-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
167 lines (142 loc) · 7.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import project1 as p1
import utils
import numpy as np
#-------------------------------------------------------------------------------
# Data loading. There is no need to edit code in this section.
#-------------------------------------------------------------------------------
train_data = utils.load_data('reviews_train.tsv')
val_data = utils.load_data('reviews_val.tsv')
test_data = utils.load_data('reviews_test.tsv')
train_texts, train_labels = zip(*((sample['text'], sample['sentiment']) for sample in train_data))
val_texts, val_labels = zip(*((sample['text'], sample['sentiment']) for sample in val_data))
test_texts, test_labels = zip(*((sample['text'], sample['sentiment']) for sample in test_data))
dictionary = p1.bag_of_words(train_texts)
train_bow_features = p1.extract_bow_feature_vectors(train_texts, dictionary)
val_bow_features = p1.extract_bow_feature_vectors(val_texts, dictionary)
test_bow_features = p1.extract_bow_feature_vectors(test_texts, dictionary)
#-------------------------------------------------------------------------------
# Problem 5
#-------------------------------------------------------------------------------
# toy_features, toy_labels = toy_data = utils.load_toy_data('toy_data.tsv')
#
# T = 10
# L = 0.2
#
# thetas_perceptron = p1.perceptron(toy_features, toy_labels, T)
# thetas_avg_perceptron = p1.average_perceptron(toy_features, toy_labels, T)
# thetas_pegasos = p1.pegasos(toy_features, toy_labels, T, L)
#
# def plot_toy_results(algo_name, thetas):
# print('theta for', algo_name, 'is', ', '.join(map(str,list(thetas[0]))))
# print('theta_0 for', algo_name, 'is', str(thetas[1]))
# utils.plot_toy_data(algo_name, toy_features, toy_labels, thetas)
#
# plot_toy_results('Perceptron', thetas_perceptron)
# plot_toy_results('Average Perceptron', thetas_avg_perceptron)
# plot_toy_results('Pegasos', thetas_pegasos)
#-------------------------------------------------------------------------------
# Problem 7
#-------------------------------------------------------------------------------
# T = 10
# L = 0.01
# pct_train_accuracy, pct_val_accuracy = \
# p1.classifier_accuracy(p1.perceptron, train_bow_features,val_bow_features,train_labels,val_labels,T=T)
# print("{:35} {:.4f}".format("Training accuracy for perceptron:", pct_train_accuracy))
# print("{:35} {:.4f}".format("Validation accuracy for perceptron:", pct_val_accuracy))
#
# avg_pct_train_accuracy, avg_pct_val_accuracy = \
# p1.classifier_accuracy(p1.average_perceptron, train_bow_features,val_bow_features,train_labels,val_labels,T=T)
# print("{:43} {:.4f}".format("Training accuracy for average perceptron:", avg_pct_train_accuracy))
# print("{:43} {:.4f}".format("Validation accuracy for average perceptron:", avg_pct_val_accuracy))
#
# avg_peg_train_accuracy, avg_peg_val_accuracy = \
# p1.classifier_accuracy(p1.pegasos, train_bow_features,val_bow_features,train_labels,val_labels,T=T,L=L)
# print("{:50} {:.4f}".format("Training accuracy for Pegasos:", avg_peg_train_accuracy))
# print("{:50} {:.4f}".format("Validation accuracy for Pegasos:", avg_peg_val_accuracy))
#-------------------------------------------------------------------------------
# Problem 8
#-------------------------------------------------------------------------------
# data = (train_bow_features, train_labels, val_bow_features, val_labels)
#
# # values of T and lambda to try
# Ts = [1, 5, 10, 15, 25, 50]
# Ls = [0.001, 0.01, 0.1, 1, 10]
#
# pct_tune_results = utils.tune_perceptron(Ts, *data)
# print('perceptron valid:', list(zip(Ts, pct_tune_results[1])))
# print('best = {:.4f}, T={:.4f}'.format(np.max(pct_tune_results[1]), Ts[np.argmax(pct_tune_results[1])]))
#
# avg_pct_tune_results = utils.tune_avg_perceptron(Ts, *data)
# print('avg perceptron valid:', list(zip(Ts, avg_pct_tune_results[1])))
# print('best = {:.4f}, T={:.4f}'.format(np.max(avg_pct_tune_results[1]), Ts[np.argmax(avg_pct_tune_results[1])]))
#
# # fix values for L and T while tuning Pegasos