array([0, 1, 2, 3])
array([ 0, 1, 2, ..., 497, 498, 499])
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([[ 1.26158661, 1.80785951, 0.49994985, ..., 6.34214462,\n", - " 8.36348319, 8.36348319],\n", - " [ 4.13305374, 4.93197621, 6.17397409, ..., 7.51656406,\n", - " 7.51656406, 7.51656406],\n", - " [ 1.75400345, 5.66150162, 5.35340213, ..., 11.94183965,\n", - " 5.46099644, 2.60285713],\n", - " [ 3.48624199, 4.8845163 , 6.36143957, ..., -3.84422402,\n", - " -1.01008536, -1.40626483]])
array([[[ -0.32237624, 1.19079339, 2.57499703, ..., -0.10306053,\n", - " 4.41399174, 1.57350792],\n", - " [ 1.8749503 , 0.11565677, 2.26321538, ..., 1.90251978,\n", - " 7.77066137, 1.24247811],\n", - " [ -0.37572456, -0.37858891, 5.39510503, ..., -0.9215926 ,\n", - " 3.0454648 , -1.04051539],\n", + " created_at: 2022-10-12T09:58:50.551909\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7\n", + " sampling_time: 51.28652000427246\n", + " tuning_steps: 1000
array([[ 3.15475326, 3.78346627, 3.17791785, ..., 8.19147994,\n", + " 8.20533847, 2.04024261],\n", + " [ 1.89369534, 2.66553171, 2.09548752, ..., 11.28039308,\n", + " 7.41875925, 4.85740746],\n", + " [ 4.18072998, 7.71290966, 6.30393371, ..., 14.26822882,\n", + " 8.02070217, 14.01415341],\n", + " [ 2.86524509, 1.70655648, 2.45879685, ..., 3.65393223,\n", + " 3.23385673, 6.41657985]])
array([0, 1, 2, 3])
array([ 0, 1, 2, ..., 497, 498, 499])
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([[[-1.11182040e+01, 1.49959818e+00, 1.23862493e+01, ...,\n", - " -1.79326508e+01, 2.52332127e+00, 5.62175383e+00],\n", - " [-1.69930687e+01, -2.84199119e+00, 1.05781341e+01, ...,\n", - " 1.63557578e+01, 2.38999847e+01, -2.77405711e+00],\n", - " [-4.14923171e+00, -7.75448226e+00, -6.48719916e+00, ...,\n", - " 1.49326029e+01, -2.34619454e+00, -1.33329441e+01],\n", + " created_at: 2022-10-12T09:58:55.044789\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7
array([0, 1, 2, 3])
array([ 0, 1, 2, ..., 497, 498, 499])
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([[[-5.40955984, -3.4533501 , -3.75223154, ..., -3.32186167,\n", - " -4.14442173, -3.97707532],\n", - " [-5.14369589, -3.53233797, -3.74563162, ..., -3.32019968,\n", - " -3.74472047, -3.98789714],\n", - " [-5.4162815 , -3.57252739, -3.82917919, ..., -3.33209215,\n", - " -4.33971424, -4.07174091],\n", + " created_at: 2022-10-12T09:58:50.807156\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7
<xarray.Dataset>\n", - "Dimensions: (chain: 4, draw: 500)\n", + "Dimensions: (chain: 4, draw: 500, warning_dim_0: 1)\n", "Coordinates:\n", - " * chain (chain) int32 0 1 2 3\n", - " * draw (draw) int32 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499\n", - "Data variables:\n", - " energy (chain, draw) float64 57.35 57.39 59.79 ... 69.22 66.6\n", - " diverging (chain, draw) bool False False False ... False False False\n", - " energy_error (chain, draw) float64 0.09743 0.003592 ... 0.04705\n", - " step_size (chain, draw) float64 0.1929 0.1929 ... 0.3387 0.3387\n", - " max_energy_error (chain, draw) float64 0.3468 0.9223 ... -0.04375 -0.06971\n", - " lp (chain, draw) float64 -53.06 -53.59 ... -61.78 -62.33\n", - " step_size_bar (chain, draw) float64 0.2378 0.2378 ... 0.2673 0.2673\n", - " depth (chain, draw) int64 4 4 5 4 5 4 4 4 4 ... 4 5 5 4 4 4 4 4\n", - " mean_tree_accept (chain, draw) float64 0.8429 0.804 ... 0.9954 0.9692\n", - " tree_size (chain, draw) float64 15.0 15.0 31.0 ... 