-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
419 lines (330 loc) · 16.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
from __future__ import print_function, division
import sys
sys.path.append('core')
import copy
from datetime import datetime
import argparse
import os
import cv2
import time
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from network import CRAFT
from raft import RAFT
from craft_nogma import CRAFT_nogma
from utils import flow_viz
import datasets
import evaluate
from torch.cuda.amp import GradScaler
# exclude extremly large displacements
MAX_FLOW = 400
def convert_flow_to_image(image1, flow):
flow = flow.permute(1, 2, 0).cpu().numpy()
flow_image = flow_viz.flow_to_image(flow)
flow_image = cv2.resize(flow_image, (image1.shape[3], image1.shape[2]))
return flow_image
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def sequence_loss(flow_preds, flow_gt, valid, gamma):
""" Loss function defined over sequence of flow predictions """
# n_predictions = args.iters = 12
n_predictions = len(flow_preds)
flow_loss = 0.0
# exclude invalid pixels and extremely large displacements.
# MAX_FLOW = 400.
valid = (valid >= 0.5) & ((flow_gt**2).sum(dim=1).sqrt() < MAX_FLOW)
for i in range(n_predictions):
# Exponentially increasing weights. (Eq.7 in RAFT paper)
# As i increases, flow_preds[i] is expected to be more and more accurate,
# so we are less and less tolerant to errors through gradually increased i_weight.
i_weight = gamma**(n_predictions - i - 1)
i_loss = (flow_preds[i] - flow_gt).abs()
flow_loss += i_weight * (valid[:, None] * i_loss).mean()
epe = torch.sum((flow_preds[-1] - flow_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
metrics = {
'epe': epe.mean().item(),
'1px': (epe < 1).float().mean().item(),
'3px': (epe < 3).float().mean().item(),
'5px': (epe < 5).float().mean().item(),
}
return flow_loss, metrics
def fetch_optimizer(args, model):
""" Create the optimizer and learning rate scheduler """
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
pct_start = 0.05
scheduler = optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=args.lr, total_steps=args.num_steps+100,
pct_start=pct_start, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
class Logger:
def __init__(self, scheduler, args):
self.args = args
self.scheduler = scheduler
self.total_steps = 0
self.running_loss_dict = {}
self.train_epe_list = []
self.train_steps_list = []
self.val_steps_list = []
self.val_results_dict = {}
def _print_training_status(self):
metrics_data = [np.mean(self.running_loss_dict[k]) for k in sorted(self.running_loss_dict.keys())]
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_lr()[0])
# metrics_data[:-1]: '1px', '3px', '5px', 'epe'. metrics_data[-1] is 'time'.
metrics_str = ("{:10.4f}, "*len(metrics_data[:-1])).format(*metrics_data[:-1])
# Compute time left
time_left_sec = (self.args.num_steps - (self.total_steps+1)) * metrics_data[-1]
time_left_sec = time_left_sec.astype(int)
time_left_hm = "{:02d}h{:02d}m".format(time_left_sec // 3600, time_left_sec % 3600 // 60)
time_left_hm = f"{time_left_hm:>9}"
# print the training status
print(training_str + metrics_str + time_left_hm)
# logging running loss to total loss
self.train_epe_list.append(np.mean(self.running_loss_dict['epe']))
self.train_steps_list.append(self.total_steps)
for key in self.running_loss_dict:
self.running_loss_dict[key] = []
def push(self, metrics):
self.total_steps += 1
for key in metrics:
if key not in self.running_loss_dict:
self.running_loss_dict[key] = []
self.running_loss_dict[key].append(metrics[key])
if self.total_steps % self.args.print_freq == self.args.print_freq-1:
self._print_training_status()
self.running_loss_dict = {}
def save_checkpoint(cp_path, model, optimizer, lr_scheduler, logger):
logger_dict = copy.copy(logger.__dict__)
for key in ('args', 'scheduler'):
if key in logger_dict:
del logger_dict[key]
save_state = { 'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'logger': logger_dict
}
torch.save(save_state, cp_path)
print(f"{cp_path} saved")
def load_checkpoint(args, model, optimizer, lr_scheduler, logger):
checkpoint = torch.load(args.restore_ckpt, map_location='cuda')
if 'model' in checkpoint:
msg = model.load_state_dict(checkpoint['model'], strict=False)
else:
# Load old checkpoint.
msg = model.load_state_dict(checkpoint, strict=False)
print(f"Model checkpoint loaded from {args.restore_ckpt}: {msg}.")
if args.load_optimizer_state and 'optimizer' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
print("Optimizer state loaded.")
else:
print("Optimizer state NOT loaded.")
if args.load_scheduler_state and 'lr_scheduler' in checkpoint:
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
print("Scheduler state loaded.")
if 'logger' in checkpoint:
# https://stackoverflow.com/questions/243836/how-to-copy-all-properties-of-an-object-to-another-object-in-python
logger.__dict__.update(checkpoint['logger'])
print("Logger loaded.")
