-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_on_saved_adv_samples.py
302 lines (201 loc) · 11.6 KB
/
inference_on_saved_adv_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
import json
from datetime import datetime
import numpy as np
import torch
from unetr import UNETR
from utils.get_args import get_args
from utils.data_utils import get_loader_btcv
from utils.data_utils import get_loader_acdc
from utils.utils import MyOutput
from utils.utils import print_attack_info
from utils.utils import get_folder_name
from attacks import vafa
from attacks.pgd import projected_gradient_descent_l_inf as pgd_l_inf
from attacks.fgsm import fast_gradient_sign_method_l_inf as fgsm_l_inf
from attacks.bim import basic_iterative_method_l_inf as bim_l_inf
from attacks.gn import gaussain_noise as gn
import monai
from monai.inferers import sliding_window_inference
from monai.utils.misc import fall_back_tuple
from monai.data.utils import dense_patch_slices
from monai.metrics import DiceMetric
from monai.metrics import HausdorffDistanceMetric
from monai.transforms import AsDiscrete
from monai.utils.enums import MetricReduction
from monai.data import decollate_batch
from collections import defaultdict
import nibabel as nib
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
import lpips
loss_fn_alex = lpips.LPIPS(net='alex') # best forward scores
loss_fn_vgg = lpips.LPIPS(net='vgg') # closer to "traditional" perceptual loss, when used for optimization
def get_slices(input_shape, roi_size ):
# input_shape = (B,C,H,W,D)
# roi_size = (roi_x, roi_y, roi_z)
num_spatial_dims = len(input_shape) - 2
image_size = input_shape[2:]
roi_size = fall_back_tuple(roi_size, image_size)
# in case that image size is smaller than roi size
image_size = tuple(max(image_size[i], roi_size[i]) for i in range(num_spatial_dims))
scan_interval = roi_size
# store all slices in list
slices = dense_patch_slices(image_size, roi_size, scan_interval)
return slices
def main():
now_start = datetime.now()
print('\n\n')
print(f"HostName = {os.uname()[1]}")
print(f'Time & Date = {now_start.strftime("%I:%M %p")} , {now_start.strftime("%d_%b_%Y")}\n\n')
args = get_args()
args.test_mode = True
assert args.use_pretrained, " '--use_pretrained' needs to be mentioned"
assert args.pretrained_path, "'--pretrained_path' needs to be specified"
# folder containing saving adversarial images
folder_name = get_folder_name(args)
adv_imgs_dir_ext = os.path.join(args.adv_images_dir, "" if args.no_sub_dir_adv_images else folder_name)
if args.dataset == 'btcv':
data_loader = get_loader_btcv(args)
else:
raise ValueError(f"Unsupported Dataset: '{args.dataset}' .")
print(f"\nDataset = {args.dataset.upper()}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.model_name == "unet-r":
model = UNETR(
in_channels=args.in_channels,
out_channels=args.out_channels,
img_size=(args.roi_x, args.roi_y, args.roi_z),
feature_size=args.feature_size,
hidden_size=args.hidden_size,
mlp_dim=args.mlp_dim,
num_heads=args.num_heads,
pos_embed=args.pos_embed,
norm_name=args.norm_name,
conv_block=True,
res_block=True,
dropout_rate=args.dropout_rate)
else:
raise ValueError("Unsupported model " + str(args.model_name))
pretrained_path = args.pretrained_path
print(f"\nModel = {args.model_name.upper()} ")
print(f"\nLoading Model Weights from: {pretrained_path}\n")