15.0 15.0 15.0\n", + " * chain (chain) int32 0 1 2 3\n", + " * draw (draw) int32 0 1 2 3 4 5 ... 494 495 496 497 498 499\n", + " * warning_dim_0 (warning_dim_0) int32 0\n", + "Data variables: (12/18)\n", + " step_size_bar (chain, draw) float64 0.2456 0.2456 ... 0.2822 0.2822\n", + " n_steps (chain, draw) float64 7.0 7.0 7.0 ... 15.0 7.0 15.0\n", + " smallest_eigval (chain, draw) float64 nan nan nan nan ... nan nan nan\n", + " lp (chain, draw) float64 -57.12 -53.18 ... -53.89 -58.03\n", + " largest_eigval (chain, draw) float64 nan nan nan nan ... nan nan nan\n", + " reached_max_treedepth (chain, draw) bool False False False ... False False\n", + " ... ...\n", + " warning (chain, draw, warning_dim_0) object None ... None\n", + " energy (chain, draw) float64 60.48 58.94 59.19 ... 61.4 60.7\n", + " diverging (chain, draw) bool False False False ... False False\n", + " energy_error (chain, draw) float64 0.1657 -0.244 ... 0.5359\n", + " acceptance_rate (chain, draw) float64 0.8868 1.0 ... 0.9868 0.5437\n", + " process_time_diff (chain, draw) float64 0.0 0.0 0.0 ... 0.0 0.01562 0.0\n", "Attributes:\n", - " created_at: 2020-07-24T15:58:37.672590\n", - " arviz_version: 0.9.0\n", - " inference_library: pymc3\n", - " inference_library_version: 3.8
array([0, 1, 2, 3])
array([ 0, 1, 2, ..., 497, 498, 499])
array([[57.35173515, 57.39409815, 59.79301719, ..., 53.31856372,\n", - " 55.10865862, 53.99470537],\n", - " [59.76206549, 60.888554 , 58.79041908, ..., 46.97305986,\n", - " 51.17308247, 47.54872672],\n", - " [71.76976768, 70.54146459, 68.36032171, ..., 59.13781137,\n", - " 61.61720039, 58.87432959],\n", - " [57.77086975, 58.13774248, 56.2614884 , ..., 67.64982891,\n", - " 69.21841182, 66.60373626]])
array([[False, False, False, ..., False, False, False],\n", + " created_at: 2022-10-12T09:58:50.563910\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7\n", + " sampling_time: 51.28652000427246\n", + " tuning_steps: 1000
array([[39.7038528, 39.7072551, 39.710123 , ..., 42.2710844, 42.7336796,\n", + " 42.7462516],\n", + " [31.6845042, 31.6881609, 31.6898322, ..., 34.7179709, 34.7279999,\n", + " 34.7384898],\n", + " [32.8140127, 32.8193974, 32.8228105, ..., 34.8907805, 34.8953685,\n", + " 34.8979765],\n", + " [24.6782131, 24.6818946, 24.6837041, ..., 26.2858427, 26.2910588,\n", + " 26.2946144]])
array([[0.22761111, 0.22761111, 0.22761111, ..., 0.22761111, 0.22761111,\n", + " 0.22761111],\n", + " [0.15808089, 0.15808089, 0.15808089, ..., 0.15808089, 0.15808089,\n", + " 0.15808089],\n", + " [0.3686671 , 0.3686671 , 0.3686671 , ..., 0.3686671 , 0.3686671 ,\n", + " 0.3686671 ],\n", + " [0.38927184, 0.38927184, 0.38927184, ..., 0.38927184, 0.38927184,\n", + " 0.38927184]])
array([[ 2.92551164e-01, -2.43975166e-01, 2.88159485e-01, ...,\n", + " 2.18616622e-01, 1.92673885e-01, -9.25260019e-01],\n", + " [ 1.72086021e+00, 1.34875443e+00, -8.12768358e-01, ...,\n", + " 5.98687101e-01, 9.99166258e-02, 4.43614520e-01],\n", + " [-2.90753276e-01, 3.46758548e-01, -6.30542449e-01, ...,\n", + " 2.35970929e+00, 7.80685142e-01, -4.98574407e-01],\n", + " [-1.11676154e+00, 3.27268370e+02, 1.07727496e+02, ...,\n", + " 1.44885097e+00, -5.89538907e-01, 2.95480101e+01]])
array([[0.0030421, 0.0025291, 0.0025143, ..., 0.007314 , 0.0122639,\n", + " 0.0090372],\n", + " [0.0033026, 0.0013466, 0.0052764, ..., 0.009622 , 0.0101186,\n", + " 0.0052873],\n", + " [0.0051658, 0.0031416, 0.0041322, ..., 0.0043331, 0.0024177,\n", + " 0.0023986],\n", + " [0.003448 , 0.0015753, 0.0031503, ..., 0.0048967, 0.0033298,\n", + " 0.0025834]])
