxYsQKjR49GRUUFpk6dKnVI5KPqh9D0VBIkLiwANRY7qsw2j2yPqL3qkyBdfCwJopDLcH2XCNYF6WS8rjvMggULMHz4cLz++uuwWCwwmVo3egARdXwajQb33nsvRo0aBX9/fwwbNgwZGRlSh9WhnNfXPcwkqd37MNMlIhCLJvTF8+uP4o6VP2Byejy6qQNRUFyJTw+UQBsWgL9NHYAID/3waEpaXBhsjiIc1VUhPSFcsjioZQYPHozBgwcDABITEzksLrlEudEKuQwID/BcSxAAKDbwOZh8w7lyI2JDVAhSed3Py2u6ITEcO06VsQh6J+JVZ2l1dTX27t2Ll19+GQCgUqmgUrlvLHYi8k0GgwH5+fnIz89HaGgonnjiCaxbtw4TJkxodpm2Fjv0xSJ0V4v518X+mnOxyoIglQJdo0OaLSbZ2kKAzRnUIxqfPPRb/OWr41i5txBCAH4KGe68sSseuSkZUa0oVNbS/buWhoUIM1I1wKeHcbLChJH94pzzdLRzg4iaV260IiLQz2NDf8aGqqCQyVBsMHtke0Ttdba8Fkk+NDJMQ79JjAAA/FBoQHY/JkE6A69KghQWFkKtVmPOnDk4evQo+vXrh+eeew5BQb55QRGRe3zzzTfo0qUL1Oq6YlZjxozBvn37rpoEaWuxQ18sQne1mH9d7K85py9VIzEiALUma7PztLYQYHNMZiu6x4Zi/rheeGJ4N9Ra7QgP8ENogBKw2Vt1/Fu6fy2Jqb4QoRJ1b2X3nCrD5H6/jGTT0c4Nd2OxQ/Jl5UYL1EGeezGnlMuhCfPHxUq2BGmpHTt2YMGCBXA4HJg6dSqmT5/e6PO9e/di4cKFOHbsGF577TWMGzfO+Vlqaip69eoFAIiLi8Nbb73l0dh9nRACZ8uN+F3fq4/25q16xgQjPECJvYUVyO7nm/tAreNVSRCbzYbDhw9j7ty5SE9Px0svvYS8vDzMmDGjyfmlHMbOF96m+UKMpiqzS97aNtTwDa4r+MJx9IUYXSk+Ph779+9HbW0tAgIC8O2336J///5Sh9VhGGqtMJhsGJQU4fFtRwV7Z+u/tLhQ/FhkgBCiRcOsElHHUT88bncPv+WOC/NHQXEl7A4WR70Wu92O+fPnY8WKFdBoNJgyZQoyMzPRs2dP5zxxcXFYtGgR/vnPf16xfEBAANatW+fJkDuUyzUW1Fjs6OajLUHkMhkGdY3AnnN6fs93El6VBNFqtdBqtUhPTwcAjBs3Dnl5ec3OL+Uwdr7wBtAXYhQyuUve2jbU8A2uK/jCcexsb3fT09MxduxYTJw4EUqlEqmpqbjttts8HkdHdV5fCwDoGumbDzPuMCA+HJuOXkJJlRlx7C9M1KlUmW2wOQTUHk7SxocH4IdCA86XGxEdH+bRbfuagoICJCUlITExEQCQnZ2N/Pz8RkmQLl26AADkcq8bF8Ln1RdF7ebmOmLuNLS7GpuPX8aJSzXoFRsidTjkZl6VBImJiYFWq8Xp06fRo0cPfPvtt0hOTpY6LCLyQo8//jgef/xxqcPokAorahGglCMmxDtbZUghLb4u2XfwYhWTIESdTLmxrltgpIcLNMf/fK85qqvC9UyCXJVOp4NWq3X+rdFoUFBQ0OLlzWYzJk2aBKVSienTp+Pmm2++5jJStkhvipStgkuPXQYADOgeBSFwRStvuVzWopbfba011tblAvz9nMdtXHo8Xtx0HPtKqnFjL+8YcdDbW3p7e3xX41VJEACYO3cunn76aVitViQmJmLRokVSh0RE1KkUVZiQEBEAOZuDOvWMDoZKIcOhi1UY3TtG6nCIyIPKazw7PG69yCA/BCjlOKqr9uh2fZEQV3YZak2Xhq1bt0Kj0aCwsBB33303evXqha5d/z97dx4fdX0nfvz1nXsmyWRyTe4EAgn3jQJeKFQoxQMrdntv6Vrb3XbVbmt/tla767bu5Wp1u7uVh9uudteulVawpR4IKOKBCAJyE0LuO5OZHHPPfH9/hKQoCAkk+X5n5v18PHg8JPnOzHtw8s33+/68P+932Xkfo2VF+rloWRV8pMmLw2zEGovhjZzdL8xhtwyr8vtie41d7OOCoQixWByv148FqMpLY+vhVv5sdsEFHzse9F6Nrof4LrYiXXdJkGnTpvG73/1O6zCEECIlBSMxuvrDTC+QUtAzmY0GprgzONzao3UoQohx1u2PYDIoZFjH97JZURQKM20ca+0d19dNRAUFBbS2tg79va2tDbd7+Kv5+fkDzTBLS0u5/PLLOXz48AWTIOJPaj1+yrPtCd9L44qJ2fxqdwO9wehAc3aRtGRTnBBCiCGtvQPjGItky8dZZhRmcKStj6g0KRQipXj8EbIdZk1u8IoybdR6/PSHo+P+2olk1qxZ1NbW0tDQQDgcZvPmzSxbtmxYj/X5fITDA1UEHo+HvXv3fqiXiLiwWk8gYZuinumKidnEVHi3vlvrUMQYkySIEEKIIS2+gXGMhaM4YSlZzCzIIBiNU9PZr3UoQohx5PGHyRrH8bhnKsm0EVfhUItUg5yPyWTigQce4Pbbb+dTn/oUq1atorKykscee4ytW7cCA81Tr7nmGl566SV+9KMfsXr1agBOnjzJrbfeyk033cSf//mf87WvfU2SICPgD8do6w0lRRJkVpGTdKuRt055tA5FjDGp8xFCCDGkuSdIlt2M3WzUOhTdmVF4ujlqa690jhciRcTjKt5AhCka/cwXZdpQgAPNPVxenqVJDIli6dKlLF269ENfu+uuu4b+e/bs2ezYseOsx82fP5/f//73Yx5fsqrrTvzJMINMBoXF5Vm8XSujcpOdVIIIIYQY0uILSRXIxyjOtJFpM3FYVmSFSBm+YIS4Ov5NUQfZzEbKcxwcaJZ+REKfhsbj5iReJYiiKLT4gnSHY0N/5pS66OgLs6e590NfP/NPSHbFJjypBBFCCAFAbzBKbyhKUaZV61B0SVEUZhRmcEiaFAqRMgbH42anaTcyfHpBBjuqO4mfYwKKEFqr9QQwKlCSmXiVIIFonHdqOz40WSYciQHw7HsNLJmYfc7HXTfVjdUiFbOJTCpBhBBCANDSc7ofiDRF/VgzCjKo6erHH45pHYoQYhwMJkGyNKoEAZhe6KQvFONUl35HZYrUVefxU+yyYzElx21lutVEfoaVk9L/K6klx6dVCCHEJWvpCWJQID9DKkE+zoxCJ3EVjrRJNYgQqcDjD2M1GXBo2CdpsB+RbIkRelTr8VOelXhVIOczKddBoy9IICILHslKkiBCCCEAaPYFcadbMRvlV8PHmZE/cDMikxqESA3d/ghZGo3HHVSUacNlN0sSROhOLK5S350c43HPVJmXjqoi1SBJTK50hRBCoKoqLT3SFPVCXA4zxZk26QsiRIrw9IfJ1mg87iBFUZhd5JQkiNCdlp4gkZiadEmQQqeVdIuR4+2SBElWkgQRQgiBxx8hFI1T6JStMBcyU5qjCpESovE4vmBUs8kwZ5pd5KS+O4CnP3zhg4UYJ4OTYcqTYDzumRRFodKdTk1XP9FYXOtwxBi4pOkwoVCIZ555hj179qAoCgsWLOBzn/scVqtcRAshPkzOF/rW7BtoiloklSAXNL0gg5ePdtDeG0Tb9eHkJOcKoRfewckwOkmCALzf4GVBQbrG0Yw9OQ8khsFmvclWCQJQmZfG+40+aj0BJuelaR2OGGWXVAnyve99jxMnTvDFL36RL3zhC5w8eZJ77rlntGITQiQROV/oW0tPELNRIUfDMZCJYkbB6SaFjT6NI0lOcq4QevGnyTDanxen5adjNCi8X9+tdSjjQs4DiaHOEyDbYSbTrn2icLSVZ9uxGA2c6OjTOhQxBi6pEuTUqVO88MILQ39fvHgxN9100yUHJYRIPnK+0LdmX5BCpw2Dhs3/EsUU98DNyP5GHwtPT20Qo0fOFUIvPDqqBLGZjUx1p7O3wQuXl2odzpiT80BiqPX4KU/CKhAAk8HApFwHJzr6+aSqatocWYy+S6oEmT59Ovv27Rv6+/79+5k/f/4lByWESD5yvtCvaDxOe2+YQqdshRkOm9lIZW6aVIKMETlXCL3o9odxmI3YNByPe6bZRU4ONPpSokeBnAcSQ63Hz4Qk6wdypsq8NPrDMZpObxkWyeOSKkH279/Pxo0bKSoqAqC5uZlJkyZx4403AvD73//+0iMUQiQFOV/oV3tvmJiqUpQpe62Ha0bhQF+QuKpK9cwok3OF0AuPP0J2mvZVIINmFzn59d4mjnX0D23LS1ZyHtA/rz+CLxhNyn4ggyblpmFQ4ERHPyWu5E32pKJLSoI8+eSToxWHECLJyflCv1p6BlY4pBJk+GYUZPDb/S3UeQJMzEneC0AtyLlC6IXHH9bVz/es081RDzT3JH0SRM4D+venyTD6+RkZbTazkbIsO8fb+7iuMlfrcMQouqQkSHFx8WjFIYRIcnK+0K9mX5A0ixGn7ZJ+JaSUGad7gRxq7dHVTVIykHOF0INAOEZfKEa2DpqiDsrPsFKUaeNAUw+fm5/cPydyHtC/wSRIMm+HAahyp/PK0Q46+8LkpuvnfCAuzSX1BBFCCJH4WnoGmqJK06/hm5DtIM1q5GBLr9ahCCHGQJMvAOijKeqZ5pW5ONAs/YiE9k55/FhNhqSvIq3KGxhJfbRdft8nE0mCCCFECgtGYnT1RyjKTO6LmNFmUBRmF2dyuFUuioRIRk3egW2CeqoEAZhflkV7X5jWHmnUKLRV5wlQlmVP+r5YGTYTJS4bR9tkVG4ykSSIEEKksNaeEACF0hR1xOaUuDje0U8omvyTGoRINY3egUqQLJ1VgswvdQEDfUGE0NLAZJjU2A46NT+djr4wXf1hrUMRo0SSIEIIkcKapSnqRZtdnEksrnKsXVaHtBYKhVi7di033XQTq1ev5vHHHwegoaGB2267jRUrVnD33XcTDssFrBieJm+ADKsJs1Ffl8pTCjKwmQySBBGaCkXjNPuCSd8PZNAU9+ktMVINkjT0dWYXQggxrlp8QbIcZuxmo9ahJJzZJZkAHJItMZqzWCw89dRTvPDCC2zcuJE33niDffv28fDDD/OVr3yFV155BafTyYYNG7QOVSSIJm9Qd/1AAMxGAzMKMyQJIjTV0B1AhZSpBHHazBRn2jjSJr/vk4UkQYQQIoU19wQpkiqQi5LvtOFOt3CoRW5GtKYoCmlpaQBEo1Gi0SiKovDOO++wcuVKAG655Ra2bt2qZZgigTR5A7pJgiiKQnc4Rnc4RosvSFV+Bsfa+2juCw99/cw/IVXriEWyS4XxuB8lW2KSi8xDFEIkpJ6eHn74wx9y/PhxFEXhoYceYt68eVqHlVB6g1H6QjEKpSnqRZtR6JRKEJ2IxWJ8+tOfpr6+ns9//vOUlpbidDoxmQYudQoKCmhra7vg8xiNCi5XYl/YG42GhH8PIzHa79frD9MTjJKfacdhH15jVJPRMOxjR3p8RIU9dV4ADAYFk9FAXIWNB1qoOD254kxLq/JwyXldjKFajx8FKM9Kje0wMJAE2Xq8U7bEJAlJggghEtJPfvITrr76ah5//HHC4TDBoHTKH6nBfiBFTmmKerFmFmSw/UQnXn8El05WjVOV0Whk06ZN9PT08M1vfpOampqzjhnOGOhYTMXr9Y9FiOPG5XIk/HsYidF+vwdPV3elmw34A8Nb9Y3G4sM+dqTHn3msw24hxz5w+V7d3ktB+tmJlGAogtebuA2b8/IytA5BXECtx0+h04othbbSDm6JOSpbYpKCbIcRQiScvr4+du/ezdq1a4GBfgBOp1PjqBJPiy+IQYH8DEmCXKwZhQMX64fkokg3nE4nixYtYt++ffT09BCNRgFobW3F7XZrHJ1IBPXdA5NhstP0NR53kN1sJDfNQqNXkv9CG7WeQEpthRk0NT+d9r4wjafPESJxSRJECJFwGhoayM7O5vvf/z5r1qzhvvvuw+9PnVXP0dLSE8SdbsWks+kHiWRqfjoKcLhFkiBa8ng89PQMrN4Hg0HeeustJk2axKJFi3j55ZcBeP7551m2bJmWYYoEUd8dwKCAy67f6q4Sl41mXxBVlQYgYnzFVZW6FBqPe6ap+QPbz3ZUd2ocibhUsh1GCJFwotEohw8f5v7772fOnDn8+Mc/Zv369dx9990f+5iL3eefiHvrzxdzwBfEYbcQV1VaekLMKckc0T72M410D/zHsVnNo/bvPPj+RiOmC+2pNxoNFLudVLrTOdrZnxCfk0T8PA9He3s79957L7FYDFVV+eQnP8l1113H5MmT+fa3v81Pf/pTpk2bxm233aZ1qCIB1HcHyM+wYTRcePuUVkpcdvY19dDRF8Yt1XxiHLX3hghG4ykzHvdMg1tidlR38c0rJ2gdjrgEkgQRQiScgoICCgoKmDNnDgCf/OQnWb9+/Xkfc7H7/BNxb/35Yg6GY/gDA93NQ9E4eWmWEe1jP9NI98B/nGAoQiwWH5V/58H3NxoxXWhP/eC/84yCdLYc68DT3Y9hGD0ntKTl53ks9/lPnTqVjRs3nvX10tJSGYsrRqyhO0CxS9+NRUtOx9foDUgSRIyrVJwMc6bBBql1Hn/K/hskA6mBFkIknLy8PAoKCoYaH7799ttMmjRJ46gSS7NPmqKOljlFmfSFYtR0JlayTAhxNlVVqe8OUOzS9yq3y27GYTHS6JO+IGJ81XoG+mGk4nYY+NOWmK3HZUtMIpNKECFEQrr//vv57ne/SyQSobS0lH/4h3/QOqSE0twTxGI06KLxn6IotPiCBMOxS36u2Chtj1cUhe4LxBM4HfNE98AF0Vv13eR8ZAuNw2zEqu/iECHEGbr8EfyRmO4rQRRFocRlo8krDRrF+Kr1+MmwmshO0YloTpuZaQUZvHq8g68uLtM6HHGRJAkihEhI06ZN43e/+53WYSSsFl+QQqdVF9s3AtE479R2jMo2liWVeaMQ0UBMb5/oOO8xDvvAViJVVUmzGNl2tIP0j4wLvG6qG6sldUYICpHo6rsHKrpKXHZ6AxGNozm/kkw7x9v76QtFSbfKJb0YH4NNUYczcjxZXTM5hyd21lLfHaAsS99VY+LcZDuMEEKkmGg8TltviMILNP4UwzOwImunUVZkhUh4DadHX+p9Owx8uC+IEOPllCeQkk1Rz3T15FwAth4//2KJ0C9JggghRIpp7w0TV6HIKUmQ0VLisuELRukNRrUORQhxCeq7A5gMSkI0Gy1w2jAZFBq90hdEjI/eYJSu/nDK9gMZ5M6wMqvQyZZjkgRJVJIEEUKIFDPYFLUwU/8X+Ymi5PSqcaNPVmSFSGT13QFKXPoejzvIaFAodFqlEkSMm7ru1J4Mc6ZPTMnlREc/dR5pip6IJAkihBAppqUnSLrFSIbsIR81+RlWWZEVIgkM7PFPnBu8Epedtt4Qkdj5R3oLMRoGx+Om+nYYgGWVg1tiZEpMItJdEiQWi7FmzRq+/vWvax2KEEIkpWZfkMJMW0o3NRttRoNCUaZNVmSFSGBxVaXRG6A0AfqBDCp22YirA82uhRhrtZ6B7WLF0lOMAqeNWYVOXpW+IAlJd0mQp59+mkmTJmkdhhBCJKW+UBSPP0KRXMCMuhKXjbbeEGFZkRUiIQ38/KqUJdAqd3Hm4FY8SYKIsVfb5afUZcdk1N0tpCZkS0zi0tUnuLW1lddee421a9dqHYoQQiSl4219ABRKU9RRV+Kyo6p/6rkihEgs9acnw5QlUCWIw2IkJ80sVWin7VGNL3QAACAASURBVNixg5UrV3L99dezfv36s76/e/dubrnlFqZPn85LL730oe89//zzrFixghUrVvD888+PV8gJ5ZTHz8ScxNkuNtaWV+UBsiUmEekqCfLQQw9xzz33YDDoKiwhhEgax9p6ASh0SlPU0TZYHiw3I0IkpqEkSFbiJEEASjLtNHmDqKqqdSiaisViPPjggzz55JNs3ryZP/zhD1RXV3/omMLCQv7hH/6BG2644UNf93q9/OxnP+M3v/kNzz33HD/72c/w+XzjGb7uhaJxGr0BKiQJMiQ/w8rsItkSk4h00xVv+/btZGdnM3PmTHbt2jWsxxiNCi6XNj+IRqNBs9cerkSIMdgbwmG3jOpz2qxmXKNY6p8I/46JEKPQh6NtfWQ7zNjMRq1DSTo2s5G8dIs0RxUiQTV0B7CZDOSlW/BGEmdbW4nLxv7mHrr6w+Smp26C+8CBA5SXl1NaWgrA6tWr2bp1K5MnTx46pqSkBOCsBdedO3dy5ZVX4nK5ALjyyit54403zkqWpLJaj5+4ChW5aVqHoivLq3J59LUa6jx+mZqTQHSTBNm7dy/btm1jx44dhEIh+vr6+O53v8vDDz/8sY+JxVS8Xm32YLlcDs1ee7gSIUZVMeAPhEf1OYOhCF7v6F28JMK/o5Yx5uVlaPK6YuRUVeVYW6/0AxlDJS47h1p6icdVDAkwYlMI8Sf13QFKs+wJ1zS6eHBEtzeY0kmQtrY2CgoKhv6en5/PgQMHLvqxbW1t532Mloux5zLWC2KtdV4A5k7IPu/rBHzBsxY4DQZlWIueJqPhohZHL+Vxw43tTGcuuN6ysIxHX6vhzXofcypyRxzD+eh9kVPv8Z2PbpIg3/nOd/jOd74DwK5du/jFL35x3gSIEEKIkWnvC+PxR1hQ6tI6lKRVnmXn/UYfLb0h6Z4vRIKp6/Yz1Z2udRgjlu0w4zAbafQGmFuSqXU4mjnXdqDhJrQu5rFaLsaey1gviB1q6MZoUHCZlPO+TjAcO2uB02G3DGvRMxqLX9Ti6KU8Lh5XR/zYMxdc7cDsIid/ONDM5+cWjjiG89H7Qqwe4rvYxVhpviGEECniUOtAPxCpBBk75aenSkineCESSzgap9kXpCwBy9kVRaHYZUv5rXgFBQW0trYO/b2trQ232z3mj00VNZ1+ylx2zDIZ5iyfmJLHiY5+auV3f8LQ5ad40aJFPPHEE1qHIYQQSeVQSw8mg4I7fXT78Ig/cVhMuNMtkgQRIsE0+gLEVZiQQONxz1TistMdiNAfimodimZmzZpFbW0tDQ0NhMNhNm/ezLJly4b12KuuuoqdO3fi8/nw+Xzs3LmTq666aowjTiw1Xf1U5CZeknA8LKsc2AazVRqkJgxdJkGEEEKMvg9aepmcl4ZJVnHGVHm2g0ZvkGgscRorCpHq6jwDk2HKsxLzJq/EdXo6VQqP6DaZTDzwwAPcfvvtfOpTn2LVqlVUVlby2GOPsXXrVmCgeeo111zDSy+9xI9+9CNWr14NgMvl4q/+6q9Yu3Yta9eu5Zvf/OZQk1QBwUiMRm9QJsN8jPwMK3OKnDIqN4HopieIEEKIsRONxTnc2sunZuZrHUrSK8+2s7veS1MK34wIkWgGy9gTbTzuoIIMK0ZFSfkR3UuXLmXp0qUf+tpdd9019N+zZ89mx44d53zsYAJEnK3OE0AFJubIZJiPs+z0lJhGb4ASV2KeR1KJLAcKIUQKqO7sJxSNMy1fpvmMtVKXHYU/rSwLIfSvrjtAbpqFdGtirg+ajAYKnNaU7wsixkaNpx9AKkHO49rJA1titp+QapBEIEkQIYRIAQeaB5qiTi90ahxJ8rOZjRRm2qjrlr4gQiSKeo8/YfuBDCpx2WntCRKOylY8MbpqOv0YDUrCVkqNh6JMG1V5abxW3aV1KGIYJAkihBAp4GBLD7lpFvKkKeq4KM+y0+wLEgjHtA5FCHEBqqpS1x2gPAEnw5ypxGUjrsLx9j6tQxFJpqbLT1mWTIa5kGsrc/mguYfO/pGP6xXjSz7JQgiRAj5o6WFmYQaKomgdSkooz3YQV+GD5h6tQxFCXIA3EKEnGE34Ve7B5qiHWuS8I0ZXTVc/k2QrzAVdNzkXFdhRLVti9E6SIEIIkeS6/WEavUFmF8lWmPFS4rJhVBT2NXq1DkUIcQG1g5NhErwSxGExke0wSxJEjKpgJEaTN8hESYIMURSF7nDsrD/ZTitFmTa2HO885/dDqtaRi0GJ2f1JCCHEsH3QMtAPZKb0Axk3ZqOBYpeNfY0+rUMRQlxA3enJMIneEwQG+oIcbulFVVWp/BOjYnAyTIVMhhkSiMZ5+0THOb9X6rKxu97Lix+0YDMbP/S966a6sVqM53ycGF9SCSKEEEnuYEsPRoPCtPx0rUNJKeXZdk529OMNRLQORQhxHnXdASxGhYIMm9ahXLLiTBs9wahMpxKj5mTX6ckwuVIJMhxV7nTiKpzs7Nc6FHEekgQRQogk90FzD1V5aWetSIixNTEnDRV4p7Zb61CEEOdR5/FTmmXHaEj8yokS10A1y/5mqUITo6Omy4/JoFDmSvxKqfFQnGkjzWLkeLskQfRMkiBCCJHEYnGVQ629zJKtMOOuyGkl025mZ42MyxtrLS0tfOlLX2LVqlWsXr2ap556CgCv18u6detYsWIF69atw+eTG0NxtrruAOVZybHKnZNmJsNm4oA0ZRajpKazn7IsOyaZDDMsiqJQ5U7nZFc/kZiMq9Yr+TQLIUQSO9nZTyASZ2ZRhtahpBxFUVg0IYu3a7uJxqUb2lgyGo3ce++9vPjiizz77LM888wzVFdXs379epYsWcIrr7zCkiVLWL9+vdahCp2JxOI0eQNJ0Q8EBs470wsy2N8kSRAxOk55/FRIU9QRqXKnEYmp1J7uNyT0R5IgQgiRxA6enhIglSDauHxCFj3BqIzKHWNut5sZM2YAkJ6eTkVFBW1tbWzdupU1a9YAsGbNGl599VUtwxQ61OQNElMTfzLMmWYUOqnrDuD1Sz8icWn6w1GavEEm5UpT1JEoz3JgNRlkS4yOSRJECJGwYrEYa9as4etf/7rWoejWgZZesuxmijMTv+FfIlpQ5sJoUNhZ49E6lJTR2NjIkSNHmDNnDl1dXbjdbmAgUeLxyP8H8WF13QMrteVZyVEJAjCjcKDyb78kX8Ulqu7oR2Wg2acYPqNBYXJuGic6+ohLJaguyYhcIUTCevrpp5k0aRJ9fX1ah6Jb7zf6mFPslFGJGkmzmJhfksnOmi7++pqJWoeT9Pr7+7nzzjv5wQ9+QHr6xV20G40KLldiVwUYjYaEfw8jcSnvt9UfBWD2xBwybOahrwd8QRx2y7Cfx2Q0jNnxZx5rMCgXfNzs0izMRoVjXX5uXlg67JiE+KjjHQOVDFV5UgkyUlXuNA619tLgDSRVpVmykCSIECIhtba28tprr/GNb3yD//7v/9Y6HF1q7QnS7Avy2fnFWoeS0q6qyObR12po9gUpkoqcMROJRLjzzju58cYbWbFiBQA5OTm0t7fjdrtpb28nOzv7gs8Ti6l4vYm9j9vlciT8exiJS3m/x5p95KRZiAUjeIN/2j4SDMfwB8LDfp5oLD5mx595rMNuueDj1Hicqe503q3pSsjPQV6e9LDSixMdfWTaTORnWLUOJeFU5KZhMigcb++XJIgOSRJECJGQHnroIe655x76+4e33/JiV3cTcUV1MObXa70ALJ2WP/QeRrq6eT4jXfk83/MMZ3VzvGO60PMMJ2ab1cyn5hbz6Gs17G3tZXr5hW/Cx1Iifp6HQ1VV7rvvPioqKli3bt3Q15ctW8bGjRu544472LhxI8uXL9cwSqFHA5NhkmcrzKBZRU427GsmHI1jMcnudzFyIRUOt/UxITcNb2T4U05isvsDAIvRwMQcB8c7+vjElFypyNUZSYIIIRLO9u3byc7OZubMmezatWtYj7nY1d1EXFEdjPmN4+1kWE3kW41D72Gkq5vnM9KVz/M9TzyujtpzjdfzDGdFNhiKkGUxUpZl55WDrdwwJe+SY7sUWn6ex3J1d8+ePWzatImqqipuvvlmAP7mb/6GO+64g7vvvpsNGzZQWFjIY489NmYxiMRU5/GzrCpX6zBG3ZziTJ7Z08TR9j5mF0ljbDFyvaEoJzv6mVeSyfaj7cN+3JJKbX/P6UlVXhonOvpp6w1R4JRKUD2RJIgQIuHs3buXbdu2sWPHDkKhEH19fXz3u9/l4Ycf1jo0XXm/0cfcYidGg6w+aO2qimw27GsmEIlhNxu1DifpLFy4kGPHjp3ze0899dQ4RyMShccfxheMMiEJS9XnnE587G/ySRJEXJQmb4BoXJWtMJdgcl4aCgO9VSQJoi9SHyeESDjf+c532LFjB9u2beORRx5h8eLFkgD5iM6+EPXdAeaXurQORTCQBAnHVHbVdmsdihDitJrOgaqoSTnJ1/QxJ81CicvGAZkQIy7Syc6B7caSBLl4DouJEpedE+3SwF9vJAkihBBJaG+jD4D5JZkaRyIA5hVnkmkz8erxDq1DEUKcNniTV5GbfJUgMFANsr+pB1WVJg1i5E529GNQBhJq4uJVudNo7wvT7Y9c+GAxbiQJIoRIaIsWLeKJJ57QOgzd2dvoI81ipMp9cWNCxegyGQ1cW5nLGyc9BCMxrcMRQgA1XX6cNhO5SXqTN7s4k+5AhAZvUOtQRAI63t6HO90qW2ovUWXewHXYiQ6pBtETSYIIIUQS2tvgY06xE5NcvOjG9VPy8EdivCVbYoTQhZqufipyHEk7teHMviBCjERcVTne3kehjHW/ZFkOM+50C8fbhzfNUIwPSYIIIUSS6ewLccrjZ36J9APRkwWlLrLsZrYclS0xQmhNVVVquvxUJGE/kEETcxxkWE3sl74gYoQaugP4wzEKndIPZDRUutNp9AbwBmRLjF5IEkQIIZLM7tOVBtIPRF9MBoVlVbnsrOkiIFtihNBUZ3+YnmCUipzk7AcCYFAUZhVlSHNUMWKH23oBKJSJJqOiKi8NFXjnlEfrUMRpkgQRQogk826tB7vZwLR86QeiN9dPySMYjfPGyS6tQxEipQ1NhslN3koQgDlFmZzq8uOTFWgxAkda+7CaDEnbL2e85WdYcdpMvFUjv/v1QpIgQgiRZN495WF2kROTUU7xejO3OJOcNAuvHu/UOhQhUtrJruSeDDNoTvFAX5APWqQaRAzf4dZeJuWlYZC+YqNCURSq8tLZU+/FH5ZKUD2QK2QhhEginf1hjrf3saBU+oHokdGgsLwyl7dOeegPR7UOR4iUVdPpx2U3k+1I7pXuGQUZGA0K+5skCSKGJxpXOdbexxSZLjeqqtxpRGIq79RJc3Q9kCSIEEIkkXdP/3JdMiFL40jEx7l+Sh6haJwdsiVGCM0c7+ijMi+5t8IA2MxGprjTpTmqGLZTXf0Eo3GqZEvtqCp12cmwmXi9WipB9UCSIEIIkUTeqe0mO81Clazg6NbsYifudAsvHm7XOhQhUlI0rnKys5+qvNQ4T84pcnK4tZdILK51KCIBDDbSnV7g1DiS5GIwKCyekM3OGg9R+VnUnCRBhBAiScRVlV113Vw5KQeDIvt49cqgKNwwI59ddd209Ya0DkeIlBBSoTscozsc44O2PsIxleJs+9DXPvonpmod8cVTFOVD72VSfjqhaJzdTT3nfK+hBH6vYvTtb+ohJ81CgYzHHXVXVGTTE4zyfpNP61BSnknrAIQQQoyO6o5+PP4IV03O1ToUcQE3zizgF7sa2Hyoja8uLtM6HCGSnj8SY/vRgeqrg6ebhHr6QkNf+6gllXnjFttoC0TjvH2iY+jvvcGB/kMv7G+m1Xv2VsnrprqxWozjFp/QtwPNPcwucqLIYsqoW1Dmwmoy8Hp1F5eVybZlLUkliBBCJIl3agf6gVw5KUfjSMSFlLjsLCjN5IWDrcRVWYYVYjy194YxKkrSN0UdlGEz4bKbaPAGtA5F6Fxnf5gmX5A5RbIVZizYzEYWl2fxWnUXqvzu15QkQYQQIknsPOWhMi+NfKdN61DEMNw0s4AmX5D3G6UsVojx1NYbIi/dgjGFxn+WZTmo9wTkxkuc12A/kNmSBBkzSyfn0NYb4lh7n9ahpDRJggghRBLwBSIcaPJxtVSB6MpH9+af+WdeeRYOi5EN+1s+9hjZty/E6FJVlfbeEO6M1Op3UJ5tJxiNSx8icV4HmnqwGBUZjzuGrq7IwaDAa9UyIU5L0hNECCGSwNu13cRUuLoiW+tQxBk+ujf/o6bkpfHaiU5mFWZgM59/T77s2xfi0vWFYvgjMfJTLQmS5QCgzhOgQKoFxcfY3+xjekEGFpOB/nBM63CSksthZm5xJq9Xd/GNKydoHU7K0lUlSEtLC1/60pdYtWoVq1ev5qmnntI6JCGESAg7a7rIspuZXpChdShiBGYXZxKNqxxpk7JYIcZDa28QIOWSIBk2EzlpZmo9fq1DETrVF4pyuLWX+aUurUNJeksn51Dd2U9Dt/Tp0YqukiBGo5F7772XF198kWeffZZnnnmG6upqrcMSQghdi8bivHWqmysrsmU0boIpdFrJS7ewX8blCTEumn1BFIWUHP9Znu2gwRsgFk/evXU7duxg5cqVXH/99axfv/6s74fDYe6++26uv/56brvtNhobGwFobGxk9uzZ3Hzzzdx888088MAD4x265t5v9BFX4TJJgoy5ZZUDU/y2HPv4SlExtnSVBHG73cyYMQOA9PR0KioqaGtr0zgqIYTQt72NPnpDUekHkoAURWFucSYtPSGafEGtwxEi6TX7QrjTrZiNuroEHhcTshxEYiotPcl5ronFYjz44IM8+eSTbN68mT/84Q9nLaY+99xzOJ1OtmzZwle+8hUefvjhoe+VlZWxadMmNm3axIMPPjje4WvuvQYvFqPCLGmKOuYKnDbmFDl5+WNGdIuxp9ueII2NjRw5coQ5c+Z87DFGo4LL5RjHqM58bYNmrz1ciRBjsDeEwz66I+psVjOuzNHb75oI/46JEKMYO9tOdGIzGbhigsycT0Szipy8Xt3FnnovxbMKtA5HiKSlqgMJgGn5qdn0sSzbDkBtl58Sl13jaEbfgQMHKC8vp7S0FIDVq1ezdetWJk+ePHTMtm3b+Na3vgXAypUrefDBB2Vizmm7673MLs7Eakq9BKEWVkx18y/bqqnu6GdyXprW4aQcXSZB+vv7ufPOO/nBD35AevrH/6KKxVS8Xm32NrpcDs1ee7gSIUZVMeAPhEf1OYOhCF5vfNSeLxH+HbWMMS9PelBoKRZXea26iysmZl+wsabQJ6vJwOwiJ3sbvSyryiXdqstfzUIkPI8/Qigap2gUF0oSid1spCDDSl13gKu0DmYMtLW1UVDwp0Ryfn4+Bw4cOOuYwsJCAEwmExkZGXR3dwMDC7Br1qwhPT2du+++m4ULF5739bRcjD2XS1kQ8/SHOdHRz7eXVw49R8AXvKiFSpPRcNbjDAZlWM91rsde7GsO93HDjW00Xu/MhdpbLyvlkddO8nptNwsr8855vN4XOfUe3/no7korEolw5513cuONN7JixQqtwxFCCF070NxDV394aH+pSEwLSjN5r8HL+40y5liIsdJ8estZqiZBYGBU7nv1PiKxeNJtCTpXRYfykT5ZH3eM2+1m+/btZGVlcfDgQb75zW+yefNm3S7GnsulLIhtO92bYqY7beg5guHYRS1URmPxsx7nsFuG9VzneuzFvuZwHxePqyN+7MW+3pkLtUYG+q+8sL+Zry4sPuuzCvpfiNVDfBe7GKurs5+qqtx3331UVFSwbt06rcMRQgjd23aiE4tR4UoZjZvQstMsTMp18H6jL6mbFgqhpWZfEItRISdtdLfhJpLybAcxVaXRm3xTKQoKCmhtbR36e1tbG263+6xjWlpaAIhGo/T29uJyubBYLGRlDWwpnTlzJmVlZZw6dWr8gtfYW6c8pFuNTE/RrWJaWTE1j2ZfkIMtvVqHknJ0lQTZs2cPmzZt4p133hnqzvz6669rHZYQQuhSLK6y9XgHiydkyxaKJLCg1EV/OMaRNrkYEmIsNPuCFDptKT1Fq9Rlx6BAnSf5kiCzZs2itraWhoYGwuEwmzdvZtmyZR86ZtmyZTz//PMAvPzyyyxevBhFUfB4PMRiMQAaGhqora0d6i2S7OKqypunPCwuz8aUZNVBenddZS4WoyINUjWgq6vmhQsXcuzYMa3DEEKIhLCnwUtHX5hvX+u+8MFC9ypyHGQ7zLxX72VmoXTnF2I09YeitPWGuGJialfNWUwGijJt1Hr0W2J/sUwmEw888AC33347sViMW2+9lcrKSh577DFmzpzJ8uXLWbt2Lffccw/XX389mZmZPProowDs3r2bxx9/HKPRiNFo5O/+7u9wuVJjVOyx9j48/ghXSUXpuEu3mrhiYjavHu/k29dOwmhI3QTteNNVEkQIIcTwvXSknTSLkavlwiUpKIrCglIXW4510NAdoDQr+aY3CKGVD5p7UBnoiZHqJmQ72FnjwR+O4bAkV0PtpUuXsnTp0g997a677hr6b6vVyuOPP37W41auXMnKlSvHPD492lnjQQGumCgT5rSwcqqb16q7eK/By6Jy+X8wXqTmSQghElAwEmPbiU6uq8yVqTBJZE6xE7vZyNu1Hq1DSSjf//73WbJkCTfccMPQ17xeL+vWrWPFihWsW7cOn8+nYYRCa/safRgNCsUp3BR1UEXuwDjOU139Gkci9ODNGg8zCjPIcqRurxwtXVWRTZrFyOZDbVqHklIkCSKESDgtLS186UtfYtWqVaxevZqnnnpK65DG3Rs1HvrDMVZNk60wycRsNLCwLJOTnX7ae0Nah5MwPv3pT/Pkk09+6Gvr169nyZIlvPLKKyxZsoT169drFJ3Qg/2NPkoybdLzACh0WrGbjZzsSr4tMWJkOvpCHG7tla0wGrKZjXxympttJzrpCUa0DidlyG8CIUTCMRqN3Hvvvbz44os8++yzPPPMM1RXV2sd1rh64YNWCjKsLChNjT3LqWRBqQuLUZFqkBG47LLLyMzM/NDXtm7dypo1awBYs2YNr776qhahpbSQCt3h2LD/9MdHdnxomIOUfIEINZ39lMlWGAAMikJFjoNTnf5zjowVqWPb8U5UYHllntahpLSbZxUQisZ56UiH1qGkDOkJIoRIOG63e2jsXXp6OhUVFbS1tTF58mSNIxsfzb4gu+q6+dqScmmilYTsZiPzSjJ5t87LNZMiZDnMWoeUkLq6uobOE263G49neEklo1HB5XKMZWhjzmg06OI9tPiC7KrrGvbxC8qz2FPnHfbxS6vycGXaLvh+321uQwWmFDhx2IdX8m8yGoZ97Fgff+axBoNywccN57mnFTk51NpLdyiOzWrGJduEUtLW4x1MynUwIUf780Uqm+pOpyovjU0ftPCZeUVah5MSJAkihEhojY2NHDlyhDlz5pz3uIu9sdHLzcSZfvleE4oCX7xyAq7Ms1c2zxdzwBcc0YX6+Yz0ov98zzOcC/vxjulCzzNaNyPncs0UN+81+NjT6OOmOQMXRKNxo6LHz7PexGIqXm9ibxNwuRy6eA/BcAx/IDzs46Ox+IiOD4YieL3xC77fVw624DAbybaZhv38I41lLI8/81iH3XLBxw3nuYszrAAcavISDBXi9caHFct4yMvL0DqElNDRF2JfUw93XFGudSgpT1EU1swu5J+3VvNBcw+zimRC3FiTJIgQImH19/dz55138oMf/ID09PTzHnuxNzZ6uZkIqeCPxIjG4jz7XgMLy7IIhqKcau8961ib1UwwdO59pTGVEV2on89IL/rP9zzxuDpqzzVezzNaNyPnYgJmFWawt8HL4nIX6VbT0A3fpdDy8zzeNzY5OTm0t7fjdrtpb28nO1v2vKeiWFxlR3UXl0/Iksq5MzgsRoozbZzokOaoqWpwK8wnqmQrjB58arqbf3/jFM++3yRJkHEgSRAhREKKRCLceeed3HjjjaxYsULrcMacPxJj+9F2jrT20tUf5rrKHLYfbT/nsee7OV8i+34TxqIJWexv7uHt2m6unyL/30Zq2bJlbNy4kTvuuIONGzeyfPlyrUMSp0VicU51+WnpCeLpjxBTVawmA619YcwK5KSN3pSK/c0+ugMRrpqUQyymn2oHPahyp7P9RCftvSGyZDtEynnxSDuVeWmyFUYn0iwmbppZwG/2NXPX0hB56VatQ0pq0hhVCJFwVFXlvvvuo6KignXr1mkdzrjaXe8ly25m8ukRhyJ5ZTsszCp08n6DTzrGX8Df/M3f8NnPfpZTp05xzTXX8Nxzz3HHHXfw5ptvsmLFCt58803uuOMOrcNMee29ITYfauOx12r47f4W3qntpr0vhC8QobbLzy/frmP9W3X8ancDDd2BUXnN7Se6sBgVLivPGpXnSyaVeQO/R96ukSbMqeZkZz+HWnu5YUa+1qGIM3xmXhHxuMqG/S1ah5L0pBJECJFw9uzZw6ZNm6iqquLmm28GBm6Cli5dqnFkY6vZF6TJF+QTU/JQFCnrTgVXVWRzsKWHN2s83Dy3WOtwdOuRRx4559dTcXy2HnX7w7xe3cWRtj7MBoUZhRlMy8+gJMuGyfCn9biqokx+9VYtu+u9/M97jcwszGDFVDdW08Wt2amqymsnOllUnoXdYhytt5M0ctIs5KSZeaumi69cVqJ1OGIc/f5gG0aDwqppbq1DEWcocdlZOjmH595v5ksLS5D5f2NHkiBCiISzcOFCjh07pnUY4+7dum4sRgOzi6RpXKrItJuZV5LJ3kYfTd4AWe7z974RQk98gQhbjnWwt8GLUVG4YmI2l5e7sJvPnZDISbOwaEIW80szeetUN2+f8tDkC3Lb3KKL2iKzu95La2+Iv7xqwiW+k+RVlZfOu/VeeoIRnDaZRJWMBnuKDYrGoFenRAAAIABJREFU4mw+3MbiCVlgMtIdjp3zcTGZnqyJdYvKeK36fTbsa+buldIbZKxIEkQIIRJAY3eAI219LJ6QhdUkK5qp5IqJ2exv6uF/3m3gH2+YpnU4QlxQMBLj13ub+O93GwiEY8wpdnJVRQ4ZtuFddpqNBpZOzmFijoPnD7Tw9O4GPjOvmOIRTkd69v1msuxmllfl4Y/LHd25VLnTebu2m9equ7hpZoHW4YgxMNhTbNDRtl68gQiFTuvH9hYD6SGmlekFGSyZkMX/7mnijusmax1O0pKeIEIIkQCe3dOIyaBweZkUR6aadKuJBaUuth3roKZLJjmkopAK3eHYsP6ERnivP5LnvtDzR2NxNuxrZs1/7eY/dtYyu9jJ7UvKWDU9f9gJkDOVZdn58mUl2ExGfv1eIyc7h//5b/QGeONkF7fMKbzo7TSpoNBppdBpY8uxDq1DEeNkd70Xl93EJOktplt/sbgMbyDCU2/XaR1K0pJKECGE0LmWniCvHutgbrGTNKuctlPR4glZfNDcw7/tOMWjt8zUOhwxzj66kns+100d2R7/kTz34PNbP9Jfoz8cZfOhdp7Z00iTL8jcYif/dOM0yvLSR/Tc55LlsPDly0p49v1mNuxrZvWMfGYWXrhE/P/2NmEwKNw6u/CSXj/ZKYrCNZU5bNjbhNcfweWQLTHJrKUnSKM3yPKqXAzSW0y35hRncu3kHJ54o4aVlTlkO0ZvYpYYIKlxIYTQufVv1WFQBm6ERWpyWIx8/vISdtZ4eLtWJjkI7amqyomOPh7ZfpLVT+ziX7ZV47Kb+ektM1n/Z3OYU5w5aq+VZjXxhYXFlLrs/P5gG3savOc9/lhbHxv2NXPDjHzcGTJm8kKurcwlpsK2E1INkuzeq/diMSrMLpJeE3r3rasnEorEWf+WVIOMBVlSFEIIHTvZ2c8fD7fx6blF0rQuxa2ZU8RLh9p4dHsNl33Zhcko6xhifEVjcQ4293Cgwcu2E53UdwcwGhQ+UZXLZ+cXD6tC42JZTUY+M6+I5w+08srRDnyBKNdUnd2zIBpX+fErx3E5LNx5zcQxiyeZVOSmUZZl5+WjHXx6TpHW4Ygx4g1EONzay/wSF7aPaU4s9KM828HnLi/lf3fVc+OMfGaM4fk1FUkSRAghdOw/dtZiNxv57IIS9tR1ax2O0JDFaODupZP47qZDbNjfwmfny8hcMbb6w1GavEEavQEavUFae0LEVBWjAgvLXHxhYQnXTh6/Um2T0cCn5xTy6rEOdtV184NNh7jv+kpcLsdQvD/cfJSj7X38043TJHE8TIqi8Knpbn7+Zh2N3gAlLrvWIYkx8PYpDwoKiyZIb7FE8e3lVbx8sJW/f+U4v/rifMyy+DFqJAkihBA69U6thx0nu/irqybgtMvFvIBrJmWzqNzF+rfq+ORUt+zfF6NGVVW6+iMDCQ/fQNKj2x8BwKgoFDitLCxzsWpmPleVZ5Gp0TnJaFBYOc1NfoaV10928dmn9nD5xGyyrEZ213vp6g/zveWTWXaOKhHx8VZPz+eJN+vYfKiNr185QetwxCjzBSIcaO5hbnGmJAcTSIbNxP/7RCXf2XiIJ9+u4y+vkuq20SJJECGE0KFILM6/bj9JicvGFxaU0C/jHQUDK7bfvnYSX3h6Dz9/q5Z7P1GpdUgigXX7w2w50cUfD7VS2+WnPxwDwG42UuKyMbc4kxKXjQKnFZNhYAXyioocMi3al9LPLcnkz5eU88L+ZvY29nC0JcisQid/Nr+Iy8qkf9JIFThtXF7uYvPhNr52Rbk0zUwyO2sGqkCWTJSfjURzzaQcbpyRzy93NTC3JJMlE7K1DikpSBJECCF06Nd7mqj1BHhkzQwsJsPQzYkQk3LT+My8Yn69t4kVU/OYXyKlzWL4eoIRXjvRxZZjHeyu7yamgsNsZEKOnQnZDkpcdrIdZpQEuAnOTrPw7Wsn4XI58Hr9WoeT8G6aWcB9m4+yu97LonK5WU4WJzv6ONDcw6Jyl1SBJKjvLZ/MkbY+HvjjMX75+bmyZW0USBJECCF0pr47wPq367h2cg5XT8rROhyhQ3951QR2nOzixy8f55kvL5Amd+K8+sNRdpzs4pWjHbxT2000rlKcaePLl5eycEI2DV39CZH0EGNr6eRcXHYzG