checkpoint_dict = torch.load(pretrained_path)
model.load_state_dict(checkpoint_dict["model_state_dict"] if "model_state_dict" in checkpoint_dict.keys() else checkpoint_dict["state_dict"])
model.eval()
model.to(device)
loss_fn = monai.losses.DiceCELoss(to_onehot_y=True, softmax=True, squared_pred=True, smooth_nr=0.0, smooth_dr=1e-6)
transform_true_label = AsDiscrete(to_onehot=args.out_channels, n_classes=args.out_channels)
transform_pred_label = AsDiscrete(argmax=True, to_onehot=args.out_channels, n_classes=args.out_channels)
dice_score_monai = DiceMetric(include_background=True, reduction=MetricReduction.MEAN, get_not_nans=True)
hd95_score_monai = HausdorffDistanceMetric(include_background=True, distance_metric='euclidean', percentile=95, directed=False, reduction=MetricReduction.MEAN, get_not_nans=True)
dice_organ_dict_clean = {}
dice_organ_dict_adv = {}
hd95_organ_dict_clean = {}
hd95_organ_dict_adv = {}
lpips_alex_dict = {}
voxel_success_rate_list = []
print("\n\n")
for i, batch in enumerate(data_loader):
# if i >0: break
# get clean images
val_inputs, val_labels = (batch["image"].cuda(), batch["label"].cuda()) # Image [Min,Max]=[0,1]
img_name = batch["image_meta_dict"]["filename_or_obj"][0].split("/")[-1]
lbl_name = batch["label_meta_dict"]["filename_or_obj"][0].split("/")[-1]
## load adv-image
adv_val_inputs_path = os.path.join(adv_imgs_dir_ext, "imagesTsAdv", f"adv_{img_name}")
print(f"Image Name = {img_name}\nLoading Adversarial Image :{adv_val_inputs_path}")
adv_val_inputs = nib.load(adv_val_inputs_path).get_fdata()/255.0 # Image Shape=[H,W,D] [Min,Max]=[0,1]
adv_val_inputs = torch.tensor(adv_val_inputs).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float32) # Image Shape=[B,C,H,W,D] [Min,Max]=[0,1]
# TO DO: think about overlaping regions
# inference on whole volume of input data
with torch.no_grad():
# inference on clean inputs
val_logits = sliding_window_inference(val_inputs, (96, 96, 96), 12, model, overlap=args.infer_overlap)
val_scores = torch.softmax(val_logits, 1).cpu().numpy()
val_labels_clean = np.argmax(val_scores, axis=1).astype(np.uint8)
# inference on adversarial inputs
val_logits_adv = sliding_window_inference(adv_val_inputs, (96, 96, 96), 12 , model, overlap=args.infer_overlap)
val_scores_adv = torch.softmax(val_logits_adv, 1).cpu().numpy()
val_labels_adv = np.argmax(val_scores_adv, axis=1).astype(np.uint8)
# ture labels
val_labels = val_labels.cpu().numpy().astype(np.uint8)[0]
## Ground Truth
val_true_labels_list = decollate_batch(batch["label"].cuda())
val_true_labels_convert = [transform_true_label(val_label_tensor) for val_label_tensor in val_true_labels_list]
## Clean Predictions
val_clean_pred_labels_list = decollate_batch(val_logits)
val_clean_pred_labels_convert = [transform_pred_label(val_pred_tensor) for val_pred_tensor in val_clean_pred_labels_list]
## Adv Predictions
val_adv_pred_labels_list = decollate_batch(val_logits_adv)
val_adv_pred_labels_convert = [transform_pred_label(val_pred_tensor) for val_pred_tensor in val_adv_pred_labels_list]
## MONAI DICE Score
dice_clean = dice_score_monai(y_pred=val_clean_pred_labels_convert, y=val_true_labels_convert)
dice_adv = dice_score_monai(y_pred=val_adv_pred_labels_convert, y=val_true_labels_convert)
dice_organ_dict_clean[img_name] = dice_clean[0].tolist()