array([[ -4, -3, 2, ..., 8, -5, 11],\n", + " [ 1, -2, -2, ..., 4, -3, 12],\n", + " [ 4, -2, -12, ..., -8, -6, 3],\n", + " [ -8, 2, 2, ..., -3, 4, 7]], dtype=int64)
array([[3, 3, 3, ..., 4, 5, 5],\n", + " [3, 2, 4, ..., 4, 4, 4],\n", + " [5, 4, 5, ..., 4, 4, 4],\n", + " [4, 3, 4, ..., 4, 3, 4]], dtype=int64)
array([[[None],\n", + " [None],\n", + " [None],\n", + " ...,\n", + " [None],\n", + " [None],\n", + " [None]],\n", + "\n", + " [[None],\n", + " [None],\n", + " [None],\n", + " ...,\n", + " [None],\n", + " [None],\n", + " [None]],\n", + "\n", + " [[None],\n", + " [None],\n", + " [None],\n", + " ...,\n", + " [None],\n", + " [None],\n", + " [None]],\n", + "\n", + " [[None],\n", + " [None],\n", + " [None],\n", + " ...,\n", + " [None],\n", + " [None],\n", + " [None]]], dtype=object)
array([[60.4847877 , 58.94032905, 59.19468076, ..., 62.78117276,\n", + " 69.31635828, 61.54467182],\n", + " [56.93537973, 57.78532454, 59.29574367, ..., 66.25289619,\n", + " 68.19093626, 75.28309756],\n", + " [64.5673875 , 66.01343496, 68.46851294, ..., 68.38460504,\n", + " 71.38278386, 72.14683375],\n", + " [63.64125714, 54.45052517, 52.60680157, ..., 60.71941523,\n", + " 61.40191872, 60.70298822]])
array([[False, False, False, ..., False, False, False],\n", + " [False, False, False, ..., False, False, False],\n", + " [False, False, False, ..., False, False, False],\n", + " [False, False, False, ..., False, False, False]])
array([[ 0.16565028, -0.24397517, -0.07494055, ..., 0.10677853,\n", + " 0.03820266, -0.53659508],\n", + " [ 1.00439851, 1.12586386, 0.3150327 , ..., -0.07401262,\n", + " 0.09991663, 0.23167204],\n", + " [ 0.0180871 , 0.2596273 , 0.09448181, ..., 0.26458177,\n", + " 0.25796784, -0.13860717],\n", + " [-0.2704943 , -0.73321445, -0.28304404, ..., 0.49669728,\n", + " -0.58953891, 0.53591373]])
array([[0.88675481, 1. , 0.95746331, ..., 0.88140606, 0.93964454,\n", + " 0.99007237],\n", + " [0.40076539, 0.39275394, 0.97554501, ..., 0.95809153, 0.97829063,\n", + " 0.83876602],\n", + " [0.99360741, 0.82589775, 0.96369187, ..., 0.5675964 , 0.91406341,\n", + " 0.97567385],\n", + " [0.98033282, 0.28794532, 0.614792 , ..., 0.61305512, 0.98678056,\n", + " 0.54370112]])
array([[0. , 0. , 0. , ..., 0. , 0.03125 , 0. ],\n", + " [0.015625, 0. , 0. , ..., 0. , 0.015625, 0. ],\n", + " [0. , 0. , 0. , ..., 0.015625, 0. , 0. ],\n", + " [0.015625, 0. , 0. , ..., 0. , 0.015625, 0. ]])
<xarray.Dataset>\n", - "Dimensions: (chain: 1, draw: 500, school: 8)\n", + "Dimensions: (chain: 1, draw: 500, school: 8)\n", "Coordinates:\n", - " * chain (chain) int32 0\n", - " * draw (draw) int32 0 1 2 3 4 5 6 7 ... 492 493 494 495 496 497 498 499\n", - " * school (school) <U16 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'\n", + " * chain (chain) int32 0\n", + " * draw (draw) int32 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499\n", + " * school (school) <U16 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'\n", "Data variables:\n", - " tau_log__ (chain, draw) float64 0.3158 2.123 1.79 ... 1.178 1.796 1.372\n", - " tau (chain, draw) float64 1.371 8.359 5.987 ... 3.249 6.027 3.945\n", - " mu (chain, draw) float64 1.557 0.8172 2.985 ... 3.694 0.02784 -2.71\n", - " theta (chain, draw, school) float64 1.638 1.044 2.263 ... 2.327 -7.168\n", + " theta (chain, draw, school) float64 4.769 4.619 -8.079 ... -2.282 -6.272\n", + " tau (chain, draw) float64 6.891 12.48 7.972 5.559 ... 6.112 50.19 1.671\n", + " mu (chain, draw) float64 4.185 1.54 1.823 ... -1.644 1.584 -5.634\n", "Attributes:\n", - " created_at: 2020-07-24T15:58:37.815636\n", - " arviz_version: 0.9.0\n", - " inference_library: pymc3\n", - " inference_library_version: 3.8