else:
print("Logger NOT loaded.")
else:
print("Scheduler state NOT loaded.")
print("Logger NOT loaded.")
def main(args):
if args.raft:
model = nn.DataParallel(RAFT(args), device_ids=args.gpus)
elif args.nogma:
model = nn.DataParallel(CRAFT_nogma(args), device_ids=args.gpus)
else:
model = nn.DataParallel(CRAFT(args), device_ids=args.gpus)
print(f"Parameter Count: {count_parameters(model)}")
model.cuda()
model.train()
train_loader = datasets.fetch_dataloader(args)
optimizer, scheduler = fetch_optimizer(args, model)
logger = Logger(scheduler, args)
if args.restore_ckpt is not None:
load_checkpoint(args, model, optimizer, scheduler, logger)
if args.freeze_bn and args.stage != 'chairs':
model.module.freeze_bn()
while logger.total_steps <= args.num_steps:
train(model, train_loader, optimizer, scheduler, logger, args)
if logger.total_steps >= args.num_steps:
plot_train(logger, args)
plot_val(logger, args)
break
PATH = args.output+f'/{args.name}.pth'
save_checkpoint(PATH, model, optimizer, scheduler, logger)
return PATH
def train(model, train_loader, optimizer, scheduler, logger, args):
# Recreate scaler every epoch.
scaler = GradScaler(enabled=args.mixed_precision)
for i_batch, data_blob in enumerate(train_loader):
tic = time.time()
image1, image2, flow, valid = [x.cuda() for x in data_blob[:4]]
if args.add_noise:
stdv = np.random.uniform(0.0, 5.0)
image1 = (image1 + stdv * torch.randn(*image1.shape).cuda()).clamp(0.0, 255.0)
image2 = (image2 + stdv * torch.randn(*image2.shape).cuda()).clamp(0.0, 255.0)
optimizer.zero_grad()
flow_pred = model(image1, image2, iters=args.iters)
loss, metrics = sequence_loss(flow_pred, flow, valid, args.gamma)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
scaler.step(optimizer)
if scheduler is not None:
scheduler.step()
scaler.update()
toc = time.time()
metrics['time'] = toc - tic
# metrics is a dict, with keys: 'epe', '1px', '3px', '5px', 'time'.
logger.push(metrics)
# Validate
if logger.total_steps % args.val_freq == args.val_freq - 1:
PATH = args.output + f'/{logger.total_steps+1}_{args.name}.pth'
save_checkpoint(PATH, model, optimizer, scheduler, logger)
validate(model, args, logger)
plot_train(logger, args)
plot_val(logger, args)
if logger.total_steps >= args.num_steps:
break
def validate(model, args, logger):
model.eval()
results = {}
# Evaluate results
for val_dataset in args.validation:
if val_dataset == 'chairs':
results.update(evaluate.validate_chairs(model.module, args.iters))
if val_dataset == 'things':
results.update(evaluate.validate_things(model.module, args.iters))
elif val_dataset == 'sintel':
results.update(evaluate.validate_sintel(model.module, args.iters))
elif val_dataset == 'kitti':
results.update(evaluate.validate_kitti(model.module, args.iters))
elif val_dataset == 'kittitrain':
results.update(evaluate.validate_kitti(model.module, args.iters, use_kitti_train=True))
elif val_dataset == 'viper':
results.update(evaluate.validate_viper(model.module, args.iters))
# Record results in logger
for key in results.keys():
if key not in logger.val_results_dict.keys():
logger.val_results_dict[key] = []
logger.val_results_dict[key].append(results[key])
logger.val_steps_list.append(logger.total_steps)
model.train()
if args.freeze_bn and args.stage != 'chairs':
model.module.freeze_bn()
def plot_val(logger, args):
for key in logger.val_results_dict.keys():
# plot validation curve
plt.figure()
plt.plot(logger.val_steps_list, logger.val_results_dict[key])
plt.xlabel('x_steps')
plt.ylabel(key)
plt.title(f'Results for {key} for the validation set')
plt.savefig(args.output+f"/{key}.png", bbox_inches='tight')
plt.close()
def plot_train(logger, args):
# plot training curve
plt.figure()
plt.plot(logger.train_steps_list, logger.train_epe_list)
plt.xlabel('x_steps')
plt.ylabel('EPE')
plt.title('Running training error (EPE)')
plt.savefig(args.output+"/train_epe.png", bbox_inches='tight')
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='craft', help="name your experiment")
parser.add_argument('--stage', help="determines which dataset to use for training")
parser.add_argument('--craft', dest='craft', action='store_true',
help='use craft (Cross-Attentional Flow Transformer)')
parser.add_argument('--setrans', dest='use_setrans', action='store_true',
help='use setrans (Squeeze-Expansion Transformer) as the intra-frame attention')
parser.add_argument('--raft', action='store_true', help='use raft')
parser.add_argument('--nogma', action='store_true', help='(ablation) Do not use GMA')
parser.add_argument('--validation', type=str, nargs='+')
parser.add_argument('--restore_ckpt', help="restore checkpoint")
