-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStockcode.R
165 lines (123 loc) · 6.71 KB
/
Stockcode.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#############################################################################################
# Analysing fund returns
#--------------------------------------------------------------------------------------------
## Packages to load
require(quantmod)
require(ggplot2)
require(xts)
require(plotly)
require(highcharter)
library(PerformanceAnalytics)
library(dygraphs)
library(plotly)
#--------------------------------------------------------------------------------------------
#loading the data
fundreturn <- read.csv("fundreturns.csv", header = T)
# quick peep of the data
head(fundreturn, 3)
str(fundreturn)
## Dates have been loaded as a factor instead of as dates. There is need to convert this variable to the date class and covert the rest of the variables to xts(Extensible Time Series)
temp <- xts(x =fundreturn[,-1], order.by = as.Date(fundreturn[,1]))
# all the variables except data are coerced to xts using date as the index.
# Overwriting the fundreturn object with the xts temp object
fundreturn <- temp
str(fundreturn)
rm(temp) # gettting rid of temp object
## Next I, stack variables of the same unique class within the same column. That is the returns of all the stocks in one column and the tickers in another column, indexed by the date variable.
# make use of a temporary object.
temp <- data.frame(index(fundreturn), stack(as.data.frame(coredata(fundreturn))))
fundreturn_final <- temp
# Give the variables more descriptive names
names(fundreturn_final)[1] <- "Year"
names(fundreturn_final)[2] <- "PercentageReturn"
names(fundreturn_final)[3] <- "Stockticker"
names(fundreturn_final)
rm(temp) # removing the temp. object
# we coerce the data frame back to xts to be able to use quantmod and highcharter
#fundreturn_final <- xts(x=fundreturn_final[-1], order.by = as.Date(fundreturn_final[,1]))
ggplot(data = fundreturn_final, aes(x=Year, y=PercentageReturn, color=Stockticker)) +geom_line()
ggplotly()
################################################################################
# Google stock Performance
# GOOG
GOOG <- subset(fundreturn_final, Stockticker=="GOOG")
g <- ggplot(data = GOOG, aes(x=Year, y=PercentageReturn)) +geom_line()
g
# add features
? theme
g <- g + ggtitle("Google Monthly Return", subtitle = "For the Period between June 2007 - Nov. 2016") +
theme(panel.background = element_rect(fill = "white", colour = "grey50"),
axis.text = element_text(colour = "blue"),
axis.title.y = element_text(size = rel(1.0), angle = 90),
axis.title.x = element_text(size = rel(1.0), angle = 360))
g <- g + labs(x = "Year",
y ="Percentage return")
g + annotate("text",x=as.Date("2009-09-01"),y=0.3245,label="HR",fontface="bold",size=3, colour = "forestgreen") +
annotate("text",x=as.Date("2010-04-01"),y=-0.1900,label="LR",fontface="bold",size=3,colour ="red")
?legend
################################################################################
# Portfolio Performance Appraisal
#-------------------------------------------------------------------------------
# Having the following portfolio
# Google = GOOG, Amazon = AZMN,Apple = AAPL JP Morgans = JPM, Microsoft = MSFT, General Electric = GE, and Hewlett Packard = HPQ
#, "GE", "HPQ"
?subset
p1 <- subset(fundreturn_final, Stockticker =="AMZN")
p2 <- subset(fundreturn_final, Stockticker =="MSFT")
p3 <- subset(fundreturn_final, Stockticker =="AAPL")
p4 <- subset(fundreturn_final, Stockticker =="GOOG")
portfolio <- rbind(p1,p2,p3,p4) # binding the returns into one returns variable
rm("p1","p2", "p3","p4") # Removal of the temp. subsets
# quick visual representation of the data
p <- ggplot(data = portfolio, aes(x = Year, y =PercentageReturn, colour = Stockticker))+geom_line()
p + labs(
x = " Year",
y = "Percentage return",
colour = "Stock ticker") +
ggtitle(" Apple, Amazon and Google Stock Returns",subtitle =" For the period June 2007 - Nov. 2016")
ggplotly()
################################################################################
#Dygraphing
p1 <- subset(fundreturn_final, Stockticker =="AMZN")
p2 <- subset(fundreturn_final, Stockticker =="MSFT")
p3 <- subset(fundreturn_final, Stockticker =="AAPL")
p4 <- subset(fundreturn_final, Stockticker =="GOOG")
# Converting to xts before graphing
AMZN <- xts(x = p1[,c(-1,-3)], order.by = p1[,1])
MSFT <- xts(x = p2[,c(-1,-3)], order.by = p2[,1])
AAPL <- xts(x = p3[,c(-1,-3)], order.by = p3[,1])
GOOG_ <- xts(x = p4[,c(-1,-3)], order.by = p4[,1])
rm("p1","p2", "p3","p4") # Removal of the temp. subsets
merged_returns <- merge.xts(AMZN,MSFT,AAPL,GOOG_) # merging the separate share returns into one xts object.
dygraph(merged_returns, main = "Amazon v Microsoft v Apple v Google") %>% # Using pipes to connect the codes
dyAxis("y", label ="%") %>%
dyAxis("x", label ="Year") %>%
dyOptions(colors = RColorBrewer::brewer.pal(4, "Set2"))
################################################################################
# Let's now evaluate the portfolio
# We assume an equally weighted portfolio. Allocating 25% to all the stocks in our portfolio
w <- c(.25,.25,.25,.25)
# We use the performanceAnalytics built infuction Return.porftolio to calculate portfolio monthly returns
monthly_P_return <- Return.portfolio(R = merged_returns, weights = w)
# Use dygraphs to chart the portfolio monthly returns.
dygraph(monthly_P_return, main = "Portfolio Monthly Return") %>%
dyAxis("y", label = "%")
################################################################################
# Add the wealth.index = TRUE argument and, instead of returning monthly returns,
# the function will return the growth of $1 invested in the portfolio.
dollar_growth <- Return.portfolio(merged_returns, weights = w, wealth.index = TRUE)
# Use dygraphs to chart the growth of $1 in the portfolio.
dygraph(dollar_growth, main = "Growth of $1 Invested in Portfolio") %>%
dyAxis("y", label = "$")
###############################################################################
# Calculating the Sharpe Ratio
# Method 1: use the Return.excess function from Performance Analytics package,
# then calculate the Sharpe Ratio manually.
portfolio_excess_returns <- Return.excess(monthly_P_return, Rf = .0003)
print(sharpe_ratio_manual <- round(mean(portfolio_excess_returns)/StdDev(portfolio_excess_returns), 4))
# If we wanted to use the original, 1966 formulation of the Sharpe Ratio, there is one small
# change to the code in Method 1.
print(sharpe_ratio_manual_1966 <- round(mean(portfolio_excess_returns)/StdDev(monthly_P_return), 4))
# Method 2: use the built in SharpeRatio function in Performance Analytics package.
print(sharpe_ratio <- round(SharpeRatio(monthly_P_return, Rf = .0003), 4))
################################################################################