-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_MLP.py
155 lines (118 loc) · 6.01 KB
/
train_MLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import matplotlib
matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as plt
import os
import argparse
import sys
import pickle
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset
from torch.optim.lr_scheduler import ReduceLROnPlateau
from utils import epoch
from models import MLP
parser = argparse.ArgumentParser()
parser.add_argument('data_path', metavar='DATA_PATH', help='path to datasets')
parser.add_argument('--output_dir', type=str, default='./', help='output directory. Default=Current folder')
parser.add_argument('--epochs', type=int, default=200, help='number of epochs. Default=200')
parser.add_argument('--batch_size', type=int, default=512, help='batch size. Default=512')
parser.add_argument('--eval_batch_size', type=int, default=512, help='batch size for eval mode. Default=512')
parser.add_argument('--lr', type=float, default=1e-1, help='initial learning rate. Default=1e-1')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum. Default=0.9')
parser.add_argument('--layers', type=int, default=5, help='number of hidden layers. Default=5')
parser.add_argument('--units', type=int, default=256, help='number of hidden units in each layer. Default=256')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate at input layer. Default=0.5')
parser.add_argument('--l1', type=float, default=0.0, help='L1 regularization. Default=0')
parser.add_argument('--clr', type=float, default=0.0, help='Cross-Lipschitz regularization. Default=0')
parser.add_argument('--no-cuda', dest='cuda', action='store_false', help='NOT use cuda')
parser.add_argument('--seed', type=int, default=0, help='random seed to use. Default=0')
parser.set_defaults(cuda=True)
def train_mlp(args, loaders, model, criterion, optimizer, scheduler, l1_factor=0.0, clr_factor=0.0, model_name='model'):
train_loader = loaders['train_loader']
valid_loader = loaders['valid_loader']
test_loader = loaders['test_loader']
if args.cuda:
model = model.cuda()
best_valid_loss = sys.float_info.max
train_losses = []
valid_losses = []
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
for i_epoch in tqdm(range(args.epochs), desc='Epochs'):
# Train
train_labels, train_preds, train_loss = epoch(train_loader, model, train=True, criterion=criterion, optimizer=optimizer, l1_factor=l1_factor, clr_factor=clr_factor)
train_losses.append(train_loss)
# Validation
valid_labels, valid_preds, valid_loss = epoch(valid_loader, model, criterion=criterion)
# Learning rate decay
if scheduler is not None:
scheduler.step(valid_loss)
valid_losses.append(valid_loss)
# remember best valid loss and save checkpoint
is_best = valid_loss < best_valid_loss
if is_best:
best_valid_loss = valid_loss
# evaluate on test set
test_labels, test_preds, test_loss = epoch(test_loader, model, criterion=criterion)
with open(args.output_dir + model_name + '_result.txt', 'w') as f:
f.write('Best Validation Epoch: {}\n'.format(i_epoch))
f.write('Best Validation Loss: {}\n'.format(best_valid_loss))
f.write('Train Loss: {}\n'.format(train_loss))
f.write('Test Loss: {}\n'.format(test_loss))
# Save entire model
torch.save(model, args.output_dir + model_name + '.pth')
# Save model params
torch.save(model.state_dict(), args.output_dir + model_name + '_params.pth')
# plot
plt.figure()
plt.plot(np.arange(len(train_losses)), np.array(train_losses), label='Training Loss')
plt.plot(np.arange(len(valid_losses)), np.array(valid_losses), label='Validation Loss')
plt.xlabel('epoch')
plt.ylabel('Loss')
plt.legend(loc="best")
plt.savefig(args.output_dir + model_name + '_loss.eps', format='eps')
def load_data(data_path):
with open(data_path + 'train.data_csr', 'rb') as f:
X_train = pickle.load(f)
with open(data_path + 'train.labels', 'rb') as f:
y_train = pickle.load(f)
with open(data_path + 'valid.data_csr', 'rb') as f:
X_valid = pickle.load(f)
with open(data_path + 'valid.labels', 'rb') as f:
y_valid = pickle.load(f)
with open(data_path + 'test.data_csr', 'rb') as f:
X_test = pickle.load(f)
with open(data_path + 'test.labels', 'rb') as f:
y_test = pickle.load(f)
print('Train: {}, Validation: {}, Test: {}'.format(X_train.shape[0], X_valid.shape[0], X_test.shape[0]))
train_set = TensorDataset(torch.from_numpy(X_train.todense().astype('float32')),
torch.from_numpy(np.array(y_train).astype('int')))
valid_set = TensorDataset(torch.from_numpy(X_valid.todense().astype('float32')),
torch.from_numpy(np.array(y_valid).astype('int')))
test_set = TensorDataset(torch.from_numpy(X_test.todense().astype('float32')),
torch.from_numpy(np.array(y_test).astype('int')))
return train_set, valid_set, test_set
if __name__ == '__main__':
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
train_set, valid_set, test_set = load_data(args.data_path)
train_loader = DataLoader(dataset=train_set, batch_size=args.batch_size, shuffle=True)
valid_loader = DataLoader(dataset=valid_set, batch_size=args.eval_batch_size, shuffle=False)
test_loader = DataLoader(dataset=test_set, batch_size=args.eval_batch_size, shuffle=False)
loaders = {'train_loader': train_loader, 'valid_loader': valid_loader, 'test_loader': test_loader}
input_dim = train_set.data_tensor.size()[1]
weight_class0 = torch.mean(train_set.target_tensor.float())
weight_class1 = 1.0 - weight_class0
weight = torch.FloatTensor([weight_class0, weight_class1])
criterion = nn.CrossEntropyLoss(weight=weight)
if args.cuda:
criterion = criterion.cuda()
model = MLP(input_dim=input_dim, num_hidden_layers=args.layers, hidden_dim=args.units, dropout=args.dropout)
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
scheduler = ReduceLROnPlateau(optimizer, 'min')
train_mlp(args, loaders, model, criterion, optimizer, scheduler, l1_factor=args.l1, clr_factor=args.clr)