parser.add_argument('--loadopt', dest='load_optimizer_state', action='store_true',
help='Do not load optimizer state from checkpoint (default: not load)')
parser.add_argument('--loadsched', dest='load_scheduler_state', action='store_true',
help='Load scheduler state from checkpoint (default: not load)')
parser.add_argument('--output', type=str, default='checkpoints',
help='output directory to save checkpoints and plots')
parser.add_argument('--radius', dest='corr_radius', type=int, default=4)
parser.add_argument('--lr', type=float, default=0.00002)
parser.add_argument('--num_steps', type=int, default=100000)
parser.add_argument('--batch_size', type=int, default=6)
parser.add_argument('--workers', dest='num_workers', type=int, default=4)
parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512])
parser.add_argument('--gpus', type=int, nargs='+', default=[0, 1])
parser.add_argument('--mixed_precision', default=False, action='store_true', help='use mixed precision')
parser.add_argument('--wdecay', type=float, default=.00005)
parser.add_argument('--epsilon', type=float, default=1e-8)
parser.add_argument('--clip', type=float, default=1.0)
parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate for fnet and cnet')
parser.add_argument('--upsample-learn', action='store_true', default=False,
help='If True, use learned upsampling, otherwise, use bilinear upsampling.')
parser.add_argument('--gamma', type=float, default=0.8, help='exponential loss weighting of the sequential predictions')
parser.add_argument('--add_noise', action='store_true')
parser.add_argument('--shiftprob', dest='shift_aug_prob', type=float,
default=0.0, help='Probability of shifting augmentation')
parser.add_argument('--shiftsigmas', dest='shift_sigmas', default="16,10", type=str,
help='Stds of shifts for shifting consistency loss')
# default: not to freeze bn.
parser.add_argument('--freeze_bn', action='store_true')
parser.add_argument('--iters', type=int, default=12)
parser.add_argument('--val_freq', type=int, default=10000,
help='validation frequency')
parser.add_argument('--print_freq', type=int, default=100,
help='printing frequency')
parser.add_argument('--model_name', default='', help='specify model name')
parser.add_argument('--position_only', default=False, action='store_true',
help='(GMA) only use position-wise attention')
parser.add_argument('--position_and_content', default=False, action='store_true',
help='(GMA) use position and content-wise attention')
parser.add_argument('--num_heads', default=1, type=int,
help='(GMA) number of heads in attention and aggregation')
parser.add_argument('--posr', dest='pos_bias_radius', type=int, default=7,
help='The radius of positional biases')
parser.add_argument('--f1', dest='f1trans', type=str,
choices=['none', 'shared', 'private'], default='none',
help='Whether to use transformer on frame 1 features. '
'shared: use the same self-attention as f2trans. '
'private: use a private self-attention.')
parser.add_argument('--f2', dest='f2trans', type=str,
choices=['none', 'full'], default='full',
help='Whether to use transformer on frame 2 features.')
parser.add_argument('--f2posw', dest='f2_pos_code_weight', type=float, default=0.5)
parser.add_argument('--f2radius', dest='f2_attn_mask_radius', type=int, default=-1)
parser.add_argument('--intermodes', dest='inter_num_modes', type=int, default=4,
help='Number of modes in inter-frame attention')
parser.add_argument('--intramodes', dest='intra_num_modes', type=int, default=4,
help='Number of modes in intra-frame attention')
parser.add_argument('--f2modes', dest='f2_num_modes', type=int, default=4,
help='Number of modes in F2 Transformer')
# In inter-frame attention, having QK biases performs slightly better.
parser.add_argument('--interqknobias', dest='inter_qk_have_bias', action='store_false',
help='Do not use biases in the QK projections in the inter-frame attention')
parser.add_argument('--interpos', dest='inter_pos_code_type', type=str,
choices=['lsinu', 'bias'], default='bias')
parser.add_argument('--interposw', dest='inter_pos_code_weight', type=float, default=0.5)
parser.add_argument('--intrapos', dest='intra_pos_code_type', type=str,
choices=['lsinu', 'bias'], default='bias')
parser.add_argument('--intraposw', dest='intra_pos_code_weight', type=float, default=1.0)
args = parser.parse_args()
args.ddp = False
torch.manual_seed(1234)
np.random.seed(1234)
if not os.path.isdir(args.output):
os.makedirs(args.output)
args.shift_sigmas = [ int(s) for s in args.shift_sigmas.split(",") ]
timestamp = datetime.now().strftime("%m%d%H%M")
print("Time: {}".format(timestamp))
print("Args:\n{}".format(args))
main(args)