-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvaried_b0_full_sims.R
187 lines (162 loc) · 7.52 KB
/
varied_b0_full_sims.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
eta_finder <- function(fpr, tpr){
# Parameters for error model P(X*|X,Z) ----------------------
eta0 <- - log((1 - fpr) / fpr)
eta1 <- - log((1 - tpr) / tpr) - eta0
eta2 <- 0.5
return(c(eta0, eta1, eta2))
}
# True values of the model coefficients
b0 = 2 ## intercept
b2 = 4 ## log prevalence ratio for Z (conditioning on X)
e = eta_finder(fpr = 0.1, tpr = 0.9)
loglik_mat = function(beta_eta,
Y_name, X_name,
Z_name, Xstar_name,
Q_name, data,
verbose = FALSE) {
#print(beta_eta)
# Save useful constants
N = nrow(data) ## Phase I sample size
n = sum(data[, Q_name]) ## Phase II sample size
# Reorder data to put queried rows first
data = data[order(data[, Q_name], decreasing = TRUE), ]
# Create matrix of complete data
if (n < N) {
queried_data = cbind(id = 1:n, data[1:n, c(Y_name, X_name, Z_name, Xstar_name)])
unqueried_data = rbind(
cbind(id = (n+1):N, data[-c(1:n), Y_name], X_name = 0, data[-c(1:n), c(Z_name, Xstar_name)]),
cbind(id = (n+1):N, data[-c(1:n), Y_name], X_name = 1, data[-c(1:n), c(Z_name, Xstar_name)])
)
colnames(unqueried_data) = c("id", Y_name, X_name, Z_name, Xstar_name)
complete_data = data.matrix(rbind(queried_data, unqueried_data))
} else {
complete_data = cbind(id = 1:n, data[1:n, c(Y_name, X_name, Z_name, Xstar_name)])
}
# Compute log-likelihood
## P(Y|X,Z) from Poisson distribution
lambdaY = exp(beta_eta[1] + beta_eta[2] * complete_data[, X_name] + beta_eta[3] * complete_data[, Z_name])
### Dazzle fix: replace y with data[, Y_name]
pYgivXZ = dpois(x = complete_data[, Y_name], lambda = lambdaY)
## P(X|X*,Z) from Bernoulli distribution
pXgivXstarZ = 1 / (1 + exp(-(beta_eta[4] + beta_eta[5] * complete_data[, Xstar_name] + beta_eta[6] * complete_data[, Z_name]))) ^ complete_data[, X_name] *
(1 - 1 / (1 + exp(-(beta_eta[4] + beta_eta[5] * complete_data[, Xstar_name] + beta_eta[6] * complete_data[, Z_name])))) ^ (1 - complete_data[, X_name])
## P(Y, X|X*, Z)
pYXgivXstarZ = pYgivXZ * pXgivXstarZ
## Marginalize X out of P(Y, X|X*, Z) for unqueried
marg_pYXgivXstarZ = rowsum(x = pYXgivXstarZ,
group = complete_data[, "id"])
### Dazzle fix: replace with another VERY small number that's close to 0
pYgivXZ[which(pYgivXZ == 0)] = 5e-324
pXgivXstarZ[which(pXgivXstarZ == 0)] = 5e-324
marg_pYXgivXstarZ[which(marg_pYXgivXstarZ == 0)] = 5e-324
# Compute log-likelihood
ll = sum(log(pYgivXZ[c(1:n)])) +
sum(log(pXgivXstarZ[c(1:n)])) +
sum(log(marg_pYXgivXstarZ[-c(1:n)]))
if(verbose) {print(paste("Queried:", ll))}
ll = ll +
sum(log(marg_pYXgivXstarZ[-c(1:n)]))
if(verbose) {print(paste("Queried + Unqueried:", ll))}
return(-ll) ## return (-1) x log-likelihood for maximization
}
# Simulation to check that the "gold standard" model returns correct estimates
set.seed(1031) ## be a reproducible queen
num_reps = 18000
res = data.frame(rep = 1:num_reps, code = NA,
our_beta0 = NA, our_beta1 = NA, our_beta2 = NA,
cc_beta0 = NA, cc_beta1 = NA, cc_beta2 = NA,
naive_beta0 = NA, naive_beta1 = NA, naive_beta2 = NA,
gs_beta0 = NA, gs_beta1 = NA, gs_beta2 = NA,
eta0 = NA, eta1 = NA, eta2 = NA,
n = c(rep(100, times = num_reps / 3),
rep(1000, times = num_reps / 3),