array([0])
array([ 0, 1, 2, ..., 497, 498, 499])
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([[ 3.15845680e-01, 2.12333994e+00, 1.78955399e+00,\n", - " -1.68542713e+00, 4.82484192e+00, -3.14799586e+00,\n", - " 4.73499055e-01, 1.70388446e+00, 2.26570504e+00,\n", - " 2.47128341e+00, 1.00621671e+00, 7.22375632e-01,\n", - " 4.18045152e-01, 6.07500642e-01, 1.45654605e+00,\n", - " 1.61832385e+00, 1.55520514e+00, 1.03155189e+00,\n", - " 1.12209865e+00, 1.91722051e+00, 1.93954109e+00,\n", - " 1.53998279e+00, 1.41755349e+00, 2.18364801e+00,\n", - " 2.31287879e+00, 3.97870381e+00, 1.77146461e+00,\n", - " 8.60870663e-01, 5.94544265e-01, 1.24773469e+00,\n", - " 1.98662281e+00, 1.90598380e+00, 6.44742270e-01,\n", - " 1.17392671e+00, 1.17918459e+00, -3.95830773e-01,\n", - " 5.90696691e-01, 1.48163626e+00, 3.86297322e+00,\n", - " 1.61374096e+00, 1.30434187e+00, 2.87855479e+00,\n", - " -5.30070049e-01, 3.34667338e+00, -2.01567113e-01,\n", - " 3.08330933e+00, 1.19668699e+00, -3.92666254e-01,\n", - " 2.25247156e-01, 6.19591577e-01, 1.61933818e+00,\n", - " 3.69395819e+00, 1.32170158e-01, 3.19390042e+00,\n", - " 1.44574800e+00, 4.01157103e+00, 8.10611167e-01,\n", - " 1.91034290e+00, 7.38250508e-02, 1.63291878e+00,\n", - "...\n", - " 7.42432414e-01, 2.73307891e+00, -1.89433785e-01,\n", - " 2.42812702e-01, 3.09878132e+00, 1.62769670e+00,\n", - " 1.50368968e+00, -6.45716757e-01, 1.36517726e+00,\n", - " 1.08856973e-01, 1.50821794e+00, 1.56467879e-01,\n", - " -1.23164009e+00, 7.60131675e+00, 3.64698400e+00,\n", - " 3.49226765e+00, 3.79955068e-01, 3.71182834e-01,\n", - " 5.75732339e+00, 1.19189082e+00, 1.46329298e+00,\n", - " 1.81789479e+00, 1.75688448e+00, 4.90592951e-01,\n", - " 1.27426207e+00, 8.52146985e-01, 1.26351686e+00,\n", - " 2.59736186e+00, 3.64649766e+00, 1.84458970e+00,\n", - " 9.31731511e-01, 2.03794421e+00, 1.58760293e+00,\n", - " 2.89903195e-01, 7.82511531e-01, -2.52358847e+00,\n", - " -1.05993417e+00, 2.15840420e+00, 3.71836824e+00,\n", - " 3.32247788e+00, 1.98332851e+00, 2.22462996e+00,\n", - " 8.92366518e-01, -3.39960031e-02, -8.84924947e-01,\n", - " 4.74453287e+00, 1.44237816e+00, 1.50951733e-01,\n", - " 3.55698718e+00, 9.99865119e-01, -5.40618736e-01,\n", - " 9.48647575e-03, 9.09763060e-01, 4.55514308e-02,\n", - " 1.88247071e+00, 1.16298620e-01, 1.17830925e+00,\n", - " 1.79628891e+00, 1.37246602e+00]])
array([[1.37141860e+00, 8.35900955e+00, 5.98678170e+00, 1.85365240e-01,\n", - " 1.24566775e+02, 4.29380948e-02, 1.60560247e+00, 5.49525210e+00,\n", - " 9.63791728e+00, 1.18376296e+01, 2.73523322e+00, 2.05931959e+00,\n", - " 1.51898926e+00, 1.83583725e+00, 4.29111260e+00, 5.04462768e+00,\n", - " 4.73605799e+00, 2.80541616e+00, 3.07129301e+00, 6.80202601e+00,\n", - " 6.95555827e+00, 4.66450997e+00, 4.12701131e+00, 8.87863665e+00,\n", - " 1.01034686e+01, 5.34477109e+01, 5.87945818e+00, 2.36521911e+00,\n", - " 1.81220487e+00, 3.48244520e+00, 7.29086946e+00, 6.72602142e+00,\n", - " 1.90549586e+00, 3.23466934e+00, 3.25172162e+00, 