dice_organ_dict_adv[img_name] = dice_adv[0].tolist()
## MONAI HD95 Score
hd95_score_clean = hd95_score_monai(y_pred=val_clean_pred_labels_convert, y=val_true_labels_convert)
hd95_score_adv = hd95_score_monai(y_pred=val_adv_pred_labels_convert, y=val_true_labels_convert)
hd95_organ_dict_clean[img_name] = hd95_score_clean[0].tolist()
hd95_organ_dict_adv[img_name] = hd95_score_adv[0].tolist()
img = val_inputs[0,0].permute(2,0,1).unsqueeze(1).float().cpu()
adv = adv_val_inputs[0,0].permute(2,0,1).unsqueeze(1).float().cpu()
lpips_alex_dict[img_name] = 1-loss_fn_alex((2*img-1),(2*adv-1)).view(-1,).mean().item()
voxel_suc_rate = (val_labels_clean!=val_labels_adv).sum()/np.prod(val_labels_clean.shape)
voxel_success_rate_list.append(voxel_suc_rate)
print(f"Adv Attack Success Rate (voxel): {round(voxel_suc_rate*100,3)} (%)")
print(f"Mean Organ Dice (Clean): {round(np.nanmean(dice_organ_dict_clean[img_name])*100,2):.2f} (%) Mean Organ HD95 (Clean): {round(np.nanmean(hd95_organ_dict_clean[img_name]),2)}")
print(f"Mean Organ Dice (Adv) : {round(np.nanmean(dice_organ_dict_adv[img_name])*100,2):.2f} (%) Mean Organ HD95 (Adv) : {round(np.nanmean(hd95_organ_dict_adv[img_name]),2)}")
print(f"LPIPS_Alex: {round(lpips_alex_dict[img_name],4)}")
print("\n\n")
dice_clean_all = []
dice_adv_all = []
for key in dice_organ_dict_clean.keys(): dice_clean_all.append(np.nanmean(dice_organ_dict_clean[key]))
for key in dice_organ_dict_adv.keys(): dice_adv_all.append(np.nanmean(dice_organ_dict_adv[key]))
hd95_clean_all = []
hd95_adv_all = []
for key in hd95_organ_dict_clean.keys(): hd95_clean_all.append(np.nanmean(hd95_organ_dict_clean[key]))
for key in hd95_organ_dict_adv.keys(): hd95_adv_all.append(np.nanmean(hd95_organ_dict_adv[key]))
print("\n", "".join(["#"]*130), "\n", "".join(["#"]*130))
print(f"\n Model = {args.model_name.upper()} \n")
print(" Model Weights Path:" , pretrained_path)
print(f"\n Dataset = {args.dataset.upper()}")
print(f"\n Path of Adversarial Images = {adv_imgs_dir_ext}")
print("\n Attack Info:")
print_attack_info(args)
print('\n')
print(f" Overall Mean Dice (Clean): {round(np.mean(dice_clean_all)*100,3):0.3f} (%)" )
print(f" Overall Mean Dice (Adv) : {round(np.mean(dice_adv_all)*100,3):0.3f} (%)" )
print('\n')
print(f" Overall Mean HD95 (Clean): {round(np.mean(hd95_clean_all),3):0.3f}" )
print(f" Overall Mean HD95 (Adv) : {round(np.mean(hd95_adv_all),3):0.3f}" )
lpips_alex_all = []
for key in lpips_alex_dict.keys(): lpips_alex_all.append(lpips_alex_dict[key])
print('\n')
print(f" Overall LPIPS_Alex: {round(np.mean(lpips_alex_all),4):0.4f}")
now_end = datetime.now()
print(f'\n Time & Date = {now_end.strftime("%I:%M %p")} , {now_end.strftime("%d_%b_%Y")}\n')
duration = now_end - now_start
duration_in_s = duration.total_seconds()
days = divmod(duration_in_s, 86400) # Get days (without [0]!)
hours = divmod(days[1], 3600) # Use remainder of days to calc hours
minutes = divmod(hours[1], 60) # Use remainder of hours to calc minutes
seconds = divmod(minutes[1], 1) # Use remainder of minutes to calc seconds
print(f" Total Time => {int(days[0])} Days : {int(hours[0])} Hours : {int(minutes[0])} Minutes : {int(seconds[0])} Seconds \n\n")
print("", "".join(["#"]*130), "\n", "".join(["#"]*130),"\n")
print(" Done!\n")
if __name__ == "__main__":
main()