rep(10000, times = num_reps / 3)),
q = rep(0.75, times = num_reps),
tb1 = rep(c(rep(ADD ME, times = num_reps / 9),
rep(ADD ME, times = num_reps / 9),
rep(ADD ME, times = num_reps / 9)), times = 3),
our_beta0_se = NA, our_beta1_se = NA, our_beta2_se = NA,
cc_beta0_se = NA, cc_beta1_se = NA, cc_beta2_se = NA,
naive_beta0_se = NA, naive_beta1_se = NA, naive_beta2_se = NA,
gs_beta0_se = NA, gs_beta1_se = NA, gs_beta2_se = NA)
print(paste("current time:", Sys.time()))
for (r in 1:num_reps) {
# Simulate data
b1 = res$tb1[r]
z = rnorm(n = res$n[r]) #rbinom(n = 10000, size = 1, prob = 0.3) ## Z ~ Bern(p = 0.3)
xstar = rbinom(n = res$n[r], size = 1, prob = 1 / (1 + exp(- (1 + 2 * z))))
x = rbinom(n = res$n[r], size = 1, prob = 1 / (1 + exp(-(e[1] + e[2] * xstar + e[3] * z))))
lambda = exp(b0 + b1 * x + b2 * z) ## mean of the Poisson distribution for Y|X,Z
y = rpois(n = res$n[r], lambda = lambda) ## Y|X,Z ~ Pois(lambda), where lambda is a function of X, Z
q = rbinom(n = res$n[r], size = 1, prob = res$q[r]) #0.25) ## queried indicator
dat = data.frame(y, x, z, xstar, q)
cc = glm(formula = y ~ x + z,
data = dat,
family = poisson,
subset = q == 1)
cc_se = summary(cc)$coefficients[,"Std. Error"]
cc_fit = glm(formula = y ~ x + z,
data = dat,
family = poisson,
subset = q == 1)$coefficients
cc_fit = c(cc_fit,
glm(formula = x ~ xstar + z,
data = dat,
family = binomial,
subset = q == 1)$coefficients)
naive_fit = summary(glm(formula = y ~ xstar + z,
data = dat,
family = poisson))$coefficients
gs_fit = summary(glm(formula = y ~ x + z,
data = dat,
family = poisson))$coefficients
optim_res = optim(fn = loglik_mat,
par = cc_fit,
hessian = TRUE,
method = "BFGS",
Y_name = "y",
X_name = "x",
Z_name = "z",
Xstar_name = "xstar",
Q_name = "q",
data = dat)
num_analysis_covar = 3
optim_vcov = tryCatch(expr = solve(optim_res$hessian)[1:num_analysis_covar, 1:num_analysis_covar],
error = function(err) {
matrix(data = NA,
nrow = num_analysis_covar,
ncol = num_analysis_covar)
})
res[r, "code"] = optim_res$convergence
res[r, "our_beta0"] = optim_res$par[1]
res[r, "our_beta1"] = optim_res$par[2]
res[r, "our_beta2"] = optim_res$par[3]
res[r, "our_beta0_se"] = sqrt(diag(optim_vcov))[1]
res[r, "our_beta1_se"] = sqrt(diag(optim_vcov))[2]
res[r, "our_beta2_se"] = sqrt(diag(optim_vcov))[3]
res[r, "eta0"] = optim_res$par[4]
res[r, "eta1"] = optim_res$par[5]
res[r, "eta2"] = optim_res$par[6]
res[r, "cc_beta0"] = cc_fit[1]
res[r, "cc_beta1"] = cc_fit[2]
res[r, "cc_beta2"] = cc_fit[3]
res[r, "cc_beta0_se"] = cc_se[1]
res[r, "cc_beta1_se"] = cc_se[2]
res[r, "cc_beta2_se"] = cc_se[3]
res[r, "naive_beta0"] = naive_fit[1,"Estimate"]
res[r, "naive_beta1"] = naive_fit[2,"Estimate"]
res[r, "naive_beta2"] = naive_fit[3,"Estimate"]
res[r, "naive_beta0_se"] = naive_fit[1,"Std. Error"]
res[r, "naive_beta1_se"] = naive_fit[2,"Std. Error"]
res[r, "naive_beta2_se"] = naive_fit[3,"Std. Error"]
res[r, "gs_beta0"] = gs_fit[1, "Estimate"]
res[r, "gs_beta1"] = gs_fit[2, "Estimate"]
res[r, "gs_beta2"] = gs_fit[3, "Estimate"]
res[r, "gs_beta0_se"] = gs_fit[1, "Std. Error"]
res[r, "gs_beta1_se"] = gs_fit[2, "Std. Error"]
res[r, "gs_beta2_se"] = gs_fit[3, "Std. Error"]
if(r %% 100 == 0) {
print(paste("rep #:", r))
print(paste("current time:", Sys.time()))}
}
write.csv(res, "varied_b0_full_sims.csv")