6.73120596e-01,\n", - " 1.80524568e+00, 4.40013955e+00, 4.76066863e+01, 5.02156159e+00,\n", - " 3.68526290e+00, 1.77885464e+01, 5.88563740e-01, 2.84080734e+01,\n", - " 8.17448715e-01, 2.18305273e+01, 3.30913553e+00, 6.75254074e-01,\n", - " 1.25263227e+00, 1.85816897e+00, 5.04974718e+00, 4.02036660e+01,\n", - " 1.14130250e+00, 2.43833474e+01, 4.24502626e+00, 5.52335759e+01,\n", - " 2.24928225e+00, 6.75540484e+00, 1.07661844e+00, 5.11879358e+00,\n", - " 4.05631087e+01, 4.19956839e+00, 7.66514054e+00, 4.94296294e+00,\n", - " 1.76560817e+01, 7.24927443e+00, 2.88112099e+00, 7.33565566e+00,\n", - " 2.46885522e+01, 1.66151789e+00, 5.24529675e+00, 3.44613846e+00,\n", - " 9.90980879e+00, 3.33606877e+00, 7.39555157e+01, 2.28252990e+00,\n", - " 1.01888942e+01, 2.42278506e+00, 6.54960116e+00, 7.22676279e+00,\n", + " created_at: 2022-10-12T09:57:52.918242\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7
array([0])
array([ 0, 1, 2, ..., 497, 498, 499])
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([[[ 17.08746376, -19.86062539, -21.88394834, ..., -16.24990896,\n", - " -8.68227311, -6.06728588],\n", - " [ 4.84818264, 16.17571731, -19.91966457, ..., 25.21524783,\n", - " 11.96041969, 9.60174167],\n", - " [ 1.14581036, -4.4334802 , -14.73443609, ..., 5.46889585,\n", - " 12.951075 , 2.58561198],\n", + " created_at: 2022-10-12T09:57:52.920241\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([28., 8., -3., 7., -1., 1., 18., 12.])
<xarray.Dataset>\n", + "Dimensions: (school: 8)\n", + "Coordinates:\n", + " * school (school) <U16 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'\n", + "Data variables:\n", + " scores (school) float64 28.0 8.0 -3.0 7.0 -1.0 1.0 18.0 12.0\n", + "Attributes:\n", + " created_at: 2022-10-12T09:57:52.922243\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7
<xarray.Dataset>\n", - "Dimensions: (chain: 4, draw: 500, school: 8)\n", + "Dimensions: (chain: 4, draw: 500, school: 8, theta_dim_0: 8)\n", "Coordinates:\n", - " * chain (chain) int32 0 1 2 3\n", - " * draw (draw) int32 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499\n", - " * school (school) <U16 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'\n", + " * chain (chain) int32 0 1 2 3\n", + " * draw (draw) int32 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499\n", + " * school (school) <U16 'Choate' 'Deerfield' ... 'Mt. Hermon'\n", + " * theta_dim_0 (theta_dim_0) int32 0 1 2 3 4 5 6 7\n", "Data variables:\n", - " mu (chain, draw) float64 6.79 5.731 4.465 3.535 ... 5.957 -1.642 4.704\n", - " theta_t (chain, draw, school) float64 -1.514 1.738 -1.498 ... 1.1 0.1812\n", - " theta (chain, draw, school) float64 16.4 9.137 2.87 ... 15.01 2.525\n", - " tau (chain, draw) float64 3.931 4.349 3.913 2.099 ... 4.856 6.098 5.005\n", + " mu (chain, draw) float64 8.491 8.185 -1.778 ... 0.2131 -0.9438\n", + " theta_t (chain, draw, school) float64 -0.01047 -0.4168 ... 0.04088\n", + " theta (chain, draw, theta_dim_0) float64 4.086 11.74 ... -1.689\n", + " tau (chain, draw) float64 5.868 6.223 7.5 ... 4.117 3.276 1.282\n", "Attributes:\n", - " created_at: 2020-07-24T16:02:06.283176\n", - " arviz_version: 0.9.0\n", - " inference_library: pymc3\n", - " inference_library_version: 3.8
array([0, 1, 2, 3])
array([ 0, 1, 2, ..., 497, 498, 499])