/Y1SxIkSaiqyhM7a7GbDVwxUSoItKYoCt0jWNQK+IIETx//oxum8Vf/t49vbviAR9fOImuYvZgcZiNWOb2fRZIgQgihI3FV5SevHMdsVPje8slahyN0ym428sMVVfzlcwf4+Zt13H1thdYhCZ1QFIWGbj/HW3rYU+/lvfpuDjb1EImr5KVbWDOnkGsrc6l0p6MoCjEVGj3Dr6IYyUV8THbxJRSrycAtswt46t0GmnwBijNltTnRvXq8k32NPq6fkifJch0IROO8PYJR1A67BX8gDMCSyjzWzCrg13ua+Otn9/PZ+cWkWS98K3/dVDdWHWxh1BtJggghhI7873uN7G30cf+KKvLSrVqHI3RsYZmLW+cU8uu9jSyvymVWkYzPS0aqqnKouYfXqztp9oXoCUaIqyqKomBQFIzKQLNQo0FBVeHp3Q0DU1xO9xHKTbMwrySTKfnpFGfaUBSFpu4ATd0BYODCeiRGchE/0ucW2rt1ThFPv9vAhn0t3LVUkquJrCcY4eFt1VS505lfmql1OGIUlLjsrJ1byG/3tfCr3Y382fyiYVeEiA+TJIgQQujE4dZe/n1nLcsqc7lxZr7W4YgE8NfXTOTNGg8PvnyMX31xvqz0JRFVVdle3cWTb9dxoqMfRYH8dCvuDCsmg0IsrhJXB6rHBv57IOlRnOVgYm4aLquJ8my79AAQI5KfYeW6yjw2fdDKXywuI30YK81Cnx57vQZfIMKPb5pOQ5f0zEkWE3PS+OyCYp57v5lf7mrgxpn5VOalax1WwpEzmxBC6IA3EOH7fzhCjsPMD66vlP35YljSLCbuX1nFtzZ8wL9sq+b+lVO0DkmMgq7+MA9tOcGOk12UZ9n59rLJEI8PK8m1pDKP/Y2+oRJqIUbqy5eX8OrxDp7b18y6RWVahyMuwvYTnbxwsI0/v7yUyXnpkgRJMiUuO+sWl/G7/S1s2NfC7CIny6tyZSFkBAxaByCEEKkuFle5f/NROvpC/OON08m0y8qtGL7Ly7NYt7iMFw628cfDbVqHIy7RodZevvw/e9lV182d10zk/76ykFUz8uXiVoybafkZXFWRzf++10h/OKp1OGKE2ntD/OSV40x1p/P1K8q1DkeMEZfdzJcvK2HJhCw+aO7h52/W8l69l2gsrnVoCUGSIEIIoSFVVXlk+0neqevmnmWTpa+DuChfW1LO/JJMHtpygsOtvVqHIy7SW6c8fP3Z/RgNCr/43Fy+dFkpJoNUhYnxd/viMnzBKL95v1nrUMQIhKNx7v39YcKxOH//qamYjXKrl8xMRgPXVuaybnEZ7nQrW4518O87a9l5sgu/JDDPS34yhBBCQ7/a3chv9jXzhQUl3DK7UOtwRIIyGRT+8cZpZDvM3LPpEB19Ia1DEiP0xskuvrvpEOVZdp76wjyq3LLHW2hnRqGTaybl8N+7GuiU80lCUFWVf95WzQctvfztJ6cwIcehdUhinORnWPncgmI+t6CYQqeVN2o8/PsbtWw80MLbNV1EpDrkLJIEEUIIjfzm/Wb+7Y1TXD8ljzuXTtQ6HJHgshwWHr55Bn2hGHf+9iC9QVkFShTbT3TyvRcOU5mXzn9+ZrZ0+xe6cPfSCsKxOP++s1brUMQw/OfrNWz6oJV1i0pZViWTmVKNoihMyHbwmXnFfG1JObOKnNR6/Pxo81FW/uc7PPDHo/zxcBud/dIvCqQxqhBCaOI37zfxL9tOcs2kHP5u1RQM0ghVjIIqdzr/fPN07v7dQb79/EEeu3UmaRb5Va9nrxxt54E/HmV6gZPHb50p0ziEbpRm2fn8gmKe3t3ITTMLmFciY1b16nf7m3l0azWrprn5xpUTtA5HaCw33cInp7m5fkoeToeFt0928uapbl480g5AZV4ai8qzuLzcxdziTOwp2HNKftMKIcQ4UlWVn79Vxy/eqWfppBweumGa7NkVo2pReRY/Xj2V+/5whL/ecFBurHXsj4fb+LuXjjGnyMmjn5aEldCfv1hczrYTnfzoxaM88+UFci7RoQ37mvmnrdUsrcrj/pVVsqgihhgNCosmZnP5hCz+WlU52dHP3gYve+q9PLu3if95rxGTQWFqQQbzSjKZW5LJ1IIMzEYDDrMRaxJ/lORMJoQQ48QfjvHgy8fYeryTm2cVcO8nKqXpoRgTy6vyMNyo8P0/HOH2/9vHT2+ZSYHTpnVY4gz/t7eJf91+koVlLh5ZMyMlV+KE/jksRv5u1VS+9n/7+Ket1Ty4aoqMcNcJVVX5r3fqeeKtOq6qyObfPzePQF9Q67CEzgSicd4+0TH0d3eahVXT3CyvyqXRG6DOE6C2y8+v3m3gV+82YDYolGbZuWl2Iaum5pGdpNszJQkihBDj4FhbH/f/8Sh13X7uWlrBFxYUy4WkGFPXVeby2Kdn8v9eOMxXntnHT1ZPZblLGuVpTVVVfv5mLb/Y1cC1k3P48eppWE1SDSb0a3aRkzuuKOfnb9YxMdvBVxeXaR1SygtEYjy05QQvHWnnU9Pd/HBFFVaTgYDWgYmEYTEaqMhJoyInDSoHPlP13QHqPH5Odvbz0+0nefy1k8wtzuS6ylyuq8wlP8OqddijRpIgQggxhkLROE+9W88vdzXgspv5t1tncXl5ltZhiRSxqDyL//rcXL73wmH+6rkDfKOtny/MLcQiN92aiMbi/NPWajZ+0CrVYCKhfHVRGbWeAP/5Zi3ZDjNrZJqZZgYXVWo9fr5xZTlfXVQmiyriktnNRqa405niTkdVVcpz03mv1sP2E5386/aTPLL9JPNLM1k51c2yylwy7WatQ74kkgQRQogxEFdVthzt4D/frKXJF2Tl1Dy+u2wyrgT/pSESz6TcNJ7+4jz+ZWs1//H6SV78oIW7r61gyYQsuXAeR609QX7wh6N80NLDVxeV8o0rJ8i/v0gYiqJw/4oqvIEIP9lyAl8wypcvK5HP8DjqC0X5xTv1PLOnEZfDws/WyqKKGBuKojApL42FxU6+ceUEaj1+thzr4KUj7Ty05QT/vLWaKyZmc+uCEuYXpGNLwO2ckgQRQohR1BeK8sqxDn69p5FaT4DKvDR+tnYWi+RCRWgozWLib1dN5ZYFpfzohUPc9buDzCvJ5MuXlXDFxGxppDeGonGV3+5r5j/frAXgoRumcf0UGV8pEo/FZOCRNTP42xeP8bM3TnGguYcfrqiUkc5jrDcY5fkDLTy9uwFfMMpNM/O5a2kFTpssqojxMSHbwdeWlHP74jKOtvfx0pF2XjnawY7f7MdhNnJdZQ4rp7m5rCwrYaobdZcE2bFjBz/5yU+Ix+Pcdttt3HHHHVqHJITQIT2dK3yBCLvqutlyrIO3TnkIx1SmuNP5yeqpfGJKntxgCt1YWpXHc+sW8tv9LfxqdwPffv4Q7nQLy6vyWF6Vy6wiZ9J9XrU6VwQiMbYc7eC/362nwRtk8YQs/t/yyZS47OPy+kKMBbPRwN+vnsqMwgx+9sYpbvmv3XzpshJunVOki0rHC/28h8Nhvve973Ho0CFcLhePPvooJSUlADzxxBNs2LABg8HAD3/4Q66++mot3gIAwUiM/U09vHy0na3HO/FHYiwuz+KbV09gan6GZnGJ1KYoCtPyM5iWn8Gd11Rw3Bvkt7sb2Hqig82H28l2mLlyYjaXl2dxWZmLnDT9Jkh1lQSJxWI8+OCD/PKXvyQ/P5+1a9eybNkyJk+erHVoQggd0epcEY2rtPYEafAGaOgOcry9jwPNPZzy+AHITbNw65wirp+Sx8zCDCkTFrpkNhr47Pxibp1TyLbjnbxyrIMN+5v59d4mMm0mphdkMKMggynudIpdNgqdtoQdizme54pAJEatx8+J9n521XXz5ikP/eEYVXlpPHzzdK6ZlCPnBJEUDIrC5xeUsHhCFv/xRi0/f7OO/3qnnqsqclgyIYvp+RmUZdvHfeLRcH7en3vuOZxOJ1u2bGHz5s08/PDD/PSnP6W6uprNmzezefNm2traWLduHS+//DJG49i/h0gsTqM3SO3phpR7Gn0caPIRjqk4zEaWV+XyZ/OKmZKfPuaxCDFcRoPCkoocpmXbuWf5ZN465eGVo+28frKL3x9qA6Asyz7UZ2RybhpFmTYKnVZdbJ/R1VXNgQMHKC8vp7S0FIDVq1ezdetWSYIIIT5krM4Vz+xp5FBLL+FYfOBPNE4Mha6+EL5AhJ5gFPWM4502E7OLnKya7mZecSazipwYE6QMUAiz0cDKaW5WTnPTF4ryRk0Xexp8HG7t5Re76omf8WFPsxhx2kykWUykWYykW03YzUZMRoU1swpYUOrS7o2cx1idK3bVdfPb/S30haL0h2N4+sO09oaGvp/tMLO8KpfVM/KZV5wpyQ+RlCpy0nh4zQxOdPSx6YNWtp/oZPuJzqHvu9MtuDOsOMxGHBYjc4sz+cLCkjGLZzg/79u2beNb3/oWACtXruTBBx9EVVW2bt3K6tWrsVgslJaWUl5ezoEDB5g3b94lxdTtD/Or3Y30hqJEYnFC/5+9O4+LqlzcAP7MDAw7DCADLmQuuCUut7zFVbEg3JBA1F+blZbX6mapFCmadvWmZtlim8m13W5dc03J5YZ7uZaGFuaKgsqAMOzLbO/vD2ICGfZZ4fl+Pn1yzpxz5jmHc9458573vK9OQKM3oEyrh7pMA3WZFgXl2lrlbUiAByYO6oS/3uKL24N97OIHI1FDXJykxhFk9AaB33NKcPSyGr9mF+P09SL87/fcWvP7uDrBx80ZHnIZvFyc4OniBHe5DE5SCZykEijcnPHoX4MtWpFqV5UgKpUKQUFBxteBgYFIS0urd35nZxkCAmzXJMyWn91UjpDxycheto7QKEfYj46Q0VyaW1YATSsvZo7ua5Z8lhAAoFdn8/zQHHCL+fonMde62nImc26bOZg6DwIAdOvii0etH8eiLFVWjAvwwrg7rDdMaHPP/+Yec5ac39JZqjX2N2tJGdoe92NLBAR44W/9bD9aTFPOd5VKhY4dq7I6OTnBy8sLarUaKpUKAwcOrLWsSqVq8POaUlYEAPhXV/9mbknL1Ve+t/T6oaXHUWuOP2t/pqMsZ6vPbIypYy4o0BsjQjtZ7DPNwa7GyBNC1JnGuydEdDOWFUTUFCwriNqPppzv9c3DsoKofbGrSpCgoCBkZ2cbX6tUKiiVShsmIiJ7xLKCiJqCZQVR+9GU8z0oKAjXr18HAOh0OhQXF0OhULCsIGpn7KoSJDQ0FBkZGcjMzIRGo0FKSgoiIiJsHYuI7AzLCiJqCpYVRO1HU873iIgIbNq0CQCwc+dO3HXXXZBIJIiIiEBKSgo0Gg0yMzORkZGBAQMG2GIziMgK7KpPECcnJyxcuBDTpk2DXq/HhAkTEBISYutYRGRnWFYQUVOwrCBqP+o731euXIn+/fsjMjISEydORGJiIqKiouDj44O33noLABASEoIxY8Zg7NixkMlkWLhwoVVGhiEi25AIUw/BERERERERERG1MXb1OAwRERERERERkaWwEoSIiIiIiIiI2gVWgjTg+vXreOSRRzBmzBhER0fjs88+MznfkSNHEBsbi+joaEyePNnuMhYXF+Opp57Cfffdh+joaGzYsMGqGSsrKzFx4kTj57/zzjt15tFoNJg1axaioqIwadIkZGVl2V3GTz75BGPHjkVMTAwee+wxXL161e4yVtuxYwd69+6NU6dOWTGh/UtKSkJYWBjGjRtnnPb2228jJiYGsbGxePzxx6FSqUwue+3aNTz++OPGZ4arj9G5c+ciIiICsbGxiI2NRXp6ul1kPnz4sDFTbGwsQkND8f333wMAMjMzMWnSJIwcORKzZs2CRqOx+8z2up8B4LXXXkN0dDTGjBmDV155xTjU4unTpxETE4OoqKha0+017yOPPIJRo0YZ93FeXp7Z8pL57N+/H6NGjUJUVBSSk5PrvH/s2DGMHz8e/fr1w44dO2q9t2nTJowcORIjR440dg5pz1q6renp6bj//vsRHR2NmJgYfPfdd9aM3SKt+bsCQElJCYYPH47FixdbIy5ZkKnyffv27YiOjkafPn1qXdt9++23tb43+/TpY/L78d1338Xw4cON8+3bt8+s+ZYvX47Ro0cjJiYGzzzzDIqKiozvrV69GlFRURg1ahQOHDhgcp3mui5pTrYffvgB8fHxiImJQXx8PA4dOmRynebad83JlpWVhQEDBhg/c+HChSbXWVBQgKlTp2LkyJGYOnUqCgsLLZ7NFsecRQiql0qlEqdPnxZCCFFcXCxGjhwpzp07V2uewsJCMWbMGHH16lUhhBA3btywu4yrVq0Sr732mhBCiLy8PDFkyBBRWVlptYwGg0GUlJQIIYTQaDRi4sSJ4sSJE7XmWbt2rViwYIEQQoht27aJmTNnWi1fUzMeOnRIlJWVCSGE+PLLL+0yoxBVx8FDDz0kJk2aJNLS0qya0d4dPXpUnD59WkRHRxunFRcXG//92WefGY/Dm02ePFkcPHhQCCFESUmJ8ViYM2eO2L59u11mrqZWq8WQIUOMmZ977jmxbds2IYQQCxYsEF9++aXdZ7bX/fzTTz+J+++/X+h0OqHT6cT//d//icOHDwshhJgwYYL4+eefhcFgEE888YTYu3evXeedPHkyyww7p9PpRGRkpLhy5YqorKwUMTExdb7zMzMzRXp6ukhMTKx1zqjVahERESHUarUoKCgQERERoqCgwNqb0GSt2daLFy+KS5cuCSGEyM7OFkOHDhWFhYXWjN8srdnWav/6179EQkKCWLRokbVik4WYKt/Pnz8vLly40GA5febMGREREWHyvXfeeUesWbPGYvkOHDggtFqtEEKI1157zfi749y5cyImJkZUVlaKK1euiMjISKHT6eqs01zXJc3J9uuvv4rs7GwhhBC///67GDZsmMl1mmvfNSdbZmZmrfnqs3z5crF69WohhBCrV682Lm/JbDVZ65izBLYEaYBSqcRtt90GAPD09ET37t3r3FnbunUroqKi0KlTJwCAv7+/3WWUSCQoLS2FEAKlpaXw8fGBk5P1BgaSSCTw8PAAUDUmu06ng0QiqTXP7t27MX78eADAqFGjcOjQIbPeNTVHxrvuugtubm4AgEGDBtUaT95eMgLAypUrMW3aNLi4uFg1nyMYMmQIfHx8ak3z9PQ0/ru8vNzkPj1//jx0Oh2GDh0KAPDw8DAeC5bW0sw17dy5E8OHD4ebmxuEEDh8+DBGjRoFABg/fjxSU1PtOrM1tDSzRCKBRqOBVqs1/r9Dhw7IyclBSUkJBg8eDIlEgri4OLPuZ3PnJceQlpaGrl27Ijg4GHK5HNHR0XWOqy5duqBPnz6QSmtf4h08eBBDhw6FQqGAj48Phg4dWu9dWXvQmm3t1q0bbr31VgBAYGAg/Pz8kJ+fb63ozdaabQWqWp3l5eUZv6PIsZkq33v06IHu3bs3uFxKSkqtO/mWYirfsGHDjL8tal4jp6amIjo6GnK5HMHBwejatSvS0tJqLWvO65LmZOvXrx8CAwMBVI0OpNFozN4ytqXZmio1NRVxcXEAgLi4OGPrWWtls9YxZwmsBGmirKwspKenY+DAgbWmZ2RkoKioCI888gji4+OxefNmGyWsP+PDDz+MCxcuYPjw4bjvvvswf/58k1+ilqTX6xEbG4u//e1v+Nvf/lYno0qlQseOHQFUDXHm5eUFtVptVxlrWr9+PcLDw62YrkpjGX/77TdkZ2fjnnvusXo2R/bWW29hxIgR2Lp1K2bOnFnn/YyMDHh7e2PGjBmIi4vD8uXLodfray0fExODpUuXWvQLtDmZa6r5JaVWq+Ht7W38YgsKCqr3sQlza2nmmsvb234ePHgw7rzzTgwbNgzDhg3D8OHD0aNHD6hUKgQFBRnns9Z+bmneavPmzUNsbCzef/99q1ZEU9PcfFwFBgY2+bhqzbK2YK68aWlp0Gq1uOWWW8wZz6xas60GgwHLly/Hiy++aKl45CC+++47REdH1/v+l19+iZiYGCQlJbX4sYmm2LBhg/EauSnHtjWvS2pmq2nnzp3o27cv5HK5yeWsse9uzpaVlYW4uDhMnjwZx48fN7lMXl4elEolgKob45aq7K1vv9nLMdcSrARpgtLSUjz33HOYN29erTttQNWP0l9//RWrV6/GmjVr8MEHH+DSpUt2lfHgwYPo27cvDhw4gM2bN2Px4sUoKSmxaj6ZTIYtW7Zg3759SEtLw9mzZ2u9b+piu7E7xebWWMZqW7ZswenTpzFt2jSr5gMazmgwGLBs2TLMmTPH6rkc3ezZs7Fv3z7ExMRg7dq1dd7X6XQ4fvw45syZg/Xr1yMrKwsbN24EACQkJGDHjh3YsGEDCgsLTT7LbYvM1XJycnD27FkMGzas3nmsda61JrO97ufLly/jwoUL2LdvH/bv34/Dhw/j2LFjNivTWpoXAFasWIGtW7fiyy+/xE8//YQtW7ZYPC81T2uOK3v4nm0Oc+TNyclBYmIili1bZvWbP83Rmm39z3/+g/DwcOONJGqffvnlF7i5uaFXr14m33/wwQfxv//9D1u2bIFSqcSrr75qkRyrVq2CTCbDfffdB6Dlx7Ylyqabs1U7d+4cVqxYUW9/OtbYdzdnUyqV2LNnDzZv3oy5c+fi+eeft/pvt/qyVbOXY66l7PcbwU5otVo899xziImJwciRI+u8HxQUhOHDh8Pd3R1+fn644447cObMGbvKuHHjRowcORISiQRdu3ZFly5dcPHiRatmrObt7Y0777yzThPcoKAgXL9+HUDVD87i4mIoFApbRKw3IwD8+OORqDT9AAAgAElEQVSP+PDDD7Fq1ap6a4utwVTG0tJSnD17Fo8++igiIiJw8uRJPP300+wctRnGjRuHXbt21ZkeFBSEfv36ITg4GE5OToiMjMRvv/0GoOqLSiKRQC6XIz4+3ur7u77M1bZv346oqCg4OzsDAHx9fVFUVASdTgcAyM7ONt5FsJbmZgbsdz//73//w8CBA+Hh4QEPDw8MHz4cJ0+eRFBQUK2mo9bez83NC8DYLNjT0xPjxo2r02SZbO/m40qlUjX5uGrNsrbQ2rwlJSV48sknMWvWLAwaNMgSEc2mNdt64sQJfPnll4iIiMDy5cuxefNmrFixwlJRyU6lpKQ0eEe+Q4cOkMlkkEqlmDRpkkW+Qzdt2oS9e/dixYoVxkqMphzb1rguMZWt+rNmzJiB5cuX19tazNL7zlQ2uVwOX19fAED//v1xyy23mLzJ7u/vj5ycHABVlb5+fn4Wz1bNHo651mAlSAOEEJg/fz66d++OqVOnmpwnMjISx48fh06nQ3l5OdLS0mo1LbaHjB07djT2eHzjxg1cunQJXbp0sVrG/Px8Y4/CFRUV+PHHH+s81xgREWHsqX7nzp246667rHqHqikZf/vtNyxcuBCrVq2yet8vTcno5eWFI0eOYPfu3di9ezcGDRqEVatWITQ01OpZHUlGRobx37t37zb5zG1oaCgKCwuNzQyPHDmCnj17AoDxy0cIge+//x4hISF2kbnazV9SEokEd955J3bu3Amg6gsuIiLCYlmrtSYzYL/7uVOnTjh27Bh0Oh20Wi2OHTuGHj16QKlUwsPDAydPnoQQAps3b0ZkZKTd5tXpdMbjW6vVYu/evVbZx9Q8oaGhyMjIQGZmJjQaDVJSUpp8/g4bNgwHDx5EYWEhCgsLcfDgwQZbiNlaa7ZVo9HgmWeeQWxsLMaMGWPhpK3Xmm194403sHfvXuzevRtz5sxBXFwcXnjhBQsnJntiMBiwY8eOBn+QVn+HArDId+j+/fvx73//G6tWrarVl1dERARSUlKg0WiQmZmJjIwMDBgwoNaylr4uqS9bUVERpk+fjoSEBNx+++31Lm/JfVdftvz8fONj19X7LTg4uM7yERERxq4YzH2dUV82wD6OudaSCD70W6/jx4/j4YcfRq9evYzNKBMSEnDt2jUAVc18AGDNmjXYuHEjpFIpJk6ciClTpthVRpVKhaSkJOTm5kIIgb///e+IjY21WsYzZ85g7ty50Ov1EEJg9OjRmDFjBlauXIn+/fsjMjISlZWVSExMRHp6Onx8fPDWW2+ZPNltmXHKlCk4e/YsAgICAFRVLn344Yd2lbGmRx55BC+++CIrQWpISEjA0aNHoVar4e/vj2effRb79+/HpUuXIJFI0LlzZyxatAiBgYE4deoUvv76ayxZsgRA1VBq1U35brvtNixevBhyuRyPPvoo1Go1hBDo06cPFi1aZOzA1taZs7Ky8OCDD2Lfvn21moJnZmZi9uzZKCwsRN++fbFixQqztmyyRGZ73c96vR6LFi3CsWPHIJFIMHz4cCQlJQEATp06haSkJFRUVCA8PBwLFiwwW+WuufOWlZVh8uTJ0Gq1MBgMCAsLQ1JSEmQymVnykvns27cPS5cuhV6vx4QJE/D000/X+h5IS0vDjBkzUFRUBBcXF3To0AEpKSkAqvqzWr16NQDgqaeewoQJE2y5KY1q6bZu2bIF8+bNM1ZWA8Crr76Kvn372nBrGtaav2u1jRs34vTp0/UOp0mOwVT5rlAo8K9//Qv5+fnw9vZG37598dFHHwGoujHzxhtvYN26dbXWM3/+fDzwwAMIDQ1FYmKisaV6586dsXjx4ha3tjCVLzk5GRqNxtiKe+DAgcbHS1atWoUNGzZAJpNh3rx5GDFiBADg73//O1555RUEBgaa7bqkOdk++OADJCcno2vXrsblP/74Y/j7+1tk3zUn286dO/HOO+9AJpNBJpPh2WefNVYM1cymVqsxa9YsXL9+HR07dsTKlStb1JK+uX9Tax9zlsBKECIiIiIiIiJqF/g4DBERERERERG1C6wEISIiIiIiIqJ2gZUgRERERERERNQusBKEiIiIiIiIiNoFVoIQERERERERUbvAShAiIiIiIiIiahdYCUIWoVKp8Nxzz9k6BhFZUVZWFsaNGwcASE9Px759+6z22Y888ghOnTpltvVduHAB999/P/r374+PPvrIbOslIss5cuQIfv755wbneffdd81+Tj/xxBO444478OSTT5p1vUTt1VdffYXNmzfX+35TznVL27hxIxYvXmzWdSYlJSEsLMx4LUWWw0oQsojAwEC88847to5BRDZi7UoQc1MoFJg/fz6eeOIJW0chavP0en2t10IIGAyGZq/n6NGjOHHihLliNdm0adPw2muvWf1ziRxFc8/pBx98EHFxcfW+b6tz3dLi4+OxZs0aW8doF5xsHYDsz5YtW/DFF19Aq9Vi4MCBePnll3HHHXfg0UcfxZ49e+Dq6ooPPvgAHTp0wJUrV/DCCy9Ar9cjPDwcn376KU6cOIGsrCw89dRT2LZtGzZu3Ijdu3ejvLwcmZmZuPfee/Hiiy8CAA4ePIh3330XGo0GwcHBWLZsGTw8PEzmeu+997Bnzx5UVlZi8ODBWLx4MSQSCdLS0jB//ny4u7vjL3/5Cw4cOIBt27ZBr9djxYoVOHr0KDQaDR5++GE88MAD1tyVRA7v9ddfR6dOnfDwww8DqLqL6uHhgdzcXBw4cAASiQRPP/00xo4da1xGo9HgnXfeQUVFBX766Sc8+eST6NKlC5YuXYqKigq4urpi6dKl6N69O8rLyzF37lxcvHgRPXr0wNWrV7Fw4UKEhoY2q3yo6eWXX8apU6dQWVmJUaNGGVul7du3D8uWLYOvry9uu+02ZGZmYvXq1SbX4e/vD39/f4euyCGyhc2bN+Ojjz6CRCJB7969IZPJcPfdd2P06NEAgMGDB+PEiRM4cuQI3nvvPSiVSqSnpyM5ORl///vfceedd+LkyZN4//33cenSJZNlQEREBOLi4rBnzx7odDq8/fbbcHFxwddffw2pVIpvv/0WCxYswB133NFg1nXr1uG///0vtFotunbtitdeew1ubm71XtvUJywsDEeOHDHrfiRydFlZWbXO6cceewxff/11nfN5xYoV2L17N2QyGYYNG4Y5c+bg3Xffhbu7O5544gl8/vnn+PrrryGTydCzZ088//zzdc71oqIirFq1ClqtFgqFAitWrECHDh3w7rvv4tq1a8jKysK1a9fw2GOP4dFHHwVQt6x6/fXXkZ+fj5dffhnXrl0DAMybNw+33357o9u6e/duk5+fn5+P559/HgUFBQgNDcWBAwewYcMG+Pn5mVzPkCFDkJWVZb4/AtVPENVw/vx58eSTTwqNRiOEEOLll18WmzZtEr169RKpqalCCCGWL18u3n//fSGEENOnTxdbt24VQgjxn//8RwwaNEgIIURmZqaIjo4WQgixYcMGERERIYqKikRFRYW4++67xbVr10ReXp546KGHRGlpqRBCiNWrV4t333233mxqtdr47xdeeMGYJzo6Wvz0009CCCFef/114+d+/fXXxpyVlZVi/Pjx4sqVK2bYS0Ttx6+//ioefvhh4+sxY8aIjRs3iilTpgidTidyc3PFiBEjhEqlqnPeL1q0yLhccXGx0Gq1QgghfvjhBzFjxgwhhBBr1qwRCxYsEEII8fvvv4u+ffuKtLS0ZpcPkydPFmlpaUKIP8sKnU4nJk+eLNLT00VFRYUIDw83lgGzZ88W06dPb3T733nnHbFmzZqm7Syidu7s2bNi5MiRIi8vTwhRdS7OmTNHbN++3ThP9XXC4cOHxcCBA43nZGZmpujdu7c4ceKEEEI0WAbcc8894vPPPxdCCLF27Voxb948IUTTztea8+Tn5xunv/nmm8Z11ndt05DDhw83qUwhai9qntP1nc9qtVqMHDlSGAwGIYQQhYWFQoja5+nQoUNFZWVlve8LIURBQYFxHevWrRPLli0zznf//feLyspKkZeXJ/76178KjUZjsqwSQoiEhARx7NgxIYQQV69eFaNHj653+2pe59T3+YsWLRIffvihEEKIffv2iV69ehk/s6H9Vn0tRZbDliBUy6FDh3D69GlMnDgRAFBRUQF/f384OzvjnnvuAQD0798fP/zwAwAY79YAQExMTL3NQcPCwuDl5QUAxru9xcXFOH/+PB588EEAgFarxaBBg+rNduTIEaxZswYVFRUoKChASEgI7rjjDpSWluIvf/kLAGDcuHHYu3cvAOCHH37A77//jp07dwIAiouLcfnyZQQHB7dmFxG1K/369UNeXh5UKhXUajW8vb2Rnp6O6OhoyGQydOjQAUOGDMGpU6fQu3fvetdTXFyMOXPm4PLly5BIJNBqtQCAn376yXhXplevXsZ1/PLLL80qH2ravn071q1bB51Oh9zcXFy4cAFCCAQHBxvP/+joaKxbt67F+4WI6jp8+DBGjx5tvMupUCganD80NLTWd3KnTp2M53ljZcDIkSMBVF2T/O9//2tR3nPnzuHtt99GcXExSktLMWzYMABNv7YhooZVn9N79uwxeT57enrCxcUF8+fPx91334277767zjp69+6NF154AZGRkbj33ntNfk52djZmz56N3NxcaDQadOnSxfjeiBEjIJfL4efnBz8/P+Tl5dVbVv344484f/68cdmSkhKUlJTA09Ozwe2s7/N/+uknvPfeewCA8PBw+Pj4NHHPkaWxEoRqEUJg/PjxeP7552tN//jjjyGRSAAAUqm0zvO7jZHL5cZ/y2Qy6PV6CCEwdOhQvPnmm40uX1lZiUWLFmHDhg3o2LEj3n33XVRWVkII0eC2vPTSSxg+fHizshJRbaNGjcLOnTtx48YNREdH48qVK81ex8qVK3HnnXfi/fffR1ZWlrHio75zuDnlQ02ZmZn4+OOPsX79evj4+GDu3LmNlhVEZB6mzjOZTGbsC0AIYawABQB3d/da89Z83VgZ4OzsDKBl1yTV5s6diw8++AB9+vTBxo0bcfTo0Rath4hMqz6nGzqf169fj0OHDiElJQVr167F559/Xuv95ORkHDt2DLt378YHH3yAlJSUOut45ZVXMGXKFERGRhoftat2828QnU5X7zWBwWDAf//7X7i6ujZrO+v7fF572C92jEq1hIWFYefOncjLywMAFBQU4OrVq/XOP3DgQOzatQsATBZKDRk0aBB+/vlnXL58GQBQXl6OS5cumZy3srISAODr64vS0lJj6w4fHx94eHjg5MmTAIDvvvvOuMywYcPw1VdfGS+4Ll26hLKysmZlJKKqVhPfffcddu7ciVGjRmHIkCHYvn079Ho98vPzcfz4cQwYMKDWMh4eHigtLTW+Li4uRmBgIABg06ZNxum33347tm/fDgA4f/48zp49C6B55UNNpaWlcHNzg5eXF27cuIH9+/cDALp3747MzEzjs7Y1ywoiMo+wsDDs2LEDarUaQNU1ROfOnfHrr78CAFJTU2tVgjSkJWXAzeVOY0pLSxEQEACtVoutW7cap7fm2oaI6qrvfC4tLUVxcTFGjBiBefPm4cyZM7WWMxgMuH79Ou666y4kJiaiuLgYZWVlDV5jNDSqTDVTZRVQ9dth7dq1xvnS09ObtH31fX7Na5yDBw+isLCwSesjy2NLEKqlZ8+emDVrFh5//HEYDAY4Oztj4cKF9c4/b948JCYm4uOPP8bdd9/daHOxmvz8/LBs2TIkJCRAo9EAAGbNmoVu3brVmdfb2xuTJk1CTEwMOnfujNDQUON7S5YswUsvvQR3d3f89a9/NWaYNGkSrl69ivj4eAgh4Ovriw8++KDJ+YioSkhICEpLS6FUKqFUKhEVFYUTJ04gNjYWEokEiYmJCAgIqNWZ15133onk5GTExsbiySefxLRp0zB37lx88sknuOuuu4zzPfTQQ5g7dy5iYmLQr18/9O7dG15eXs0qH2rq06cP+vXrh+joaAQHBxsflXN1dcXLL7+MadOmwdfXt06lzc1yc3MxYcIElJSUQCqV4rPPPsN3333XrDKOqL0JCQnBU089hUceeQRSqRT9+vXDCy+8gH/84x+YOHEiwsLC6rT+qE9LyoB77rkHzz33HFJTU5vUMerMmTMxadIkdO7cGb169TL+qGrutc1DDz2EixcvoqysDOHh4ViyZAlboRLVUN/57OHhgX/84x/Gm51JSUm1ltPr9UhMTERJSQmEEJgyZQq8vb3rnOszZszAzJkzERgYiIEDBzbauaipsurVV1/F/PnzsXjxYsTExECv1+OOO+5o0jC49X3+jBkzkJCQgO3bt2PIkCEICAhosDxJSEjA0aNHoVarER4ejmeffRaTJk1q9POp+SSC7XSoFcrLy+Hq6gqJRIKUlBRs27YNq1atsmqG0tJS44gRycnJyMnJwUsvvWTVDETUMnq9HjqdDi4uLrhy5QqmTJmCHTt21Gq+ai7VZYUQAosWLcKtt96KKVOmmP1ziMix2cO1DRE5Po1GA6lUCicnJ5w4cQL//Oc/sWXLFlvHIjh4JYjBYIBe77DxAQAymcTht6Eat8X+WGM7nJ1lFl2/uThaedFWjsGWas/b31a3vb2WFfb+97T3fAAzmoO95wP+zNhey4qaHOHvVZOj5QUcLzPzmtbS8sKhH4fR6wUKChy7jweFwt3ht6Eat8X+WGM7AgK8LLp+c3G08qKtHIMt1Z63v61ue3stK+z972nv+QBmNAd7zwf8mbG9lhU1OcLfqyZHyws4XmbmNa2l5QU7RiUiIiIiojYjKSkJYWFhGDduXJ33PvroI/Tu3Rv5+fkAqkbweOWVVxAVFYWYmBhjR75E1HaxEoSIiIiIiNqM+Ph4rFmzps7069ev48cff0SnTp2M0/bv34+MjAzs2rUL//rXv/DPf/7TikmJyBZYCUJEREQOaf/+/Rg1ahSioqKQnJxc5/1r167hkUceQVxcHGJiYrBv3z4bpCQiaxsyZAh8fHzqTF+2bBkSExMhkUiM01JTUxEXFweJRIJBgwahqKgIOTk51oxLRFbm0H2CEBERUfuk1+uxePFifPLJJwgMDMTEiRMRERGBnj17GudZtWoVxowZg4ceegjnz5/H9OnTsXv3bhumJiJbSU1NhVKpRJ8+fWpNV6lUCAoKMr4OCgqCSqWCUqlscH0ymQQKRdOGfG4umUxqsXVbgqPlBRwvM/OaFytBiIiIyOGkpaWha9euCA4OBgBER0cjNTW1ViWIRCJBSUkJAKC4uLjRHzVE1DaVl5fjww8/xMcff1znPVMDZdZsKVIfdoz6J0fLCzheZuY1raUdo7IShIiIiBzOzXdvAwMDkZaWVmueGTNm4IknnsDatWtRXl6OTz75pNH1mvvurr3fDbP3fAAzmoO95wMsm/HKlSvIyspCbGwsACA7Oxvx8fH45ptvEBQUhOzsbOO82dnZrDAlauNYCUJEREQOpyl3b1NSUjB+/Hg8/vjjOHHiBF588UVs27YNUmn9XaJxiFz7w4ytZ+/5AMsOkdu7d28cOnTI+DoiIgLr16+Hn58fIiIisHbtWkRHR+OXX36Bl5cXK0GI2jh2jEpEREQO5+a7t6ae4V+/fj3GjBkDABg8eDAqKyuhVqutmpOIrC8hIQEPPPAALl26hPDwcHzzzTf1zjtixAgEBwcjKioKCxYswMsvv2zFpERkC2wJQkRERA4nNDQUGRkZyMzMRGBgIFJSUvDGG2/Umqdjx444dOgQ4uPjceHCBVRWVsLPz89GiYnIWt58880G36/ZQbJEImHFB1E7w0oQsnuVAijT6lu9HndnGVwa7+eKiMik5pRFLG8sz8nJCQsXLsS0adOg1+sxYcIEhISEYOXKlejfvz8iIyMxd+5cvPTSS/j0008hkUjw6quvNqnDQ7IP1edceWEFKjRNvw7g+UfUPC251uZ5Ro6MlSBk98q0euw50/rx2u/po4SLXGaGRETUHjWnLGJ5Yx0jRozAiBEjak2bOXOm8d89e/bE119/be1YZCbV55y7mxxl5ZomL8fzj6h5WnKtzfOMHBn7BCEiIiIiIiKidsEmlSBJSUkICwvDuHHjak3/4osvMGrUKERHR+O1116zRTQiIiIiIiIiaqNs8jhMfHw8Jk+ejDlz5hinHT58GKmpqdi6dSvkcjny8vJsEY2IiIiIiIiI2iibtAQZMmQIfHx8ak376quvMH36dMjlcgCAv7+/LaIRERERERERURtlNx2jZmRk4Pjx43jrrbfg4uKCF198EQMGDGhwGZlMAoXC3UoJLUMmkzr8NlSz1LaUF1bA3U3e6vW4ujhD4ePapHnbyt+lrWwHERERERGROdhNJYher0dRURHWrVuHU6dOYdasWUhNTW1wKDu9XqCgoMyKKc1PoXB3+G2oZqltqdDom9UrfL3rqdSioMDQpHnbyt/FGtsREOBl0fUTERERERGZi92MDhMYGIioqChIJBIMGDAAUqkUarXa1rGIiIiIiIiIqI2wm0qQe++9F4cPHwYAXLp0CVqtFr6+vjZORURERERERERthU0eh0lISMDRo0ehVqsRHh6OZ599FhMmTMC8efMwbtw4ODs749VXX23wURgiah+Kiorw0ksv4ezZs5BIJFi6dCm6deuG2bNn4+rVq+jcuTPefvvtOp0tE1mLEAICgJTfWURERER2zyaVIG+++abJ6StWrLByEiKyd0uWLMHw4cPxzjvvQKPRoKKiAh9++CHCwsIwffp0JCcnIzk5GYmJibaOSu1QUYUW605cQ36ZFkpPOaJvC0SAp4utYxERERFRPezmcRgiopuVlJTg2LFjmDhxIgBALpfD29sbqampiIuLAwDExcXh+++/t2VMaqeKK3T48vhVFJbrMLizDwrLddiUlg2NvmkdMBMRERGR9bEShIjsVmZmJvz8/JCUlIS4uDjMnz8fZWVlyMvLg1KpBAAolUrk5+fbOCm1R3vO30BJpQ4P3N4ZUX0CcF9oEPJKNfj+TK6toxERERFRPexmiFwiopvpdDr89ttvWLBgAQYOHIhXXnkFycnJLVqXTCaBQuFu5oSWI5NJHSqvudnj9pcXVsDdTQ4AyC/VID27GGHd/RES5A0AuK2LHH8rqMChi3korNSjm7Jlw0fb47YTERERtRWsBCEiuxUUFISgoCAMHDgQADB69GgkJyfD398fOTk5UCqVyMnJgZ+fX6Pr0usFCgrKLB3ZbBQKd4fKa272uP0VGj3KyjUAgD1nVJBIJPhLZ2/jNAAY2MkLP17Mw7cnr+JWL3mLPscet90cAgJaVilEREREZE58HIaI7FZAQACCgoJw8eJFAMChQ4fQo0cPREREYPPmzQCAzZs3IzIy0pYxqZ0p0+iRdq0IAzp5w9Ol9r0EhZszbvVzx870HOgNwkYJiYiIiKg+bAlCRHZtwYIFeOGFF6DVahEcHIxly5bBYDBg1qxZWL9+PTp27IiVK1faOia1I+dyS2AQwKDO3ibfH9TFG5vTsnHkshp/69Z4KyUiIiIish5WghCRXevbty82btxYZ/pnn31mgzREwO85JfBxdUKgl+mhcHsFeMLTRYbUs7msBCEiIiKyM3wchoiIqIkqdXpk5JWjt9ITEonE5DwyqQSDuihw5HIBhOAjMURERET2hJUgRERETXQ+txR6IdA70LPB+f4S7ANVcSWuqMutlIyIiIiImoKPwxARETXRudxSeMhl6Ozj2uB8t9/iCwDYezEf93mafmymmruzDC6mG5UQERERkZmxEoSIiKgJhBC4nF+O7h3c630UpprCQw4fVyfs+k0FL7mswXnv6aOESyPzkGn79+/HkiVLYDAYMGnSJEyfPr3W+0uXLsWRI0cAABUVFcjLy8Px48dtEZWIiIjsBCtBiIiImuCKuhxlWj1u8XVrdF6JRIJu/u5IV5XAYBCQStnUw9z0ej0WL16MTz75BIGBgZg4cSIiIiLQs2dP4zzz5s0z/vuLL77Ab7/9ZouoREREZEfYJwgREVETpF0tBAAEN6ESBAC6+rmjUmeAqqTSkrHarbS0NHTt2hXBwcGQy+WIjo5GampqvfOnpKRg3LhxVkxIRLaSlJSEsLCwWuf88uXLMXr0aMTExOCZZ55BUVGR8b3Vq1cjKioKo0aNwoEDB2wRmYisiC1BiIiImiDtahE8XWTwdXNu0vwdvav6DckuqjT+m8xHpVIhKCjI+DowMBBpaWkm57169SqysrJw1113NbpemUwChcLdbDllMqlZ12du9pyvvLAC7m5ySKUSuLvJm7ycq4szFI3022Nu9rwfAfvPB5g3Y3x8PCZPnow5c+YYpw0dOhTPP/88nJyc8Prrr2P16tVITEzE+fPnkZKSgpSUFKhUKkydOhU7d+6ETMbHFInaKlaCEBERNUIIgVNXC3GLb+P9gVRTuDnBzVmK64UVGNzFx8IJ2x9Tww/X97dJSUnBqFGjmvSjRq8XKCgoa3W+agqFu1nXZ272nK9Co0dZuQbubnKUlWuavlylFgUFBgsmq8ue9yNg//mAPzMGBHi1el1DhgxBVlZWrWnDhg0z/nvQoEHYsWMHACA1NRXR0dGQy+UIDg5G165dkZaWhsGDB7c6BxHZJ1aCEBERNeKyuhz5ZVr8tatvk5eRSCQI8nbF9aIKCyZrv4KCgpCdnW18rVKpoFQqTc773XffYeHChdaKRkR2bsOGDRgzZgyAqrJj4MCBxvcCAwOhUqkaXYe5W43VXrd1W+5Ut7pqjpotrhyhpdHNHC0z85oXK0GIiIgacepa1bPjwYrmNbHv6O2CQxll0OoNcJaxGy5zCg0NRUZGBjIzMxEYGIiUlBS88cYbdea7ePEiioqKeFeXiAAAq1atgkwmw3333Qegea3KajJ3q7GarN1yp7rVVbOWqdHiyhFaGt3M0TIzr7babjoAACAASURBVGktbTnGShAiIqJGpKtK4OYshb9H8+6UdfR2hRCAqrgSXRRN61CVmsbJyQkLFy7EtGnToNfrMWHCBISEhGDlypXo378/IiMjAVQ9CjN27NgmP8ZERG3Xpk2bsHfvXnz66afGMqE5rcqIqG2wSSVIUlIS9u7dC39/f2zbtq3Wex999BFee+01HDp0CH5+fraIR0REVEu6qhghSs9m/5Cu7hD1ehErQSxhxIgRGDFiRK1pM2fOrPX62WeftWYkIrJT+/fvx7///W+sXbsWbm5/lscRERF4/vnnMXXqVKhUKmRkZGDAgAE2TEpElmaTShBTPTYDwPXr1/Hjjz+iU6dOtohFRERUh05vwNmcEtw3oGOzl/VydYKnXMZ+QYiIrCghIQFHjx6FWq1GeHg4nn32WSQnJ0Oj0WDq1KkAgIEDB2Lx4sUICQnBmDFjMHbsWMhkMixcuJAjwxC1cTapBDHVYzMALFu2DImJifjHP/5hg1RERER1Xcgrg0YvEKL0BAx1nx1vTJC3K3KKKy2QjIiITHnzzTfrTJs0aVK98z/99NN4+umnLRmJiOyI3fTSlpqaCqVSiT59+tg6ChERkVF6djEAoJfSs0XLd/CUI69UA30LKlCIiIiIyLzsomPU8vJyfPjhh/j444+btZwlh6ayFnsfPqg5LLUtLRm2y5SaQ3k1pq38XdrKdhDZUrqqBF4uTujk44qzf1SINEeApxwGAajLNOjg6WKBhERERETUVHZRCXLlyhVkZWUhNjYWAJCdnY34+Hh88803CAgIqHc5Sw5NZS2ONtxRQyy1LS0ZtsvkemoM5dWYtvJ3scZ2tHRoKiJHka4qRt/A5neKWq3DHyPK5JayEoSIiIjI1uyiEqR37944dOiQ8XVERATWr1/P0WGIiMimdHoDzt8oxQODO7d4Hf4eckgA5JZo0DfQfNmIiIiIqPls0idIQkICHnjgAVy6dAnh4eH45ptvbBGDiIioQVcKyqHVC/QM8GjxOpxlUijcnXGjpPUt2oiIiIiodWzSEsRUj8017d6920pJiIiI6nfhRtXjZD06tLwSBKjqFyS3hCPEEBEREdma3YwOQ0REZG/O3