T and L, respective
# fix_L = 0.01
# peg_tune_results_T = utils.tune_pegasos_T(fix_L, Ts, *data)
# print('Pegasos valid: tune T', list(zip(Ts, peg_tune_results_T[1])))
# print('best = {:.4f}, T={:.4f}'.format(np.max(peg_tune_results_T[1]), Ts[np.argmax(peg_tune_results_T[1])]))
#
# fix_T = Ts[np.argmax(peg_tune_results_T[1])]
# peg_tune_results_L = utils.tune_pegasos_L(fix_T, Ls, *data)
# print('Pegasos valid: tune L', list(zip(Ls, peg_tune_results_L[1])))
# print('best = {:.4f}, L={:.4f}'.format(np.max(peg_tune_results_L[1]), Ls[np.argmax(peg_tune_results_L[1])]))
#
# utils.plot_tune_results('Perceptron', 'T', Ts, *pct_tune_results)
# utils.plot_tune_results('Avg Perceptron', 'T', Ts, *avg_pct_tune_results)
# utils.plot_tune_results('Pegasos', 'T', Ts, *peg_tune_results_T)
# utils.plot_tune_results('Pegasos', 'L', Ls, *peg_tune_results_L)
#-------------------------------------------------------------------------------
# Use the best method (perceptron, average perceptron or Pegasos) along with
# the optimal hyperparameters according to validation accuracies to test
# against the test dataset. The test data has been provided as
# test_bow_features and test_labels.
#-------------------------------------------------------------------------------
# Your code here
# T = 25
# L = 0.01
#
# peg_train_accuracy, peg_test_accuracy = \
# p1.classifier_accuracy(p1.pegasos, train_bow_features,test_bow_features,train_labels,test_labels,T=T, L=L)
#
# print('making prediction using Pegasos, T =', T, 'L =', L)
# print("{:43} {:.4f}".format("Training accuracy for Pegasos:", peg_train_accuracy))
# print("{:43} {:.4f}".format("Testing accuracy for Pegasos:", peg_test_accuracy))
#-------------------------------------------------------------------------------
# Assign to best_theta, the weights (and not the bias!) learned by your most
# accurate algorithm with the optimal choice of hyperparameters.
#-------------------------------------------------------------------------------
# T = 25
# L = 0.01
#
# best_theta, best_theta_0 = p1.pegasos(train_bow_features,train_labels,T=T, L=L)
# wordlist = [word for (idx, word) in sorted(zip(dictionary.values(), dictionary.keys()))]
# sorted_word_features = utils.most_explanatory_word(best_theta, wordlist)
# print("Most Explanatory Word Features")
# print(sorted_word_features[:10])
#----------------------------------------------------------
# Compute the feature vector of a word, use its count in each document
# rather than a binary indicator.
# Set T and L to
T = 25
L = 0.01
#Test 1 with stop words
print('Length of dictionary before Stopword feature:', len(dictionary), 'words')
train_final_features = p1.extract_bow_feature_vectors(train_texts, dictionary)
val_final_features = p1.extract_bow_feature_vectors(val_texts, dictionary)
test_final_features = p1.extract_bow_feature_vectors(test_texts, dictionary)
peg_train_accuracy, peg_test_accuracy = \
p1.classifier_accuracy(p1.pegasos, train_final_features,test_final_features,train_labels,test_labels,T=T, L=L)
print('[Normal features]: making prediction using PEGASOS, T =', T)
print("{:43} {:.4f}".format("Training accuracy for PEGASOS:", peg_train_accuracy))
print("{:43} {:.4f}".format("Testing accuracy for PEGASOS:", peg_test_accuracy))
# Test 2 without stop words
dictionary = p1.bag_of_words(train_texts, stopwords=True)
print('Length of dictionary after Stopword feature:', len(dictionary), 'words')
train_final_features = p1.extract_bow_feature_vectors(train_texts, dictionary, binarize=True)
val_final_features = p1.extract_bow_feature_vectors(val_texts, dictionary, binarize=True)
test_final_features = p1.extract_bow_feature_vectors(test_texts, dictionary, binarize=True)
peg_train_accuracy, peg_test_accuracy = \
p1.classifier_accuracy(p1.pegasos, train_final_features,test_final_features,train_labels,test_labels, T=T, L=L)
print('[Stopword feature]: making prediction using PEGASOS, T =', T)
print("{:43} {:.4f}".format("Training accuracy for PEGASOS:", peg_train_accuracy))
print("{:43} {:.4f}".format("Testing accuracy for PEGASOS:", peg_test_accuracy))