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([[ 6.78951514, 5.7307891 , 4.46451908, ..., 2.79532802,\n", - " -0.92093439, 0.7561864 ],\n", - " [ 9.89243256, 8.49683591, 13.26770547, ..., 5.28433601,\n", - " 6.61659802, 2.25141429],\n", - " [ 9.74733533, 9.69861757, -6.06729988, ..., 3.13994129,\n", - " 3.13994129, 3.13994129],\n", - " [ 5.04611326, 2.51116776, 1.43100751, ..., 5.95717459,\n", - " -1.64192072, 4.70382734]])
array([[[-1.51382048e+00, 1.73770779e+00, -1.49764717e+00, ...,\n", - " -1.51380125e+00, 3.95735986e-02, 1.09305241e+00],\n", - " [-4.60774424e-01, 1.22158690e+00, 1.06374307e+00, ...,\n", - " -6.60763191e-01, -3.44994645e-01, 1.01255561e+00],\n", - " [ 1.96653263e-01, 9.38051897e-01, 1.25275576e+00, ...,\n", - " -1.04321603e+00, -8.42754881e-01, 1.18586979e+00],\n", + " created_at: 2022-10-12T10:04:05.357340\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7\n", + " sampling_time: 93.89331722259521\n", + " tuning_steps: 1000
array([[ 5.8679342 , 6.22333068, 7.49971373, ..., 3.10320571,\n", + " 3.06593982, 5.65934737],\n", + " [ 1.12644612, 2.56678196, 6.62530348, ..., 6.7548095 ,\n", + " 10.14834745, 7.79967145],\n", + " [ 2.65297436, 3.18686697, 3.73830155, ..., 2.87252546,\n", + " 4.25396636, 2.03125639],\n", + " [ 6.13414944, 3.4716475 , 9.54572839, ..., 4.11732407,\n", + " 3.27584461, 1.28233781]])
<xarray.Dataset>\n", - "Dimensions: (chain: 4, draw: 500, school: 8)\n", + "Dimensions: (chain: 4, draw: 500, obs_dim_0: 8)\n", "Coordinates:\n", - " * chain (chain) int32 0 1 2 3\n", - " * draw (draw) int32 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499\n", - " * school (school) <U16 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'\n", + " * chain (chain) int32 0 1 2 3\n", + " * draw (draw) int32 0 1 2 3 4 5 6 7 ... 492 493 494 495 496 497 498 499\n", + " * obs_dim_0 (obs_dim_0) int32 0 1 2 3 4 5 6 7\n", "Data variables:\n", - " obs (chain, draw, school) float64 -10.73 4.706 18.01 ... -1.436 1.874\n", + " obs (chain, draw, obs_dim_0) float64 3.283 16.96 ... -0.339 28.01\n", "Attributes:\n", - " created_at: 2020-07-24T16:02:06.411835\n", - " arviz_version: 0.9.0\n", - " inference_library: pymc3\n", - " inference_library_version: 3.8
array([0, 1, 2, 3])
array([ 0, 1, 2, ..., 497, 498, 499])
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([[[-1.07285602e+01, 4.70556825e+00, 1.80120588e+01, ...,\n", - " -1.14563424e+01, 1.06747309e+01, -1.54977851e+01],\n", - " [ 7.61665203e+00, 8.73627923e+00, -7.11261901e-01, ...,\n", - " 1.86402452e+01, 9.23022354e+00, -1.25373883e+01],\n", - " [-2.00053936e-02, -1.53085160e+00, -2.44511495e+01, ...,\n", - " -4.56805761e+00, -6.09058693e+00, -6.46626058e+00],\n", + " created_at: 2022-10-12T10:04:16.958157\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7
<xarray.Dataset>\n", - "Dimensions: (chain: 4, draw: 500, school: 8)\n", + "Dimensions: (chain: 4, draw: 500, obs_dim_0: 8)\n", "Coordinates:\n", - " * chain (chain) int32 0 1 2 3\n", - " * draw (draw) int32 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499\n", - " * school (school) <U16 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'\n", + " * chain (chain) int32 0 1 2 3\n", + " * draw (draw) int32 0 1 2 3 4 5 6 7 ... 492 493 494 495 496 497 498 499\n", + " * obs_dim_0 (obs_dim_0) int32 0 1 2 3 4 5 6 7\n", "Data variables:\n", - " obs (chain, draw, school) float64 -3.926 -3.228 ... -3.266 -3.948\n", + " obs (chain, draw, obs_dim_0) float64 -4.898 -3.291 ... -4.843 -4.098\n", "Attributes:\n", - " created_at: 2020-07-24T16:02:06.409825\n", - " arviz_version: 0.9.0\n", - " inference_library: pymc3\n", - " inference_library_version: 3.8