yiFTALc6te6DoY7eLhAXa6FTt+0fomIiIiIyDJYCUJERFSPC7mlCPZ1g4tT674uAzzlEALIK9OaKRkRERERtYRddIxKRERkC5UCKNPq633/bG4pQpQeUGv00IuWf06AZ9UIMTdKKhHoxRFiiIiIiGyFlSBERNRulWn12HMmx+R7Gp0B14sq0DPAHXvO5CAspP4h2xvj6+YMAMhnSxAiIiIim+LjMERERCbcKK0azUXp2fqWG04yKXxcnZBfxhFiiIiIiGyJlSBEREQmVI/m0uGPR1lay89DjvxStgQhIiIisiU+DkNEdi0iIgIeHh6QSqWQyWTYuHEjCgoKMHv2bFy9ehWdO3fG22+/DR8fH1tHpTYmt0QDJ6nE+ChLa/m5O+NUQQWEEJBIJGZZJxERERE1D1uCEJHd++yzz7BlyxZs3LgRAJCcnIywsDDs2rULYWFhSE5OtnFCaovySjXw95CbrcLCz10Ojd6AUk39HbESERERkWWxEoSIHE5qairi4uIAAHFxcfj+++9tnIjaovwyDfzczdMKBIBxXewclYiIiMh2WAlCRHbviSeeQHx8PP773/8CAPLy8qBUKgEASqUS+fn5toxHbZBWb0BBuQ7+HubpDwSo6hMEANTsHJWIiIjIZtgnCBHZta+++gqBgYHIy8vD1KlT0b179xatRyaTQKFwN3M6y5HJpA6V19ystf3lhRVwd6tb0ZFdWAEA6OTrbnzfSSY1Oa8ppuZ1dXWGTCpBkUZf6z1XF2cofFyNr9v7356IiIjIklgJQkR2LTAwEADg7++PqKgopKWlwd/fHzk5OVAqlcjJyYGfn1+j69HrBQoKyiwd12wUCneHymtu1tr+Co0eZeV1W2ZczS8FAHg6S43v6/QGk/OaUt+8Cjdn5BRW1HqvolKLggLDn/O00b99QICX2de5f/9+LFmyBAaDAZMmTcL06dPrzPPdd9/hvffeg0QiQZ8+ffDGG2+YPQcRERE5Dj4OQ0R2q6ysDCUlJcZ///DDDwgJCUFERAQ2b94MANi8eTMiIyNtGZPaoLzSqkoKc/YJUr0+9gliHnq9HosXL8aaNWuQkpKCbdu24fz587XmycjIQHJyMr766iukpKRg3rx5NkpLRERE9oItQYjIbuXl5eGZZ54BUPWDZ9y4cQgPD0doaChmzZqF9evXo2PHjli5cqWNk1Jbk1emgY+rE5xl5r1X4OfujIs3yjhMrhmkpaWha9euCA4OBgBER0cjNTUVPXv2NM6zbt06PPzww8YhtP39/W2SlYiIiOwHK0GIyG4FBwfj22+/rTPd19cXn332mQ0SUXuRX6o1a6eo1RRuztALgeJKHbxdzdvKpL1RqVQICgoyvg4MDERaWlqteTIyMgAADzzwAAwGA2bMmIHw8PAG12vu/oPsvY8Xe85X3WePVCppcn88QN1+dqzBnvcjYP/5AMfISERtAytB2pBKAZRp9a1ej7uzDC68QUlE7ZQQAnmlGgT7+ph93Yo/Hq8pKGclSGsJIepMu7l1jV6vx+XLl/HFF18gOzsbDz/8MLZt2wZvb+9612vu/oPsvY8Xe85X3WePu5u8yf3xAHX72bEGe96PgP3nA/7MaIn+g4iIamIlSBtSptVjz5mcVq/nnj5KuMhlZkhEROR4iit10BqE2fsDAQCFa3UliBa3+LqZff3tSVBQELKzs42vVSqVcejsaoGBgRg0aBCcnZ0RHByMbt26ISMjAwMGDLB2XCIiIrIT7BiViIiohuqOSy3xOIyP25+VINQ6oaGhyMjIQGZmJjQaDVJSUhAREVFrnnvvvRdHjhwBAOTn5yMjI8PYhwgRERG1T6wEISIiqkH9RyWIrwVagsikEni7OqGQlSCt5uTkhIULF2LatGkYO3YsxowZg5CQEKxcuRKpqakAgOHDh0OhUGDs2LF47LHH8OKLL8LX19fGyckSNHoDfleVIFNdDoOJR6WofUlKSkJYWBjGjRtnnFZQUICpU6di5MiRmDp1KgoLCwFUPVr3yiuvICoqCjExMfj1119tFZuIrMQmj8MkJSVh79698Pf3x7Zt2wAAy5cvx549e+Ds7IxbbrkFy5Yta/CZXSIiIktQl2ngJJXAy8UyX5EKN2e2BDGTESNGYMSIEbWmzZw50/hviUSCpKQkJCUlWTsaWdHJrEKkns2FRl9V+fH92Vy8EXsbeik9bZyMbCU+Ph6TJ0/GnDlzjNOSk5MRFhaG6dOnIzk5GcnJyUhMTMT+/fuRkZGBXbt24ZdffsE///lPfPPNNzZMT0SWZpOWIPHx8VizZk2taUOHDsW2bduwdetW3HrrrVi9erUtohERUTuXX6aFws3ZYkPY+rg5sRKEyEzSVcXYnp6Djj6uePD2zrivfyB0BoFn1p/CxbxSW8cjGxkyZIhxaOxqqampiIuLAwDExcXh+++/rzVdIpFg0KBBKCoqQk5O6/vYIyL7ZZOWIEOGDEFWVlatacOGDTP+e9CgQdixY4e1YxEREUFdprXIozDVFG7OKKnUQ6s3wFnGp1KJWupGiQZbT6nQReGKSYM6Gc+n8YM744WNpzF706/472O3w9WZnb0TkJeXZ+w8WalUIj8/H0Dd4baDgoJMdrR8M3MPp1173dYdLrh6OOrmqDkUtSMOb+xomZnXvOxydJgNGzZgzJgxjc5nycLHWsx5gLSkADOlZqHWHJY62G2xXfZ+4jZVW9kOImsRQqCgXIseHSx33ij+6By1qEJnkc5XidqLvedvwEkmwYSBHWtVKHZWuGFJdB88tS4Nnx7NxFNDb7VdSLJ7TRlu2xRzD6ddk7WHNK4ejrpZy9QYitoRhmC+maNlZl7TWjqktt1VgqxatQoymQz33Xdfo/NasvCxFnMeIC0pwEyup0ah1hyWOthtsV2OVtDUxxrb0dLCh8geFVfqoDMI+LpbrnKiuhJEXaZlJQhRC2Wqy3EutxQjevrDXV73cvb2YAVG91Xi82OZGNsvkENSE/z9/ZGTkwOlUomcnBz4+fkBqDvcdnZ2dqOtQIjIsdlVO9xNmzZh7969WLFihcWexSYiIqpPvgVHhqlWXQlSWMF+QYhaav+FPHi5OGHILYp655k5ojucpBJ8fPiyFZORvYqIiMDmzZsBAJs3b0ZkZGSt6UIInDx5El5eXqwEIWrj7KYlyP79+/Hvf/8ba9euhZsba+uJiMj6jMPjulmuEsRDLoOTVIKCMlaCELXEjRINrqjLcU+If4P96nTwkOO+/kFY/8t1PD2sGwK9XKyYkmwpISEBR48ehVqtRnh4OJ599llMnz4ds2bNwvr169GxY0esXLkSQNUoU/v27UNUVBTc3NywdOlSG6cnIkuzSSWIqYIpOTkZGo0GU6dOBQAMHDgQixcvtkU8IiJqp9RlGsikEni7Wu7rUSKRwMfNGQVsCULUIr9cLYRUAoR28m503odu74L1J6/h65+vYuaI7lZIR/bgzTffNDn9s88+qzNNIpHg5ZdftnQkIrIjNqkEMVUwTZo0yQZJiIiI/qQu08LXgsPjVlO4ObElCFEL6AwGnLpehF4BnvAw0RfIzTr5uCKyVwA2pV3H38O6wl3OkWKIiNo7u+oThIiIyJYKyrXGPjssSeHmjMIKnclRCYiofudyS1GuNWBgl/pbgUgkEqg1euN/Y/oHoVSjx7e/qWpNv/m/Sp6ORETtgt30CUJERGRLQggUVuhwi6/lh5VWuDmjUmdAubb5I3ERtWe/q0rgIZfhVr/6z9NynQGHzuUaXwsh4OfujHU/ZUEurb+V1z19lHBhSxEiojaPLUGIiIgAVOgMqNQZ4ONm+fsDxhFiyvlIDFFT6fQGXLhRil4BHpA245E1iUSC0E7eyCyoQH6ZxoIJiYjIEbAShIiICH9WSPhY6XEYoOrxGyJqmkv5ZdDoBXopPZu9bGhHb0gAnLpWZP5gRETkUFgJQkREBKCwXAcAVukTxIeVIETNdjanFC5OUnRt4FGY+ni5OqGrnzt+yy5hXzxERO0cK0HIoWUXVeDQpXzsPpuL64UVto5DRA6sukLCx4LD41ZzcZLCzVnGShCiJjIIgXO5JejZwQOyBvr1aEjfQE8UlGuhKq40czoiInIk7BiVHJIQAj9eUuPAxTwIAUgkwJHLBRjY2Ruj+yqb9awwEREAFFZo4eIkhauzdTpGVLg5oeCP1idE1LDsokqUaw3o0cGjxevopfTEjjM5OKMqQZC3qxnTEbUdVwvKkXr2BvoGeeH2YB9eU1ObxEoQckh7zuXhyGU1+gV5Iqq3EjIpcPBCPo5eKYC7swx3h3SwdUQicjCF5TqrPApTTeHmjOtFvCNN1BSX8soAAN383Vq8Dvc/RpVJV5VgRE9/SPjjjqiW9OxibD2tglQKXP29AmdzSvDg7Z1ZEUJtDh+HIYdzRlWMI5fVGNzFB/f1D4K7XAYXJxkiewdgUGdvHMpQ42xOia1jEpGDKSjXWuVRmGoKN2cUVWihN7B/AqLGXMorQ6CXC9zlrTtH+UgMkWkavQE70nMQ6O2Cfwzrhnt7d8AVdTnOqHhNTW0PK0HIoZRU6pDyaw46+bgiqndAnbs4UX0CoPSUI/VsLn9YEFGTCSFQWKG1ysgw1RRuzjAI4EYJf4wRNaRSp8fVwnJ0829+h6g3CwmoGlnmXG5pq9dF1JaculaECp0Bkb06wF0uwx3BCnTwkOPgxXwY2JkwtTGsBCGHsvf8DegMBsTcFmiyYzQnqRQjenZAQbmOw+ARUZOVaw3Q6oVVK0GqPyubj8QQNSgjrwwGAXRrwagwN3OXy9DZxxXnWQlCZGQQAseuFKCjtws6+1T1lyORSDCshx/ySjVsDUJtDitByGFcK6zAqWvFGHKLL/w85PXO16ODOzr5uOKHS/nQGQxWTEhEjqp6lBaFFR+H8XGr+ixVMUe2ImrIhdwSOEkl6KIwT2emIQEeyC6uRHEFOyYmAoDjl9VQl2nx166+tVpZ91F6QuHmjDTeWKQ2hpUg5DD2nb8Bd7kMQ7v7NjifRCLBsO5+KKrQ4XcV7/QQUeMKK/4YHteaLUFc2RKktfbv349Ro0YhKioKycnJdd7fuHEj7rrrLsTGxiI2NhbffPONDVJSa126UYYuClc4ycxz2dozoGqEmfM3eI1ABAA/XsyHXCZFb6VnrekSiQS9lZ64nF+GCq3eRumIzI+VIOQQsgrKkZFfjru6+sLFqfHhK7v7u8PH1Yk110TUJIV/DFVb3TrDGmRSCbxcnKBiJUiL6PV6LF68GGvWrEFKSgq2bduG8+fP15lv7Nix2LJlC7Zs2YJJkybZICm1RoVWD1VRBYIVLR8V5mYdPORQuDnhXC6b+BMJIfDTlQLc6udm8lHzXkoPGARw8Y8RmojaAlaCkEP48VI+3JylGNzFp0nzSyQShHbyRkZ+GQr/aOZOjkmv1yMuLg5PPvkkACAzMxOTJk3CyJEjMWvWLGg0GhsnpLagoFwLV2dpkypZzcnHzQnZRXwcpiXS0tLQtWtXBAcHQy6XIzo6GqmpqbaORWaWVVABASDY13yVIBKJBD07eOJyfjm0ej42S+3bZXU5VMWV9XY83MnHFe5yGUdepDbFere8iFro4o1SXLhRhvAe/pA7Nb3eLrSTNw5ezMfp68UY2t3PggnJkj7//HP06NEDJSVVX74rVqzAlClTEB0djYULF2L9+vV46KGHbJySHF1huRYKV+s9ClPNx82ZQ3W2kEqlQlBQkPF1YGAg0tLS6sy3a9cuHDt2DN26dUNSUhI6duzY4HplMgkUitZ3wPnn+qRmXZ+52XO+8sIKXC+phEwqQc8gbzg38XEYJ5kU7m719x0GAP27+OB4ZgGulWjQN8gbAODq4gyFT8v6HbHn/QjYfz7AMTK2RYcy1ACA7h08TL4vlUgQ0sED6aoS6AwGOEl5D50cHytByO5t/uUanKUS/CW4aa1AqincnNHV1w2nrhfhb90a7keE7FN2djb27t2Lp556Cp9++imEEDh8+DDeeOMNAMD48ePx3nvvsRKEWq2wQocODXS4bCkKV2ekZxdDpzeYrb+D9kKYGLLx5mHT77nnHowbNw5yuRxfffUV5syZg88//7zB9er1AgUF5mv2rVC4m3V95mbP+So0elzMLUUXhRu0Gh2a2q5TpzegrLzhVoJKd2e4OEnx69VCdP2j4qOiUouCgpa1DLHn/QjYfz7gz4wBAV62jtKuHM7IR2eFKxQN9IkVEuCBX64V4WpBBbqaYZQmIltjJQjZtYIyLXb/fgP9O3rBzbn5zdT7BHpi55lc5JXykQlHtHTpUiQmJqK0tKrzOrVaDW9vbzg5VRVdQUFBUKlUTVqXue/uWlp7vyNmre0vL6yAm6sziiq06BPk1eDd46bcXW7uvAE+rjAIoFwqRfAf29ve//ZNFRQUhOzsbONrlUoFpVJZax5f3z8rwP/v//4PK1assFo+ar1yrR7ZRRUY1rOD2dctk0rQzd8d53NLIYSoU4FG1B7o9Ab8lFmI0f0CG5yvyx+Po2UWlLMShNoEm1SCJCUlYe/evfD398e2bdsAAAUFBZg9ezauXr2Kzp074+2334aPT/Pu/FPbs/nUdWj0Btx+i6JFy4cEVFWCnM1lD/COZs+ePfDz80P//v1x5MiReudr6oWrue/uWpoj3LWzJGttf4VGjxuF5dDqBdydpA3ePW7K3eXmzusmqzp+f88sgNcfh3Jb/dub++5uaGgoMjIykJmZicDAQKSkpBhbiVXLyckxVozs3r0bPXr0MGsGsqwz2cUwCODWevoqaK2eHTxwRlWC60WV6NTCx2CIHNn5G6Wo1BlwW0cvCEPd1nXV3JxlCPCUI6uAfVhR22CTtrfx8fFYs2ZNrWnJyckICwvDrl27EBYWZnKoO2pfdAaBb05ew+AuPgjwdGnROrxcndDR2wXnWAnicH7++Wfs3r0bERERSEhIwOHDh7FkyRIUFRVBp6saySM7O7vOnV+i5iqoqDqeGmoKbCnVw+ReK+SFZXM5OTlh4cKFmDZtGsaOHYsxY8YgJCQEK1euNHaQ+sUXX+D/2bvz+KgKe2/8nzP7lpnJJDOZbCQkBAgEw6YhUqVAAZWiuNWqtRWvD0/73OfB1pa+alt97vVWbb2tv6v3/m5bft6LSKu1ouBCWywBRBEQ2QmBQPZtMklmy2T2M+f3x2QiO1lm5pwz832/XrxeEs+c+YYkkzPf811WrlyJO++8E6+//jpeeOEFnqMmY3G2NzYLqjCBm2EuVJ6rBQPgPF0jkAxVbxsEAEzLu36SutioRpfLj+g1kiWEiAUvSZAbb7zxsiqPuro6rF69GgCwevVq7Ny5k4/QiIB8fL4fdm8Id1Vfe4jd9VSYdeh2BzDgpeGDYvLDH/4Qe/fuxa5du/DSSy9hwYIF+M1vfoOamhrs2LEDALB161YsWbKE50iJ2MU3SKVyPW6cXiWDhAG6aUPMuCxatAg7duzAzp078b3vfQ8A8MQTT2Dp0qUAYq8j27dvx/vvv4/NmzdTJYjInOkdRLZGDo0iOT+bGoUUBQYVmgYoCUIy02nbIAwqGaz6699sLDKqEWI59NL1NEkDgpkJMjAwMHJH12KxwOFwXPcxYuvxv5JE9n773YFR96tfy3inoye6j/2dkzYUGdVYNC0Pn57vH/d5big2Ym/TAA53ejC/bHR9xenSk58un8eF1q9fjx/84Af4t3/7N1RWVuL+++/nOyQiciNJEB62w0glDHJ1SvRQEoSQy5zt9Sa9TaU8V4u9TQMYCkaS+jyECFG9bRAz87NG1VpcnB37Wexw+pGvp/YxIm6CSYKMh9h6/K8kkb3fgRA76n71S4XZKGyeICQSBtMtWqi5sU9HT+TnctbuxaFWJ55YVIZwODLuzwsAdDIGepUMB5oH8MAN1us/AOnTk5+KzyMVU9xrampQU1MDACguLsaWLVuS/pwkc7j9YWjk0jGt4E6kvCwleqgdhpCL9A4GMTAUwtyi5M6HK8/VYG/TAJoGxP87n5Cx8IVYtAz4sHiUg4f1KjkMKhk6XX7cVEJbF4m4CSYJkpOTMzLAzG63w2Qy8R1SRvAGI9jV2I+G3tjwMQDY/HkHFk3JwWMLJqFyFD2CyfDWkS6oZBLcWZUHdoLnYhgGpSYNjne6wUY5SCU0AZ4Q8iVXIMJLK0xcnl6JE51u3p6fECGKzypIdiVIXpYSWoUUzf3UEpMpXnvtNbz99ttgGAZTp07FCy+8ALvdjieffBJutxszZszAiy++CIUi9WvTU+mMPXbtPzN/9Nf6RUY12p3+JEZFSGrwc9vrCpYsWYJt27YBALZt2zbSz0uSp93hw4bP2nCm14u5xUbcNzsf983OxwPzinC00401fzyKjQfbEeVSOwDJ6Qthxxk7Vs7Mgz5B5emlJg0GgxGctXsTcj5CSPpw+8Mw8DAUNc6apUKfN4QwO/YKPELSVX2PB3IJA0tWct+IMgyD8lwtWgZ8YGngY9rr7e3F66+/jnfeeQcffvghWJbF9u3b8etf/xqPPvooPvroI+j1+oyoOD1ti10Tz7COPgli1SsxGIzAS+1jROR4SYI8+eST+OY3v4mWlhbceuutePvtt7F27Vrs27cPy5cvx759+7B27Vo+QssYbQ4f/ny0G1lKGf6hdhKWTTOjwqxDhVmHx24uwdZ/uAmLK8z4z09b8c9/O4tICi8Mtp6wIcRyeGBOYcLOWWqKTZb/vM2ZsHMSQsQvynFwByK8bIaJsxqU4BAr/yeExNTbBlFm1kImSf6lanmuBoFIFA3D1SckvbEsi0AggEgkgkAgALPZjAMHDmDFihUAgLvvvntkw1Q6O9M7iLwsJUya0Sca47NAaI4VETte6n9feumlK35806ZNKY4kM7n9Ybx7vAcGtRwPzSuEVnn5t0GWSobnvz4dFQe1+O2+VkRYDs/eMT3prSQRNootx7uxoCQbk3MSN9BTq5ShLEeDg+0uPFozKWHnJYSIm3MoBDbKwaDisR0mK3ZR2e0OoChJq0AJERM2yqHB5sWyytSsQC81acAwwOetTtxSSrMO0lleXh4ee+wxLF68GEqlEgsXLsTMmTOh1+shk8V+D1itVvT29l73XMlc0JCKwfYtDj9mFOhhNGpGvVyhVC4FA2DAF7lokYIYB/GLLWaKN7EEMxOEpEY0yuH9UzZEOeC+2QVXTIDEMQyDxxZMgkzC4N8/aUGuToEffDW56wXrGvvR5w3hZ8umJvzcc4qNeP9kDwJhFiq5NOHnJ4SIj224+oLPdpi84dWE3TQclRAAQIvDB1+YxbQ8XUqeTyWXotiopmrRDOB2u1FXV4e6ujpkZWXhiSeewN69ey87bjTbUpK5oCHZg+3DbBRN/UOoLc2Gy+Ub03KFHK0CHQ4fAsEwXK5oSuJNBrHFTPFe2XgXNAhmJghJjc/bneh0BXBbpRnZmtFd9H/7pmI8MKcAbxzuwpZj3UmN709HuzApW43ayYm/E1NdZECY5UaGrRFCSK8nlgThsx3GrFNCylB5MSFx9T0eAMD0FA5nL8/VoLl/CHZqS0trn332GYqKimAymSCXy7F8+XIcPXoUHo8HkUhszoXNZoPFkpoqJL60Of1goxym5GrH/FirPrbWnUvxzEBCEomSIBnEG4xgX7MTU3K1mJmvH9Njf/DVciycbMJvdjclLYlwqseDUz2D+MbsAkhGkYEfq5n5ejAAjtIWBkLIMNtw4kHPYzuMVMIgL0uJbg+9+SIEiM0DyVLKUGhM7maYC5UPvxn8rMWRsuckqVdQUIDjx4/D7/eD4zjs378fU6ZMQU1NDXbs2AEA2Lp1K5YsWcJzpMnV1BfbhlSeO/Z2hXy9CkMhRRsFxQAAIABJREFUFgNDo6scIUSIKAmSQfY2DSASjWLp1NHtA7+QVMLgn26fhlytAk99cBpufzjh8b1xuAtahRRfr8pL+LmB2JyTKWYtjnVREoQQEtPrCUKrkEIu5ffXYb5BhR5qhyEEAHCqZxAzrVmjaklIlFytArk6BfZREiStVVdXY8WKFbj77ruxatUqRKNRPPDAA1i/fj02btyIZcuWweVy4f777+c71KRqGhiCVMKg1DT2JIh1uIWzkTYuEhGjmSAZYmAohONdHtw4yQiTdnzr5oxqOX65qhKP/+k4/ulvZ/Gb1TMTVrHR6vBh59k+PHJjEbSK5H1bzi404MN6GyJRDrIkD3klhAifbTDA6zyQuHy9CgdpHgEh8IdZNPcP4daanJQ+L8MwuKkkGx+f60eYjfKeGCXJs27dOqxbt+6ijxUXF2fEWty4831DmJStHtf3eV6WEgyA8/YhYHriYyMkFegVPkMcaHVCJmEmPGtjZr4e319Uhk+bHfjDoc4ERQe8drAdCpkED88vStg5r2ROkQH+cBRnKXtNCEGsEoTPzTBxBXoV+rwhhCJRvkMhhFdner1gOWCmNXXzQOJuKs3GUIjF8S5Pyp+bkFRqGvCNax4IAMilEpi0CjT1DyU4KkJSh5IgGcATCONUjwfVhfqEVFl8Y04BvjbVjP/8tAVHOl0TPl+ny4+/Ndhxzw35Y9pVPh5zCmOzUI7RXBBCMh4b5WAfDPI6FDWuYHjNoI2GMpIMF587NjM/9UmQOUVGyCQMtcSQtDYUiqDbHRjXPJC4vCxKghBxoyRIBvi8LZaoqCkZXRUIwzBwhtir/nGFo/jHxWXIN6jw1AcNaHL64Qyx6HEHLjouOMqh0f/vJy2QSyV45MbkVoEAQK5OiSKjiuaCEELQPxRCJMoJox3GEOuxprkgJNPV93hQoFcm/abIlagVUswtMlAShKS1loHY2tLynPFVggCxlhj7YDApMwIJSQX+a4BJUoXYKE50ezA9L2vUF/r+SBT7z/Vd97gV0y3Y9HkHfrz1FB6cWwidVnnRjvHF0y1QKqTXPMexTjd2NvZjbW0JzDrlqOKbqBsK9DjY5gLHcSkdukYIEZbu4YSDQc3/r8ICfawSpIvW5JIMV28bRNUYN9gl0sIyE/6fPc3odgdGKrQISSetjlgSZHLORCpBhoej9nlx46SJtdoTwgeqBElzp3sGEYxEMbfIkPBzW7KUuK3SgnanH3ubBsb8+EiUw0t7mmDRKfCtFFSBxFXl6zEwFEIPraMkJKP1DCccDCr+K0HMOiVkEmYkMUNIJor/buZjHkjczZNNAIBPm6kahKSnVocfMgmDwgkk+SzxJIidWmKIOFESJI1xHIejnW6YdQoUGZNzN2NWgR6zC/XY3+rE8THOB3ntYDsaer34/lfLoZZfu2IkkW4YvsN0qocGnxGSyYRUCSKVMMjXK9HloiQIyVzxeSBVPMwDiSs1aVCSrcbepn7eYiAkmdocPhQZVZBNYAOSViFDjlaBxj5aNEDEiZIgaczmCcI2GMScIkNS2z6WTTdjUrYaW492o3W4z/B66m2DePVAO1ZMN2PZNHPSYruScrMWSpkEJ3sGU/q8hBBh6XYHkKNVQCYRxq/CQqMaXW4/32EQwpv6Hg+kDDDNouM1jkVTcvBFhxuDgQivcRCSDG0OP0qyx98KEzfFrKVti0S0JnT7KxgM4o033sDhw4fBMAzmzZuHBx98EEplamY7kGs70eOBTMIkvaxUJpHg3up8/PFwF94+1o27b8jHFPPVhy11OP14cuspmLUK/HjplKTGdiUyCYMZ1iyqBEkxer0gQtPjCSBPL5zvv0KDCqdtmZmcpdcHAsRukEwx66BKYXXolSyakovXD3ViX4sDt1VaeI2F0OtDIkWiHDpcftxSnjPhc5XlavFFmxNBWu1ORGhCt79+/OMf49y5c/jWt76Fhx9+GE1NTVi/fn2iYiMTwEY5NNgGUWHWpuRiQiWX4rGbS5GrVeCd49042OoEG718PcxZuxf/e8sJsFEO/37vLOh56sWflZ+FM71eeuFOIXq9IELT7QnCqhfO4MNCgwqeQCQjp+2P9/Vh7969WLFiBZYtW4YNGzZc9bi//e1vmDZtGk6ePJnIsEkCRTkO9bZBXueBxFXlZ8GkkePj89QSIwR0/ZA43e4AIlEOJSb1hM9VbtaC5YDmAZoLQsRnQpUgLS0teP/990f+vmDBAtx5550TDopMXFP/EPzhaEonrGuVMjw4rxAf1vdi17l+dLoD+OacAkyz6OAPs9h9bgBvHe2CUS3HK/fOQukEplJP1Kx8PSLRTpy1e3FDAX9T6DMJvV4QIYlEOfR6AlhUkct3KCMKjbGL0k6nD4Ua/oe1ptJ4Xh9YlsWzzz6LjRs3Ii8vD/fddx+WLFmCKVMurjD0er3YvHkzqqurkxI7SYx2px/eIIuZPM4DiZMwDBZNycGOhj6EIlEoZMJomctUdP2QOG3Dm2FKTRO/Bi/PjVV9N9q9qJ2WN+HzEZJKE3pVnzFjBo4dOzby9+PHj2Pu3LkTDopM3KmeQWgUUpSlONGgkktxb3U+vj4zD75QBM/uaMTDm4/g8T8dx5+OdGLp1Fy8+Z15mMHznZ740DVqiUkder0gQtLnDYLlAKvA2mEAoN2ReXNBxvP6cOLECZSUlKC4uBgKhQIrV65EXV3dZce9/PLLePzxx6l0XuDqh+d0CaESBIi1xPjCLA51jG3oO0k8un5InDZn7PdLSfbEK0HyDSpoFVKcpQ0xRIQmVAly/PhxbNu2DQUFBQCA7u5ulJeXY9WqVQCADz74YOIRkjELRlic7x/CnCIDJJLkDUS9GoZhMKtAj/+zuBw9Dh96B4MAw2BekQEGtTDububqlMjXK3GyexCYx3c0mYFeL4iQxDfDWPUquIZCPEcT82USxIfaosyqUBvP60Nvby+sVuvI3/Py8nDixImLjjl9+jRsNhsWL16M//7v/07iZ0Amqt42CI1cmpA71IlwY7ERGrkUH5/vx8LhtbmEH3T9kDitDh+y1fKEXI9LGAYVZi0aaTgqEaEJJUFeffXVRMVBEuhc3xDYKIfKPH6nqzMMg5n5eszM5zWMq6rK1+NEN1WCpAq9XhAhiSdB8vRKwSRBdEoZjGo5Opyj27KVTsbz+sBxl8+dunATWjQaxQsvvIAXXnhhTOeVShkYjYl7Iy6VShJ6vkQTSnxn+ry4ociAHNOXg9X97gA0agUkEgYatWLU55JJJWM6Pk6llMNo+HJO0KKpZnza7IRer77uTSWh/DtejdDjA64eI10/JE67w5eQeSBxU806fFjfi+gV5gASImQTSoIUFhYmKo4Rr732Gt5++20wDIOpU6fihRdeoBLWMTrT60WWUjZyV5Fc2awCPf5+tg/2wSAsWfQ9lmzJeL0gZLx6PAEwAMw6Jc5COBtZCg0qdDgzrx1mPK8PVqsVNptt5O+9vb2wWL7c5DE0NITGxkZ8+9vfBgD09fXhe9/7Hn77299i1qxZVz0vy3JwuRKXiDIaNQk9X6IJIb5gJIqGnkE8NK/oolgCIRY+fwgatQI+/+iTlRE2OqbjR54vGIbL9eXA9JtLjPhrvQ37zvRi1nXmhwnh3/FahB4f8GWMZvPFLVF0/ZA4bU4/vlKWuMqmqRYtfMdYdDh9MEhTX31OyHgJatJTb28vXn/9dbzzzjv48MMPwbIstm/fzndYohKMsGge8GFanu6iO2LkcrPic0EydCUlIZms2xNLfsqlgvo1GEuCOIT9RkUoZs2ahdbWVnR0dCAUCmH79u1YsmTJyP/PysrCwYMHsWvXLuzatQuzZ8++bgKE8KPR7kUkyo3M6xKKhZNNkEoY7D5HW2KI+A2FInD4wig2Jq4SZJolVnV+uoeupYm4COvqD7Fp74FAAJFIBIFA4KK7OuT6hNIKIwZTzTrIpQxOUUsMIRmn2x1AgYCGosYVGlWxFYYsre++HplMhmeeeQaPP/447rjjDtx+++2oqKjAyy+/fMUBqUS46m3CGooal6WS4aZJRtQ19l2x/YoQMel0xdpAixMwFDVuco4WUgmDBlo0QERmQu0wiZaXl4fHHnsMixcvhlKpxMKFC/GVr3yF77BEpdE+BJ1CSq0wo6CQSTDdosNJeuEmJOP0uAOYW2zgO4zLFBnUYKMcejzBhF6opqtFixZh0aJFF33siSeeuOKxmzdvTkVIZBxO9Xhg0SkE2Zq6fLoZ//y3RtTbBlGVn1kDi0l66XTFWi2LElgJopRJMNmkwWmqqiYiI6gkiNvtRl1dHerq6pCVlYUnnngC7733Hu66664rHp/o4WV8SOSgKveADy0DPtxQZIBWM/4LifEOFLt0cNmlA8bGKz4YbaKuFM+8UhPePNQBbZbqorJ4MQwQGw2xfx7BYBAPP/wwQqEQWJbFihUrsG7dOnR0dODJJ5+E2+3GjBkz8OKLL0KhmPj3CMkMETYKuzeIAr3wksXxxEe7y09JEJIxTtsGMUNgVSBxX52Si+el5/DRmT5KghBRi8+bKjIm9nffVIsWhzvcCT0nIckmqCTIZ599hqKiIphMsYE9y5cvx9GjR6+aBEn08DI+JHJQ1ect/QixUZRmq8Y1ECxuvAPFLh1cdumAsfGKD0ab8HmuEE+FSY1gJIrD5/swPe/LCzAxDBAbjVR8HpcOMEskhUKBTZs2QavVIhwO46GHHsKtt96KjRs34tFHH8XKlSvxzDPPYMuWLXjooYeSFgdJL7bBIKIckC/Airl44qPD6Qcm8xwMISng8ofR4QrgrlnCXCWnU8pwc6kJOxv78P2vlkFC89aISHW6AsjRKqBVJPbt3zSLDn85bYfDF4JJQzekiDgIaiZIQUEBjh8/Dr/fD47jsH//fpSXl/MdlmgcaHZAJmFQahLvnf9Ui9/VOUkDnQSJYRhotbF1iZFIBJFIBAzD4MCBA1ixYgUA4O6776b+fzImPZ5YX7QQK0FyNHJoFdKM3BBDMtNpgc4DudDy6Wb0eUM4Qne7iYh1uPwoTnAVCBCbsQfEBhwTIhaCqgSprq7GihUrcPfdd0Mmk6GyshIPPPAA32GJAsdxONDqxOQcjeC2HQhZvl4Jk0aO+h4P7p9dwHc45ApYlsU999yD9vZ2PPTQQyguLoZer4dMFnv5slqt6O3tve55xNY+J/ZWpolK5ufvanIAAKYXGyGVjL79byytgmM59tJWvdJcLXq8oYz++pPMUd8zCAZApVW4A91vLc+BViHF9tO9mD/JyHc4hIxLh8uPmpLshJ+3why7WdVoH8KC0sSt3yUkmQSVBAGAdevWYd26dXyHITrn+oZgHwxivgAH/QkZwzCoytfjFFWCCJZUKsV7770Hj8eDf/zHf0Rzc/Nlx4xmHbTY2ufSpSVrvJL5+Z+3eSBlABXHYTAYHnW73VhaBcdy7KWteiUmDY53uNLu65/M1jkiXvW2QUzO0SS8RD+RVHIpvjbVjL+f7cOPl06BWi7lOyRCxsQfZtHnDSV0PW6cQS1HoVGFxj6qBCHiQSUDaeKT5gEAQHmuludIxKcqPwttTj88gTDfoZBr0Ov1qKmpwbFjx+DxeBCJRAAANpuNVmmTMelxB2DJUkImEWZvf0mOBj2eAMK0JpekOY7jcKrHg6p84SfIVs7Mgy/MYve5fr5DIWTMuobX4yZ6KGpcpVWPs9QOQ0SEkiBp4pMmB6bl6aBTCvdOilDFL77qab2X4DgcDng8sRXGgUAAn332GcrLy1FTU4MdO3YAALZu3YolS5bwGSYRmR5PAAUCHIoaV5qjRZQDutwBvkMhJKm63AG4AxFBzwOJm12oR6FBhQ/qr99+SYjQdAyvx03W1rHK/Cy0Ofzwh9mknJ+QRKMkSBro9wZRbxtE7WTqwxuPyrwsMABOdVMSRGjsdju+/e1vY9WqVbjvvvtw8803Y/HixVi/fj02btyIZcuWweVy4f777+c7VCIi3e4A8gU4FDWuNCc2C4SGo5J0F29FnWkV/upZhmFwZ5UVX7S70E4/m6Lm8Xiwbt063Hbbbbj99ttx9OhRuFwurFmzBsuXL8eaNWvgdqfXENzO4SRIkSFJSRCrHhyApv6hpJyfkESjsoE08GlzbMjfgskmtNGLz5jplDKU5WpwyubhOxRyienTp2Pbtm2Xfby4uBhbtmzhISIidqFIFH3ekCA3w8SV5sTaGuN37ghJV6d6PFDLJSg3i6OV986qPGzY34Z3j/fg+18t4zscMk7PPfccbrnlFrzyyisIhUIIBAL43e9+h9raWqxduxYbNmzAhg0bsH79er5DHbcgB/guqMo4P+CDQSVDRMLAGbq8WoPlJvZ8MwpiicxGu3dk8yIhQkZJkDTwSbMD+XolJudoKAkyTlVWPfac7wfHcaMaskkIEafewSA4QNDtMNkaObKUMrrbTNLeiW4PZlizBDOfh2Gu/AYxTqqQ4eYyE96vt+GbNxVBKZNCI5dCKYzwySh4vV4cOnQIv/zlLwEACoUCCoUCdXV12Lx5MwBg9erVeOSRR0SdBPGFWew+Yx/5e32PB1ql7KKPXai2wjyh5yswqJCllOGsnd6HEHGgJIjIhdkovmh34fYZFnrzPgFV+Vl475QNHa4AJiWpX5IQwr9uT2zORr5ByXMkV8cwDCZlq9FGSRCSxgJhFo19Q3hkfhHfoYzwR6LYf67vmscUGVT45PwAfre3BTcU6LF4ugVKBW2LEYuOjg6YTCY89dRTOHPmDGbOnImf/exnGBgYGBmybrFY4HA4rnsuqZRJ2irzia6J97sDF61pd/kjKM3RXHV1+1jWusdduN5dKpVgRoEeTQ6faNa7T/TfONUo3sSiJIjInej2wBdmUVua+L3fmSReuneqx0NJEELSWPfwsFEht8MAsbkgB1udfIdBSNI09HrBRjnMKhBX6XxJthq5WgUOtTkxSwRbbcjFIpEITp8+jaeffhrV1dX4xS9+gQ0bNozrXCzLJW2V+UTXxAdC7Mia9ggbhdsfRpZCetXV7WNZ6z7yHBesdzcaNSjLVuPdEz0YcAxBKpDqrmuZ6L9xqlG8V2Y2j+91mAajitz+ViekEgbzio18hyJqk3M00MilI0PaCCHpqccTgFTCwKwTbiUIAJSZNOgfCmEwEOE7FEKS4lRPbA6XGNbjXohhGNSUGGH3htDiEM8bEhJjtVphtVpRXV0NALjttttw+vRp5OTkwG6PtYrY7XaYTOmzbMDlj/0eydbIk/o80yw6BCNRGupNRIGSICJ3oNWJGwr0tBp3gqQSBjOsupGLMkJIeup2B2DNUgr+LlV8Qwy9ySLp6kS3B0VGFUyasZXgC8GM/CzoFFIcbHXxHQoZI7PZDKvViubmZgDA/v37UV5ejiVLlowMYt+2bRuWLl3KZ5gJ5Ryu8MhO8s/aVEtswPFZuzepz0NIIlASRMQGhkI4a/dSK0yCVOXr0dg3hADtOCckbXW7g8gX8FDUuMmmWBKkdYCSICT9cByHkz2DmCXSLRIyiQTzJxnR6vChwUYVpGLz9NNP40c/+hFWrVqFhoYGfPe738XatWuxb98+LF++HPv27cPatWv5DjNhnL4wACBbndxKkFKTBnIpg8Y+SoIQ4aPyARE72BbrF19ASZCEqMrPAhvlcNbuhXWc/WWEEGHr9gTwlcnCL3MuMKigkDJopiQISUM9niAGhkKimwdyobnFRhxsc+H1g+24eRK1JItJZWUl3n333cs+vmnTJh6iST6nLwyVTAK1PLn3vuVSCcpytGikDTFEBKgSRMQOtDqRrZZjmkXHdyhpYebIcFS6q0NIOvKHWQwMhVBoFH4liFTCoMSkQSu1w5A0FG89FfNgUaVMgtrSbBxud+Fop5vvcAi5Kqc/DKNGnpItktMtOjT0DoLjuKQ/FyETQUkQkYpyHA62OXFTiRESWo2bELlaBfL1SkqCEJKmuoY3wxSKoB0GiLXEtAzQHTWSfk50e6CSSTDFLO6bOHOLDTBp5Pj3vc2IRulNHxEmpy+c9FaYuJn5WXAHIuhwBVLyfISMFyVBROqcfQgOXxi1pcIv6xaTmVY9DUclJE11uWIT64uM4liDXZqjQY8nCD/NKSJp5mTPIGZYsyAT+IDi65FLJVhTW4KTPYN473g33+EQchk2ysHtD6dsAHG8xe1kN11LE2GjJIhI7W91AABqaB5IQs0qyIJtMIi+wSDfoRBCEkyMlSAcgDZqiSFpJBBmcdbuFfU8kAstq7SgKj8LL350Ft4grbQmwuL2h8Eh+etx48pyNNAqpDhJNxSJwFESRKQOtDlRYdYiVyu+1XJCNtMa608+3klr7whJN12uAHRKKfQqccwEL8uNbYhp6qckyNXs3bsXK1aswLJly7Bhw4bL/v+bb76JVatW4a677sKDDz6I8+fP8xAludCZXi/YKCfqeSAXkjAM1i+ZAsdQCP+2p5nvcAi5iCO+GSZFSRAJw6AqP4sqQYjgURJEhHwhFse7PLQaNwmmWXSQSRgc66AkCCHpptPtR5FBnZLhcIkwKVsDpUxC6wavgmVZPPvss3j11Vexfft2fPjhh5clOVatWoUPPvgA7733Hh5//HG88MILPEVL4uJ3iNOlEgQAZlizsPaWMrx3yoZPmgb4DoeQEU5/apMgAFCVr8f5/iH4QtTKSYSLkiAi9EWHC5EoR6txk0All6LCrMVRSoIQkna6XAFRbIaJk0kYlOVo0NhHw1Gv5MSJEygpKUFxcTEUCgVWrlyJurq6i47R6b4cvOn3+0WTAEtnRzvdKDaqUjajIFX+z+IpqDBr8S87GmHz0FBIIgxOXwgKqQQauTRlzzmrQI8oB5y20aIBIlyCqwn2eDz4+c9/jsbGRjAMg+effx5z5szhOyxBOdDqhEomQXWBge9Q0tLsQgPePdGDMBuFXEp5QkLSARvl0O0JYNGUHL5DGZOpFh32nOsHx3H0Bv4Svb29sFqtI3/Py8vDiRMnLjvuj3/8IzZu3IhwOIxNmzZd97xSKQOjUZOwOKVSSULPl2ipjI+Ncjje7cGKmdZRPaffHYBGrYBEwkCjHn3SRCaVjOn4iTxOpZTDaFBBKpXg3x+cg/t+fwA/2X4Gb/5DDdSK1L3xvB6hfx8C4ohRbJy+MLJTtB43Lt7qdqLbg/mTjCl7XkLGQnBJkOeeew633HILXnnlFYRCIQQClE2/1IFWB+ZPMkIhE/YbdIZh4ExAKRyb4q1zc4oMePNIF07bBlFdSIkmQtJBnzeIMMuhUCSbYeKmmrV476QNdm8IeVlKvsMRFI67/JfDlS70H374YTz88MP44IMP8Nvf/ha/+tWvrnleluXgciVuDovRqEno+RItlfGdtXvhCURQZdGO6jkDIRY+fwgatQI+f2jUzxNho2M6fiKPCwTDcLmiMBo1yJFL8C93TMOTW+vxj388jF/dOUMwN1OE/n0IfBmj2Zwe82KEwOkPp/x3h14lR4VZi8MdLjy2YFJKn5uQ0RJUEsTr9eLQoUP45S9/CQBQKBRQKNKrXHKiOl1+dLgCeGBOId+hXJc/EsX+c30TPk9thTkB0YzenOHEx5FONyVBCEkTYtsMEzfVHGvnONfnpSTIJaxWK2w228jfe3t7YbFYrnr8ypUr8U//9E8piIxczZFONwBgblH6/m79SlkOfrx0Cn5Vdx5P/+UM/uWO6YJJhJDMEh1ejzvdorv+wQk2r9iIrSd6EIpEBX/TlmQmQX1XdnR0wGQy4amnnsLq1avxs5/9DD6fsLPWqXag1QkANA8kiYwaOSosOhwdvlgjhIhflyuWBCkS0UwQAJhi1gIAztFckMvMmjULra2t6OjoQCgUwvbt27FkyZKLjmltbR357z179qCkpCTFUZILHelwoUCvhFUvrp/DsbpvdgF+8NUy1DX2Y927pzAYuHx1bpADnCF2zH+CKa6OJeLlDkQQ5VI7FDVufrERwUgUp2y0JYYIk6AqQSKRCE6fPo2nn34a1dXV+MUvfoENGzbg+9///hWPT3TfLh/G2v94uMuDIqMaN0zOuazsN947O1Hj7aW9tGd3vOdJVDyXivftjsZNk03YdqwLuiwVZCK+g0P9tYTEdLn9kDJAXpa43nzplDIUGlRotNOGmEvJZDI888wzePzxx8GyLO69915UVFTg5ZdfRlVVFZYuXYo//OEP2L9/P2QyGfR6/XVbYUjyRDkORzvduKVcXHN5xuuheUUwqOT4xUeN+M4fj+AXKysxw/plm4cvzGL3GfuYz7t4ugVKAc0aIcLlHG7tyuZhCPHcIgMkDPBFuwtzi2guCBEeQSVBrFYrrFYrqqurAQC33XYbNmzYcNXjE923y4ex9GhG2Cj2Nw9gxXQL3G7/Zf8/3js7UePtpb20Z3e850lUPJeK9+2OxvxJ2fjjwXYcOt+Hyjzx9qamogeYeneJGHS6ArDqVZBJxDdcdKpFRxtirmLRokVYtGjRRR974oknRv775z//eapDIlfRPOCDOxBJ61aYS62cmYdCgwo//8sZ/MObx/Cdm4rx6E3FUKVwUwfJXE7f8HpcdeorQbJUMkyz6PBFhxtrU/7shFyfoG5xm81mWK1WNDc3AwD279+P8vJynqMSjpM9gxgKsaihVpikmz/8b0wtMYSkhy53QHStMHGVeTq0O/3wBMJ8h0LIuB3pGJ4HUpw5SRAAmF1kwB8fmYuvTTPjvw6044FNh/FJ0wDfYZEM4PSFIZMw0Cn5SbrNLzbiZLcHgfDElyQQkmiCSoIAwNNPP40f/ehHWLVqFRoaGvDd736X75AE40CrA1IGuLGYysqSzapXociooiQIIWmi0+VHoUFcm2HiqobXDdbbBnmOhJDxO9rpQl6WEgVpPg/kSgxqOf7ljun47f03QCmV4Mlt9fi/HzbA5afEJkkePtbjXqimJBuRKIfP2128PD8h1yKodhgAqKysxLvvvst3GILgzVcjAAAgAElEQVS0v9WJmfl6ZKkE92VLS3MKDdjbNIAox0HC0y8QQsjEeYMRuAMR0W2GiavMywID4FTPIGpLTXyHQ8iYcRyHI51u1JRk8/aGTAjmTzLij9+eizcPd2HD/jYcanNiYZkJN5UYIZMI7r4kETmHLwSzjr+tYnOLDdAqpPikaQC3ZsgsICIe9IorEi5fGGd6vbQVJoXmFBngDkTQPCDuuTOEZLr4elyxtsPolDKU5Wpwqoem7BNxanX44fCFM2oeyNXIpRJ8+6Zi/Ne35qI8V4uPzw9g44EO2AeDfIdG0ggb5eDyh2HiYTNMnFwqQW1pNj5pdiDKcWPeiESbkEgyUUmBSHze7gQHoJaSICkzZ/hi7WinG1NytTxHQwgZry5XbJC0WNthAKDKqsee8/3gOC6j76QTcTrSGSuHn0vtvCMsWUrcU52Ppv4hbK/vxWufd+C26WbcUEiJIjJxNk8AUQ4waVO/GeZCt5TnYGdjPxp6vSgwaca0EYk2IZFkokoQkTjQ6oReJRP1phKxKTSoYNEpaC4IISIXrwQpFGklCBCbC+IORNDhCvAdCiFjdqTDjVytAsUi/hlMlvJcLR6vnYRiowrbT9vx8XCyk5CJiCf/+awEAYCbJ5sgYYC9NAyYCAwlQUSA4zgcaHPipklGSEW43lGsGIbBnCIDjnS66YKEJz09PXjkkUdw++23Y+XKldi0aRMAwOVyYc2aNVi+fDnWrFkDt5sSVeTqOl0BGFQy6JTiLX6sytcDALXEENGJchy+6HBhXrGBqpiuQqOQ4RtzCjG7UI/PWpzYdY4SIWRiOocT5iYNv5UgRrUcswsNqDvbR9/TRFAoCSICTQM+9HlDqCmhVphUm19sxMBQCC0OmgvCB6lUip/85Cf461//irfeegtvvPEGzp8/jw0bNqC2thYfffQRamtrsWHDBr5DJQLW5faj0CjeVhgAmJyjgVYhxfEuSoIQcTnXNwSHL0wzza5DKmFwW6UF84oN+LzNhU+bHXyHRESs0+WHSiaBWs7/W73bKi1oc/rRaPfyHQohI/j/ySDXdbDVCQB0AcGDmuF/8wPDXwOSWhaLBTNnzgQA6HQ6lJWVobe3F3V1dVi9ejUAYPXq1di5cyefYRKBuXT4WocrAEuW8oqD11gB3JhiGOaimHrcgcvi9ESiqCrQ41CHi4bKEVGJX8PQjZzrYxgGy6aZMasgC582O9BAa7HJOHU5/TBpFYKovvraVDMUUgY7z/TxHQohI8RbG5xBDrQ6MdmkgVVPvbSplq9XoSRbjQOtTjw0r4jvcDJaZ2cnGhoaUF1djYGBAVgsFgCxRInDcf07ZlIpA6NRk+wwE0YqlYgq3kSbyOff4w7gYFus/5iNcrB5Aphi0eFgm+uyY+eVZEOjHl25sEwqScqxYQ44fEFsEgmDaPTyDEa2RoGDrU78/Wwf9Krr93kvmmqGUaRrgUn6ONDmxJRcLa+rOsWEYWIVIU5fGB/W9yJHq4Ali/7tyNh0uvzIE8j3TZZKhlvLc7GnsQ/TzFpq7SeCQEkQgQuEWRztcuPuG/L5DiVjLSjNxraTNgQjUShlVDzFh6GhIaxbtw4//elPodPpxnUOluXgcomnrclo1Igq3kSbyOcfCLHw+UMAAIcvhCgHZMklIx+7UISNXvHjV5KqYzVqxRUfm58VS6qc6XaPzAi5lkAwDJcrOqoYUsFspsHemSYQZnGsy41vzC7kOxRRkUkkuOeGfPzXgXa8f8qGR28qhkxK1x+JxLIs7r33XuTl5eH3v/89Ojo68OSTT8LtdmPGjBl48cUXoVDwO09jvAJhFn3ekKCWKaycacHOxj6c7xvCtLzxXccRkkj0iipwx7rcCEai1ArDowWl2QhGojjeRcM3+RAOh7Fu3TqsWrUKy5cvBwDk5OTAbo+tWbPb7TCZTHyGSATMMRQGwP+awESwZCmhVUrR7vDzHQoho3Kk040wy2FBKa3GHSutUoY7ZuShzxvCx+dps0aivf766ygvLx/5+69//Ws8+uij+Oijj6DX67FlyxYeo5uYDoFshrnQglIT8rKUONRO7eVEGCgJInD7W52QSxnMLaK98XyZW2SETMJgP80FSTmO4/Czn/0MZWVlWLNmzcjHlyxZgm3btgEAtm3bhqVLl/IVIhE4hy9WUcH3hPxEkDAMZhUY0ObM3AohIi6ftTiglEkwu5CuYcZjilmLOUUGfN7uQo+H1mMnis1mw549e3DfffcBGN7CeOAAVqxYAQC4++67UVdXx2eIE9LuHE6CCCj5L5MwWF2djw5XAN1u+l4m/KMkiMAdbHNidqEBarmU71AylkYhxdwiA/bRpPaUO3z4MN577z0cOHAAd911F+666y58/PHHWLt2Lfbt24fly5dj3759WLt2Ld+hEoEaGApBJZdAo0iP19BZhQa4/BG4/GG+QyHkmjiOwydNA7hpkhGMTDrqgb5CG1zMt69OyYFWIcWOBjuitGI0IZ5//nmsX78eEknsbZDT6YRer4dMFpsSYLVa0dvby2eIExJPgmSrhVMJAgC3z8yDUibB5210U5Hwj2aCCJh9MIimfh/uuCWP71Ay3q3lOfj17ia0O/2YlC3uVZtiMn/+fJw9e/aK/2/Tpk0pjoaIkcMXRk4aVIHEzZtkxP8HoKl/CPOKqcWACFfzgA/dniC+UzMJvjCL3WfsYz5HbYU5CZGJi0ouxdKpuXj/VC+Od3mwtJKuCSdi9+7dMJlMqKqqwsGDB6963Gi2qiRz4PqEhoMPhWDWKWDMGv1g7LEM845TKeUjw7dHE6+fkeDG0mzsOz+AwXAUeddZ+HDh+ZNBbAPoKd7EoiSIgB1oo9W4QnHLcBLkk6YBPDyftsQQIhaOoRAm5wr3l/BYFRjVMGnkON9HSRAibJ8OV09+ZTLNbJqoGdYsHOl045OmAXzv1jJkp0llGx+OHDmCXbt2Ye/evQgGg/B6vXjuuefg8XgQiUQgk8lgs9lGNtBdSzIHrk9kOPh5mxcFRvWoh3MDYxvmHXfh8O3RxBsIsZhXaMAXrU785WQPHph77YHJyR7uLbYB9BTvlY136Dq1wwjYZy0O5GoVqDBr+Q4l4xUYVKgwa7G3iYaTESIWwQgLb4hNq0oQAJiSq0Wbw49QRDibXwi51KfNA5hm0dF61wRgGAaLK3IxFGLx7vFuvsMRtR/+8IfYu3cvdu3ahZdeegkLFizAb37zG9TU1GDHjh0AgK1bt2LJkiU8Rzp+7U4fiozCXI+uUUhx82QTmgd8aBkQzxt6kn4oCSJQETaKA61OLJxsGlVJHkm+W8pzcKzLTb34hIhEOm2GudAUsxYsx6HVQReQRJicvhBOdHvwlTKqAkmUIqMaUy1avH24Cy4fXYck2vr167Fx40YsW7YMLpcL999/P98hjYvLH4Y7EEGhUbit2/OKDTCqZdhxxo4wS8l8wg9KggjUsS4PhkIsFtIFRMIwDDPqYWw97sBlH5tbko0oB9TRqjpCRGFgeDNMjoDWBCZCkVENpUyC831DfIdCyBXtOT+AKAcsqcjlO5S0sqg8B/4wizeOdPIdSlqoqanB73//ewBAcXExtmzZgr///e945ZVXoFCIM3neMTwUtUjASRCZVII7ZuTB6QtjD11TE57QTBCB+rTZAZmEwU0l1POdKP5IFPvP9Y3qWI1acVlvJMdxMKrl+PsZO+6dZU1GiISQBHIMhcEAMKZZEkQqYVCWo0Fj3xBui3KQSDK3WnDv3r147rnnEI1Gcf/991+2KWrjxo14++23IZVKYTKZ8Pzzz6Ow8Np96GTidjX2o8ioonbeBMvVKfGVKTn489FufGt+EfSq9HptIxPXfkES5FzvIM/RXF2JSYN5xQZ80e7CZJMGU+i1gqQYVYII1L6WAcwtMkCroDyVUDAMg8o8HY52uOD0jW14FCEk9Ry+EAxqOWSS9PtVV2nNgj/Mom34gjcTsSyLZ599Fq+++iq2b9+ODz/8EOfPn7/omMrKSrzzzjv44IMPsGLFCvzrv/4rT9FmDk8gjEMdLiypyKV23iR4aH4xhkIs3jpCs0HI5dqdPkgZwKoX/iyexRW5sOgUeP+UDY4huq4mqZV+V4ZpoNPlR6vDT60wAlRpzUKUA3ad6+c7FELIdfR5Q8hNs3kgcWU5GiikDM4I+E5fsp04cQIlJSUoLi6GQqHAypUrUVdXd9ExCxYsgFodKwufPXs2bDYbH6FmlL1NA2CjXMa0wsRbba/URnutPyw3vuebYtFhweRsvHW0CzZfaNTP5wnQHJFM0O70o9Cohkwq/Ld4cqkE984uAMMAbx/rhi8U4TskkkEEV2bAsizuvfde5OXljfTpZZrPWobXypXl8BwJuZRFp0CRUY2PzvTh3uoCvsMhhFwFG+Xg8IXSthxfLpVgilmHs3Yvlk+3QJqBLTG9vb2wWr9sTczLy8OJEyeuevyWLVtw6623piK0jLbzbD+sWUrMsI5vbaHYxFttr9RGey21FeZxP1+ZSYMDLU789uNmVBcaRvW426sLIdwpESRR2px+TMoWz1faqJbjvuoC/OlIF/50pBsPzSuESk4roEnyCS4J8vrrr6O8vBxer5fvUHjzabMDk7LVonoRyxQMw2DJNDNeP9iOTpdf0IOnCMlkDl8IUQ4w69KzEgQAKvN0OG0bRJvDh7Lc9Ez2XAvHXX4r/WrtF++99x5OnTqFP/zhD9c9r1TKwGjUTDi+L88nSej5Ei2R8Q14gzjQ5sTjC0uRnf3l96TfHYBGPfafRZlUAo1aAYmEGdPj448b7/ON5zGpjHF6gQHWcwP4osONBeWjaztiJAyMWcL9PgSE/7MidFGOQ7vTjxsniWueYHG2GvdU52PLsW68cbgLD8wtoHEAJOkE9R1ms9mwZ88efPe738Vrr73Gdzi88IdZHO5wUZWBgC2vtGDzwXZ8UN+L7y0s5TscQsgV9Hljd2RzdcLvix6vshwNlDIJTtkGMzIJYrVaL2pv6e3thcViuey4zz77DL/73e/whz/8YVQbH1iWg8uVuPXDRqMmoedLtETGt+VIF9goh8VlpovOGQixY6qSiIuwUfj8oTFXWcQfN97nG89jUhmjPxDGvGIDttf3oqHLjdKc6ycOuGhiv6+TIf69aDZnRhVRonW7AwhGoigbxfeD0JTnanHf7AK8e7wHmw914v7Z9D6IJJegkiDPP/881q9fj6Gh0a39S/TdGj7Es96eQBhDQRb7OhwIsRxuLM+BnxlbPx8j48Z1V+FS4707celdkPGeJ1HxTOQ817qjU5ijxU2lJnxQ34tHbp487jJ0rVKa9MnudFeFZKo+bwgMk37rcS8kk0pQmadDfc8gQtOjUMiE3wOeSLNmzUJrays6OjqQl5eH7du34ze/+c1Fx5w+fRrPPPMMXn31VeTkUItpsv21wY6pZi3KMzApl2oz8nTYfa4fh9pdo0qCkPTXPBBLck3OEefPX3muFg/OK8SWYz3Y9HkHik0a3DZtfG1jhFyPYJIgu3fvhslkQlVVFQ4ePDiqxyT6bg0f4llvZ4jF7jN2/O10LxRSBjaHD391jW3qf22FeVx3FS413rsTl94FGe95EhXPRM5zrTs6g/4w8vUKHGx14Le7z437Ym/xdAuiSR5Uloo7kHTHhghRvzcIk0YuiuFwE1GVr8exLg/O2r2YVaDnO5yUkslkeOaZZ/D444+PzBOrqKjAyy+/jKqqKixduhQvvvgifD4fnnjiCQBAfn4+fve73/EceXpqc/hQbxvEE4vK+A4lI8ikEswtMuDTZgccQyGY0nQINBm95v7YTeSyHA3EOga3yKjGozXFeOdYN57+sAGnutz437dMpjkhJOEEkwQ5cuQIdu3ahb179yIYDMLr9eJHP/oRfv3rX/MdWspwHIfGviGU5WgzcsidmFSYtdAopDjS4aY7XoQIUJ83hLys9G2FiSsyqmBUy3Cqx5NxSRAAWLRoERYtWnTRx+IJDwAZ21rLh/dO2iBlgNum053bVJlTZMD+Fie+6HBh+fTLW8FIZmlx+GDRKaBTyuAMsXyHM25GtRzfuakY5wZ8eOtoN/acH8APvlpGa7dJQgnmFtkPf/hD7N27F7t27cJLL72EBQsWZFQCBAC63AEMhVhMtej4DoVch0wSuwNzvn+IdpsTIjDBCAunP4zcNB6KGscwDGbm69Hq8NMKTMKbUCSKD+p7cUt5TlrP4REanVKGGVYdTnZ7EIxE+Q6H8Ky534cykbbCXEomleB/3VqGDQ9UQ6+S4ScfNOB/bTmJs/bMXZxBEkswSRACNNq9kDBAeS71dorBnCIDpAyDLzpcfIdC0liQA5whdlR/gpcvy8hI7Y5YK2E6b4a5UFV+rCWtvmeQ50hIpvq4aQAufxj3VOfzHUrGmVNsRIjlcNpGP/+ZLMpxaHH4UJZm7yHmFBnw+rfmYv2SKWi0e/GtzUfw4/dP41wfJUPIxAimHeZCNTU1qKmp4TuMlOI4DmftQyg1aajvTSTid2BOdHtwS3kO1PR1I0ngC8fmBY3G4ukWKBX0fdg03BdtzpA70iaNAoUGFU71DGJBaTaVC5OUe/dED/L1StSUZPMdSsYp0Cth0SlwrNONOUUGvsMhPIlvhplsSq8kCADIJAy+MacAt1da8OaRTrxxuAu7z/VjSUUu/kdtCaaY06P6haQWVYIIRMuADy5/GNOoFUZUakqzEWY5fN5G1SCECMV5uxcKqQSmNN4Mc6mq/Cz0D4XQOxjkOxSSYRrtXnzR7sI9N+RDQgm4lGMYBtWFBtgGg7B5AnyHQ3jSMrwZJp3XpWepZFh7cyne/x834fEFk3CwzYkHXz+Mn3xweuTmByGjJchKkEz0adMAAKDCkr4vXunIrFNimkWHwx0u3FRipGoQQgTgXN8Q8rKUGVURUWnNws6z/TjVMwirXsV3OCSDvHGkCyqZhFpheFSVn4Xd5/pxrMuD2+jnPyONrMdNYSUIwzAjA1j97gAC1xnGyiaoZVevkuN/LizFN+cW4o0jXXjrSBf2nOvHt24sxrdrJmG0I2H97gAkHKDMnEsFcgFKggjEvqYBFBtV0CroSyI2Xykz4azdi0NtLtw6JYfvcAjJaJEoh+b+IdyQYZtS1HIpppg1qLcNYklFLiS0YYykQL83iB0NdtxzQz70qsypvBIalVyKyjwd6ntiP/8KGRV6Z5rz/UOw6BTIUqXufYQ/EsX+c30AAI1aAZ//2osCaisSuznKoJbjewtL8eDcQvzH3hZs+rwDnzQ7sHyaGdmjqATVqBWoKTFSG3GGoldJAehw+tEy4KOtMCJlyVJiukWHz9ud8AYjfIdDSEZrdfgQjERh1WfGPJALVeXr4QuxI3cECUm2N490gY1yeHBeId+hZLzZRQaE2CgaemlAaiZqtHsz9n2EUS3Hz1dMxb/dXYW+wSBeO9iODqef77CIwFESRAD2nO8HgIx98UoHiypywEY5fDLc1kQI4ceZ4TcA1qzMKwkvz9VCLZfgVI+H71BIBnD4Qvjz0W4sn25GkVHNdzgZr9CgQq5WgWNd9POfaYKRKNocPkzN8AGhC8tM+I8HqqFRSPHWkS60DNCcEHJ1lAQRgN3nBjDFrIVRTaWkYmXSKDCv2IjjXR7YaTAhIbw50+uFSi6BSZt5r6dSCYNKaxYa+4YQCI+2K5qQ8dl8qBMhNorHa0v4DoUgPiBVj253gAYkZ5iWgSGwHFBhppup+QYVvjW/CNkaOd451oNuNw0LJldGSRCedTp9ONkTW7FKxG1hmQkquRR/a7CD4xI0/YkQMiZner0oz9Vm7JaKWfl6sFEOZ+1evkMhaazfG8SWY91YMd2C0jRcySlWVfl6SCUMjnW5+Q6FpFCjPVbxQBXlMVqlDN+cWwitUoY/H+2G03ftWSUkM1EShGcfnOgBACyelthhQST11HIplkzNRZc7gONUjkpIyoXZKM5kcF80AOTrlTBp5DjZTXMBSPL856etYDkOa2+mKhAh0SikmG6JDUgNs1G+wyEp0tjnhVouQZExvdpA49tnxvInvoFGq5ThG3MKwIHDu8d76OeBXIZWkfCI4zi8d7wbcwr1sOpVaOimN85iNys/Cye7Pdh9rh9luRqalk8yTpADfKNsxdDIpQldTXem14tgJIqZBXqwkcy84GEYBlX5euxtGoDNE0B2bmb3iJPEO9M7iA/re/Hw/CKaBSJAswv1qLcNoqHXm3FbsjJVY98QpqRhBeSF22dG68INNDlaBe6ssuLPR7vx9zN9uGNmXqJDJCJGSRAeNdqH0NQ3hKe+NoXvUEiCMAyD2yst+O8D7dheb8c35xaASbNfSoRciy/MYvcZ+6iOXTzdktDVdPES8FkFehxrdyXsvGJTlZ+FvU0DqDvbh0pKgpAEinIcfr2rCQa1HI/VTOI7HHIFxdlqmDRyHOt0UxIkA3Ach3N9XqyYbuE7FEEqz9Xi5snZ+KzFifJcLablZW6lKLkYtcPw6C8NvZBLGSydSq0w6cSkVWDJ1Fy0Onw43EF9uRPx1FNPoba2Fl//+tdHPuZyubBmzRosX74ca9asgdtN/8Yk5liXB5Oy1cjWKPgOhVcGtRyTstXYeYbmE5HE2naiB8e7PVh362Rkqeg+mhAxDIPZhQZ0uQPo89KA1HTX4wnCG2RRkeGbYa7lK2U5sGYp8bcGO3yhCN/hEIGgJAhP2CiHj870YVGFGQbaCpN25hQZUJajwe5z/RgYooFM43XPPffg1VdfvehjGzZsQG1tLT766CPU1tZiw4YNPEVHhCTKcTje5cbsQrrzCcSqQbpcAdTbaDYISQz7YBCv7G3B/ElGfJ3KygVtVoEeUoahdbkZoGF4LXxlXhbPkQiXVMLg61V5CEai+OjM2NprSPqiJAhPvuhwoX8ohDurC/gOhSQBwzBYOTMPcimD90/awEbpbux43HjjjTAYDBd9rK6uDqtXrwYArF69Gjt37uQjtKRrGxjCL3eew8MbD+HlPc3YfKgDZ3oH6c7+VbQ6fHAHIqguNFz/4AwwPU8HhVSC7fW9fIdC0kCU4/DsjrOIRDn89GsV1OYpcBqFFFMtWpzq9tBAyEv09PTgkUcewe23346VK1di06ZNAMRbZVrfMwi5lKFKkOsw65S4eXI2Gnq9aB3w8R0OEQCqZeTJ3xrs0CqkWDLNDP8QlSumI51ShtsqLdh6woY95/qxlDYAJcTAwAAslljvq8VigcPhGNXjpFIGRqM4Vjm+fbgTv/hLAzgOmF+SDX+YRevAELaesGGqRYcH5hdDIbs8h61SymE08Dsd3u8OQKMeXTvKteKVSiVj+nqdPdcPAFhUmQeFTDrqGGRSieCOlUiYqz52tOfVALilIhc7G/vxz6tnXfH7hZDR+tORLhxsc+Gpr01BcTYNQxWD2UUGNPR6cdbuRVU+VcjFSaVS/OQnP8HMmTPh9Xpx7733YuHChXj33XdRW1uLtWvXYsOGDdiwYQPWr1/Pd7jXVW8bxDSLDnIpvcZfz4LSbJzsGcRHZ/vwDwtoplGmoyQIDwJhFrvP9WPp1Fwo5VL4+Q6IJM30vCzMLfbj83YXirPVGb26k28sy8HlEn72f/OhDryytwW1ZSb87GsVUChl2H3Gjmg0B4c7Xag7249N+1tx/5wCKC656AkEw3C5+L3rFwix8PlH1wJ2rXiNRs2Yvl67G+yw6BTQSwBXMDzqGCJsVHDHatSKqz52LOddXJGLujN2/OVoJ75akTuqxyST2Uzl2mJUbxvEf3zSglvLc3D3Dfl8h0NGqSRbjWx1bEAqJUG+ZLFYRm6k6HQ6lJWVobe3F3V1ddi8eTOAWJXpI488IvgkCBvl0NA7iDurrHyHIgoyqQTLppnx9rFuHGp3YUkltfVlMkob8mDXuX4MhVjcMYN++DLB0qm5sGYp8WF9L1z+MN/hiF5OTg7s9tj2EbvdDpPJxHNEibPtRA9e2duCr001Y+N3bkRelnLk/0kkDG6clI1VVXnocPqx/VSv4FpjPIEwPm91orl/KKWzcMJsFJ+3ObGwzERl+heYN8kIk0aOvzSMblsPyRxBDnCGWDhDLHrcgZH/vvRPqzuA9e/Vw6RVYN2Scvg45qrHXusPK6yXqozAMAxmF+nR4QrQbLKr6OzsRENDA6qrq8ddZcqnFocP/nAUM6yUYB6tKWYtKsxafNo8ADddk2c0qgThwdYTPZiUrcbcIupdzwQyiQSrb8jHxoPt2HqiB4/cWASZhPKP47VkyRJs27YNa9euxbZt27B06VK+Q0qIetsgflV3HgtKs/HsHdMglVz5zfzMfD08gQj2nB/AsS4P5gjgdaTD6cdLe5rwWYsDF46/ycuK9eBOs+iSmpw42unGUIjFwsk5SXsOMZJKGNxWacGfj3bD7Q/TEG4y4sJV1lerPIpEo3jrSDccvjAeubEIh1udqK0wY/+5sQ8WrK2gdlA+zCrQ4+PzAzjW6ca3+A5GYIaGhrBu3Tr89Kc/hU43virdZLbZjqYltKUplqipnWq57NixtKYCY2vhvNJjrtXGOd7nmGhMV7PqhgL8/+zdd1yT1+LH8U8S9t6goqiAiHtWrRt3EXdta7Xjdrd22atVe22rVu2ww9ppd2vH/VWtXuuqSt0LJw4UUaYyFMIeIcn5/cE1VxQUSEKCnPfr1VeFJE++T8g5Oc/JGR//ncCWM5mM6dzU4tOIa6q204Qtzdrzyk6QenYxu4jjlyq2l5PfWDYenk62RLb3Z82JdKLjrzJc7udeIzNmzODQoUOo1WoGDBjA888/z5NPPslLL73EqlWraNKkCcuWLbN0TKMVlGqZu/4MPs52vHVP29vO7e3d0pNkdQnbzl2hhacj3s6W2xJ2bWw670UnYKtS8lDP5rRr5sbJtDzS80s5npZfsY6JrzP3tPfH0VZllgx7E3OwUym4K8jDLMdvyO5p588vRy6x9dwVJnW58/yO9zoAACAASURBVBbi3rVrF4sWLUKv13Pvvffy5JNPVro9JiaGxYsXc+7cOT744ANGjhxpoaQNixCCTWeySFGXMKZDAE3cGsZFglSZs50NbXxdiE3Pp0yrw1El250A5eXlvPDCC0RFRTF8+HDgf6NM/fz8ajzK1JzTbGsyJfTwxWxc7W1wV3HTfWszNRVqN9WyqsfcahpnXZ/D2EzVsVdWtKP2XMwh5uJVBrRqGCOKaztN2NLqK29dp9paVSdIeno6s2bN4urVqyiVSiZPnszDDz9s6Vgmte5kBjbKip1DpMYlzM+Fni08iPnv+iCDZUfIbX3wwQdV/v7aau4NVZmo+Cb2mvejE8goKOPDSZ3Qq5SoNTpK8koprWYYuUKhYHR7f1bsS+avs1nc362ZWTtVb8x7zS8xqXx/IIUeLTx4ZWgo3s526ASoCzUEejjSPdCDQym57Ey4yk8xqdzbpRmeTqYfjbDnYg7dm3uYrZOlIWvj60ywjxMbz2TdcZ0gOp2OBQsW8N133+Hv78+kSZOIiIggJCTEcJ8mTZqwZMkSvv32WwsmbXj2XMzhVHoBA4K9ad9EDrVvyLo2d+dsViHRZ7OYINueCCF47bXXaN26NY8++qjh9w1xlOnJ9HzaBbiglF+q1tq1RVI/351Iv5ae8jVshKyqE6S6FZuvb9A0ZCXlOtafymRQiA9eTpb75laynMGhPlzKK2Xj6SzGdm6Kp1wotVG6fij6xewitsRl0aelJxm5JWTkViyVfO1bleqGkbvY2zAwxJu/zl7hTEYB7c248N31ea85lKxme/xVOjRxJSLUh9jUXKDysHelUkHvlp40dbNn9Yl0fj6cxtSegXiYcFpGYnYxKeoS7ut6Z13gm4pCoSCynT8f70okRV1CiztoZ4/Y2FiCgoJo3rw5AJGRkWzfvr1SmyEwMBAApZyCWGOxl/PZczGHjk1dubuVp6XjSEYK8nTEx9mOVUcvMb6dX6MfhXzkyBHWrVtHmzZtGDt2LFAx6rShjTLNKykn4UoRT/UNsnSUBslWpWR4uD+/H03jz1OZjOkoF5dtbKyqE6S6FZvvlE6QTWcyKSjTcn832VhvrFRKBeM6BvDtgRTe2nSO76d0wUF+e91olev0bD6ThbezLf1a1344ZtdAd05ezic6/iqhvvXXoRafVcj2+Ku08XMmsr3/bb9BaeHlxIM9Avn5cBq/HrnE1B6BuDqY5uPnz9MZqBQwpI1cc6A6I9r6sXxXIpvOZPJU35aWjmMymZmZBAT8r+Hq7+9PbGys0cc19Tx/a5wXff16AdfP5T+Tns+mM5m09nFmQreb16+qyxx9UzyuJusNmPL56vIYa854d7A3/4lN50K+hh5B1tuxVR9lpUePHpw7d67K2xrSKNPjl/IQQLdAOQ20rjo2c+P0ZVc+3ZNIRBsfXOyt6rJYMjOr/Wtfv2Jzdcy5IJGpCSH4/UQG7Zu6MaBdgKEn/lqFX9sFjKpS1w9UUx3nxgaApfMYc5xbNWaMzePkaMekboGsPJTCJ/uSeWtshzof63assfEt/c/BZDV5pVqmdG+GzW3WAamKUqFgaJgvP8WkcSBJzYh62CZPXVzO+lOZNHGzZ0yHgBoPIfVztee+bs349Ugavx69xNQezYzOotULNpzJom9rb4uui2Lt/FztuSvIg41nMnni7qA7ZthvVbsjmeJbblPP87fGedzXrxdwbdTZxewiVh1LJ8DNgXEdA9CUablxZn1d5uib4nE1WW/AlM9Xl8dYc8ZQHydcHWz4ZtdFQqLCa/2c9eVaWZHbad/e0bQ87G2UtJc7w9SZQqHgmQGteP7/YvnuYCrPD2hl6UhSPbLKTpCarthszgWJTO1gspqEK4W8PqINeXklht9fq/Bru4BRVer6gWqq49zYALB0HmOOc6vGjCnyNHe3Z3K3Zvz7cBrt/ZwZZaa9yuuj8S0bK3WTX1rOgUQ1bf1cCPKqe0dVoIcj4f4uHExWk1VQhqe3+Tq9dHrBupPpKBQwrlOT2y7geqOm7g7c26Up/z52md+OXmZQmB+ednUfCXUgKYfsIg1Rcp77bd3Tzp83Np3jhJXsKGQKAQEBZGRkGH7OzMw0jCaVaidVXcLq4+l4O9syuWtT7G3k9KE7iZ1KyeiOTfi/w6lkFrSutP261DAdTc2jQxNX7GRZNUqYvyuR7fz49Wga4zsFEOhx50wZlW7N6kpOVSs23wl+iknFy8lW7goiGTzSuwVdmrmxZOt5ErMbRmeeZDo7zmejBwa38TH6WINDfRDAt/uTjT7Wrey6kE16fhmj2vnVeV2PFl5OTOjchCuFZbz+ZxylVSy4WlNrYzPwdKzbVKLGZnCoD462SjaeybR0FJPp2LEjSUlJpKamotFo2LBhAxEREZaO1eBcyi3h/45dxs3Bhvu7N5MLDN+hxnVpigBWn7hs6SiSkQrLtMRfKaTbHdKhbWnP9W+FjVLBx7sSLR1FqkdW1QlS3YrNDV1cZgEHk3OZ0j1QfrsiGdiolCyKDMfBRsWr689QYsTFoNSwnE7P53RGAb2CPEyySKi7oy13tfAg+twVTqfnmyDhzRKziziQpKZLMzfC/Y0b/RPs48zo9gGcupzPaxvOotVXsQXObZzLLGTnhWwmdm5Sp6lEjY2jrYqIUB+2xV+hTKu3dByTsLGx4fXXX+fxxx/nnnvuYdSoUYSGhrJs2TK2b98OVCyeOmDAADZv3swbb7xBZGSkhVNblyuFZfywPxlHWyUPdG+Gs51VDhCWTKCJuyMDgr1ZcyLdqM5nyfKOX8pDL+R6IKbi62LPI3e14O/zVzny30XepTufVbUcr63YfODAAcaOHcvYsWPZuXOnpWMZ7cdDaTjbqZjYuYmlo0hWxs/VnoWRbUnKLmbJ1vNVznGX7ix6Ifh8VyIu9ir6tDTdCIY+rbzwdLLlgx0XTf4+UhdrWH8qEx9nO4aGmWYB0vZNXHluYGt2Xcjmrb/i0dcy8+d7k3BzsOHBHoEmydMY3NPOn8IyHbsvZFs6iskMHDiQLVu2sG3bNp555hkAXnzxRcP2lp06dWLXrl0cP36cgwcPsmHDBkvGtSpZBWX8cvgSNioFD3QPxM3B9NtXS9blvq7NyCvVsjEu6/Z3lqzW/kQ19jZKOsjtq01mSvdmNHGz573oBLS6O+OLAunWrKoT5NqKzevXr2fdunWsW7eOgQMHWjqWUS5mF7E9/gqTujSVqw5LVeoV5MkTdwexKS6LP05m3P4BUoO28Uwm8VmFDA71MelcXnsbJY/0bkHs5Xy2xV812XH1QvDe1vOUafWM7RhQ63VAbmVMpyY8eXcQG05n8taWeHQ1HBFyJDWXvYk5TOsRKOvVWuje3AM/Fzs23EFTYqS6uXCliF+OpKFSKnjs7pZ4OskOkMage3N3wv1dWBmTWuP6VrIuQgj2JObQs4WH3F3QhBxsVbwyOIQLV4tZeTjN0nGkemBVnSB3ohX7knG0VTG1u/y2UqreY71b0DvIk6XRCZzNLLB0HMlMijRaPtmdRFt/F7Os6D483J9QX2c+2XXRZFMefj6cxuGUXIa08cHPDIvpPd67BU/0acH605nM/TPuttPCcoo1vL7xLIEeDtzXzfgdZhoTlVLByHB/9iepySk2frFpqWE6m1nArLWnsFUpebBHM7xd5CKZjYVCoeCRXi1IzS1le/wVS8eR6iApp4TLeaX0l2thmdzAEG8Gh/rw9YEU0nJLbv8AqUGTnSBmdC6rkO3xV3mgezM85Lcs0i0oFQoW3BOGp6Mtr66PI7+03NKRJDP47mAq2UUanhnQ2iRbed5IpVTw8qDWXM4v42cTfJNxOqOAT/ck0be1l9l2FFEoFDx5d0teHtSav89f5bFfj5NUzULBRRotr/0ZR25JOW9HtZMLONbBPe380OkFf52VF0CN0ZmMAp79/SROtioe7BGIp5PcWrqxGRTiTUsvR74/lFrraYiS5e25WDGd8e5WshPEHP45OBhblYI3N52To6XucLITxIw+3Z2Iq70ND8pRIFINeDrZsSSqHZkFZSzYHC/XB7nDpOWW8MuRNCLb+RFuhlEg1/Rs4UlEqA/fHEgmOafuuw4VlGr514Y4fJzteHlIiFk6ba43pXsgH03oQGZBGQ/8eIS3N5815NfpBYdTcnnk52McTcvjteFtCPOrfvt0qXrBPs609XO5o3aJkWom9nI+z62KxdXBhvcmdDDJosxSw6NUKHi0VwvOXyni7/Ommzop1Y89F3MI9XUmwM3B0lHuSH6u9swaEsKJy/n8GJNq6TiSGclOEDPZm5jD/iQ1j/VugauDnLMu1Uynpm68MKAVOy9kyzmJd5hlOy9io1TwXP9WZn+umUNCsLdR1WnBUajodJi38Szp+WUsimxbbwsm3t3Ki98f7cGIcD++3ZfEpO8OE/HJPoZ8uo9nfo8lv1TLZ/d24p52/vWS5051T3t/4jILuZhdZOkoUj3ZczGbZ3+PxdPRli8nd5IXUI3ciLZ+tPJy4su9yfLb7gZEXazhxKU8uS28mY1s68fQNr58uS9Z7hZzB5OdIGag1elZtuMizT0cmNy1qaXjSA3MA92aERHqw6e7EzmWlmfpOJIJHExWsyMhm0d7tcC3Hubf+zjb8fKg1hy/lM93B1Nq/fhPdieyNzGHmRHBdG5mnmkw1fFysuPNkWHs+ucgZgwOZlS4HyPD/Vg8Opw/HruL7s3lloDGGtHWF5UCNp6RO0Q0Bn+ezuCfa0/TysuJr+7vIjtAJFRKBU/1DSIxp5jNcqeYBmPruavoBAwP87N0lDuGQqFArdFV+i+3XM9zg1rTxM2BV9fHcS672HBbWR36DMsENz3Hrf6ry3NItSeHKJjBL0cukZhTzNKx7U26k4LUOCgUCuaNaEPC1SJmrz/D9w92pYlstDZYGq2ed7cnEOjhwJR6nBo3ur0/h1Jy+XJvMu0CXGu8He/3B1NYeTiNSZ2bMLGz5TpxA9wceEAufGoWXk529GnlxaYzmTx9dxA28nOqwSoTUFzNYsJCCH47conv9ifTNdCdNyLborRVodbo0MlGdqM3ONSHcH8XPtuTSEQbH7nGUgOwOS6TUF9nQnydLR3ljlGi1bP/fNVrZN3Tzo8fDqXy4u8neLB7IM72Ngxu64e9Xe3KSnG5jr/P1ryzsS7PIdWebPmYWFpuCSv2JzMoxJuBId6WjiM1UC72Nrw/tj0anZ4Zf5ymSKO1dCSpjn6MSSVFXcKsISHYm3BL3NtRKBTMHRZKsI8zc9bHceLSrUcVCSH45kAyn+5JYkRbX/4ZEVJPSSVLmNS5KVmFGrbKHSIatGuN6xv/++t0Bi+vOsl3+5NpF+DC0DAfDl7MMdxeLqdANHpKhYKXBwWTVahhZYycfmvtUtUlnEwvYFS4HAVSX7yd7bi3S1PyS7T8cuSSUZsWCCEo0mhRF5dTVKaV6/5ZATkSxIT0QrDor3hslApmygsIyUgtvZ1YMjqcl9ac4vWN53h3TDtUSvMuTimZVqq6hO8OpjAszLfGIzFMydFWxbIJHXjm91ieX32S+aPaMjjU56b75ZaUszQ6gS1nrzAq3I/XR7SR77U7XJ9WnrTycmJlTBoj2/qZfeFbqf4UlGpZdeIyGfllDAzxpk9LT/n3larUNdCdoW18+SEmlcj2/jR1l6NOrdWmuEwUwPC2shOkPjX3dOTerk1ZdTydbw+k0tTTieFVtKNupBeC+KxCDibnsjcph5OX8tFe1/lsq1IQ4GpPGz8Xwv1d5fqRFiBfcRP6+XAah1PzeG1YKH6u5p/3L935erf0YsbgYN6LvsAnuxN5cWBrS0eSakgIwbvbE7BVKXl5kOX+bn6u9nw5uRMv/XGaWf85w8Bgb6I6+NPSy4nCMi17Lubw+/HLFJZpebZfSx65q7m8YGoElAoFD/Zoxlt/nedQSi69gjwtHUkygcTsItafyqRcp2di5ya0kbsoSbfx4sBW7E3MZsm283w8oYOs/62QRqtn9Yl0erf0xF9eX9S7IC8nHunVnDUn0nntP2fY0MqTe7s0pWcLT8MIX51ekKwu5vilfGKS1cSk5JJXWjGKu5W3E10C3fF0tMXORkm5Tk9OUTmpuSVsj7/K3+ev0rGpG31beeEud+2qN7ITxEROZxTw6Z4kIkJ9GNsxwNJxpDvI5K7NSMopYeXhNNwcbHi0VwtLR5JqYOu5KxxIVjMzIrheFkO9FR8Xe76f0oWfDqfxU0waOy9kG25TAL1aevLiwNaE+Mh5xo3JyHB/vtibzDf7k7mrhYe8+GnAdHrBrgvZHEhS4+NsxwPdm1m83pEahgA3B57r14qlf19g45ksItvL3beszea4LHKKy3mwR/2tKyZV5u1sx6O9mqMu0/J/Ry6xL/E0KkXF76FiRK3mv4st+bnY0T/Ym7uCPOjZwhOVraraNUFyijTEpOZy4lI+p9ML6NPKk/6hPoBcE8TcZCeICVwt0jBr3Wl8ne2YOyxUNiQlk3tlcDAFZVo+25OEg61KLhhp5a4UlvHu9gTaBbhadHHR69molDzaqwXTegRyNC2P7GIN9iolXQLd8XKys3Q8yQLsbZT8o3cL3t2ewL4kNX1byW0XG6LsIg3rT2WQnl9Gl2ZuDA3zlYuyS7UyqUtT/jp3hfeiE+gS6EYzd0dLR5L+SwjBz0fSCPV15q4Wcnc0S7JRKZncLZBHezTnSFoux9PyyCrUoADcHW0J8XGmfRNXgjwdK10LqjVVL14N4OVsx4i2fvQO8iT6/FV2X8ghY1Usi+8Jp6W3Uz2cVeMlO0GMVFquY9a6M+SXavn6gS5yGJNkFiqlgjdGhqHR6vng7ws42CgZ36mJpWNJVdALwYLN8ZRp9SwYFVava2tc2+rtdkKbuNHeRoVGW3Hf2z3GXDtJ3CpvSV4ppdfdZndd3tuRO1/U3LiOAfx8OI1PdyfSp6UnStmJ32CU6/T8HJPKyoOp2NooGNcpgHB/V0vHkhoglVLBgnvCmPrTUV778yxf3d9ZdqRZib8TsrmYXcybI8Pkl6xWws5GSZ+WXiZd683d0ZbxnZpwLrOQbfFXmLryKM/3b8Xkrk3l391MZCeIEcp1el5df4ZT6fm8HRVOmJx7K5mRjVLBW5FtmbnuDEu2nkej1XOfHBFidb4/mMqBZDWzh4YQ5FW/vfi32urtRn1CfWt1X3O4VV4nRzuKSzSVMlg6753IVqXkmb4t+dfGs6w5kc6kLtYxckm6tROX8nhnewLnrxQR7u/CsDBfnO1lk06qu2bujswb3oZX18fxzvYEXpMjmy2uTKtn2c6LtPZ2YoTcFaZRCPN34d4egSz/O4Glf19gb2IOb4wMM0y7kUxHdvPWUZlWz5z1cexLVDNnWCgRbWSjWzI/W5WSd8a0Y2CIN0v/vsDyXRfRya0Orcbeizl8sTeJkeF+TJAjdaQGYnhbX+5q4cEnuxPJLCizdBzpFjLyS3ntzzge/+0EeSXlzI9sy7hOTWQHiGQSEW18ebRXc9adzOCHQ6mWjtPo/Xokjct5pbwyOBgbuWNbo+HtbMdH4zswa0gIR9PyeOCHI+y5mH37B0q1IjtB6iCvpJznV59k54VsZkYEy2kJUr2yt1HydlQ7JnZuwo8xacxYe8qovcsl0ziTUcDcP+MI9XWW36BJDYpCoWDOsFB0esFbW+Jlx6oVyi0p55PdiUz67jA7L2TzeO8WrPpHT/q09rZ0NOkO83Tfloxo68une5L45UiapeM0WnHp+Xx9IIVBId7cJXfvanQUCgX3dmnKDw92xcfFjpf/OM2CP89QWl6zacHS7clOkFqKyyzgoZVHOXk5n7fuacvkrnI6glT/VEoFs4eGMmdoCAeTc3nghyPEpKgtHavRSrhSxAurT+LhZMuH4zvgYCtX9ZYalkAPR14eHMyBZDWf7UmydBzpv/JLy/l8bxLjvj7Ej4dSGRTizapHe/BU35Y4ynpGMgOlomINsohQHz7ccZEV+5LQC9kxWp8Ky7S88O/juDnYMGdYqKXjSBYU7OPMd1O68kC3Zvx0MIWHfz7GsbQ8S8e6I8jxkzWk0er59mAK3x9KxcfZjq/u70yHJm6WjiU1chM6N6WtvyvzNp7l2d9PEtnen+f7t5JzB+vR4ZRcZv7nNI62Kj6d1BE/V7ktpdQwTejUhPisQn6MSSXAzZ575fogFpOcU8y/j13mz9MZlJTrGdrGh8f7BBEst7GW6oGtSsmi0eG89Vc8X+1P4fyVIuaNaIObg1z839yKNTpeWXuaVHUJn9/bSe7eZmVqugD99Wq7WHtVz/Fo35Z0a+XFu1vO8eS/TzC4jQ+P922Jr4s9TrYq7Gs5+LhMQHEtRpXU5TmsnewEuQ2tXvDX2Sy+2JtEen4Z97Tz4+VBwXjIXWAkK9EuwJWfp3Xj6wMprDycRnT8Fe7v1oz7ujbDw0Nur2UuOr3gx5hUvtyXTAtPRz6e0IEANwdLx5Iko7wyOJisgootnvNLy3m0Vwu5Y0w9KS3XsetCNn+ezmR/khpblYLhYb482COQUF+58LpUv2yUCt4Y0YY2vs58vPMik78/wiuDgxnaxkdO9zSTq4VlvLo+jtPp+bw3qRNdA90tHUm6QW0WoL+mtou1V/ccTo52PHxXc/YnqdmVkM2ehGy6NXfnxYgQQmu5EH9xuY6/z2ZVe7sQglKtHo1WjwB6tfbC18EWTyfbO2bnKKvrBNm1axeLFi1Cr9dz77338uSTT1okx6W8ErbEXWFNbDqZBWW09XPhX8PbyHl5klVysFUxvX8rotr7s2JfMt8dTGXl4TSGt/NnQCsv7m7pecdN0bBUXSGE4FBKLp/sSuRsViHDwnyZMzQUVwerq04lqdZsVUreHdOOBVvi+WJvMkdT85g7PJRm7o6Wjlal29UDGo2GWbNmcfr0aTw8PPjwww8JDAy0UNqb5ZaUE5OSy+4L2exIuEpJuR4/Fzue7BPEhM5N5Kg+yaIUCgVTugfSPdCDBVvOMffPOH70c2Faz0AGh/rcMRdD11iqXaHTC/46l8X70Rco1epZPDqcqE5Nyc0trpfnlxoOW5WSAcHedGrqxs6EqxxKzmXq94e5u5UXw8J86dPSE88ajh4SQlBQpkVdXE5uSXml/6tLyinT6g33/fy6abKu9jb4utjRytuJ1t5OtPZ2prWPEy08HLFpQHWCVbXadTodCxYs4LvvvsPf359JkyYRERFBSEiIeZ9XL0hVl3A2q5C4zAIOJeeScLUIgB4tPJgZEUL/YC/5bZhk9YK8nFg0Opwn7g7i/45dZlv8FTaczMDeRknvIE86NHGlXYAr4f6uDfqi3RJ1RVpuCXsu5vCfUxmcv1JEgKs9iyLbMizMV34rJt1RbFRK5o8Ko0ugOx/tuMDEbw8zsq0v97Tzp1tzD6vZpaAm9cDvv/+Om5sbW7duZcOGDSxdupSPPvrIInm1Oj1JOSWczSrgXFYRJy7lcTazEEFFo3J4Wz9GhfvRNdBdtjckqxLm78IPU7uxOS6Tr/en8NqGs3g42tK/tRe9gjwJD3Al0MOhQb9vLdGuyMgvJfr8VdbGZpCYU0y4vwsLRrWlpbccxSvdmoejLWM7NmFAcDnq0nKiz11hz8UcAAI9HAjxcSbAzQFHWyUqhQKVUkGxRkd2sYbsIg2X88u4nFdaaSF0pQLcHWzxcLKlqbsDnk622NsoUSgUtG/qhkoIcoorOkkyCsqIzyokOv4q145go1TQytuJEB9nQnyc6dLKCx87FX4udlbZOWJVV0GxsbEEBQXRvHlzACIjI9m+fbtRFdC16Sw5xeWUlOsoLddTptVRWKYls1BDVkEZmQVlht4uO5WCTs3ceWFAK4aG+dJEDm+XGqCWXk7MGhLCgnEd+Pt0OtHxVzmQrGbnhf9tseXuYEOAmwNN3Oxxd7TFxc4GF3sVjrYqXOxVjGjrZ7WjR8xRV0DFDi9nswop0egoLteRU6ThUl4p8VeKyC7SANDG15nZQ0MY3T4Aexvrq9QlyRQUCgUTOjWhXysvVh5OY+3JdDacycLRVklbf1eauTvg7WyHt7MdQ0J9LLIWTk3qgejoaKZPnw7AiBEjWLBgAUIIozsuizU6Tl7ORysEOr1Aq6/4f4lGR36ZloLScgrKdOSXlpNdoiU1p5grhWVca2862CgJ93fhibuD6P3fi0hr6VySpKrYKBWMbh/AqHB/DiSr2XQmk78TrrL+dCYALvYqgr2d8XWxx8/VDm8nOxztVDjYKHGwrfh/ax8nqx1VZq52hU4v2JuYw9XCMvJKK751T8st4fyVIjL+uyV5uL8Li0eHM6SNT4PuSJLqn6eTLRO6NWPGwNaczSzkULKaM5mFJOUUE5OSS6lWb+josFMpDJ/bQV5ONHWr6OjwcKyY5uJmb4Oyms+hwW398LS7+ZqgtFxHck4JF7KLuHC1iISrRRxJzWVTXBbsTgQqOld8Xexp4mZPgJsDXk4V1xzO9irDtYdKqUSpqFiYWaGouEZpb+a1N62qEyQzM5OAgADDz/7+/sTGxhp1zLTcEhZuiUd73RvAwVaFk60KXxd72vg606+1F6G+zrT1c6WlV8MayiNJt2KjUtKzhSc9W1RM48orKedsZiHnsgq5nF9KRn4ZqbklnEovoLBMS+l/OwOVCmjl7Uynpta5+K856gqAeRvPkqIuMfzs5mBDgKs9vYM8aBfgSp+WXjT3tM4GnCSZg5+rPTMGB/Nsv5bsS1JzNDWXMxkVDa3s4nJ0ekFOkYbn+req92w1qQcyMzNp0qRiG3sbGxtcXV1Rq9V4eXkZ9dyf7Unk38cuV3u7UlExusPVwYYmHo70aO5OEzcHgrycCPNzoYWnIyrZ6SE1QCqlgr6tvOjbygutXpCYXURcRiFnMgtIyikm/kohey6WGdoT12vh6cjqf/S0QOrbM1e74khqLq+sPW342dFWSTN3Rzo2dePBpm70aelJxzFauQAAIABJREFUUC3Xc5CkGykVCtoFVIz2vpH4b2e9SqkwfAGg1tx6TZCacrBVEebvQph/5XWr8krKySjVcTZNzeX8MjLyS0nPL+PEpTzySrQ1WpT190d70NKMZcOqOkFEFVtw3erbGltbFb6+N/+xr+fr60rC4nuMzmZOvr6u+AJtmnkYfaxOLUyzZok8Tv0cpz5cX0Z8gZAWXoy2XByTqG1dATWrL3a9GmFUrpqqbXmvzftN3lfe11zua+rBfRZ55qrVpB4wV13xzn1deee+rjVIaV7GtB3q+j6Sj7PscxnzOHNo4u/G3e1Md7zblT1zMVddEenrSmSPFnXKZMxrUZe6oT7e++a+f308hzVmqi1TXXfe6vghQL82tVsUtj5Z1ZCHgIAAMjIyDD9nZmbi5+dnwUSSJFkjWVdIklSTeiAgIID09HQAtFotBQUFeHiYr+EnSVLDJNsVktS4WFUnSMeOHUlKSiI1NRWNRsOGDRuIiKifb2YlSWo4ZF0hSVJN6oGIiAj++OMPALZs2ULv3r3lQsaSJN1EtiskqXGxqukwNjY2vP766zz++OPodDomTpxIaGiopWNJkmRlZF0hSVJ19cCyZcvo0KEDQ4YMYdKkScycOZNhw4bh7u7Ohx9+aOnYkiRZIdmukKTGRSGqmgQnSZIkSZIkSZIkSZJ0h7Gq6TCSJEmSJEmSJEmSJEnmIjtBJEmSJEmSJEmSJElqFGQniAnNmTOHPn36MHr0/zYg/eijj4iKimLs2LH84x//IDMz86bHHThwgLFjxxr+69ixI9u2bQMgNTWVe++9l+HDh/PSSy+h0Wga7LnMnj2biIgIw21xcXFWfS4A7777LpGRkYwaNYq33nrLsIXaqVOniIqKYtiwYZV+39DOY9q0aYwYMcLwN8nOzjb7eTR2u3btYsSIEQwbNowVK1bcdHtMTAzjx4+nXbt2bN68udJtf/zxB8OHD2f48OGGxR4bmrqef1xcHPfddx+RkZFERUWxcePG+oxtMsb8/QEKCwvp378/CxYsqI+40m1UVS9v2rSJyMhI2rZty8mTJw2/12g0zJkzh6ioKMaMGcPBgwctlvGdd95h5MiRREVF8dxzz5Gfn2+47csvv2TYsGGMGDGC3bt3W11GtVrNtGnT6Nq1a72Vg9rk27t3LxMmTCAqKooJEyawf/9+q8sYGxtr+NwfM2YMW7dutap811y+fJmuXbvyzTffmD1ffbrd54BGo+Gll15i2LBh3HvvvaSlpRlus0T5rGteS5RVY/JaquzWNa8lyrGxma+xirItJJM5dOiQOHXqlIiMjDT8rqCgwPDvH374QcybN++Wx1Cr1aJnz56iuLhYCCHECy+8IP78808hhBDz5s0TP//8sxmS38wc5/Lqq6+KTZs2mSfwLdT1XI4cOSLuu+8+odVqhVarFZMnTxYHDhwQQggxceJEcfToUaHX68Vjjz0mduzY0SDPY+rUqSI2Ntbs2aUKWq1WDBkyRKSkpIiysjIRFRUlzp8/X+k+qampIi4uTsycObNSeVGr1SIiIkKo1WqRm5srIiIiRG5ubn2fglGMOf+LFy+KxMREIYQQGRkZom/fviIvL68+4xvNmPO/ZuHChWLGjBli/vz59RVbuoWq6uWEhARx4cKFm+rXlStXitmzZwshhLh69aoYP3680Ol0Fsm4e/duUV5eLoQQ4t133xXvvvuuEEKI8+fPi6ioKFFWViZSUlLEkCFDhFartaqMRUVFIiYmRvzyyy/1Vg5qk+/06dMiIyNDCCHEuXPnRL9+/awuY3FxseH3mZmZonfv3oafrSHfNdOnTxfPP/+8+Prrr82arT7V5HNg5cqVhvbcn3/+KV588UUhhGXKpzF5LVFWjclribJrTF5LlGNjM19jDWVbjgQxoZ49e+Lu7l7pdy4uLoZ/l5SU3HZrvi1bttC/f38cHR0RQnDgwAFGjBgBwPjx49m+fbvpg1fB1OdiSXU9F4VCgUajoby83PB/Hx8fsrKyKCwspGvXrigUCsaNG1cvfxdTn4dU/2JjYwkKCqJ58+bY2dkRGRl503snMDCQtm3bolRWrp737NlD37598fDwwN3dnb59+9bbt0CmYsz5t2rVipYtWwLg7++Pl5cXOTk59RXdJIw5f6gYgZadnU3fvn3rK7J0G1XVy8HBwbRu3fqm+yYkJNC7d28AvL29cXV15dSpUxbJ2K9fP2xsKjYI7NKlCxkZGQBs376dyMhI7OzsaN68OUFBQcTGxlpVRicnJ3r06IG9vb3Zc9UlX7t27fD39wcgNDQUjUZTL6N4a5PR0dHR8PuysrJ62Ta6NvkAtm3bRmBg4B23Q0tNPgeio6MZP348ACNGjGD//v0IISxSPo3Ja4myakxeS5RdY/Jaohwbmxmsp2zLTpB68OGHHzJw4EDWr1/Piy++eMv7btiwwTBUUK1W4+bmZniDBwQEVDvdob7U9Vyuf3xUVBSLFy+ut6k91bnduXTt2pVevXrRr18/+vXrR//+/QkODiYzM5OAgADD/Sz9d6nreVwzd+5cxo4dy6efflov03oasxvfO/7+/jV+7xjzWGthqnOIjY2lvLycFi1amDKe2Rlz/nq9nnfeeYdZs2aZK55kZm3btmX79u1otVpSU1M5ffo06enplo7F6tWrGTBgAGC99cz1Ga1Rdfm2bNlCeHg4dnZ2FkhV2Y0ZT5w4QWRkJGPGjGH+/PmGtqalXJ+vuLiYr776iunTp1s0kznUpIxlZmbSpEkToGLrXldXV9RqtUXKpzF5LcFUeeur7Bqb1xLl2JjM1lS2ZSdIPXj55ZfZuXMnUVFRrFy5str7ZWVlER8fT79+/aq9T3318lXHmHOZMWMGmzdvZvXq1eTl5VU5h6w+3e5ckpOTuXDhAjt37mTXrl0cOHCAmJiYKjsKLPl3qet5ACxdupT169fz888/c+TIEdatW1ff8RsVY9471va+qwtTnENWVhYzZ85kyZIlVY6WsGbGnP8vv/zCgAEDDI0KqeGZOHEiAQEBTJw4kcWLF9O1a1dUKpVFM33++eeoVCrGjBkDWGc9c2NGa1NdvvPnz7N06VKrWL+nqoydO3dmw4YNrFq1ii+//JKysjKrybd8+XIefvhhnJ2dLZbJXGpSxqq7jyXKpzF5LcEUeeuz7Bqb1xLl2JjM1lS2G1YLsoEbPXo0f/31V7W3b9q0iWHDhmFrawuAp6cn+fn5aLVaADIyMvDz86uXrLdT23MB8PPzQ6FQYGdnx4QJEyotGGdJ1Z3L1q1b6dy5M87Ozjg7O9O/f3+OHz9OQEBApSGb1vJ3qe15AIZhfy4uLowePbpehj03Zje+dzIzM2v83jHmsdbC2HMoLCzkqaee4qWXXqJLly7miGhWxpz/sWPH+Pnnn4mIiOCdd95h7dq1LF261FxRJTOwsbFh7ty5rFu3js8//5yCggLDFC9L+OOPP9ixYwdLly41NGCtrZ6pKqM1qS5fRkYG06dP55133rH4iLXbvYbBwcE4OjoSHx9vgXRV5ztx4gRLly4lIiKCH374gS+//PKWX7w1JDUpYwEBAYZRYlqtloKCAjw8PCxSPo3JawnG5q3vsmuq17c+y7Exma2pbMtOEDNLSkoy/Ds6OrrKecLXbNiwgcjISMPPCoWCXr16sWXLFqDigyIiIsJsWW/HmHOBim9woaJ3cNu2bRadC1aTc2natCkxMTFotVrKy8uJiYkhODgYPz8/nJ2dOX78OEII1q5dy5AhQ+ox/f8Ycx5ardawpkJ5eTk7duyw+Py8O13Hjh1JSkoiNTUVjUbDhg0balym+/Xrx549e8jLyyMvL489e/bcctSYNTLm/DUaDc899xxjx45l1KhRZk5qHsac//vvv8+OHTuIjo7m1VdfZdy4cfzzn/80c2LJlEpKSiguLgYqdiFQqVSEhIRYJMuuXbv46quv+Pzzzyut2xUREcGGDRvQaDSkpqaSlJREp06drCqjtaguX35+Pk8++SQzZsyge/fuFkxYfcbU1FTDF2yXLl0iMTGRZs2aWU2+X375hejoaKKjo3n44Yd56qmnmDp1ar3nM4eafA5EREQYdoDbsmULvXv3RqFQWKR8GpPXEozJa4mya0xeS5VjYzJbU9lWCLkIgMnMmDGDQ4cOoVar8fb25vnnn2fXrl0kJiaiUCho1qwZ8+fPx9/fn5MnT/Lbb7+xaNEiANLS0njggQfYuXNnpSHeqampvPzyy+Tl5REeHs7SpUvrZW6pOc7loYceQq1WI4Sgbdu2zJ8/v16GQ9X1XHQ6HfPnzycmJgaFQkH//v2ZM2cOACdPnmTOnDmUlpYyYMAA5s2bZ/YK39TnUVxczNSpUykvL0ev19OnTx/mzJlj8eHZd7qdO3eyePFidDodEydO5JlnnmHZsmV06NCBIUOGEBsby/Tp08nPz8fe3h4fHx82bNgAYBjuCPD0008zceJES55KndT1/NetW8fcuXMrXTS+/fbbhIeHW/Bsas+Yv/81a9as4dSpU7z++usWOgvpmqrqZQ8PDxYuXEhOTg5ubm6Eh4fzzTffkJaWxmOPPYZSqcTf359FixbVS4O1qowrVqxAo9EYvk3s3LmzYej3559/zurVq1GpVMydO5eBAwdaXcaIiAgKCwspLy/H1dWVb7/91qwdSrXJ99lnn7FixQqCgoIMj//222/x9vY2W77aZly7di1fffUVNjY2KJVKnnvuOYYOHWo1+a63fPlynJyceOyxx8yarz7d7nOgrKyMmTNnEhcXh7u7Ox9++CHNmzcHLFM+jclb32XVmLyWKrt1zWuJcmxs5utZumzLThBJkiRJkiRJkiRJkhoFOR1GkiRJkiRJkiRJkqRGQXaCSJIkSZIkSZIkSZLUKMhOEEmSJEmSJEmSJEmSGgXZCSJJkiRJkiRJkiRJUqMgO0EkSZIkSZIkSZIkSWoUZCeIJEmSJEmSJEmSJEmNguwEaeDS0tIYPXo0AHFxcezcudPCiW42e/ZsNm/eDMC0adM4efIkAE888QT5+fmWjGY2Op2OcePG8dRTT1k6iiSZ1cGDBzl69KhJjrVmzRoWLFgAVOwf/8033wCwbNky9u3bZ5LnsEYLFy6ka9eulo4hNXK//vora9eurfZ2U5Z1czt48KDh8/f6euV259jQffPNN4SFhZGTk2PpKFIjJ69Pbi0/P5+ff/65RtluRbYf6s7G0gEk04mLi+PUqVMMHDiw3p9bp9OhUqlq9ZivvvrKTGks78cffyQ4OJjCwkJLR5GkKt1YZoUQCCFQKmvXN37o0CGcnJzo1q1bje6v1WqxsandR8+LL75Yq/s3JCdPnrxjO4Mly6ptmX7ggQdueXtty7q51aUuud05NmTp6ens27ePpk2bWjqKJFUir09ulp+fz6+//sqDDz5Y52PI9oNxZCeIFXrvvfdo2rSpoWAsX74cZ2dnrly5wu7du1EoFDzzzDPcc889hsdoNBo+/vhjSktLOXLkCE899RSBgYEsXryY0tJSHBwcWLx4Ma1bt6akpITZs2dz8eJFgoODuXTpEq+//jodO3Zkz549LF++HI1GQ/PmzVmyZAnOzs5V5oyIiGDChAns3buXqVOn0rp1a9544w1KSkpo0aIFixcvxt3dvdrzjIiIYNWqVRQXF/PEE0/QvXt3jh07hr+/P5999hkODg7Exsby2muvGRpeu3fv5s8//6zyeGvWrGHbtm3o9Xri4+P5xz/+QXl5OevWrcPOzo4VK1bg4eFBSkoK8+fPR61W4+DgwMKFCwkODiY6OprPP/+c8vJyPDw8WLp0KT4+PixfvpzLly+TlpbG5cuXefjhh3nooYeqPa+MjAx27NjB008/zffff1+Dv7gkGWft2rV88803KBQKwsLCUKlUDBo0iJEjRwLQtWtXjh07xsGDB/nkk0/w8/MjLi6OFStW8MQTT9CrVy+OHz/Op59+SmJiYpV1QEREBOPGjePvv/9Gq9Xy0UcfYW9vz2+//YZSqeQ///kP8+bNo0ePHjflmz17Nu7u7pw5c4b27dvz9NNPM3fuXFJTU3F0dGTBggW0bdu22vObPXu24XyqyhEcHExOTg6vvPIKubm5dOzYkd27d7N69Wq8vLxuOl5aWhqPP/443bt358SJE4SFhTFx4kQ+/vhjcnJyWLp0KZ06daK4uJiFCxcSHx+PTqdj+vTpDB06lLS0NGbNmkVJSQkA8+bNo1u3bobX19PTk/j4eNq3b8/SpUtRKBRVnpdOp+Pdd9/l/fffZ9u2bXX500tSJWlpaZXK9MMPP8xvv/12U3leunQp0dHRqFQq+vXrx6uvvsry5ctxcnLiscce48cff+S3335DpVIREhLCK6+8clNZz8/Pr/Vn5o111XvvvUdOTg5vvPEGly9fBmDu3Ll07969yvNbvnw5WVlZXLp0CU9PTxYvXsybb77JqVOnUKlUzJ49m969e1f7+lx/jtOmTaNTp04cPHiQgoICFi1aRI8ePW7ZRqpK165dmTJlCvv378fNzY0ZM2bw3nvvcfnyZebOncuQIUPQ6XQsXbqUQ4cOodFoePDBB7n//vspKiri2WefJT8/H61Wy4svvmioY6prF1VnyZIlzJw5k2effbambxdJqhV5fVK365Pz588zZ84cysvL0ev1LF++nGXLlpGSksLYsWO5++67mTVrFgsXLuTAgQMEBgYihLjl30K2H0xASFbn9OnT4sEHHzT8PGrUKLFmzRrxyCOPCK1WK65cuSIGDhwoMjMzRWpqqoiMjBRCCLF69Woxf/58w+MKCgpEeXm5EEKIvXv3iunTpwshhPj666/FvHnzhBBCnDt3ToSHh4vY2FiRnZ0tpkyZIoqKioQQQnz55Zdi+fLl1eYcPHiwWLFiheHn0aNHi4MHDwohhPjoo4/EW2+9JYQQ4tVXXxWbNm0SQggxdepUERsba3h8dna2SE1NFeHh4eLMmTNCCCFeeOEFsXbtWiGEEJGRkeLIkSNCCCHee+89w7lWZfXq1WLo0KGioKBAZGdni27duolffvlFCCHEokWLxHfffSeEEOKhhx4SiYmJQgghjh8/LqZNmyaEECI3N1fo9XohhBD/93//J5YsWSKEEOLjjz8W9913nygrKxPZ2dnirrvuEhqNptoczz//vDh58qQ4cOCAePLJJ6u9nySZQnx8vBg+fLjIzs4WQgihVqsrlTkhhOjSpYsQQogDBw6Izp07i5SUFCGEEKmpqSIsLEwcO3ZMCCFuWQcMHjxY/Pjjj0IIIVauXCnmzp0rhKgoH19//fUtM7766qviySefFFqtVgghxIIFCwzH3bdvnxgzZowQonIddv1xrz+f6nLMnz9ffPHFF0IIIXbu3CnatGljeE1udK3OOXv2rNDpdGL8+PFi9uzZQq/Xi61bt4pnnnlGCCHE+++/b6iL8vLyxPDhw0VRUZEoLi4WpaWlQgghEhMTxfjx4w2vb7du3UR6errQ6XRi8uTJIiYmptrX5fvvvzfUS9f+RpJkjOvLdHXlWa1Wi+HDhxs+7/Ly8oQQlctc3759RVlZWbW3C1H7z8yq6iohhJgxY4ahnFy6dEmMHDmy2vP7+OOPxfjx40VJSYkQQohvvvlGzJ49WwghREJCghg4cKAoLS2t9PlbXb0ydepUQ+YdO3aIhx9+WAhRfRupOm3atBE7duwQQgjx7LPPikcffVRoNBoRFxdnqNt+++038emnnwohhCgrKxPjx48XKSkpory8XBQUFAghKurfoUOHCr1ef8t2UVW2bdsmFi5cKIT4X9tKkkxNXp/U7fpkwYIFYt26dUKIivJfUlJS6fURQogtW7YYXseMjAzRvXv3Su24G8n2g/HkSBAr1K5dO7Kzs8nMzEStVuPm5kZcXByRkZGoVCp8fHzo2bMnJ0+eJCwsrNrjFBQU8Oqrr5KcnIxCoaC8vByAI0eOGL6VadOmjeEYJ06cICEhwTBctLy8nC5dutwy67Xe3oKCAgoKCrjrrrsAGD9+fK2GsAcGBhIeHg5A+/btuXTpEvn5+RQVFRmG3o4ePZodO3bc8ji9evXCxcUFAFdXVyIiIgznee7cOYqKijh27FilbBqNBqgYwfHyyy9z5coVNBoNgYGBhvsMHDgQOzs7vLy88PLyIjs7m4CAgJue/++//8bLy4sOHTpw8ODBGp+/JNXVgQMHGDlypGHEg4eHxy3v37FjR5o3b274uWnTpoZyfrs6YPjw4QB06NCBrVu31irnyJEjDUNSjxw5wvLlywHo06cPubm5FBQU1PhYVeU4cuQIn3zyCQADBgy45bc8UFHnXKv7QkJC6NOnj+Hb6UuXLgGwZ88eoqOj+fbbbwEoKysjPT0dPz8/FixYwNmzZ1EqlSQlJRmO26lTJ0Pd0LZtWy5dulTl6JjMzEw2b97MTz/9VOPzlqSauFam//777yrLs4uLC/b29rz22msMGjSIQYMG3XSMsLAw/vnPfzJkyBCGDh1a5fPU9jOzurpq3759JCQkGB5bWFhIYWGh4bP8RhEREYYREUeOHGHq1KkABAcH07RpUxITE2v8Wg0bNgz4X7vj2jGraiNVx9bWlgEDBhjub2dnh62tLW3atDEcc+/evZw7d44tW7YAFW2m5ORkAgIC+OCDD4iJiUGpVJKZmcnVq1eBqttFVSkpKeGLL74w1FOSZC7y+qRu1yddunThiy++ICMjg+HDh9OyZcub7hMTE2N4Hf39/W85ok22H0xDdoJYqREjRrBlyxauXr1KZGQkKSkptT7GsmXL6NWrF59++ilpaWmGikVUM8RKCEHfvn354IMPavwcjo6Otc5VFTs7O8O/VSoVZWVltx0KdrvjKJVKbG1tDf/W6XQIIXBzc2PdunU3Pfatt97ikUceYciQIYZh7dXl02q1VT7/0aNHiY6OZteuXZSVlVFYWMg///lPli5dWutzkaSaqKqcqFQq9Hq94fZrDQwAJyenSve9/ufb1QE3lqfauL6uqCpzdVNGapqjtvXFjXXFtZ8VCkWlc/v4449p3bp1pccuX74cHx8f1q1bh16vp1OnTlUeV6VSVfs6xcXFkZKSYujQKSkpYdiwYbXuXJKkG10r07cqz6tWrWL//v1s2LCBlStX8uOPP1a6fcWKFcTExBAdHc1nn33Ghg0bbjpGbT8zqyujer2ef//737ec6nG929UltXEtpzF1ia2traH+ur4uufGY//rXv+jfv3+lx65Zs4acnBzWrFmDra0tERERlJWVVcoG/2sXVSUlJYW0tDTGjh0LVHROTZgwgd9//x1fX99anYsk3Y68Pqn99UlUVBSdO3dmx44dPPbYY7z11luVvoy6pqbtINl+MA25O4yVioyMZOPGjWzZsoURI0bQs2dPNm3ahE6nIycnh8OHD1dqeAM4OztTVFRk+LmgoAB/f38A/vjjD8Pvu3fvzqZNmwBISEggPj4eqOipPHr0KMnJyUBFoarpNyqurq64ublx+PBhANatW0fPnj3rePYV3N3dcXZ25vjx4wBs3LjRqOMBuLi4EBgYaDh/IQRnz54FKr9edV09/pVXXmHXrl1ER0fzwQcf0Lt3b9kBIplVnz592Lx5M2q1GoDc3FyaNWvG6dOnAdi+fXulTpBbqUsdcGO9UxM9e/bkP//5D1Cxi4Onp2e13/rW1PX12p49e8jLyzPqeAD9+vVj5cqVhgbPmTNngIq6wtfXF6VSybp162rdIQQwaNAg9u7dS3R0NNHR0Tg6OsoGTC3NmTOHPn36GHYguJEQgrfeeothw4YRFRVlKBONRXXluaioiIKCAgYOHMjcuXMNn4HX6PV60tPT6d27NzNnzqSgoIDi4uJbtjFq8plZVV0F/ytn18TFxdX4HHv27Mn69esBSExMJD09/aZOy9qqro1kjH79+vHrr78a6uLExESKi4spKCjA29sbW1tbDhw4UO1oj1sJCwtj//79hrokICCANWvWyA6Q68i6wnTk9Untr09SU1Np3rw5Dz30EBEREZw7d+6m16Rnz55s3LgRnU5HVlbWLUeTy/aDachOECsVGhpKUVERfn5++Pn5MWzYMNq0acPYsWN5+OGHmTlz5k0fcL169SIhIYGxY8eyceNGHn/8cT744APuv//+So30KVOmoFariYqK4quvviIsLAxXV1e8vLxYsmQJM2bMICoqismTJ3Px4sUaZ37nnXd49913iYqKIi4ujueee87o12HRokXMmzeP++67DyGE0RdKULGw06pVqxgzZgyRkZGGBYWmT5/Oiy++yJQpU247pUCSrEVoaChPP/0006ZNY8yYMbz99ttMnjyZmJgYJk2axIkTJ24a/VGdutQBgwcPZuvWrYwdO9bQyLid6dOnc+rUKaKionj//fd5++23a/S42x1z7969jB8/nl27duHr62t0ffHss8+i1WoZM2YMo0ePZtmyZUBFHfrHH38wefJkkpKSavz6SqY1YcIEvv7662pv37VrF0lJSfz1118sXLiQN998s/7CWYHqynNRURFPPfUUUVFRTJs2jTlz5lR6nE6nY+bMmURFRTF+/HgeeeQR3Nzcbirrtf3MrKquAnjttdcM9cE999zDr7/+WuNznDJlCnq9nqioKF5++WWWLFlS6ZvbuqiujWSMe++9l5CQECZMmMDo0aN5/fXX0el0REVFcerUKSZMmMD69euN7sCRqibrCtOR1ycVanN9snHjRkaPHs3YsWO5ePEi48aNw9PTk27dujF69Gjeeecdhg0bRlBQEFFRUbz55ptGd9RIt6cQxo4llBocnU6HVqvF3t6elJQUHnnkETZv3mx0w8EcioqKDKs/r1ixgqysLP71r39ZOJUkSdZGo9GgVCqxsbHh2LFjvPnmm1VOe5PuLGlpaTz99NNVrsr/+uuvc9dddxm+/R0xYgQ//fQTfn5+9R1TakAaUhtJqjlZV1i/hlT25PXPk0q3AAAgAElEQVRJw9eg1wTR6/XodPXbh6NSKer9OY1VVWal0obych1NmjRjy5aKIVTl5bUf0m1OKpUCOzsHQ65HH30MsL6c12uI7w8wLretbe32X7cUc9YXDeXv3lByQu2zKhQqhKioHzp06MSqVWvqra64k19XU6rvuiIzM7PSAtYBAQFkZmbe9sJGCEFD+3pIoUBmNhGFQomtrR16vSAwsDnbtm0HQK8XVpv5VhpiZqWy5mtEmYKsK6xDdWXPGl9nR0cn9PqKUI8//gSA4edrrPm1rk5DzFzX+qJBd4LodILc3OJ6fU4PD6d6f05jNcTM0DBzN8TMYFxuX1/jhgnXF3PWFw3l795QcoLMai6WzFrfdUVdF+AVArKzC80RyWwa0nvwGpm5fjTEzLKuMJ+G+H5oiJmhYeZuiJnrWl/INUEkSZIkSbrjBAQEkJGRYfg5IyNDDm+XJOkmsq6QpMZHdoJIkiRJknTHiYiIYO3atQghOH78OK6urvLCRpKkm8i6QpIanwY9HUaSJEmSpMZpxowZHDp0CLVazYABA3j++efRarUAPPDAAwwcOJCdO3cybNgwHB0dWbx4sYUTS5JkCbKukCTpRrITRJIkSZKkBueDDz645e0KhYI33nijntJIkmStZF0hSdKN5HQYSZIkSZIkSZIkSZIaBdkJIkmSJEmSJEmSJElSoyA7QSRJsiq7du1ixIgRDBs2jBUrVtx0++XLl5k2bRrjxo0jKiqKnTt3WiClJEmSJEmSJEkNkVwTRJIkq6HT6ViwYAHfffcd/v7+TJo0iYiICEJCQgz3+fzzzxk1ahRTpkwhISGBJ598kujoaAumliRJkiRJkiSpoZAjQSRJshqxsbEEBQXRvHlz7OzsiIyMZPv27ZXuo1AoKCwsBKCgoEBuYydJkiRJkiRJUo3JkSCSJFmNzMxMAgICDD/7+/sTGxtb6T7Tp0/nscceY+XKlZSUlPDdd9/V6NgqlQIPDyeT5v3fsZVmO7YpNZScILOaS0PKKkmSJEmSZA6yE6QRKxNQXK4z6hhOtirsFSYKJDV6QoibfqdQVH6DbdiwgfHjx/OPf/yDY8eOMWvWLP7880+UylsPbNPpBLm5xSbNe42Hh5PZjm1KpspZ27qjLvVEQ3lNQWatKV9fV4s8ryRJkiRJ0vVkJ0gjVlyu4++zWUYdY3BbP+ztVCZKJDV2AQEBZGRkGH7OzMy8abrLqlWr+PrrrwHo2rUrZWVlqNVqvL296zVrY1bbukPWE5IkSZIkSZK1+H/27jy6qfPcF/93a7IlD5InSWALA7aZCWQqQ07wwcQh4FDSAj1NaHNDw+U0HcJZSZuGNnUT2oScdHT7W7+0XG4JJUNPkzbQ4JyGxqQ4JyFkKjiBMCOwwZKNLXnSvLXvH8YGYxsPaGtr29/PWlnL2nr3ux+E2ZEeve/zsCYIESWMmTNnwul0ora2FqFQCJWVlSgpKekxZsyYMdi3bx8A4OTJkwgGg8jMzFQiXCIiIiIiUhmuBCGihKHT6VBeXo61a9dCFEWsWLECRUVFqKiowIwZM7Bo0SI8+uijeOyxx/Dcc89BEAQ8/fTTvbbMEBERERER9UW2JEgwGMTq1asRCoUgiiIWL16MBx98EI8++ijef/99pKV17g1++umnMXXqVEiShCeffBJ79+5FcnIynn76aUyfPl2u8IgoQRUXF6O4uLjHsfXr13f/XFhYiD/+8Y/xDouIiIiIiEYA2ZIgBoMB27ZtQ0pKCsLhMO655x4sWLAAAPDII4/gjjvu6DG+uroaTqcTu3fvxsGDB/H444/j5Zdflis8IiIiIiIiIhplZKsJIggCUlJSAACRSASRSOSqS9arqqpw1113QRAEzJ49G62trWhouLainUREREREREREXWQtjCqKIpYvX4758+dj/vz5mDVrFgDgl7/8JZYtW4annnoKoVAIQGcXCLvd3n2u3W6H2+2WMzwiIiIiIiIiGkVkLYyq1Wqxc+dOtLa24pvf/CaOHTuGhx56CDk5OQiHw/jhD3+IzZs341vf+hYkSep1/kDFDrVaARaLSa7w+7mmJmbXbA2E0REUh31+SpIW6cn6Acf1F7O/JQCT0TDs6wNAcpIeFnPyNc3Rn1i+1vGixpgB9cZNREREREQ0FHHpDpOeno45c+bg7bffxv333w+gs2bIF7/4Rfz+978H0Lnyw+VydZ/jcrlgtVqvOq8oSvB6ffIF3geLxRSza3pCIt46MvwtPwunWBENhAcc11/MgZAInz807OsDQCAYhtcbvaY5+hPL1zpe1BgzcG1x5+SkxTgaIiIiIiIieci2Haa5uRmtra0AgEAggHfffRcTJ07srvMhSRLefPNNFBUVAQBKSkqwY8cOSJKEAwcOIC0tbcAkCBER9RaUOpOsV/5X3xLo83jw4kK8sx4/qo41IizKk9gkIiIiIlKabCtBGhoa8Oijj0IURUiShDvuuAMLFy7EvffeC4/HA0mSMGXKFDzxxBMAOtti7t27F6WlpTAajXjqqafkCo2IaETzhfteZWYyGvpc/XVrUTae2X0M/zjRBACYmGXCxiVTMNmWKnusRERERETxJFsSZMqUKdixY0ev43/4wx/6HC8IAn70ox/JFQ4REfXjzwfO4x8nmnDf5xwoyknBr/aewoN/+QQvr7lpUHWHiIiIiIjUQtbuMERElNg8vhC276/FvxZm4Zu3TsDtU6z4xV3T0eIP4/97+7TS4RERERERxRSTIEREo9jbJ5uh0wj4bklh97EptjTcfWMeXq1xoeZ8q4LRERERERHFFpMgRESjVCgSxbGGdiycnA1rWlKP59bNz4c5WYcXPqxTKDoiIiIiothjEoSIaJQ61tiOcFTCwkk5vZ4z6rVYPtOOvScuwNUaUCA6IiIiIqLYYxKEiGiUOlTfhvRkHWaMTe/z+RWzxiIqAa/W1Mc5MiIiIiIieTAJQkQ0CvlCEZxu9mGaPQ0aQehzzFhzMm4tyMKrNS5ExGicIyQiIiIiij0mQYiIRqHTTX5IEjDZmnrVcXdOt8HjD+OjupY4RUZEREREJB8mQYiIRqFajw9JOg3s6UlXHTdvfAaMeg32HLsQp8iIiIiIiOTDJAgR0Sh01utHniW5360wXZL1WtwyIQtvHb8AMSrFKToiIiIiInkwCUJENMp0BCNo6ghjXIZxUOMXTcqGxx/GgXPcEkNERERE6sYkCBHRKHPW6wcAODJMgxp/y8RMJOk0eOs4t8QQERERkbrplA6AiOhy1dXVePLJJxGNRrFq1SqsW7eux/NPPfUU9u/fDwAIBAJoamrChx9+qESoqnXW44deK8CedvV6IF2Mei1udJixz+mROTIiIiIiInkxCUJECUMURWzcuBFbt26FzWbDypUrUVJSgsLCwu4x3//+97t/3r59Ow4fPqxEqKpW5/Ej12yEVnP1eiCXm5OfgXdPn8L5lgCMRr2M0RERERERyYfbYYgoYdTU1CA/Px8OhwMGgwFlZWWoqqrqd3xlZSXuvPPOOEaofhExisaOEMaaB7cKpMu88ZkAgP1nuBqEiIiIiNSLK0GIKGG43W7Y7fbuxzabDTU1NX2OPXfuHOrq6jB37txBza3VCrBYBlcDY6i0Wo1scw+HvyUAk9HQ67hGI6AtIkGSgHFZqd1jkpP0sJiTrzrnbLMR9vRkfHy+FXfMyu1z/v4MZv4rJdprejWMlYiIiEg9mAQhooQhSb1bsAr9tHCtrKzE4sWLodVqBzW3KErwen3XFF9/LBaTbHMPRyAkwucP9TpuMhpwprEdAGBJ0naPCQTD8HqjA877uXFmvHW8CR3+UJ/z9xvPIOe/XKK9plfDWAcnJydNkesSERERXY7bYYgoYdjtdrhcru7HbrcbVqu1z7Gvv/46ysrK4hXaiOFqCyJJp4HFOPQc+Jz8DLQFIzje0C5DZERERERE8mMShIgSxsyZM+F0OlFbW4tQKITKykqUlJT0Gnfq1Cm0trbi+uuvVyBKdXO3BWFNTeqxwkYQBHhC4oD/Fdg6v8k/eK5VqfCJiIiIiK4Jt8MQUcLQ6XQoLy/H2rVrIYoiVqxYgaKiIlRUVGDGjBlYtGgRgM6tMEuXLu13qwz1LSpJaGwLYlaeucdxfySKfccbBzVHhlGPT+tbUVKYJUeIRERERESyYhKEiBJKcXExiouLexxbv359j8ff/va34xnSiNHUHkI4KsGWNrTOMJdzZBhxuL4VCwsymYQixVVXV+PJJ59ENBrFqlWrsG7duh7Pnz9/Ht/73vfQ1tYGURTxne98p9f9hYhGPt4riOhy3A5DRDRK1LcEAAD2a0iC5FmS0RaIoKlj8IVRieQgiiI2btyILVu2oLKyErt27cKJEyd6jHn22WexZMkS7NixA7/85S/xxBNPKBQtESmF9woiuhKTIKOQJEn44KwHfzvsxqH6NgQjotIhEVEcuNsC0AhAVsrg29teyWExAgBqvYFYhUU0LDU1NcjPz4fD4YDBYEBZWRmqqqp6jBEEAe3tnYV829ra+i20TEQjF+8VRHQl2bbDBINBrF69GqFQCKIoYvHixXjwwQdRW1uLhx56CC0tLZg2bRqeeeYZGAwGhEIhPPLIIzh06BAsFgt++ctfIi8vT67wRq0Pznrw06qTON18qUVisk6DeRMyMSffwuXtRCNYY1sQGSY9tJrh/zvPMOlhMepR6/Hj+itqixDFk9vtht1u735ss9lQU1PTY8y3vvUt3H///Xj++efh9/uxdevWAecVhM5Wwmqi1WoYcxwwZnXiveISNf4+qDFmQJ1xqzHm4ZItCWIwGLBt2zakpKQgHA7jnnvuwYIFC7B161bcd999KCsrQ3l5OV555RXcc889ePnll5Geno6///3vqKysxM9+9jP86le/kiu8UekvB8/jmaoTyLUY8cSSyZhoTcXuw268e7oZbx2/gPZgBIsmZTMRQjRCNbYHr2kVCND5bdm0MWk4dJ4dYkhZkiT1Onbl/78qKyvxhS98AV/72tfwz3/+E4888gh27doFjab/hbCSBHi9vn6fT0QWi4kxxwFjjo+cnLSYzsd7xSVq/H1QY8yAOuNWY8zDvV/Ith1GEASkpKQAACKRCCKRCARBwHvvvYfFixcDAL7whS90L0fbs2cPvvCFLwAAFi9ejH379vV506LhqTzkxqY3T2Du+ExsW309lk6zwZaejDyLEatmj8VN4yz44KwX7572KB0qEclAjEpo7ggh+xqTIAAwyZaGlkAEvlAkBpERDY/dbofL5ep+7Ha7ey1hf+WVV7BkyRIAwPXXX49gMAiPh/+fIxpNeK8goivJWhNEFEUsX74c8+fPx/z58+FwOJCeng6drnMBit1uh9vtBtB5QxozZgyAzjaZaWlpvPnEyIdnPPjJ7mO4aZwFP1s+DalJPRcACYKA2yZlY5o9Ff9zqgmuVu71JxppPL4QotK11QPpMsmaCgA43xK85rmIhmvmzJlwOp2ora1FKBRCZWUlSkpKeowZM2YM9u3bBwA4efIkgsEgMjMzlQiXiBTCewURXUnWFrlarRY7d+5Ea2srvvnNb+LUqVO9xnQtRxvMUrXe8wtx37cUy71S/pYATMbhfyBJTtLDYk6+6phWfxgPvfw+ci1GPLv6BlhMl6535fXvmp2H37x1ApWHG/BA8UTorrIEcCgxDJca96WpMWZAvXHT4F242M0lFkmQAmsqBAD1rQEU5qRc83xEw6HT6VBeXo61a9dCFEWsWLECRUVFqKiowIwZM7Bo0SI8+uijeOyxx/Dcc89BEAQ8/fTT3PJJNMrwXkFEV5I1CdIlPT0dc+bMwYEDB9Da2opIJAKdTgeXy9W9HM1ut6O+vh52ux2RSARtbW2wWCxXnVcUpbjvW4rlXqlASITPP/w2k4FgGF5v9KpjNv7tKNytAfz+7tlAKALvZcvX+7r+4ik5eOVgPfafbBpU0cPBxDBcatyXpsaYgWuLO9Z7d0keTR1hALFJghj1WmSnGnC+havGSFnFxcUoLi7ucWz9+vXdPxcWFuKPf/xjvMMiogTDewURXU627TDNzc1obe0snBcIBPDuu++ioKAAc+bMwRtvvAEAePXVV7uXo5WUlODVV18FALzxxhuYO3cuM7DX6D1nM1475Ma/3zoR08ekD+qcwpwU5JqT8c6pZkREeZIbRBR/FzpCMBv1MGhjc9sfk56M+tYgazcRERERkarIlgRpaGjAvffei2XLlmHlypWYP38+Fi5ciO9+97vYunUrSktL4fV6sWrVKgDAypUr4fV6UVpaiq1bt+I73/mOXKGNChExil+8dQoOSzK+ubBw0OcJgoAFBVloC0Zw4By7PxCNFE0dIeSkJsVsvrHmZPjDIloCLI5KREREROoh23aYKVOmYMeOHb2OOxwOvPLKK72OJyUl4de//rVc4Yw6rxysx+lmH362fDqSdBr4h3BufqYRDksy9p/x4AaHGRquyCFSNUmS0NQRwsQY1u8Yk96ZUDnfEoDFqI/ZvEREREREcpK1Owwpoz0Ywf/ZdwZz8i1YUDD0ytaCIOCmcRa0BiI42dghQ4REFE9twQgiUSmmK0FyUpOg1QhwtbJDDBERERGpB5MgI9ALH9ahNRDBt2+dOOy6KpNyUpGapMVHdS0xjo6I4q3ZF7uiqF20GgE5KQa421gclYiIiIjUg0mQEcbrC+Olj89h0aRsTLalDnsejUbA9blmnG7yoalj+B1siEh5nq4kSAxXggCALS0J7rYQi6MSERERkWowCTLCPP9RHXwhEf97Xv41zzU7zwxBAD45zwKpRGrm8YWg0whIS45tGShbehL8YRFtQRZHJSIiIiJ1YBJkBGkPRvDKgfNYNCkbBdnXXgAxNUmH8ZkmHHa18ZteIhXz+MKwGPUxL3JsS+tcWeJuY10QIiIiIlIHJkFGkJcPnEdHSMR9nxsXszlnjElDSyCCOi/3/ROpVbMvjAxT7Du4dBVaZRKEiIiIiNSCSZARIhAW8cePz2He+IxrqgVypUk5qdBrBByq55YYIjWSJAlevzxJkCSdBhkmPZMgRERERKQaTIKMELuPNqLZF8a9NztiOq9Bp0GRNRWfudshRrklhkhtutrjZppi1xnmcva0JDQwCUJEREREKsEkyAggSRL+9M/zKMg24UaHOebzT7OlIhCJ4qzHF/O5ia5UXV2NxYsXo7S0FJs3b+5zzOuvv46lS5eirKwMDz/8cJwjVJeuzjAZxtivBAEAa1oSvP4IAmFRlvmJiIiIiGIptq0CSBE151txtKEdG24rhBDjwocAMD7LBL1WwNGGDkzIuvaCq0T9EUURGzduxNatW2Gz2bBy5UqUlJSgsLCwe4zT6cTmzZvx0ksvwWw2o6mpScGIE19zVxJEhu0wAGC9WBfkQkcIeRajLNcgIiIiIooVrgQZAV4+cB6pSVrcMdUmy/x6rQYF2Sk41tCOKLvEkIxqamqQn58Ph8MBg8GAsrIyVFVV9Rjzpz/9CatXr4bZ3LnqKSsrS4lQVcPjC0OrEZAe4/a4XXJSO7fZNLaHZJmfiIiIiCiWuBJE5S60B/HmsQv4t+vHwmTQynadydZUHHG343xLgN/2kmzcbjfsdnv3Y5vNhpqamh5jnE4nAODLX/4yotEovvWtb2HBggUDzq3VCrBYTDGN99LcGtnmHg5/SwAmY2dyojUYQabJgBRTEjQaofv45XRaTZ/H+3P5eGOyHgatBp5ApN85kpP0sJiTh/RnSLTX9GoYKxEREZF6MAmicq/WuBCNSlg5a6ys1ynINkErCDjqbmcShGQj9bHS6MotXqIo4syZM9i+fTtcLhdWr16NXbt2IT09/apzi6IEr1eeujYWi0m2uYcjEBLh83euzGhqD8KcrIfPH4LJaOg+frmIGO3zeH+uHJ+dakC919/vHIFgGF5vdEh/hkR7Ta+GsQ5OTk6aItclIiIiuhy3w6hYWIzizzX1mD8hE44MeRMTSTotxmUacbKpQ9br0Ohmt9vhcrm6H7vdblit1h5jbDYbFi1aBL1eD4fDgQkTJnSvDqGeOtvjRmCRqShqF2uqAY3twT6TWEREREREiYRJEBV791QzmjpCWDVb3lUgXQqyTWjqCMPrD8flejT6zJw5E06nE7W1tQiFQqisrERJSUmPMbfddhv2798PAGhubobT6YTDEdvW0COFPxxFSIzCbJR30V92ahL84Sg6QuwQQ0RERESJjdthVOzvnzXAlpaEeRMy4nK9iVkpAC7g5IUO3OiwxOWaNLrodDqUl5dj7dq1EEURK1asQFFRESoqKjBjxgwsWrQIt956K9555x0sXboUWq0WjzzyCDIy4vNvQG26EpZytcftcnlx1NQk/m+FiIiIiBIX362qVHswgg/PenDvzQ5oZGiL25dMkx4Wo55JEJJVcXExiouLexxbv35998+CIGDDhg3YsGFDvENTna4kiEWm9rhdLiVBgpiQxaKbRERERJS4uB1GpQ672hCVgKXT5GmL2xdBEFCQbcKZZj8i4tCKHBJR/HUlQczJ8iZBUgw6mPRatsklIiIiooTHJIhKfVrfhsnW1Lh/61qQnYJIVMJZjz+u1yWioWvxh2EyaGHQyX+rz041oKmDSRAiIiIiSmxMgqhQQ1sQ7rYgbptiHXhwjI3LMEKnEXDygjraQRKNZl5/WPbOMF2yTHo0+ZgEISIiIqLExiSICn1a3wqNAPzrpOy4X1uv1WBcBlvlEqlBZxIkPqWfMlMMCISj8LFDDBERERElMCZBVCYalfBpfRsKslNgjtM3vFcqyE6BxxdGM5e+EyWsaFRCSyASv5UgKZ3FUbklhoiIiIgSmWxJkPr6enz1q1/FkiVLUFZWhm3btgEAfvOb3+DWW2/F8uXLsXz5cuzdu7f7nN/97ncoLS3F4sWL8fbbb8sVmqo5m33oCImYMSZNsRgKslMAACebuCWGKFG1BiOQJMQtCZJp6kyCNHNLDBERERElMNnWSWu1Wjz66KOYPn062tvbsWLFCtxyyy0AgPvuuw/3339/j/EnTpxAZWUlKisr4Xa7sWbNGrzxxhvQarVyhahKh1xtSNZpUJiTolgMGSY9Mk2drXKJKDF5fRfb48YpCWI26qDVCFwJQkREREQJTbaVIFarFdOnTwcApKamYuLEiXC73f2Or6qqQllZGQwGAxwOB/Lz81FTUyNXeKokRiUcb+xAkTUFOo2yO5kmZqeg1uNHKMJWuUSJqKs9brySIBpBQKZJj6aOcFyuR0REREQ0HHH5JF1XV4fPPvsMs2bNAgC88MILWLZsGTZs2ICWlhYAgNvtht1u7z7HZrNdNWkyGjmbfQhGophiVW4rTJcJmSZEohI+Pd+qdChE1AevPwyNAKQlx6cwKgBkmQzsEENERERECU32d8cdHR148MEH8f3vfx+pqam4++678Y1vfAOCIKCiogJPP/00Nm3aBEmSep0rCMJV59ZqBVgsJrlC7+eamphd098SgMloGPT4E02NSNJpMC3XDJ1Wg+QkPSzm5AHP6y/moV7/clPG6qA9WI8D51qx4ibHsOYYSCxf63hRY8yAeuOm/nn9YaQn66EZ4D4aS5kpehxtbIcYlaDVxO+6RERERESDJWsSJBwO48EHH8SyZctw++23AwCysy+1dV21ahW+/vWvAwDsdjtcLlf3c263G1ar9arzi6IErze+xTktFlPMrhkIifD5B/etqRiVcLi+FYU5KQiFIggBCATD8HoH3o7SX8xDuX5f8izJeP90k2x/B7F8reNFjTED1xZ3To7yK5Oot872uPHtIJVpMkCSAI8vjOzU4SVYiYiIiIjkJNt2GEmS8IMf/AATJ07EmjVruo83NDR0//zmm2+iqKgIAFBSUoLKykqEQiHU1tbC6XTiuuuukys81an1+hEIRzHZmqp0KN0mZJlwqsmHC+1BpUMhoit4/RFkGOO3FQa41CaXHWKIiIiIKFHJ9g75o48+ws6dOzFp0iQsX74cAPDQQw9h165dOHLkCAAgNzcXGzduBAAUFRVhyZIlWLp0KbRaLcrLy9kZ5jLHGzug1QiYkJU4WxYmZJnwjxNNeP+sF0un2ZQOh4gu6ghF4A+LMMd5JUhWSuf12CGGiIiIiBKVbEmQm266CUePHu11vLi4uN9zHnjgATzwwANyhaRakiThRGMHxmcaYdAq2xXmcra0JJiNerzn9DAJQpRAXC2dq7MspvgmQZJ0WqQatCyOSkREREQJK3E+UVO/mjpC8PrDKMxOUTqUHgRBwA0OM/af8SDaR2FbIlKGqzUAIH7tcS+XmWJAM9vkEhEREVGCYhJEBY43dgAACnMSKwkCADeOy0CzL4wTF2MkIuXVK5gEyUoxoKkj1GfHLyIiIiIipTEJogInLnTAlpaE9OT4f6AZyI0OMwBg/xmPwpEQURdXSwBJOg2SdfG/xWea9AhEovCHxbhfm4iIiIhoIEyCJLhAWMS5lgAKshOnIOrlslKTUJBtwj4nkyBEiaK+NQiLUQ9BEOJ+7a4OMU3cEkNERERECYhJkAR3ptkPSQImZiXeVpguc/IzcOBcCwL85pcoIbhaA7DEuT1ul0tJEBZHJflVV1dj8eLFKC0txebNm/sc8/rrr2Pp0qUoKyvDww8/HOcIiSgR8F5BRJdT5l0yDdrppg4YtBqMNScrHUq/5o7PwIsfncPHdS2YPyFT6XBI5aqrq/Hkk08iGo1i1apVWLduXY/n//KXv+CZZ56BzdbZkegrX/kKVq1apUSoCSkqSXC1BnBDnlmR66cn66DTCOwQQ7ITRREbN27E1q1bYbPZsHLlSpSUlKCwsLB7jNPpxObNm/HSSy/BbDajqalJwYiJSAm8VxDRlZgESWCSJOFUkw/5mUZoNfFf1j5Y1+eaYdAK2H/GwyQIXZPBvFEBgKVLl6K8vFyhKBPbhfYQwqKkSFFUANAIAjJMenaIIXjKckoAACAASURBVNnV1NQgPz8fDocDAFBWVoaqqqoe94s//elPWL16NczmzqRgVlaWIrESkXJ4ryCiK3E7TAJr9oXREohgQlZi1gPpkqzX4vo8M95jXRC6Rpe/UTEYDN1vVGjwzrd0doYxK5QEAS51iCGSk9vtht1u735ss9ngdrt7jHE6nTh9+jS+/OUv40tf+hKqq6vjHSYRKYz3CiK6EleCJLDTTT4AwMQET4IAnXVBfl19Gg1tQVjTkpQOh1SqrzcqNTU1vcbt3r0bH3zwASZMmIANGzZgzJgxA86t1QqwWOT5t6TVamSbe6g8pzuTkWMyTDAZDT2e02iEXscAQKfV9Hm8PwONt6Yn41hDO5KS9NBqBCQn6WEZ4pa+RHpNB8JYldFXG+YriwGLoogzZ85g+/btcLlcWL16NXbt2oX09PR+5xUEqO41UuPfK2OODzXGHGu8V1yixt8HNcYMqDNuNcY8XEyCJLAzHh/MyTpkmAb/4UQpc8d3JkH2n/Fg2Qz7wCcQ9WEwb1QWLlyIO++8EwaDAS+99BK+973v4Q9/+MOAc4uiBK/XF7NYL2exmGSbe6iO17dAAGAQJPj8PVdjmIyGXscAICJG+zzen4HGpxm0iEpAvacDmSYDAsEwvN7ooOcHEus1HQhjHZycnLSYzme32+Fyubofu91uWK3WHmNsNhtmz54NvV4Ph8OBCRMmwOl04rrrrut3XkmCav4+u6jpd7ALY44PNcbMe4V81Pj7oMaYAXXGrcaYh3u/4HaYBCVJEs56/BiXaVQ6lEEpzE5BpkmP/We4JYaGbzBvVDIyMmAwdCYGv/SlL+HQoUNxjTHRnW8JICvVAJ1Gudt7xsWtOB4f64KQfGbOnAmn04na2lqEQiFUVlaipKSkx5jbbrsN+/fvBwA0NzfD6XR21wUgotGB9woiuhJXgiSohvYQAuEo8jP6X5IkCAI8oYHb0vpbAgj0MU7s/aX7sAmCgLnjM/DuaQ+ikgSNkLiFXClxXf5GxWazobKyEj//+c97jGloaOhOjOzZswcFBQVKhJqwzrUEMCZd2W5SmSYmQUh+Op0O5eXlWLt2LURRxIoVK1BUVISKigrMmDEDixYtwq233op33nkHS5cuhVarxSOPPIKMjAylQyeiOOK9goiuxCRIgjrT3LkUKf8qK0H8kSj2HW8ccK7+lsDPK8oZfoB9mJOfgdcPN+BoQzum2mK7lJFGh8G8Udm+fTv27NkDrVYLs9mMTZs2KR12QjnXEsD1DouiMZgMWhi0AprZJpdkVlxcjOLi4h7H1q9f3/2zIAjYsGEDNmzYEO/QiCiB8F5BRJdjEiRBnfX4YTHqkZ6sXIeHoZqT35kxf8/pYRKEhm2gNyoPP/wwHn744XiHpQrBSBSN7SHY05UtTiwIAjJMBq4EISIiIqKEw5ogCSgqSaj1+K+6CiQRZaUYMCknhXVBiBRSf7E9rl3h7TAAkGHSMwlCRERERAmHSZAEdKE9hEAkinEZ6kqCAJ1dYg6ea4VvELVKiCi2zl1MgowZYjtaOWSa9GgJhCFGY1h8iIiIiIjoGjEJkoDqvH4AQJ5FfUmQOfkZiEQlfFznVToUolHnXEvnvSMhVoIY9YhKQEuAq0GIiIiIKHEwCZKAzrUEkGLQwpysvpIts3LNSNJp8J6TW2KI4u1cSwBJOk13dxYlZZg62xhzSwwRERERJRImQRJQnTeAPEsyBBW2mU3SaXBDnpl1QYgUUOvxJ8y9I4NtcomIiIgoATEJkmA6ghF4/WHkmtW3FabL3PEZcDb74WoNKB0K0ahS5w3AkSDb6FIutsllEoSIiIiIEgmTIAmmq7BhrkX5Pf3DdXmrXCKKDzEqoa7FnzBJkK42uc2+kNKhEBERERF1YxIkwdR5A9AKAuzpSUqHMmwTs0ywphq4JYYojhragwiLEvISqKtUhkkPj58rQYiIiIgocciWBKmvr8dXv/pVLFmyBGVlZdi2bRsAwOv1Ys2aNbj99tuxZs0atLS0AAAkScJPfvITlJaWYtmyZTh06JBcoSW0cy1+2NOToNOoNz8lCALm5Gfg/bNetsckipNaT2dnGEcCrSLLMOrR4mebXCIiIiJKHLJ90tZqtXj00Ufx3//93/iv//ovvPjiizhx4gQ2b96MefPmYffu3Zg3bx42b94MAKiurobT6cTu3bvx4x//GI8//rhcoSWsSDSK+tagqrfCdJk7PgOtgQiOuNuUDoVoVOhqrZ0o22EAINPU2SbX3cb6QERERESUGGRLglitVkyfPh0AkJqaiokTJ8LtdqOqqgp33XUXAOCuu+7Cm2++CQDdxwVBwOzZs9Ha2oqGhga5wktI7tYgxKiEPBUXRe3yuXEZEAC8xy0xRHFR6w3AoBVgTUucrXRdbXLPeZkEISIiIqLEoIvHRerq6vDZZ59h1qxZaGpqgtVqBdCZKGlubgYAuN1u2O327nPsdjvcbnf32L5otQIsFpO8wfe6piZm1/S3BGAyGrofN5xvBQAU2tNgStYPeL5Oq+lxfn80GqHPcYM9/2qSk/SwmHuvXLFYgOlj0/FhXSseHubrFcvXOl7UGDOg3rjpkjqvH7kWIzQJ0B63S1eb3PNMghARERFRgpA9CdLR0YEHH3wQ3//+95GamtrvOEnqvWdcGODNvChK8Hp91xzjUFgspphdMxAS4fNf6pxwurEDFqMOWknqcbw/ETE6qHEmo6HPcYM9/2oCwTC83mifz92UZ8b2D+tQ525FatLQf9Vi+VrHixpjBq4t7pyctBhHQ8Nx1pM4nWG6dLXJPdfiVzoUIiIiIiIAMneHCYfDePDBB7Fs2TLcfvvtAICsrKzubS4NDQ3IzMwE0Lnyw+VydZ/rcrmuugpkpJEkqfOb3BGwFabL3PEZEKMSPqr1Kh0K0YgWlSScawkgL8HqCXW1yeVKECIiIiJKFLIlQSRJwg9+8ANMnDgRa9as6T5eUlKCHTt2AAB27NiBRYsW9TguSRIOHDiAtLS0UZUEaQlE0BESR0RR1C7XjU2HSa/Fu6dZF4RITo3tIQQjUYxLoPa4XTKMeq4EISIiIqKEIdt2mI8++gg7d+7EpEmTsHz5cgDAQw89hHXr1uE//uM/8Morr2DMmDGoqKgAABQXF2Pv3r0oLS2F0WjEU089JVdoCel8S+c3pbl91NdQK71Wg7njM1B9sgnfu60woWoVEI0kXZ1h8hJsOwzQWRfk+IUORKISdBreA4iIiIhIWYNKggSDQbz44ov46KOPIAgCbrzxRtx9991ISuq/C8FNN92Eo0eP9vnctm3beh0TBAE/+tGPBhn2yFPfGoBWIyAnNXE6O8RCcWEW9hy/gM9cbZg+Jl3pcCiOhnPfoOE560m89rhdMkx6iFEJrtZAQiZpiIiIiGh0GdR2mEceeQTHjx/HV77yFaxevRonT57Ed7/7XbljG1VcrUFYUw3QjrBvSm+ZkAmtAOw92aR0KBRnvG/ET53XD71WgC2B2uN26WqTW+vllhgiIiIiUt6gVoKcPn0af/3rX7sfz507F5///OdlC2q0kSQJ7rYgptlHXpcNs1GP2XlmVJ9swjf+ZYLS4VAc8b4RP7XeAHLNyQmZRM282Ca31hPAvPHKxkJERERENKiVINOmTcOBAwe6Hx88eBA33HCDbEGNNs2+MIKRKMakJ963uLGwoCALJy/4uusW0Ogw3PtGdXU1Fi9ejNLSUmzevLnfcX/7298wefJkfPLJJzGJV83qvP6E3WqSYtAiWa/hShAiIiIiSgiDWgly8OBB7NixA2PHjgUAnD9/HgUFBVi2bBkA4LXXXpMvwlHA1RoEANjTR05R1MstKMjCL/9xCtUnm3DPjXlKh0NxMpz7hiiK2LhxI7Zu3QqbzYaVK1eipKQEhYWFPca1t7dj+/btmDVrlvx/kAQnSRJqPX7c5LAoHUqfBEHAWLORSVAiIiIiSgiDSoJs2bJF7jhGNVdbZ1HU7BSD0qHIIs9iREG2CXtPMAkymgznvlFTU4P8/Hw4HA4AQFlZGaqqqnolQSoqKrB27Vr8/ve/j0msanahI4RAJJqwK0EAYKw5GWebfUqHQUREREQ0uCRIbm6u3HGMaiO1KOrliguy8Nz7tfD6w7AY9UqHQ3EwnPuG2+2G3W7vfmyz2VBTU9NjzOHDh+FyubBw4UImQXCp4KgjI3FXkuVakvHe6Wa2ySUiIiIixQ0qCULykSQJrtYgpo9RZ1FUQRDgCYkDjrs+PwO/31+L3ccuoHSqtfu4Sa9FEj8T0UWSJPU6JgiXfkGi0Sg2bdqETZs2DXlurVaAxWK6pvj6n1sj29wDaTrZDACYPi6zOwZ/SwAmY++VZRqN0OdxnVbT5/H+DHV8frYGkagEHwSMG+TrpORrOlSMlYiIiEg9mARRWLMvjJCo3qKo/kgU+443DjhOkiSkJmmxs+Y8dJclPRZOsSLJoJUxQlITu90Ol8vV/djtdsNqvZQ06+jowLFjx3DvvfcCABobG/HAAw/g2WefxcyZM686tyhK8Hrl2ZJhsZhkm3sgx863QKsRYMKlP18gJMLnD/UaazIa+jweEaN9Hu/PUMdbL7buPXy2GemDKset7Gs6VIx1cHJy1JnsJyIiopFlkG9HSS6u1gCAkVsUtYsgCJhsTcWpCz4EI1Glw6EENXPmTDidTtTW1iIUCqGyshIlJSXdz6elpWH//v3Ys2cP9uzZg9mzZw8qATKS1Xn9yDUnJ/Q2k1xz5/3trCegcCRERERENNoxCaIwV2sQuhFcFPVy0+xpiEQlHG9sVzoUSlA6nQ7l5eVYu3Ytli5diiVLlqCoqAgVFRWoqqpSOryEdMbjR54lsZOomSkGJOs07BBDRERERIrjdhiFudqCsKYljeiiqF1yzclIS9LhM1c7ZoxJVzocSlDFxcUoLi7ucWz9+vV9jt2+fXs8QkpYYlTCWY8fN49LzPa4XQRBgCPD2F3ElYiIiIhIKVwJoqDoxaKo9jR11gMZKkEQMNWeilNNHfCHBy6mSkRX52oLIBiJYkJm4he6dFiMqPUwCUJEREREymISREHnvH5VF0Udjmm2NEQl4FgDt8QQXStnU2dSYbwKkiB5FiPOtQQQifbuAEREREREFC9MgijoeEMHgJFfFPVy9vQkWIx6HHYxCUJ0rU43d3b5GJ+V+EmQcRnJiEQluNtYHJWIiIiIlMMkiIKON7SPmqKoXQRBwDR7Ks40+9ARiigdDpGqOZt9yDDqYTHqlQ5lQHkWIwBwSwwRERERKYpJEAWdutCBnFQDNKOgKOrlptrSIAE44uZqEKJr4WzyYXymUekwBmVcxsUkiJcrQYiIiIhIOUyCKESSJJy80AHrKCmKermcVAOyUwz4jFtiiK6Js9mniq0wAJB9sU0uV4IQERERkZKYBFFIQ3sIrYEIbKMwCdK5JSYNtV4/6lv4rTDRcHh8IbQEIqooigqwTS4RERERJQYmQRTS1R1lNCZBAGDGmDQAwO7P3ApHQqROzmb1dIbpksc2uURERESkMCZBFHKssTMJkpM6OpMgZqMeE7NMeOOzBohsmUk0ZN2dYVSUBHFcbJPLf/NEREREpBQmQRRyvLEDY83JSNKN3r+CWbnpuNAewntnPEqHQqQ6Jxs7YNJrYU9XTyLVYelsk+tim1yKkerqaixevBilpaXYvHlzv+P+9re/YfLkyfjkk0/iGB0RJQreK4jocqP3E7jCjjW0Y2J2itJhKKooJxVmox47P3EpHQqR6pxs6kBBtgkaQT3dpRwXO8TUeZgEoWsniiI2btyILVu2oLKyErt27cKJEyd6jWtvb8f27dsxa9YsBaIkIqXxXkFEV5ItCbJhwwbMmzcPd955Z/ex3/zmN7j11luxfPlyLF++HHv37u1+7ne/+x1KS0uxePFivP3223KFlRA6QhHUegMoyBndSRCtRkDplBxUn2xCU0dI6XCIVEOSJJxo7FBdIrWrTe4Zj0/hSGgkqKmpQX5+PhwOBwwGA8rKylBVVdVrXEVFBdauXYukJPWsmiKi2OG9goiuJFsS5Itf/CK2bNnS6/h9992HnTt3YufOnSguLgYAnDhxApWVlaisrMSWLVvwxBNPQBRFuUJT3InGDgBAgco+wMjhjmk2iFEJrx9mgVSiwWryhdESiKjuHpKdYkCKQYszzSyOStfO7XbDbrd3P7bZbHC7e/6/5PDhw3C5XFi4cGG8wyOiBMF7BRFdSSfXxDfffDPq6uoGNbaqqgplZWUwGAxwOBzIz89HTU0Nrr/+ernCU9TRhotJkJwUfFrXonA0yhqXacJ1Y9Ox8xMXvnJTHgQVLe0nUsrJC533kMJs9RRFBTrb5OZnmrqLuhJdC0nqXWD38v+HRKNRbNq0CZs2bRrSvIIAWCzq+rel1WoYcxwwZnXiveISNf4+qDFmQJ1xqzHm4ZItCdKfF154ATt27MCMGTPw6KOPwmw2w+1299h/11eGti9arRD3v6hY/HKcbQ0gw6RHXmYKTjUN/xtRnVYDk9Ew4DiNRuhz3GDPj0UM/UlO0uPuOeOw4dVPccwbwJwJWd3PqfEfohpjBtQb92jVlQRR20oQAJiQacQHZ71Kh0EjgN1uh8t1qaaU2+2G1WrtftzR0YFjx47h3nvvBQA0NjbigQcewLPPPouZM2f2O68kAV6vuhJ1FouJMccBY46PnJy0mM7He8Ulavx9UGPMgDrjVmPMw71fxDUJcvfdd+Mb3/gGBEFARUUFnn76aWzatGnADG1/RFGK+19ULH45PqlrQWF2CoKhCHz+4dfCiIjRQZ1vMhr6HDfY82MRQ38CwTD+xWGGOVmH3/3jJCZfrBkAqPMfohpjBq4t7li/WaG+BSXAF+7cJvhZQzvMRj0EnRaeUO+tg2ICd6DNzzSh8nADOkIRpBjinoenEWTmzJlwOp2ora2FzWZDZWUlfv7zn3c/n5aWhv3793c//upXv4pHHnnkqh9qiGjk4b2CiK4U13eg2dnZ3T+vWrUKX//61wEMnKEdSSJRCScvdGDFrDFKh5IwkvVarJw9Fv/3vbNwNvswPpMrEoiu5AuLeOtIAwDgYF0LLEZd9+MrzSvKiWdoQ9L17/tMsx/T7Eyg0fDpdDqUl5dj7dq1EEURK1asQFFRESoqKjBjxgwsWrRI6RCJKAHwXkFEV4prEqShoaE7ufHmm2+iqKgIAFBSUoKHH34Ya9asgdvthtPpxHXXXRfP0OLmrMeHYCSKydZUpUNJKKtmj8X2D2rx0kfnsKG0SOlwiBKWJEm40BHCdWPTlQ5lWLqSIM5mH5MgdM2Ki4u7i6x3Wb9+fZ9jt2/fHo+QiCgB8V5BRJeTLQny0EMP4f3334fH48GCBQvw7W9/G++//z6OHDkCAMjNzcXGjRsBAEVFRViyZAmWLl0KrVaL8vJyaLVauUJT1LGLRVEn5TAJcrmsFAOWTLWh8rAbX78lHxmma6tVQjRSeXxhhEUJtjR1tvBzWJKh1QhwsjgqERERESlAtiTIL37xi17HVq1a1e/4Bx54AA888IBc4SSM443t0GsFjM80oi2RN+4r4J6bcrHzUxdeOViP/z0vX+lwSCHV1dV48sknEY1GsWrVKqxbt67H8y+99BJefPFFaDQamEwm/PjHP0ZhYaFC0cafuy0IAKpNgui0GuSZk+Fkm1wiIiIiUoBG6QBGm2MNHSjISoFOy5f+ShOzUjB/QgZeOXAewUhU6XBIAaIoYuPGjdiyZQsqKyuxa9cunDhxoseYZcuW4bXXXsPOnTuxdu3aIbe0Uzt3WxAaAchOVe9qqfGZJq4EISIiIiJF8JN4HEmShKMN7SjKUV9by3hZfWMemn1hVB4euEUyjTw1NTXIz8+Hw+GAwWBAWVkZqqqqeoxJTb20lczv9w+qk9RI4m4LIjvFAJ1Gvbfv8Vkm1Hr8iIhMdhIRERFRfLE/YRw1dYTg8YcxiUVR+3XzOAum2dPw3P6z+Mr8CUqHQ3Hmdrtht9u7H9tsNtTU1PQa98ILL2Dr1q0Ih8PYtm1bPENUnLstiIlZ6u6gVJBtQiQqwenxozCbSWEiIiIiih8mQeLoaOPFoqhWvunvjyAI+Pf5+Vj/l0/xl3+ewx1FWUqHRHEkSb3r5PS10mP16tVYvXo1XnvtNTz77LP4z//8zwHn1moFWCzyJA+0Wo1sc3fxtwQgCgI6QiLyMlNgMva/HUan1fT5vEYj9Hm8v/FDnb8/yUl6WMzJ3Y+vn5AN4CjqfWHc1M/rFo/XNFYYKxEREZF6MAkSR8cb2gGwM8xA5o3PwMwxafj/957EwgkZSNKpd9k/DY3dbofL5ep+7Ha7u9tq96WsrAyPP/74oOYWRQlerzx1KCwWk2xzdwmERDgbO+8hmcla+PyhfsdGxGifz5uMhj6P9zd+qPP3JxAMw+u9tPUlSy9AqxFQc8aDW8dZ+jwnHq9prDDWwcnJYUtkIiIiUh4/XcbRscYOjDUnIzWJuaerEQQBD/zLeNS3BPDHj88pHQ7F0cyZM+F0OlFbW4tQKITKykqUlJT0GON0Ort//sc//oH8/NHTSairM4xVpZ1huui1GuRnGHHiQofSoRARERHRKMNP43F0rKEdk1gUdVBuHpeB26ZYsXX/WZRNtyE7Rb2dMGjwdDodysvLsXbtWoiiiBUrVqCoqAgVFRWYMWMGFi1ahOeffx779u2DTqdDenr6oLbCjBTu1iAsRh2S9VqlQ7lmhdkp+KS+VekwiIiIiGiUYRIkTvxhEWc9fiye0v/Sfurpe3dMxpJf/w9++44Tj90+SelwKE6Ki4tRXFzc49j69eu7f37sscfiHVLCqG8NYOxltTXUrDAnBbuPNqI9GOHqOCIiIiKKG26HiZMTjR2QwKKoQzE+KwX/dn0u/vqJC0cv1lMhGq28/jBaAhGMSR8ZSZCCi11hTnJLDBERERHFEZMgcXLsYkHDIhZFHZL7546D2ajHL9462WfnkKAEeELiNf0X7D0tUcI55m4DAIxJV3c9kC6FTIIQERERkQK4BjlOjjV0ID1ZN2I+wMRLWrIOX78lH0+/eQJ/P9qI26/YTuQLi3jrSMM1XWPhFCuSDOqvsUAj21F3ZyLVNkJWgoxJT0KKQYvjjUyCEBEREVH8cCVInBy9WBRVEASlQ1Gdu2aOwTR7Gn625yS8vrDS4RAp4lhDO7JSDCOmZbQgCJhsTcVnbm51IyIiIqL4GRnvphNcJCrhxIUOTLJyK8xwaDUCfrh4EtqCEfzsrRNKh0MUd5Ik4ai7fcStJJtmT8OxxnaExajSoRARERHRKMEkSByc9fgQjEQxmUmQYSvMTsHX5o7DG0caUX2ySelwiOLK3RaE1x8eMUVRu0yzpyEsdiaJiYiIiIjigUmQOOjqbMKVINfmvs85UJidgqffPI62QETpcIji5tP6zqKoI6U9bpdp9s574mFXm8KREBEREdFowSRIHBx1d8CgFTA+w6h0KKqm12pQfsckNHeE8PN/nFQ6HKK4+aS+FQatBra0kbUdZmx6MszJOiZBiIiIiChumASJg6ON7SjIToFOy5f7Wk21peF/fc6BykNu/OP4BaXDIYqLmvOtmGRNhVYzsgorC4KAqfY0HHaxOCoRERERxQc/lctMkiQcb2hnPZAYWjsvH5OtqXjq78fh8YWUDodIVsFIFEfc7Zg2Jk3pUGQxzZ6GU00d8IdFpUMhIiIiolGASRCZuduCaAlEWA8khvRaDZ5YMhkdoQh+teckJElSOiQi2RxxtyESlTDVPjKTINPtaYhKrAtCRERERPHBJIjMuoqiciVIbBVkp+Ab/zIB+04345PzrUqHQySbmou/3yN1Jcjs3HQIAD6ubVE6FCIiIiIaBZgEkdmxhg4IAIpyUpQOZcS5+8ZcXJebjr8fvQCvP6x0OESy+KS+DbnmZGSYDEqHIov0ZD0mW1PxYa1X6VCIiIiIaBRgEkRmRxvaMS7DCKNeq3QoI45GEPDd24oAALs+dSPKbTE0wkiShIPnWjBzbLrSocjqRocFn9S3IsC6IEREREQkM9mSIBs2bMC8efNw5513dh/zer1Ys2YNbr/9dqxZswYtLZ3LnyVJwk9+8hOUlpZi2bJlOHTokFxhxd1RFkWVlS09GaVTclDr9eODM/wmmUaWM81+NPvCuDHPrHQosrppnBlhUcIn9dzaRkRERETyki0J8sUvfhFbtmzpcWzz5s2YN28edu/ejXnz5mHz5s0AgOrqajidTuzevRs//vGP8fjjj8sVVly1+MNwtQWZBJHZzDFpmJSTgr0nmtDYHlQ6HKKY+biuM7F3g8OicCTymp1rhlYAPmRdECIiIiKSmWxJkJtvvhlmc89vL6uqqnDXXXcBAO666y68+eabPY4LgoDZs2ejtbUVDQ0NcoUWN8caO4uiTrKyHoicBEHAHdOsSNJr8NqnbohRbouhkeGj2hbkpBrgsCQrHYqsUpN0mGpP42ouIiIiIpKdLp4Xa2pqgtVqBQBYrVY0NzcDANxuN+x2e/c4u90Ot9vdPbY/Wq0Ai8UkX8B9XlMz6GuePeQGANxcmANLalKv5/0tAZiMwy92qNNqBnW+RiP0OW6w58cihv4kJ+lhMff9AW8wr3XXa2gyGnDXrLF48YNavHfWi9KptpjEMFRD+f1IJGqNeySTJAkf17XgRocZgiAoHY7sbpmQic3vnkFjexA5fdwviYiIiIhiIa5JkP5IfRS0HMybflGU4PX65AipXxaLadDX/KezGTmpBmgjYp/nBEIifP7QsGOJiNFBnW8yGvocN9jzYxFDfwLBMLzeaJ/PDea1vvw1zLck47qx6Xj7+AXkW5KRZzFecwxDNZTfj0RyLXHn5IzM1q1KO+vx40JHaMRvhely26Qc/O7dM9hz7AL+7YbcQZ8XlADfEAqqmvRaJI38nBIRERER9SOuSZCsrCw0NDTAarWioaEBmZmZADpXfrhcYL7cFAAAIABJREFUru5xLpdrwFUgavCZux3T7fyAeDWCIMAT6vsDjL8lgEA/z3URr8if3TY5G2eaffjvww342txx0Gr4aUdtqqur8eSTTyIajWLVqlVYt25dj+e3bt2Kl19+GVqtFpmZmXjqqaeQmzv4D81q8XFdZ32MG0Z4UdQu47NMKMg2oepY45CSIL6wiLeODH775MIpViQZ2K2LiIiIaLSKaxKkpKQEO3bswLp167Bjxw4sWrSo+/jzzz+PsrIyHDx4EGlpaapPgrQGwjjr8ePO6YPfljEa+SNR7Dve2Odz/a1gudy8opwej5N0WpROzsErB+vxUa0Xn8vPiFmsJD9RFLFx40Zs3boVNpsNK1euRElJCQoLC7vHTJ06FX/+859hNBrx4osv4qc//Sl+9atfKRi1PD6q9SLTpEd+xuBWNI0Et03K6d4Sw+1ZRERERCQH2QqjPvTQQ/jyl7+M06dPY8GCBXj55Zexbt06vPPOO7j99tvxzjvvdH/DW1xcDIfDgdLSUvzwhz/Ej370I7nCipvPXJ1FUafZuBIk3gpzUlCQbcLbJ5vRFogoHQ4NQU1NDfLz8+FwOGAwGFBWVoaqqqoeY+bOnQujsTMxMHv27B6ryEYKSZLwz7oW3OiwjIp6IF1um5QDCcDfPlN/YWwiIiIiSkyyrQT5xS9+0efxbdu29TomCMKISHxc7rC7DQAw1c72uPEmCAJKJ+fg/+w7iz3HL2D5TPvAJ1FCuLJIss1mQ01NTb/jX3nlFSxYsCAeocXVuZYAGtpDo2YrTJfxWSbc5DDjpY/PYd3CIqXDISIiIqIRKCEKo45Eh11tGJdhRHqyXulQRqUMkwFzx2fgnVPNmJ2bjvxMLq1Xg6EUSd65cyc+/fRTPP/884OaW85uUrHurvP3k52ds/51mr173qF0k+qva1OsOkUNdfxQOjB9s6QIa7Z9iL/WnMeqG/IGHD/ULlux7AbVRU3dldQUKxEREZEcmASRySFXG24cJV0dEtW88Rn49Hwr/n60EV+bOw6aUbStQK2uLJLcX6vsd999F7/97W/x/PPPw2AY3AdgObtJxbor0P8ca0CmSY8svdA971C6SfXXtSlWnaKGOn4oHZimZxkx1ZaK3+49heJxFhh0V9+1OdQuW7HsBtVFTV2hlIyVnaSIiIgoEchWE2Q0a2wPorE9hGnsDKMovVaDhZOy0dgewqfnW5UOhwZh5syZcDqdqK2tRSgUQmVlJUpKSnqMOXz4MMrLy/Hss88iKytLoUjlI0kSPqptwQ155lFVD6SLIAj4+i3jcbbZh4q9pwZ1TkiM4oi7DW8dv4C/H2nEu6ebcaqpA9Fo75VFRERERDS6cSWIDA67OuuBTLOxHojSplhTMSY9CdUnmzHVnga9lnm/RKbT6VBeXo61a9dCFEWsWLECRUVFqKiowIwZM7Bo0SI888wz8Pl8WL9+PQBgzJgx+O1vf6tw5LFT5w3A3RbE//qcQ+lQFDN/QibWzM/H1nfPYLI1FZ/vo65PRyiCd04147+PNOK9082IRCVohM7kZzDSudIjLUmHOeMzcKPDzJVgRERERASASRBZHHK1QSsAk61MgihNEASUTMrBCx/W4cOzXsybkKl0SDSA4uJiFBcX9zjWlfAAgOeeey7OEcXXPmdnPZB540d3e+fvlE7GwbNe/Hj3Mbx/1oPbp1iRnqTD6WYf/udUM95zNiMkSsg06XHd2HRMtqVinMUIjUZAICzirMePD8968ebRRhxxt+HzM+wwG1mjiYiIiGi0YxJEBoddbSjITkGyXqt0KARgXIYRhdkp2Of0YFauGSYD/14oce1zeuCwJCPPYlQ6FEUEJcAXFuHvCOEnn5+GP35Uhxc/qMMbRxq7x+SkGlA2045bC7IxyZaGd4439pgjWa/FJGsqinJScMjVht1HGrH9gzp8+Yax8f7jkMyqq6vx5JNPIhqNYtWqVVi3bl2P57du3YqXX34ZWq0WmZmZeOqpp5Cbm6tQtESkFN4riOhy3BsQY5Ik4bCrnfVAEsy/FmUhFIni3dPNSodC1K9QJIoPz3oxd/zoXbHkC4t460gD9h5rxNvHLyA3PRkPFk/EV2/Ow5euH4t/vyUf988dhyk5qWhsDeBqJU4FQcCMMen4yk15iEoSnv+wDnUef9z+LCQvURSxceNGbNmyBZWVldi1axdOnDjRY8zUqVPx5z//Ga+99hoWL16Mn/70pwpFS0RK4b2CiK7EJEiM1XoDaAtGMJ1JkISSk5qEmWPT8XFtC1r8YaXDIerTgXMtCESio34rzJWSdBrkWYwoyE5Bpskw5IKx1rQkfOXmPAgQ8Nhrh+H18R4wEtTU1CA/Px8OhwMGgwFlZWWoqqrqMeb/tXfnYVHWe//A37Ow74PAgKKCaypKqQXugjuidNJsc+lYlh2PW1baov7spD0d6+SxsoenUnOpTE1Ty06CW4lLbkiYiIJsMsi+MzDz/f3hcRIBGXCYe0ber+vqugLuuec9I/dnmM98l5CQEDg43BxVFRwcXGv3KSJqHVgriOhObIKYmGFRVDZBLM7gTipABvxylaNByDIdTy2AjULG7bVbgMrRFpOCfZFbqsWSvYnQcecYq6fRaKBW/7loro+PDzQaTYPHb9++HUOGDDFHNCKyIKwVRHQnrgliYonZJbBTyhHYxknqKHQHV3sbPNTO7b/TDTzg6WQrdSSiWrhuTctq6+6AucMDsfpAMjacTMPMkA5SR6J7IETdRlZDo4R2796NhIQEbN68udHzymSAu7vjPeczJ4VCzsxmwMzWibXiT9b4+2CNmQHrzG2NmZuLTRAT+z27BN29naGUcztGSxQa4IFzmUU4eiUPUb19pY5DZJBTUoXk3DLMHRIgdZT72sju3riQUYToY9fwcHsPBPm5Sh2JmkmtVtcasq7RaODt7V3nuGPHjuHTTz/F5s2bYWvbePNbCKCwsNykWVuau7sjM5sBM5uHl5dpR1OzVvzJGn8frDEzYJ25rTFzc+sFp8OYUFWNHhc1Jejlyz+qLZWTrRL923vgoqYUmpIqqeMQGRxPLQAAhLbiRVHNQSaTYfGILvBytsPb/0mCtuZuS6uSJQsKCkJqairS09Oh1Wqxb98+hIWF1TomMTERS5cuxbp16+Dp6SlRUiKSEmsFEd2JTRAT+kNTgmqdQHBbNkEs2SMd3GGvlONwcq7UUYgM4lIL4OVsi05tWscwRCk52ymxZEQXpOSVY/2JNKnjUDMplUosXboUzz33HMaNG4exY8eiS5cuWLNmjWHRw/feew/l5eWYN28eJk6ciBdffFHi1ERkbqwVRHQnTocxoXOZxQCAPmyCWDR7GwVCOnrgUHIeMgq5XSZJr0YvcDKtAEM7eTZ55xNqnoGBKox5wBsbT6VjXA8f+Hs4SB2JmmHo0KEYOnRore/NmzfP8P8bNmwwcyIiskSsFUR0O44EMaHzmUXo4OEAD0cuuGnp+rZ3h5OtAoeT8+pdMIvInH6/XoziyhqEBnAqjDnNGxIAG7kcaw5flToKEREREZkJmyAmohcC8VnFHAViJWwVcgwIUCGtoAJn0oukjkOtUJUACrQ6FGh1+E9SLhRyGbr5uhq+d+d/OvbqTEImkxmeU4WtEk/0a4fDV/IQk5xX7/NexeediIiI6L7C6TAmkppfjqLKGvRp6yZ1FDJScDtXnLxWgPVx1xDeScVpCGRW5dU6HPwjB0II/PxHDvzdHfBban6Dx4d28TJjuvtXRY0ecZdvGL72dFDC3UGJ1QcuY2ZIe8jv2NlreHdv2HHLYiIiIqL7BkeCmIhhPRBut2g1lHI5BgWqkJRTikPJeVLHoVYqt0yLgvJqdPN2kjpKq6RUyBHW1Qu5ZVqczeSoMCIiIqL7HZsgJnI6rRBtnGzRnovrWZVevq5o5+6Adb+mQqfnuHcyv6ScMgBAFy9niZO0Xl29nNBB5YAjV/JQUa2TOg4RERERtSA2QUxACIHf0gvRr707p1RYGblchhkh7ZGSV479F3OkjkOtUFJOKfzc7OFiz9mJUpHJZBjR1QtV1Xr8erXhKUlEREREZP3YBDGBlPxy5JdXo7+/u9RRqBkGdfbEAz7O+PiXFJRr+SkwmU9RRTWyS6o4FcYCeLvYoU9bV5xOL0R+mVbqOERERETUQtgEMYHf0goBAP3aswlijeQyGRaFdcaNUi3Wn0iTOg61Ikk3SgEAXTkVxiIM7uQJpVyGg8m5UkchIiIiohYiyfjrsLAwODk5QS6XQ6FQYOfOnSgsLMSCBQuQmZmJtm3b4sMPP4Sbm3XstHIqrRB+rnbwc7OXOgo1U28/V4zr4Y0tpzMwoZca/lzbhcwgKacMbZxsoXKylToKAXC2UyI0QIXDyXm4ll+ODipHqSMRERERkYlJNhJk48aN2L17N3bu3AkAiI6ORmhoKP7zn/8gNDQU0dHRUkVrEr0QOJNRxFEg94E5gwNgI5fjX4euSB2FWoHCimqkF1SgqzdHgViS/u3d4WqvRExSLoTgYslERERE9xuLmQ4TExODqKgoAEBUVBQOHDggcSLjXMwuQXFlDR5u7yF1FLpHXs52mBnSHkev5uNYChdHpJZ1PCUfAuB6IBbGRiHHsM6e0JRU4cL1EqnjEBEREZGJSbYdwcyZMyGTyTBlyhRMmTIFeXl58Pb2BgB4e3sjP7/xN6EKhQzu7uYdrqxQyGvd5+kzmZDLgFF9/ODu2LQh7RVFlXB0aP4weKVCbtTt5XJZvccZe3tTZGjO7RvKbcr7BwB7Oxu4/3cq0wthXbAnUYP3D13FsJ5qONo27RK58/fDWlhS7iNHjuCdd96BXq/H5MmTMWvWrFo/P3XqFFauXIlLly7hgw8+wJgxYyRKem+OXM6Fm70SPi52UkdpcTKZDAVGLjqss4DBFz3ULjiVVojDybmYNTgAHrYKqSMRERERkYlI0gT56quv4OPjg7y8PDz77LMIDAxs1nl0OoHCwnITp7s7d3fHWvcZczEHPdWukGlrUKitadK5KrU6lFc0fxeCGp3eqNs7OtjWe5yxtzdFhubcvqHcprx/AKisqkZhod7w9eLwznhxWzxW7k3EorDOTTrXnb8f1uJecnt5uZgsh06nw4oVK7B+/Xr4+Phg0qRJCAsLQ+fOf/47+Pr6YtWqVfjiiy9Mdr/mllemxZn0QoR09GgV22pX1OgRd/mGUceGdvFq4TSNk8lkGNHNC5tOZWD7mUzMHRwgdSQiIiIiMhFJpsP4+PgAADw9PTFy5EjEx8fD09MTOTk5AICcnByoVCopojVJXpkWidklGBjIqTD3k77+7pjyoB++OZtl2PmHzCM+Ph4dOnSAv78/bG1tERERgZiYmFrHtGvXDt27d4dcbjGz+ZosJukG9OLmiAOyTO3cHdDdxxnbzmQio7BC6jhEREREZCJmHwlSXl4OvV4PZ2dnlJeX49dff8VLL72EsLAw7Nq1C7NmzcKuXbsQHh5u7mhNdjy1AAAwMMDyGzbUNH8bHIDjqQV484c/sGXqQ/Dk7h1modFooFarDV/7+PggPj7eJOduyelzTZ1OdOByHjp5OaFDE0bRNGXqV0PHmmpqXEsef+tYY6bDtXSW8b398PGhK1h96CrWT+/X4KgdS5pO1hhrykpERETUEszeBMnLy8Pf/vY3ADeHvo8fPx5DhgxBUFAQ5s+fj+3bt8PX1xdr1qwxd7Qm++VqPlSONtzd4T7kYKPAqsgH8OzWc3jrhz/w78eCoJTf/9MWpFbfbhymmi7SktPnmjKdKKOwAmfTC/HX0A5NmsrVlKlfDR1rqqlxLXn8rWONmQ7X0llsAMwc0AEfHb6Kzb+mILKXut7jrGkanJRZTTl1joiIiKi5zN4E8ff3x/fff1/n+x4eHti4caO54zRbZbUOv6bkYewDPpC3gjn9rVEXL2e8Gt4Zb/+UhNWxyXgtvHO9b8irBFBefXPRx4qiSlQauQDkLY42CtjxVwgAoFarkZ2dbfhao9EYFky+X+z5XQMZgPDuXkjIKJI6DjVifJAavybnYnXsFQS3dYO/h4PUkYiIiIjoHki2O4y1O55agIpqPcK6tpE6CrWgCb3UuJZfgS9PpcPHxQ7PPtK+zjHl1Toc/OPmejbGfnp9u+HdvWHH3ScAAEFBQUhNTUV6ejp8fHywb98+vP/++1LHMhmdXmBvQjZCOnrAy/n+3xXmfiCXybBiXHc8vekMXt97EZ89GQw7pfWuR0NERETU2vEvuWaK+e/2ln3buUkdhVrY3wZ3xOjuXvjkl1RsOJEmdZz7mlKpxNKlS/Hcc89h3LhxGDt2LLp06YI1a9YYFkiNj4/HkCFDsH//fixbtgwRERESpzbeqbQC5JRqMaGBaRVkmdSu9lg6uiv+yCnF8h8vQV/PtC0iIiIisg4cCdIMVTV6HL2ShxFdvaBUsI90v5PLZFg+tjsA4ONfUlFQUY25QwKh4BohLWLo0KEYOnRore/NmzfP8P+9e/fGkSNHzB3LJHZf0MDNXokhnTxRpucbaWsytHMbzB0SgH8fSYF7jBKLwjqzBhARERFZITZBmiEuJR9lWh2nwrQiSrkM/29sd7g72GDr6UxczS3HsrHd0Ia7xpCRckurcDA5F48H+8FWKUdZE9eOIek9068dCsqrsem3DNwo1WL52G5wtrv7y2hVjR5nMwpxIasEV/LKUFalg0IuQweVA/r6u2NARw8204mIiIjMiE2QZtjzuwaeTrZ4uIOH1FHIjBRyGRaFdUZgGyd8cPAKntx4GguGBSKkk6fU0cgKfHchGzq9wKRgP6mjUDPJZDLMHRoIHxc7fHDoCh774hRmDeiAv/Rvj9vHhKQVVCAuJR9xqQX4Lb0QVTV6yAC0c7eHm4MNqmr0+C29EFtPZ8LDwQbTH/bH5P82x4iIiIioZbEJ0kQ3Sqrw69U8PN2vHbdMbaX+0tsXD7Z1w/L9l7Dsx0t4QO2CIF8XBHo6Sh2NLFSNTo/v4q8jpKMH2nN3Eas35aG26OXrgg8OXcW7B5LxXkwy1C52sLNR4EZpFUqrbo7y8XOzx5gePujfwQNBfq5wuG0B5BqdHuczi7H9bCY+PHwV357PwpJRXdHVp+FtZG2VCmhrjB9BxJ2niIiIiOpiE6SJdp/Pgk4AkT25sGFrFuDpiPVPBWNPQjY+PXYN286WwNvZFkO7eiPAw55rBVAtB5PzcKNUi8UjukgdhUykp68rPnuiDxI1pTidVYwrmhKUa3UI8nNFZbUOAZ6OUDnenC5XVlmN41fz6pwjtIsXisu16OzpiB8SczD323gM6eSJkI4e9W7HHdrFC3GXbxidkTtPEREREdXFJkgTCCHw7ekMBPm6oiM/9W/15DIZJgb5IrRzG3xy+CqOpxbg2zMZcLZVILidG4LbusHFnpdYayeEwKZT6Wjv4YCBASqp45AJyWQy9FS7YGB3HxQWlgMACrR/bpltrMA2TpgZ2h77E3NwKDkPKXnlGN/LB672Ni0Rm4iIiKhV4wTkJjiWWoCruWWYFOwrdRSyIDYKOXr7ueL50PZ45uH28HG1wy9X8/HxLynYeT4LqXnlENxSs9U6mVaIi5pSTO3XjiOEqEEONgpE9VZjXA9vZBVX4vO4NFzSlEodi4iIiOi+w4+pm2DLbxnwcbXDyG5eUkchCySTydBN7QJ/NzsUlFfjXGYRzmcW4VJOGVSONnjI3w1Bvq6wt+Hw9NZk48l0tHGyxbgePlJHIQsnk8nQp60b/N0dsDshGzvjryO4rSuGd2nDukFERERkImyCGOlSTilOpRXilVFdYcPtDKkRHo42GN6lDQYHqnBRU4qzGUU4cCkXhy7n4cF2bgjp6NHo1ppk/U6nF+