-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqnchisq.c
117 lines (107 loc) · 3.31 KB
/
qnchisq.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*
* R : A Computer Language for Statistical Data Analysis
* Copyright (C) 1995, 1996 Robert Gentleman and Ross Ihaka
* Copyright (C) 2000-2008 The R Core Team
* Copyright (C) 2004 The R Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*/
#include "nmath.h"
#include "dpq.h"
double qnchisq(double p, double df, double ncp, int lower_tail, int log_p)
{
const static double accu = 1e-13;
const static double racc = 4*DBL_EPSILON;
/* these two are for the "search" loops, can have less accuracy: */
const static double Eps = 1e-11; /* must be > accu */
const static double rEps= 1e-10; /* relative tolerance ... */
double ux, lx, ux0, nx, pp;
#ifdef IEEE_754
if (ISNAN(p) || ISNAN(df) || ISNAN(ncp))
return p + df + ncp;
#endif
if (!R_FINITE(df)) ML_ERR_return_NAN;
/* Was
* df = floor(df + 0.5);
* if (df < 1 || ncp < 0) ML_ERR_return_NAN;
*/
if (df < 0 || ncp < 0) ML_ERR_return_NAN;
R_Q_P01_boundaries(p, 0, ML_POSINF);
/* Invert pnchisq(.) :
* 1. finding an upper and lower bound */
{
/* This is Pearson's (1959) approximation,
which is usually good to 4 figs or so. */
double b, c, ff;
b = (ncp*ncp)/(df + 3*ncp);
c = (df + 3*ncp)/(df + 2*ncp);
ff = (df + 2 * ncp)/(c*c);
ux = b + c * qchisq(p, ff, lower_tail, log_p);
if(ux < 0) ux = 1;
ux0 = ux;
}
p = R_D_qIv(p);
if(!lower_tail && ncp >= 80) {
/* pnchisq is only for lower.tail = TRUE */
if(p < 1e-10) ML_ERROR(ME_PRECISION, "qnchisq");
p = 1. - p;
lower_tail = TRUE;
}
if(lower_tail) {
if(p > 1 - DBL_EPSILON) return ML_POSINF;
pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
for(; ux < DBL_MAX &&
pnchisq_raw(ux, df, ncp, Eps, rEps, 10000, TRUE) < pp;
ux *= 2);
pp = p * (1 - Eps);
for(lx = fmin2(ux0, DBL_MAX);
lx > DBL_MIN &&
pnchisq_raw(lx, df, ncp, Eps, rEps, 10000, TRUE) > pp;
lx *= 0.5);
}
else {
if(p > 1 - DBL_EPSILON) return 0.0;
pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
for(; ux < DBL_MAX &&
pnchisq_raw(ux, df, ncp, Eps, rEps, 10000, FALSE) > pp;
ux *= 2);
pp = p * (1 - Eps);
for(lx = fmin2(ux0, DBL_MAX);
lx > DBL_MIN &&
pnchisq_raw(lx, df, ncp, Eps, rEps, 10000, FALSE) < pp;
lx *= 0.5);
}
/* 2. interval (lx,ux) halving : */
if(lower_tail) {
do {
nx = 0.5 * (lx + ux);
if (pnchisq_raw(nx, df, ncp, accu, racc, 100000, TRUE) > p)
ux = nx;
else
lx = nx;
}
while ((ux - lx) / nx > accu);
} else {
do {
nx = 0.5 * (lx + ux);
if (pnchisq_raw(nx, df, ncp, accu, racc, 100000, FALSE) < p)
ux = nx;
else
lx = nx;
}
while ((ux - lx) / nx > accu);
}
return 0.5 * (ux + lx);
}