array([0, 1, 2, 3])
array([ 0, 1, 2, ..., 497, 498, 499])
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([[[-3.92606066, -3.22798338, -3.75883285, ..., -3.35470021,\n", - " -3.98784994, -3.93008936],\n", - " [-4.44142308, -3.22243402, -3.81432298, ..., -3.40870054,\n", - " -3.95119278, -3.82609615],\n", - " [-4.49904703, -3.31797419, -3.70045621, ..., -3.34202172,\n", - " -4.13018918, -3.85214426],\n", + " created_at: 2022-10-12T10:04:05.773403\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7
<xarray.Dataset>\n", - "Dimensions: (chain: 4, draw: 500)\n", + "Dimensions: (chain: 4, draw: 500, warning_dim_0: 1)\n", "Coordinates:\n", - " * chain (chain) int32 0 1 2 3\n", - " * draw (draw) int32 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499\n", - "Data variables:\n", - " energy (chain, draw) float64 75.88 75.52 73.19 ... 83.26 82.12\n", - " lp (chain, draw) float64 -69.98 -64.94 ... -76.14 -70.44\n", - " diverging (chain, draw) bool False False False ... False False False\n", - " tree_size (chain, draw) float64 7.0 15.0 15.0 ... 31.0 31.0 15.0\n", - " depth (chain, draw) int64 3 4 4 4 4 4 4 4 4 ... 4 4 4 4 4 5 5 4\n", - " step_size_bar (chain, draw) float64 0.2395 0.2395 ... 0.2295 0.2295\n", - " step_size (chain, draw) float64 0.3458 0.3458 ... 0.2013 0.2013\n", - " energy_error (chain, draw) float64 -0.3258 -0.07222 ... 0.1261 -0.138\n", - " max_energy_error (chain, draw) float64 0.5255 1.304 1.13 ... 0.2224 -0.1699\n", - " mean_tree_accept (chain, draw) float64 0.9066 0.9396 0.8767 ... 0.9212 1.0\n", + " * chain (chain) int32 0 1 2 3\n", + " * draw (draw) int32 0 1 2 3 4 5 ... 494 495 496 497 498 499\n", + " * warning_dim_0 (warning_dim_0) int32 0\n", + "Data variables: (12/18)\n", + " reached_max_treedepth (chain, draw) bool False False False ... False False\n", + " smallest_eigval (chain, draw) float64 nan nan nan nan ... nan nan nan\n", + " lp (chain, draw) float64 -73.68 -72.15 ... -66.62 -61.77\n", + " warning (chain, draw, warning_dim_0) object None ... None\n", + " energy_error (chain, draw) float64 0.1046 -0.0208 ... -0.9957\n", + " diverging (chain, draw) bool False False False ... False False\n", + " ... ...\n", + " n_steps (chain, draw) float64 15.0 15.0 15.0 ... 15.0 31.0\n", + " index_in_trajectory (chain, draw) int64 7 -1 7 -4 11 ... 24 -8 13 6 -19\n", + " tree_depth (chain, draw) int64 4 4 4 4 4 4 4 5 ... 4 5 5 5 5 4 5\n", + " step_size_bar (chain, draw) float64 0.2228 0.2228 ... 0.1901 0.1901\n", + " perf_counter_start (chain, draw) float64 68.42 68.43 ... 50.34 50.34\n", + " max_energy_error (chain, draw) float64 0.1417 1.044 ... -0.9957\n", "Attributes:\n", - " created_at: 2020-07-24T16:02:06.291204\n", - " arviz_version: 0.9.0\n", - " inference_library: pymc3\n", - " inference_library_version: 3.8
array([0, 1, 2, 3])
array([ 0, 1, 2, ..., 497, 498, 499])
array([[75.87608751, 75.51928556, 73.18780381, ..., 78.30987327,\n", - " 74.37751202, 78.7990193 ],\n", - " [75.77830399, 77.26841794, 77.16143052, ..., 79.00992262,\n", - " 78.18369538, 81.13090592],\n", - " [83.64201111, 77.45802653, 79.82288516, ..., 68.77364216,\n", - " 65.98450917, 62.09594831],\n", - " [68.00936048, 70.90014131, 75.32088793, ..., 87.81065207,\n", - " 83.26284999, 82.12025917]])