JUWiHmDQ3kzh9kNJWTLab198fRK3mISy3ApZwyDAz0QB/uSEZERER0z/guzEifH0+Dk60CT/Tzh76qWuo4ZCWUCjmC/FwR5OeK7OJK/JZWiN/SC3E2owh9/d0Q0pFrRNyvhBD4+GgKvJ1tMakPp9BR0yjkMgzr0gbdfJwRm5SLA5dy8cuVfHRUOcLfwwHuDjZwtVfC1V4JO6W83oVUiYiIiKguNkGMEJ9VjIOXc/HCgA5wdbBBIZsg1AxqV3uM76XGgAAVfk3Jx8lrhTiXWYwqvcD0vm2h5Aij+8rh5DxcuF6CN0d14VQGajZfV3s83a8dsooqcb1Ui7grefgjp/ZaIUq5DM52SjjbKdDGyRZt3R3QxctJosRERERElo1NkEYIIbD2yFWoHG3wVN92Useh+4DKyRaRvdQI7eiBA0m5+PRoCn76XYOFwwM5MuQ+UVmtw78OX0WAyhER3E6bTMDPzR6P9fPHQ34uKK3SoaiyGiWVNSiurEGptgalVTqUVtXgD00pzmUWQy4DTmcUYVZIe3T3cZE6PhEREZHFYBOkET9ezMG5zGIsHtEZjrb8NJdMp42zHaY86AcHOyX+79dU/H1HAgYHqrBgWCf4ezhIHY/uwefH05BVVIlPH+8NJXeEIROSyWRwsVc2uP22EALZJVVIvF6CM2mFmJqch5HdvLBgWCC8nO3MnJaIiIjI8rAJche5pVV4/+AV9PZzRVQQ5/ST6clkMoQGemJE5zb4+kwmPj+ehikbf8NTfdvhr4+0Z+PNCl3KKcWm3zIQ0dMHff3dpY5D90gmk6FAq7vrMRVFlaj87zE6iXfDlslk8HW1h6+rPZaM6Ya98dex6VQ6jqXk49XwznhqQIC0AYmIiIgkxiZIA3R6gbf/k4SqGj3eGt0VCn6ae98y5k3O3ZjiTY+tUo5pD/tjXA9vfHQ0BRtPpuOHRA3+PiQAY7p7c9FDK1Gu1eH1vRehcrTB/CGBUschE6io0SPu8o27HuPoYIvyCi0AILSL5Wyh7mSnxIsDO2J8Tx8s//ESlv14Caczi7FgSAB3pyIiIqJWi38FNWDdr6k4llKAV8M7o6PKUeo41IKMeZNzN6Z809PG2Q7Lx3bHX/r4YXVsMpb+cAk7zl3HorBOnNdv4YQQWPlzEjIKK/DJ5N5wd7SROhIRAKCduwM+ndIH60+k4fPjafgtNR9vRzyA3n6uUkcjIiIiMjtuR1GPHeezsPFkOv7S25dbW5Ikevu5YsPTD+LNUV2QVlCBaZvP4h8/JeF6caXU0agBH/+Sip/+uIEXB3bkNBiyOEq5DM+HdsBXMx8GAMz6+hw+P34NOr3E83eIiIiIzIxNkNsIIbD5twy8eyAZgwJVWBTWidMQSDJymQwTg3yx46/98WTftvjhogZ/+fwUVv18mc0QCyKEwNqDyYbG6YyH/aWORNSgB9t7YMu0vhjRzQuf/noNs7edR1YR6wkRERG1HpwO819l2hqs+vkyfvrjBsK7tsHb47rDRsEeEUnPxV6JBcM64cmH2mLDyXTsvpCN3QnZGNbZE4/18UU/f3c26yRSWa3DP2OT8X2CBhE9vPFqeGf+W5DFc7ZT4u1x3TEgQIX/OZCMKRt+w4sDO2LKg35Q8nWPiIiI7nOtvglSoxfYf1GDj4+mIr9ci9kDO2LGI/6Q840MWRi1qz0Wj+iCGQ/746szmdj7uwYxSbno4OGA0d29MbSzJ7p4OfFNuJmcySjEyv9cxrWCCrw0tBNm9PXjc09WQyaTYVwPHzzYzg3vHriMDw9fxY7zWZg1oCNGdG3DZggRERHdtyzur5wjR45g9OjRGDlyJKKjo1vkPoQQSM4tw//FXUPUZyfx//YnwcfFDp89EYy/hrRnA4QsmtrVHguGdcK+WY9g2Ziu8HC0wf/FXcPTm84g6rOTWPlzEvYkZCM1vxxCWN98/8ZqgFarxfz58zFy5EhMnjwZGRkZZstWrdPj0OVczNkejxe+iUdljR4fTQrCghFd2AAhq+Trao8PH+2Ffz3aE7ZKOd764Q9EfX4K635NRXJumcXXEEuuF0RkOVgriOh2FjUSRKfTYcWKFVi/fj18fHwwadIkhIWFoXPnzvd03tPphbiSW4bMokqkFVQgMbsE+eXVkAHo194dr4R1wuBOnmx+kFWxt1FgfE81xvdUI69Mi6NX8nD4Sh5+vnQD38VnAwAcbRTw93BAew8HtHO3h6ejLTwcbaBytIWDjRy2SjlsFHJ4QYaK0irU6AW0OgGlXAY/N3uzPyZjasC3334LV1dX/Pzzz9i3bx9Wr16NDz/80CT3L4RAVY0eFdU6lGl1yC3VIr2wAhmFFbiUU4ZzmUUo0+qgcrTB3CEBmBTsBwcbhUnum0gqMpkMgwI9MSBAhV+v5uObs5nYcCINXxxPg5ezLXqqXRDo6YiOno5o6+YAV3slXO2VcLZVwkYhk6wBKHW9ICLrwFpBRHeyqCZIfHw8OnToAH//mwsLRkREICYm5p6aIFfzyvDitngAgL1Sjrbu9ggNUCHYzxWDOnmijZOtSbITScnTyRZRvX0R1dsXeiGQml+OC1nFuHyjzND4i0m6gaZsBPHp473NvsuJMTUgNjYWc+bMAQCMHj0aK1asgBDCJG/EZn51HheuF9f5vkIG+Hs4YMwD3hgc6IlHOnpAKWfTlO4vcpkMgzt5YnAnT+SWVuHo1XycSivE5RulOHolD7oG6sfcIQGY2t/8CwJLXS+IyDqwVhDRnSyqCaLRaKBWqw1f+/j4ID4+vsHjbWwU8PJyues5vbxckPpuhMky3jqnSc4DoGvbe3uT2bu9h6S3t4QM98NjMDUfb1c80l3d+IEWxpgaoNFo4Ot7c+tqpVIJFxcXFBQUQKVS3fXcxtSLPfMGNzN50+tCc67/pvyeNfV30pKOt6QsLX18S2epjzG/q15eLnggoA1m3fO9tZyWqhdyucxkr/PmxMzmwczWh7WiNmY2H2vMbY2Zm8Oi1gSpb+4xO7BErYcxNYB1gogA1gsiMg5rBRHdyaKaIGq1GtnZ2YavNRoNvL29JUxEROZkTA1Qq9W4fv06AKCmpgYlJSVwdzfvtB0ikh6QQpvuAAAV7klEQVTrBREZg7WCiO5kUU2QoKAgpKamIj09HVqtFvv27UNYWJjUsYjITIypAWFhYfjuu+8AAD/99BNCQkL4aQ1RK8R6QUTGYK0gojvJhIXtf3f48GGsXLkSOp0Ojz32GGbPni11JCIyo/pqwJo1a9CrVy+Eh4ejqqoKr7zyCi5evAg3Nzf861//Mix2RkStC+sFERmDtYKIbmdxTRAiIiIiIiIiopZgUdNhiIiIiIiIiIhaCpsgRERERERERNQqtOomyJEjRzB69GiMHDkS0dHRdX6u1Woxf/58jBw5EpMnT0ZGRobhZ//7v/+LkSNHYvTo0Th69KjR57TE3NevX8fUqVMxduxYREREYOPGjRaf+RadToeoqCi88MILJs/cUrmLi4sxd+5cjBkzBmPHjsXZs2ctPvOGDRsQERGB8ePHY+HChaiqqjJpZmtljuvdFJYsWYLQ0FCMHz9e6iiNMkc9MoWqqipMmjQJEyZMQEREBP79739LHalRLV0vrc291EqpNJZ5/fr1GDduHCIjIzF9+nRkZmZKkLI2Y+vk/v370a1bN1y4cMGM6epnTOYffvgB48aNQ0REBF5++WUzJ6yrscxZWVmYOnUqoqKiEBkZicOHD0uQsrbGXpuEEPjHP/6BkSNHIjIyEr///ruZE97EWmEerBXmwVrx541apZqaGhEeHi7S0tJEVVWViIyMFJcvX651zObNm8Vbb70lhBBi7969Yt68eUIIIS5fviwiIyNFVVWVSEtLE+Hh4aKmpsaoc1pibo1GIxISEoQQQpSUlIhRo0aZNHdLZL7liy++EAsXLhSzZs0yWd6Wzv3qq6+Kbdu2CSGEqKqqEkVFRRadOTs7WwwfPlxUVFQIIYSYO3eu2LFjh8kyWytzXO+mcvLkSZGQkCAiIiKkjtKolq5HpqLX60VpaakQQgitVismTZokzp49K3Gqu2vJemlt7qVWSsWYzHFxcaK8vFwIIcSWLVusIrMQN6/1p556SkyePFnEx8dLkPRPxmROSUkREydOFIWFhUIIIXJzc6WIamBM5jfffFNs2bJFCHHz9X748OFSRK2lsdemQ4cOiZkzZwq9Xi/Onj0rJk2aZOaErBXmwlphHqwVf2q1I0Hi4+PRoUMH+Pv7w9bWFhEREYiJial1TGxsLB599FEAwOjRoxEXFwchBGJiYhAREQFbW1v4+/ujQ4cOiI+PN+qclpjb29sbPXv2BAA4OzsjMDAQGo3GojMDQHZ2Ng4dOoRJkyaZLGtL5y4tLcWpU6cMmW1tbeHq6mrRmYGbnyBXVlaipqYGlZWV8Pb2Nllma2WO691U+vfvDzc3N6ljGKWl65GpyGQyODk5AQBqampQU1Nj0dsptnS9tDb3UiulYkzmkJAQODg4AACCg4ORnZ0tRVQDY+vkmjVr8Nxzz8HOzk6ClLUZk3nbtm14+umnDXXV09NTiqgGxmSWyWQoLS0FAJSUlFjE63hjr00xMTGIioqCTCZDcHAwiouLkZOTY8aErBXmwlphHqwVf2q1TRCNRgO1Wm342sfHp84f2hqNBr6+vgAApVIJFxcXFBQUNHhbY85piblvl5GRgYsXL6JPnz4Wn3nlypV45ZVXIJe3zK9xS+ROT0+HSqXCkiVLEBUVhTfeeAPl5eUWndnHxwd//etfMXz4cAwaNAjOzs4YNGiQyTJbK3Nc761dS9QjU9LpdJg4cSIGDBiAAQMGWGxOoOXrpbW5l1oplabWnO3bt2PIkCHmiNYgYzInJiYiOzsbw4cPN3e8ehmTOTU1FSkpKXjiiSfw+OOP48iRI+aOWYsxmefMmYM9e/ZgyJAhmDVrFt58801zx2yyOx+XWq02++ssa4V5sFaYB2vFn1rtX0P1dWjv/BSvoWOa+n1Taonct5SVlWHu3Ll4/fXX4ezsbIK0d89jzDENff/gwYNQqVTo1auXyXLeqSVy19TUIDExEU8++SR27doFBwcHk64l0RKZi4qKEBMTg5iYGBw9ehQVFRXYvXu3yTJbK3Nc761ZS9UjU1IoFNi9ezcOHz6M+Ph4JCUlSR2pXuaol9bmXmqlVJqSZ/fu3UhISMBzzz3X0rHuqrHMer0eq1atwmuvvWbOWHdlzPOs0+lw7do1bNq0Ce+//z7efPNNFBcXmytiHcZk3rdvHx599FEcOXIE0dHRePXVV6HX680VsVks4RpkrTAP1grzYK34U6ttgqjV6lpDvzQaTZ3hPmq1GtevXwdwc7hzSUkJ3N3dG7ytMee0xNwAUF1djblz5yIyMhKjRo2y+MxnzpxBbGwswsLCsHDhQhw/fhyLFi2y+NxqtRpqtdrwifGYMWOQmJho0ZmPHTuGdu3aQaVSwcbGBqNGjTL5Yq7WyBzXe2vVkvWoJbi6uuKRRx6ps3CzpTBHvbQ291IrpWJszTl27Bg+/fRTrFu3Dra2tuaMWEdjmcvKypCUlIRp06YhLCwM586dw+zZsyVd8NCY59nHxwfh4eGwsbGBv78/AgICkJqaauakfzIm8/bt2zF27FgAwIMPPoiqqipJRysY487HlZ2dbfbXWdYK82CtMA/Wij+12iZIUFAQUlNTkZ6eDq1Wi3379iEsLKzWMWFhYfjuu+8AAD/99BNCQkIgk8kQFhaGffv2QavVIj09Hampqejdu7dR57TE3EIIvPHGGwgMDMSzzz5r0rwtlfnll1/GkSNHEBsbiw8++AAhISFYvXq1xef28vKCWq3G1atXAQBxcXHo1KmTRWf28/PD+fPnUVFRASGEyTNbK3Nc761RS9cjU8nPzzd8mlNZWYljx44hMDBQ4lT1M0e9tDb3UiulYkzmxMRELF26FOvWrZN87jnQeGYXFxecOHECsbGxiI2NRXBwMNatW4egoCCLzQwAI0aMwIkTJwDcrAWpqanw9/eXIi4A4zL7+voiLi4OAHDlyhVUVVVBpVJJEddoYWFh2LVrF4QQOHfuHFxcXMzeBGGtMA/WCvNgrbiNUUuy3qcOHTokRo0aJcLDw8Unn3wihBDiww8/FAcOHBBCCFFZWSn+/ve/ixEjRojHHntMpKWlGW77ySefiPDwcDFq1Chx6NChu57T0nOfOnVKdO3aVYwfP15MmDBBTJgwodZjssTMtzt+/HiL7XbQErkTExPFo48+KsaPHy9mz55tWDHakjOvWbNGjB49WkRERIhFixaJqqoqk2a2Vua43k1hwYIFYuDAgaJHjx5i8ODBht2JLJE56pEpXLx4UUycOFGMHz9eREREiLVr10odySgtWS+tzb3USqk0lnn69OkiNDTUcO288MILUsYVQjSe+XbPPPOM5Ds+CNF4Zr1eL1auXCnGjh0rxo8fL/bu3StlXCFE45kvX74spkyZIiIjI8WECRPE0aNHpYwrhKj/tWnr1q1i69atQoibz/Py5ctFeHi4GD9+vGS/G6wV5sFaYR6sFTfJhJBw+WIiIiIiIiIiIjNptdNhiIiIiIiIiKh1YROEiIiIiIiIiFoFNkGIiIiIiIiIqFVgE4SIiIiIiIiIWgU2QYiIiIiIiIioVWAThIiIiIiIiIhaBTZBqElOnDiBM2fOmORcO3fuxIoVKwAAa9euxeeffw4AWLNmDY4dO2aS+7ibDRs2oKKiotFsd7N//35069YNFy5cMHU8ohb11VdfYdeuXQ3+3JTXeks7ceIEXnjhBQC1r93GHqOp7Ny5ExqNptFsdxMfH48HHngA+/fvN3U8IiIiIrqNUuoAZB46nQ4KhcLwtRACQgjI5U3rg508eRKOjo546KGHjDq+pqYGSmXTfs3mzZvXpOOb68svv8SECRPg4ODQrNuXlpZi06ZN6NOnj4mTETVdU6/pJ5988q4/b+q13tKaU0sae4ym8t1336FLly7w8fFp1u11Oh1Wr16NQYMGmTgZEREREd2JTRArtGvXLnz++eeQyWTo1q0bFAoFhg0bhjFjxgAAHnzwQZw9exYnTpzARx99BG9vb1y8eBHR0dF4/vnn8cgjj+DcuXP4+OOPkZKSgrVr10Kr1cLf3x+rVq2Ck5MTwsLCEBUVhYMHD6KmpgYffvgh7Ozs8PXXX0Mul+P777/HW2+9hX79+tXJt3jxYri5uSExMRE9e/bEiy++iNdffx3p6elwcHDAihUr0L179wYf3+LFiw2Pp74cnTp1Qn5+Pl5++WUUFhYiKCgIR48exY4dO6BSqeqcr7y8HPPnz0d2djb0ej1eeukl5ObmIicnB9OnT4e7uzs2bdqEHTt2IDo6Gl5eXujYsSNsbW3v+u+wZs0aPPfcc/jiiy+a+C9IZBoZGRm1runp06fj66+/rnM9r169GrGxsVAoFBg0aBBee+01rF27Fo6Ojpg5cya+/PJLfP3111AoFOjcuTNefvnlOtd6cXEx1q1bh+rqari7u2P16tVo06YN1q5di6ysLGRkZCArKwvTp0/HtGnTANStVf/85z+Rn5+PZcuWISsrCwDw+uuvo2/fvvU+vrVr1yInJweZmZnw8PDAypUrsXz5ciQkJEChUGDx4sUICQlp8Pm5/TFOnToVvXv3xokTJ1BSUoJ33nkH/fr1Q0VFBRYvXoyrV6+iU6dOyMzMxNKlSxEUFFTnfDqdDm+88QYSEhIgk8nw2GOPQa1WIyEhAYsWLYK9vT2++eYbnDx5EitXroSHhwd69uzZ6L/jpk2bMHr0aI4oIyIiIjIDNkGszOXLl7Fu3Tp89dVXUKlUKCwsxLvvvtvg8RcuXMCePXvg7++PjIwMpKSkYNWqVVi+fDny8/Oxbt06rF+/Ho6OjoiOjsb69esxZ84cAICHhwe+++47bNmyBV988QXeeecdPPHEE4Y3FXeTmpqKDRs2QKFQ4O2330aPHj3wySefIC4uDq+99hp2795t9GOuL8dHH32EkJAQvPDCCzhy5Ai++eabBm9/9OhReHt7Izo6GgBQUlICFxcXbNiwARs3boRKpUJOTg7Wrl2LnTt3wtnZGdOmTUOPHj0aPGdiYiKys7MxfPhwNkFIUreu6blz5+Lvf/97nev5mWeewc8//4z9+/dDJpOhuLi4zjmio6MRGxsLW1tbFBcXw9XVtc61XlRUhG3btkEmk+Hbb7/FZ599hsWLFxsyfPnllygtLcXYsWPx5JNPIjU1tU6tAoB33nkH06dPR79+/ZCVlYWZM2fixx9/bPDx/f7779i6dSvs7e0N19qePXtw5coVzJw5Ez/99JPRz5VOp8P27dtx+PBhfPTRR9iwYQO2bt0KNzc37NmzB0lJSYiKimrw9hcvXoRGo8HevXsBwPBcbdmyBa+++iqCgoJQVVWFt956Cxs3bkSHDh0wf/78u2bSaDQ4cOAANm7cyCYIERERkRmwCWJljh8/jjFjxhhGPLi7u9/1+KCgIPj7+xu+9vPzQ3BwMADg/PnzSE5ONgwZr66uNvwMAEaNGgUA6NWrF37++ecm5RwzZoxh+s3p06exdu1aAEBoaCgKCwtRUlJi9Lnqy3H69Gl89NFHAIAhQ4bAzc2twdt37doV//M//4N//vOfGD58eL2jV+Lj4/Hwww8bntdx48YhNTW13vPp9XqsWrUKq1atMvoxELWUW9f0wYMH672enZ2dYWdnhzfeeAPDhg3DsGHD6pyjW7duWLRoEcLDwzFixIh67yc7OxsLFizAjRs3oNVq0a5dO8PPhg4dCltbW6hUKqhUKuTl5TVYq44dO4bk5GTDbUtLS1FaWgpnZ+d67zcsLAz29vYAbl73zzzzDACgU6dO8PPzQ0pKitHP1ciRIwEAPXv2RGZmpuGct0audO3aFd26dWvw9v7+/khPT8fbb7+NoUOH1jt95erVq2jXrh06duwIAJgwYQK2bdvW4DnfeecdLFq0qNZ0RSIiIiJqOWyCWBkhRJ3vKRQK6PV6w8+rq6sNP3N0dKx17O1fCyEwcOBAfPDBB/Xel42NDQBALpdDp9M1Keft62zUl1kmkxl9rvpy1HfOhgQEBGDnzp04fPgw3n//fQwcONAw2qU5mcrKypCUlGR443Tjxg3Mnj0b69atq3cIPVFLunVN3+163r59O+Li4rBv3z5s3rwZX375Za2fR0dH49SpU4iNjcUnn3yCffv21TnHP/7xD8yYMQPh4eGGqXa33D51TKFQoKampsFrVK/X45tvvjE0NhrTWC1pils5m1tL3NzcsHv3bvzyyy/YunUrfvzxx3qboU2pbwkJCVi4cCEAoKCgAIcPH4ZSqWywGUVERERE94a7w1iZ0NBQ7N+/HwUFBQCAwsJCtG3bFr///jsAICYmplYT5G6Cg4Nx5swZXLt2DQBQUVHR6KeqTk5OKCsra1Lm/v374/vvvwdwc6cEDw+PBj/1NVbfvn0NQ+h/+eUXFBUVNXisRqOBg4MDJk6ciJkzZyIxMRFA7cfSu3dvnDx5EgUFBaiurr7rDg0uLi44ceIEYmNjERsbi+DgYDZASHINXc9lZWUoKSnB0KFD8frrr+OPP/6odTu9Xo/r168jJCQEr7zyCkpKSlBeXl7nWi8pKTEs/GnMjiv11SoAGDRoEDZv3mw47uLFi0Y/xv79+2PPnj0Abk7BuX79OgIDA42+fX1uryXJyclISkpq8Nj8/HwIITB69GjMmzev3loSGBiIjIwMpKWlAUC9DaXb3aojsbGxGD16NJYtW8YGCBEREVEL4kgQK9OlSxe8+OKLmDp1KuRyOXr06IFFixbhpZdewqRJkxAaGlpn9EdDVCoVVq1ahYULF0Kr1QIA5s+fj4CAgAZvM3z4cMydOxcxMTENLox6pzlz5mDJkiWIjIyEg4PDXdcwMdacOXOwcOFC/Pjjj+jfvz+8vLwabKwkJSXhvffeg1wuh1KpxPLlywEAjz/+OJ5//nl4eXlh06ZNmDNnDp544gl4eXmhR48ehtE1RNagoevZyckJL730EqqqqgAAS5YsqXU7nU6HV155BaWlpRBCYMaMGXB1da1zrc+ZMwfz5s2Dj48P+vTpg4yMjLvmqa9Wvfvuu3jjjTewYsUKREZGQqfToV+/fkZtRw0ATz31FJYtW4bIyEgoFAqsWrWq0QWMjTnn4sWLERkZiR49eqBbt25wcXGp99icnBwsWbLEUBtujeB49NFHsWzZMsPCqCtWrMCsWbPg4eGBvn374vLly/eUkYiIiIhMRybudXwxkQS0Wq2hqXH27FksX768SYutEhEBN5tANTU1sLOzQ1paGmbMmIH9+/ffc3OFiIiIiCwTR4KQVcrKysL8+fOh1+thY2ODt99+W+pIRGSFKioqMG3aNMM6JsuWLWMDhIiIiOg+xpEg1Gzr1q2rs3bGmDFjMHv2bEnyFBQUYMaMGXW+v2HDBnh4eDTrnJb2GInuRzt27KizWOtDDz2EZcuWSZQImDx5smFa0S3vvffeXXePuRtLfIxERERErRGbIERERERERETUKnB3GCIiIiIiIiJqFdgEISIiIiIiIqJWgU0QIiIiIiIiImoV2AQhIiIiIiIiolbh/wOM7ZWg8+tJ9wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# plot a single engine's histograms\n", "# we will lood at vehicle_id 2 as it has 1+ failures\n", @@ -1672,19 +358,20 @@ "plot_engine_hists(fleet_lagged[fleet_lagged[\"vehicle_id\"] == 2].loc[:, \"voltage\":])" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You should get a diagram that looks like the diagram below.\n", + "\n", + "![](engine_histogram_output.png)" + ] + }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Stored 'features_created_prm' (bool)\n" - ] - } - ], + "outputs": [], "source": [ "# remove features used for one-hot encoding the categorical features including make, model, engine_type and vehicle_class\n", "features = fleet_lagged.drop(columns=[\"make\", \"model\", \"year\", \"vehicle_class\", \"engine_type\"])\n", @@ -1695,7 +382,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1758,7 +445,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1773,20 +460,9 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Total Observations: 9000\n", - "Number of observations in the training data: 7200\n", - "Number of observations in the test data: 900\n", - "Number of observations in the validation data: 900\n" - ] - } - ], + "outputs": [], "source": [ "print(\"Total Observations: \", len(ordered))\n", "print(\"Number of observations in the training data:\", len(train))\n", @@ -1800,12 +476,12 @@ "source": [ "#### Converting data to the appropriate format for Estimator\n", "\n", - "Amazon SageMaker implementation of Linear Learner takes either csv format or recordIO-wrapped protobuf. We will start by scaling the features and saving the data files to csv format. Then, we will upload the data to S3. If you are using your own data, and it is too large to fit in memory, protobuf might be a better option than csv. Refer to the SageMaker's Developer's Guide for [more information on data formats for training](https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html)." + "Amazon SageMaker implementation of Linear Learner takes either csv format or recordIO-wrapped protobuf. We will start by scaling the features and saving the data files to csv format. Then, we will save the data to file. If you are using your own data, and it is too large to fit in memory, protobuf might be a better option than csv. For more information on data formats for training, please refer to [Common Data Formats for Training](https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html)." ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1815,86 +491,12 @@ "scaler = preprocessing.MinMaxScaler(feature_range=(0.0, 1.0))\n", "train = pd.DataFrame(scaler.fit_transform(train))\n", "test = pd.DataFrame(scaler.transform(test))\n", - "val = pd.DataFrame(scaler.transform(val))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Add in a helper function that uploads the converted data to S3. " - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "# helper function for converting data to csv(necessary for Linear Learner) and upload to S3\n", - "def upload_file_to_bucket(df, bucket, prefix, file_path):\n", - " file_dir, file_name = os.path.split(file_path)\n", - " df.to_csv(file_name, header=False, index=False)\n", - " boto3.resource(\"s3\").meta.client.upload_file(\n", - " Filename=file_path, Bucket=bucket, Key=(prefix + \"/\" + file_name)\n", - " )\n", - " print(f\"uploaded {prefix} data location: s3://{bucket}/{prefix}/{file_name}\")\n", - " path_to_data = f\"s3://{bucket}/{prefix}/{file_name}\"\n", - " return path_to_data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# convert and upload to S3\n", - "path_to_train_data_prm = upload_file_to_bucket(train, bucket, \"train\", \"train.csv\")\n", - "path_to_test_data_prm = upload_file_to_bucket(test, bucket, \"test\", \"test.csv\")\n", - "path_to_test_x_data_prm = upload_file_to_bucket(test.loc[:, 1:], bucket, \"test\", \"test_x.csv\")\n", - "path_to_valid_data_prm = upload_file_to_bucket(val, bucket, \"validation\", \"validation.csv\")\n", - "\n", - "# let's also setup an output S3 location for the model artifact that will be output as the result of training with the algorithm.\n", - "output_location = f\"s3://{bucket}/output\"\n", - "print(\"training artifacts will be uploaded to: {}\".format(output_location))\n", - "\n", - "%store path_to_train_data_prm\n", - "%store path_to_test_data_prm\n", - "%store path_to_test_x_data_prm\n", - "%store path_to_valid_data_prm" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Stored 'data_channels' (dict)\n" - ] - } - ], - "source": [ - "from sagemaker.inputs import TrainingInput\n", - "\n", - "train_channel = TrainingInput(path_to_train_data_prm, content_type=\"text/csv\")\n", - "test_channel = TrainingInput(path_to_test_data_prm, content_type=\"text/csv\")\n", - "test_x_channel = TrainingInput(path_to_test_x_data_prm, content_type=\"text/csv\")\n", - "valid_channel = TrainingInput(path_to_valid_data_prm, content_type=\"text/csv\")\n", + "val = pd.DataFrame(scaler.transform(val))\n", "\n", - "data_channels = {\"train\": train_channel, \"validation\": valid_channel}\n", - "%store data_channels" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, the data has been cleaned, preprocessed and features have been created. We have also stored the data in S3, so you are able to pick the notebook up starting from the *Train* section below without running the above again. " + "train.to_csv(\"train.csv\", header=False, index=False)\n", + "test.to_csv(\"test.csv\", header=False, index=False)\n", + "test.loc[:, 1:].to_csv(\"test_x.csv\", header=False, index=False)\n", + "val.to_csv(\"validation.csv\", header=False, index=False)" ] }, { @@ -1908,13 +510,6 @@ "\n", "Once you have selected some models that you would like to try out, SageMaker Experiments can be a great tool to track and compare all of the models before selecting the best model to deploy. We will set up an experiment using SageMaker experiments to track all the model training iterations for the Linear Learner Estimator we will try. You can read more about [SageMaker Experiments](https://docs.aws.amazon.com/sagemaker/latest/dg/experiments.html) to learn about experiment features, tracking and comparing outputs. " ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb index f76dc1e861..b0d8f6e533 100644 --- a/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb +++ b/use-cases/predictive_maintenance/3_train_tune_predict_predmaint.ipynb @@ -4,43 +4,59 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Fleet Predictive Maintenance: Part 4. Training, Hyperparameter Tuning, and Prediction\n", + "# Fleet Predictive Maintenance: Part 3. Training, Hyperparameter Tuning, and Prediction\n", "\n", - "1. [Architecure](0_usecase_and_architecture_predmaint.ipynb#0_Architecture)\n", - "1. [Data Prep: Processing Job from Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", - "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)\n", - "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb)" + "*Using SageMaker Studio to Predict Fault Classification*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### View stored variables from previous session\n", + "## Background\n", "\n", - "If you ran this notebook before, you may want to re-use the resources you aready created with AWS. Run the cell below to load any prevously created variables. You should see a print-out of the existing variables. If you don't see anything you may need to create them again or it may be your first time running this notebook." + "This notebook is part of a sequence of notebooks whose purpose is to demonstrate a Predictive Maintenance (PrM) solution for automobile fleet maintenance via Amazon SageMaker Studio so that business users have a quick path towards a PrM POC. In this notebook, we will be focusing on training, tuning, and deploying a model. It is the third notebook in a series of notebooks. You can choose to run this notebook by itself or in sequence with the other notebooks listed below. Please see the [README.md](README.md) for more information about this use case implement of this sequence of notebooks. " ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. [Data Prep: Processing Job from SageMaker Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb)\n", + "1. [Data Prep: Featurization](./2_dataprep_predmaint.ipynb)\n", + "1. [Train, Tune and Predict using Batch Transform](./3_train_tune_predict_predmaint.ipynb) (current notebook)\n" + ] + }, + { + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "%store -r\n", - "%store" + "## Important Notes: \n", + "\n", + "* Due to cost consideration, the goal of this example is to show you how to use some of SageMaker Studio's features, not necessarily to achieve the best result. \n", + "* We use the built-in classification algorithm in this example, and a Python 3 (Data Science) Kernel is required.\n", + "* The nature of predictive maintenace solutions, requires a domain knowledge expert of the system or machinery. With this in mind, we will make assumptions here for certain elements of this solution with the acknowldgement that these assumptions should be informed by a domain expert and a main business stakeholder\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note : dw_output_path_prm should appear above as a stored (restored) variable, whose value was set when you ran notebook 1_datapred_predmaint.ipynb" + "---\n", + "## Setup\n", + "\n", + "Let's start by:\n", + "\n", + "* Installing and importing any dependencies\n", + "* Instantiating SageMaker session\n", + "* Specifying the S3 bucket and prefix that you want to use for your training and model data. This should be within the same region as SageMaker training\n", + "* Defining the IAM role used to give training access to your data\n", + " " ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -50,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -85,6 +101,71 @@ "prefix_prm = \"predmaint\" # place to upload training files within the bucket" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before training, we must first upload our data in S3. To see how the existing train, test, and validation datasets were generated, take a look at [Data Prep: Processing Job from SageMaker Data Wrangler Output](./1_dataprep_dw_job_predmaint.ipynb) (which is the first part of this notebook series) followed by [Data Prep: Featurization](./2_dataprep_predmaint.ipynb) (which is the second part of this notebook series). See the [Background](#Background) section at the beginning of the notebook for more information." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# helper function for converting data to csv(necessary for Linear Learner) and upload to S3\n", + "def upload_file_to_bucket(bucket, prefix, file_path):\n", + " file_dir, file_name = os.path.split(file_path)\n", + " df = pd.read_csv(file_path)\n", + " boto3.resource(\"s3\").meta.client.upload_file(\n", + " Filename=file_path, Bucket=bucket, Key=(prefix + \"/\" + file_name)\n", + " )\n", + " print(f\"uploaded {prefix} data location: s3://{bucket}/{prefix}/{file_name}\")\n", + " path_to_data = f\"s3://{bucket}/{prefix}/{file_name}\"\n", + " return path_to_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# convert and upload to S3\n", + "path_to_train_data_prm = upload_file_to_bucket(bucket, \"train\", \"train.csv\")\n", + "path_to_test_data_prm = upload_file_to_bucket(bucket, \"test\", \"test.csv\")\n", + "path_to_test_x_data_prm = upload_file_to_bucket(bucket, \"test\", \"test_x.csv\")\n", + "path_to_valid_data_prm = upload_file_to_bucket(bucket, \"validation\", \"validation.csv\")\n", + "\n", + "# let's also setup an output S3 location for the model artifact that will be output as the result of training with the algorithm.\n", + "output_location = f\"s3://{bucket}/output\"\n", + "print(\"training artifacts will be uploaded to: {}\".format(output_location))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sagemaker.inputs import TrainingInput\n", + "\n", + "train_channel = TrainingInput(path_to_train_data_prm, content_type=\"text/csv\")\n", + "test_channel = TrainingInput(path_to_test_data_prm, content_type=\"text/csv\")\n", + "test_x_channel = TrainingInput(path_to_test_x_data_prm, content_type=\"text/csv\")\n", + "valid_channel = TrainingInput(path_to_valid_data_prm, content_type=\"text/csv\")\n", + "\n", + "data_channels = {\"train\": train_channel, \"validation\": valid_channel}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The data is stored in S3 and is ready for use in the estimators." + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -99,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -115,16 +196,16 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "if 'create_date' not in locals():\n", + "if \"create_date\" not in locals():\n", " create_date = strftime(\"%Y-%m-%d-%H-%M-%S\")\n", " %store create_date\n", "\n", " # location within S3 for outputs\n", - " exp_prefix = f'sagemaker-experiments/linear-learner-{create_date}'\n", + " exp_prefix = f\"sagemaker-experiments/linear-learner-{create_date}\"\n", " %store exp_prefix" ] }, @@ -143,7 +224,6 @@ "source": [ "# create the experiment\n", "experiment_name = f\"ll-failure-classification-{create_date}\"\n", - "%store experiment_name\n", "\n", "try:\n", " my_experiment = Experiment.load(experiment_name=experiment_name)\n", @@ -168,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -180,7 +260,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now we can begin to specify our linear model from the Amazon SageMaker Linear Learner Estimator. For this binary classification problem, we have the option of selecting between logistic regression or hinge loss (Support Vector Machines). Here are additional resources to [learn more about Linear Learner](https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-input_output) and the [loss functions available](https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html). One piece to note is that Amazon SageMaker's Linear Learner actually fits many models in parallel, each with slightly different hyperparameters, and then returns the one with the best fit. This functionality is automatically enabled. There are a number of additional parameters available for the Linear Learner Estimator, so we will start be using the default features as well as:\n", + "Now we can begin to specify our linear model from the Amazon SageMaker Linear Learner Estimator. For this binary classification problem, we have the option of selecting between logistic regression or hinge loss (Support Vector Machines). Here are additional resources to learn more about the [Input/Output Interface for the Linear Learner Algorithm](https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-input_output) and the [Linear Learner Hyperparameters](https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html). One piece to note is that Amazon SageMaker's Linear Learner actually fits many models in parallel, each with slightly different hyperparameters, and then returns the one with the best fit. This functionality is automatically enabled. There are a number of additional parameters available for the Linear Learner Estimator, so we will start be using the default features as well as:\n", "\n", "- `loss` which controls how we penalize mistakes in our model estimates. For this case, we will start with logistic and move to using hinge loss if necessary for model improvement.\n", "- `predictor_type` is set to 'binary_classifier' since we are trying to predict whether a failure occurs or it doesn't.\n", @@ -370,7 +450,7 @@ "source": [ "### Let's try dealing with class imbalances to try to improve precision and recall\n", "\n", - "We will set the hyperparameter `positive_example_weight_mult` to *balanced* in order to use weighting by class to address the class imbalance issue. Since we have only 19% failures compared to non-failures, we can leverage this built-in hyperparameter to try to improve model performnce. Read about [linear learner hyperparameters here](https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html)." + "We will set the hyperparameter `positive_example_weight_mult` to *balanced* in order to use weighting by class to address the class imbalance issue. Since we have only 19% failures compared to non-failures, we can leverage this built-in hyperparameter to try to improve model performance. Here is more documentation about [Linear Learner Hyperparameters](https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html)." ] }, { @@ -428,169 +508,9 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
TrialComponentNameDisplayNamepositive_example_weight_multvalidation:recall - Avgvalidation:binary_classification_accuracy - Avgvalidation:roc_auc_score - Avgtrain:objective_loss - Avgvalidation:objective_loss:final - Avgvalidation:objective_loss - Avgvalidation:binary_f_beta - Avgvalidation:precision - AvgTrialsExperiments
2linear-learner-2021-04-07-15-32-16-116-aws-tra...ll-svm-training-jobNaN0.4897960.8477780.7268230.2154800.2304290.2443500.5835870.721805[linear-learner-svm-2021-04-07-15-16-22][ll-failure-classification-2021-04-07-15-16-22]
3linear-learner-2021-04-07-15-27-01-989-aws-tra...ll-lr-training-jobNaN0.5816330.8422220.7848950.4227240.4542410.4636270.6162160.655172[linear-learner-lr-training-job-2021-04-07-15-...[ll-failure-classification-2021-04-07-15-16-22]
0linear-learner-2021-04-07-15-42-43-638-aws-tra...ll-svm-bal-training-jobbalanced0.3520410.8300000.7774520.5312801.5522680.5743140.4742270.726316[linear-learner-svm-balanced-2021-04-07-15-16-22][ll-failure-classification-2021-04-07-15-16-22]
1linear-learner-2021-04-07-15-37-30-147-aws-tra...ll-svm-thresh-training-jobNaN0.6428570.8200000.7335920.2154800.2292300.2443500.6086960.577982[linear-learner-svm-thresh-2021-04-07-15-16-22][ll-failure-classification-2021-04-07-15-16-22]
\n", - "
" - ], - "text/plain": [ - " TrialComponentName \\\n", - "2 linear-learner-2021-04-07-15-32-16-116-aws-tra... \n", - "3 linear-learner-2021-04-07-15-27-01-989-aws-tra... \n", - "0 linear-learner-2021-04-07-15-42-43-638-aws-tra... \n", - "1 linear-learner-2021-04-07-15-37-30-147-aws-tra... \n", - "\n", - " DisplayName positive_example_weight_mult \\\n", - "2 ll-svm-training-job NaN \n", - "3 ll-lr-training-job NaN \n", - "0 ll-svm-bal-training-job balanced \n", - "1 ll-svm-thresh-training-job NaN \n", - "\n", - " validation:recall - Avg validation:binary_classification_accuracy - Avg \\\n", - "2 0.489796 0.847778 \n", - "3 0.581633 0.842222 \n", - "0 0.352041 0.830000 \n", - "1 0.642857 0.820000 \n", - "\n", - " validation:roc_auc_score - Avg train:objective_loss - Avg \\\n", - "2 0.726823 0.215480 \n", - "3 0.784895 0.422724 \n", - "0 0.777452 0.531280 \n", - "1 0.733592 0.215480 \n", - "\n", - " validation:objective_loss:final - Avg validation:objective_loss - Avg \\\n", - "2 0.230429 0.244350 \n", - "3 0.454241 0.463627 \n", - "0 1.552268 0.574314 \n", - "1 0.229230 0.244350 \n", - "\n", - " validation:binary_f_beta - Avg validation:precision - Avg \\\n", - "2 0.583587 0.721805 \n", - "3 0.616216 0.655172 \n", - "0 0.474227 0.726316 \n", - "1 0.608696 0.577982 \n", - "\n", - " Trials \\\n", - "2 [linear-learner-svm-2021-04-07-15-16-22] \n", - "3 [linear-learner-lr-training-job-2021-04-07-15-... \n", - "0 [linear-learner-svm-balanced-2021-04-07-15-16-22] \n", - "1 [linear-learner-svm-thresh-2021-04-07-15-16-22] \n", - "\n", - " Experiments \n", - "2 [ll-failure-classification-2021-04-07-15-16-22] \n", - "3 [ll-failure-classification-2021-04-07-15-16-22] \n", - "0 [ll-failure-classification-2021-04-07-15-16-22] \n", - "1 [ll-failure-classification-2021-04-07-15-16-22] " - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# first we can look at all the trials together to evaluate the performance\n", "trial_component_analytics = ExperimentAnalytics(experiment_name=my_experiment.experiment_name)\n", @@ -634,7 +554,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -670,18 +590,18 @@ "In this example, we are using SageMaker Python SDK to set up and manage the hyperparameter tuning job. We first configure the training jobs the hyperparameter tuning job will launch by initiating an estimator, which includes the following configuration:\n", "\n", "* hyperparameters that SageMaker Automatic Model Tuning will tune: `learning_rate` \n", - "* the maximum number of training jobs it will run to optimize the objective metric: 20\n", + "* the maximum number of training jobs it will run to optimize the objective metric: 5\n", "* the number of parallel training jobs that will run in the tuning job: 2\n", "* the objective metric that Automatic Model Tuning will use: validation:accuracy\n", "\n", "We will also demonstrates how to associate trial components created by a hyperparameter tuning job with an experiment management trial.\n", "\n", - "Read the following link more information on [tuning linear learner hyperparameters](https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner-tuning.html) and [automatic tuning with SageMaker](https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html)" + "Read the following link more information on how to [Tune a Linear Learner Model](https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner-tuning.html) and about [How Hyperparameter Tuning Works](https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html)" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -691,7 +611,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -732,13 +652,14 @@ " estimator=svm_tune, # previously-configured Estimator object\n", " objective_metric_name=\"validation:binary_classification_accuracy\",\n", " hyperparameter_ranges=hyperparameter_ranges,\n", - " max_jobs=20,\n", + " max_jobs=5,\n", " max_parallel_jobs=2,\n", " strategy=\"Random\",\n", + " base_tuning_job_name=prm_tuning_job_name,\n", " )\n", "\n", " # start hyperparameter tuning job\n", - " my_tuner.fit(inputs=data_channels, include_cls_metadata=False, job_name=prm_tuning_job_name)\n", + " my_tuner.fit(inputs=data_channels, include_cls_metadata=False)\n", " print(f\"Create tuning job {prm_tuning_job_name}: SUCCESSFUL\")\n", "except ClientError as e:\n", " if \"ResourceInUse\" in str(e):\n", @@ -748,20 +669,9 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Completed'" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# check status\n", "boto3.client(\"sagemaker\").describe_hyper_parameter_tuning_job(\n", @@ -771,7 +681,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -782,19 +692,9 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 10 tuning jobs.\n", - "Stored 'tune_trial_name' (str)\n", - "Associate all training jobs created by ll-svm-tuning-job with trial ll-svm-tuning-job-trial\n" - ] - } - ], + "outputs": [], "source": [ "# get the most recently created tuning jobs\n", "list_tuning_jobs_response = smclient.list_hyper_parameter_tuning_jobs(\n", @@ -852,17 +752,9 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 20 trial components.\n" - ] - } - ], + "outputs": [], "source": [ "import time\n", "from datetime import datetime, timezone\n", @@ -915,317 +807,9 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
learning_rateTrainingJobNameTrainingJobStatusFinalObjectiveValueTrainingStartTimeTrainingEndTimeTrainingElapsedTimeSeconds
00.094162ll-svm-tuning-job-020-de38493cCompleted0.8077782021-03-16 02:48:13+00:002021-03-16 02:49:25+00:0072.0
10.018556ll-svm-tuning-job-019-b5e9ee8dCompleted0.8177782021-03-16 02:48:17+00:002021-03-16 02:49:38+00:0081.0
20.108048ll-svm-tuning-job-018-e720402bCompleted0.8033332021-03-16 02:44:49+00:002021-03-16 02:46:02+00:0073.0
30.105569ll-svm-tuning-job-017-ee995315Completed0.7988892021-03-16 02:43:54+00:002021-03-16 02:45:16+00:0082.0
40.256796ll-svm-tuning-job-016-f023d0fbCompleted0.7922222021-03-16 02:40:53+00:002021-03-16 02:42:17+00:0084.0
50.368504ll-svm-tuning-job-015-e97dc476Completed0.8100002021-03-16 02:39:49+00:002021-03-16 02:41:15+00:0086.0
60.018072ll-svm-tuning-job-014-fcf45964Completed0.8222222021-03-16 02:36:51+00:002021-03-16 02:38:03+00:0072.0
70.234124ll-svm-tuning-job-013-a1f86f0fCompleted0.8377782021-03-16 02:35:57+00:002021-03-16 02:37:24+00:0087.0
80.027784ll-svm-tuning-job-012-e5277482Completed0.8355562021-03-16 02:33:05+00:002021-03-16 02:34:08+00:0063.0
90.187483ll-svm-tuning-job-011-cc73e5e8Completed0.8266672021-03-16 02:32:16+00:002021-03-16 02:33:26+00:0070.0
100.099079ll-svm-tuning-job-010-07005361Completed0.7977782021-03-16 02:29:00+00:002021-03-16 02:30:17+00:0077.0
110.017746ll-svm-tuning-job-009-e77521ffCompleted0.8166672021-03-16 02:28:39+00:002021-03-16 02:29:47+00:0068.0
120.020755ll-svm-tuning-job-008-6ed6082eCompleted0.8466672021-03-16 02:25:19+00:002021-03-16 02:26:12+00:0053.0
130.048608ll-svm-tuning-job-007-692a0a7dCompleted0.7977782021-03-16 02:24:51+00:002021-03-16 02:26:38+00:00107.0
140.027099ll-svm-tuning-job-006-99d391aaCompleted0.8166672021-03-16 02:20:51+00:002021-03-16 02:21:53+00:0062.0
150.282473ll-svm-tuning-job-005-06ecccfaCompleted0.7955562021-03-16 02:20:34+00:002021-03-16 02:22:21+00:00107.0
160.026969ll-svm-tuning-job-004-329ec538Completed0.8088892021-03-16 02:16:39+00:002021-03-16 02:17:53+00:0074.0
170.010212ll-svm-tuning-job-003-a889d04cCompleted0.8455562021-03-16 02:16:56+00:002021-03-16 02:17:46+00:0050.0
180.051641ll-svm-tuning-job-002-9f9f727bCompleted0.8244442021-03-16 02:12:43+00:002021-03-16 02:14:05+00:0082.0
190.022299ll-svm-tuning-job-001-1694f3c9Completed0.8277782021-03-16 02:13:00+00:002021-03-16 02:14:03+00:0063.0
\n", - "
" - ], - "text/plain": [ - " learning_rate TrainingJobName TrainingJobStatus \\\n", - "0 0.094162 ll-svm-tuning-job-020-de38493c Completed \n", - "1 0.018556 ll-svm-tuning-job-019-b5e9ee8d Completed \n", - "2 0.108048 ll-svm-tuning-job-018-e720402b Completed \n", - "3 0.105569 ll-svm-tuning-job-017-ee995315 Completed \n", - "4 0.256796 ll-svm-tuning-job-016-f023d0fb Completed \n", - "5 0.368504 ll-svm-tuning-job-015-e97dc476 Completed \n", - "6 0.018072 ll-svm-tuning-job-014-fcf45964 Completed \n", - "7 0.234124 ll-svm-tuning-job-013-a1f86f0f Completed \n", - "8 0.027784 ll-svm-tuning-job-012-e5277482 Completed \n", - "9 0.187483 ll-svm-tuning-job-011-cc73e5e8 Completed \n", - "10 0.099079 ll-svm-tuning-job-010-07005361 Completed \n", - "11 0.017746 ll-svm-tuning-job-009-e77521ff Completed \n", - "12 0.020755 ll-svm-tuning-job-008-6ed6082e Completed \n", - "13 0.048608 ll-svm-tuning-job-007-692a0a7d Completed \n", - "14 0.027099 ll-svm-tuning-job-006-99d391aa Completed \n", - "15 0.282473 ll-svm-tuning-job-005-06ecccfa Completed \n", - "16 0.026969 ll-svm-tuning-job-004-329ec538 Completed \n", - "17 0.010212 ll-svm-tuning-job-003-a889d04c Completed \n", - "18 0.051641 ll-svm-tuning-job-002-9f9f727b Completed \n", - "19 0.022299 ll-svm-tuning-job-001-1694f3c9 Completed \n", - "\n", - " FinalObjectiveValue TrainingStartTime TrainingEndTime \\\n", - "0 0.807778 2021-03-16 02:48:13+00:00 2021-03-16 02:49:25+00:00 \n", - "1 0.817778 2021-03-16 02:48:17+00:00 2021-03-16 02:49:38+00:00 \n", - "2 0.803333 2021-03-16 02:44:49+00:00 2021-03-16 02:46:02+00:00 \n", - "3 0.798889 2021-03-16 02:43:54+00:00 2021-03-16 02:45:16+00:00 \n", - "4 0.792222 2021-03-16 02:40:53+00:00 2021-03-16 02:42:17+00:00 \n", - "5 0.810000 2021-03-16 02:39:49+00:00 2021-03-16 02:41:15+00:00 \n", - "6 0.822222 2021-03-16 02:36:51+00:00 2021-03-16 02:38:03+00:00 \n", - "7 0.837778 2021-03-16 02:35:57+00:00 2021-03-16 02:37:24+00:00 \n", - "8 0.835556 2021-03-16 02:33:05+00:00 2021-03-16 02:34:08+00:00 \n", - "9 0.826667 2021-03-16 02:32:16+00:00 2021-03-16 02:33:26+00:00 \n", - "10 0.797778 2021-03-16 02:29:00+00:00 2021-03-16 02:30:17+00:00 \n", - "11 0.816667 2021-03-16 02:28:39+00:00 2021-03-16 02:29:47+00:00 \n", - "12 0.846667 2021-03-16 02:25:19+00:00 2021-03-16 02:26:12+00:00 \n", - "13 0.797778 2021-03-16 02:24:51+00:00 2021-03-16 02:26:38+00:00 \n", - "14 0.816667 2021-03-16 02:20:51+00:00 2021-03-16 02:21:53+00:00 \n", - "15 0.795556 2021-03-16 02:20:34+00:00 2021-03-16 02:22:21+00:00 \n", - "16 0.808889 2021-03-16 02:16:39+00:00 2021-03-16 02:17:53+00:00 \n", - "17 0.845556 2021-03-16 02:16:56+00:00 2021-03-16 02:17:46+00:00 \n", - "18 0.824444 2021-03-16 02:12:43+00:00 2021-03-16 02:14:05+00:00 \n", - "19 0.827778 2021-03-16 02:13:00+00:00 2021-03-16 02:14:03+00:00 \n", - "\n", - " TrainingElapsedTimeSeconds \n", - "0 72.0 \n", - "1 81.0 \n", - "2 73.0 \n", - "3 82.0 \n", - "4 84.0 \n", - "5 86.0 \n", - "6 72.0 \n", - "7 87.0 \n", - "8 63.0 \n", - "9 70.0 \n", - "10 77.0 \n", - "11 68.0 \n", - "12 53.0 \n", - "13 107.0 \n", - "14 62.0 \n", - "15 107.0 \n", - "16 74.0 \n", - "17 50.0 \n", - "18 82.0 \n", - "19 63.0 " - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# here is the output of all of the hyperparameter tuning trial runs\n", "tuning_analytics.dataframe()" @@ -1247,7 +831,7 @@ "- Don't need a persistent endpoint that applications (for example, web or mobile apps) can call to get inferences\n", "- Don't need the subsecond latency that SageMaker hosted endpoints provide\n", "\n", - "Read more about [Batch Transform](https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-batch.html) here. " + "Here is additional information about how to [Use Batch Transform](https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html). " ] }, { @@ -1380,7 +964,7 @@ "outputs": [], "source": [ "# call evaluation function and inspect results\n", - "test = pd.read_csv(path_to_test_data_prm, header=None)\n", + "test = pd.read_csv(\"test.csv\", header=None)\n", "test_y = test[0]\n", "evaluate_model(\"test_x.csv.out\", test_y, \"PrM-Classification-SVM\", metrics=True)" ] @@ -1402,7 +986,8 @@ "source": [ "def delete_endpoint(predictor):\n", " try:\n", - " boto3.client(\"sagemaker\").delete_endpoint(EndpointName=predictor.endpoint)\n", + " predictor.delete_model()\n", + " predictor.delete_endpoint()\n", " print(\"Deleted {}\".format(predictor.endpoint))\n", " except:\n", " print(\"Already deleted: {}\".format(predictor.endpoint))" diff --git a/use-cases/predictive_maintenance/demo_helpers.py b/use-cases/predictive_maintenance/demo_helpers.py index 022482ba31..a5aee6dafc 100644 --- a/use-cases/predictive_maintenance/demo_helpers.py +++ b/use-cases/predictive_maintenance/demo_helpers.py @@ -55,16 +55,4 @@ def update_dw_s3uri(flow_file_name): with open(flow_file_name, "w") as f: json.dump(flow, f) - - -dw_container_dict = { - "us-east-2": "415577184552.dkr.ecr.us-east-2.amazonaws.com/sagemaker-data-wrangler-container:1.0.1" -} - - -def get_dw_container_for_region(region_in): - """ - Get the Data Wrangler container based on the given region - """ - container_uri = dw_container_dict[region_in] - return container_uri + \ No newline at end of file diff --git a/use-cases/predictive_maintenance/engine_histogram_output.png b/use-cases/predictive_maintenance/engine_histogram_output.png new file mode 100644 index 0000000000..2017d1d326 Binary files /dev/null and b/use-cases/predictive_maintenance/engine_histogram_output.png differ