array([[-69.97673939, -64.94068814, -65.89684761, ..., -64.98740285,\n", - " -66.49130174, -66.78817307],\n", - " [-69.24334819, -66.88201633, -67.37961646, ..., -68.26116548,\n", - " -69.80643463, -69.98273816],\n", - " [-68.71386153, -70.81806274, -74.41451644, ..., -56.27618361,\n", - " -56.27618361, -56.27618361],\n", - " [-60.54401384, -65.44292978, -70.61269352, ..., -71.09856245,\n", - " -76.14405269, -70.43768478]])
array([[False, False, False, ..., False, False, False],\n", + " created_at: 2022-10-12T10:04:05.376512\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7\n", + " sampling_time: 93.89331722259521\n", + " tuning_steps: 1000
array([[9.37925468e-01, 9.50766829e-01, 9.85269135e-01, ...,\n", + " 8.58381777e-01, 9.80816014e-01, 8.33199292e-01],\n", + " [6.04336900e-65, 3.21143038e-01, 7.20882697e-01, ...,\n", + " 9.77457430e-01, 9.22237423e-01, 9.79150951e-01],\n", + " [8.25465907e-01, 9.62276506e-01, 8.07298496e-01, ...,\n", + " 8.91888034e-01, 8.49341800e-01, 9.10208208e-01],\n", + " [9.73775304e-01, 9.75197463e-01, 8.14491164e-01, ...,\n", + " 9.82560778e-01, 9.73262555e-01, 9.36519359e-01]])
array([[78.15489685, 83.12810597, 86.75582639, ..., 76.28973877,\n", + " 72.03900284, 72.74829834],\n", + " [76.94764131, 68.06677293, 71.86066075, ..., 80.90386448,\n", + " 86.40705324, 87.31683977],\n", + " [72.37764624, 74.84615038, 73.93984455, ..., 77.42517555,\n", + " 80.33226351, 73.91492323],\n", + " [81.2466136 , 77.08417544, 86.09558459, ..., 76.17190404,\n", + " 78.43987044, 80.62910484]])
array([[0. , 0. , 0.015625, ..., 0. , 0.015625, 0. ],\n", + " [0. , 0. , 0. , ..., 0. , 0.015625, 0. ],\n", + " [0. , 0. , 0. , ..., 0. , 0.015625, 0. ],\n", + " [0.015625, 0. , 0.015625, ..., 0.015625, 0. , 0.015625]])
array([[nan, nan, nan, ..., nan, nan, nan],\n", + " [nan, nan, nan, ..., nan, nan, nan],\n", + " [nan, nan, nan, ..., nan, nan, nan],\n", + " [nan, nan, nan, ..., nan, nan, nan]])
array([[0.26073707, 0.26073707, 0.26073707, ..., 0.26073707, 0.26073707,\n", + " 0.26073707],\n", + " [0.15417116, 0.15417116, 0.15417116, ..., 0.15417116, 0.15417116,\n", + " 0.15417116],\n", + " [0.17311246, 0.17311246, 0.17311246, ..., 0.17311246, 0.17311246,\n", + " 0.17311246],\n", + " [0.28517361, 0.28517361, 0.28517361, ..., 0.28517361, 0.28517361,\n", + " 0.28517361]])
array([[0.0101213, 0.0126721, 0.007963 , ..., 0.0052501, 0.0068283,\n", + " 0.0052923],\n", + " [0.0008652, 0.007083 , 0.0034577, ..., 0.0039797, 0.005531 ,\n", + " 0.005027 ],\n", + " [0.0035033, 0.004197 , 0.0033946, ..., 0.0028006, 0.0052307,\n", + " 0.0045019],\n", + " [0.0083025, 0.0036725, 0.0075466, ..., 0.0139159, 0.0066084,\n", + " 0.0134534]])
array([[15., 15., 15., ..., 15., 31., 15.],\n", + " [ 1., 31., 15., ..., 15., 15., 15.],\n", + " [15., 15., 15., ..., 7., 15., 15.],\n", + " [31., 15., 31., ..., 31., 15., 31.]])
array([[ 7, -1, 7, ..., -7, 27, -4],\n", + " [ 0, -6, -6, ..., 8, 12, 12],\n", + " [ -9, 13, -12, ..., -7, -5, 13],\n", + " [-18, -7, -14, ..., 13, 6, -19]], dtype=int64)
array([[4, 4, 4, ..., 4, 5, 4],\n", + " [1, 5, 4, ..., 4, 4, 4],\n", + " [4, 4, 4, ..., 3, 4, 4],\n", + " [5, 4, 5, ..., 5, 4, 5]], dtype=int64)
array([[0.22278064, 0.22278064, 0.22278064, ..., 0.22278064, 0.22278064,\n", + " 0.22278064],\n", + " [0.21940501, 0.21940501, 0.21940501, ..., 0.21940501, 0.21940501,\n", + " 0.21940501],\n", + " [0.2678179 , 0.2678179 , 0.2678179 , ..., 0.2678179 , 0.2678179 ,\n", + " 0.2678179 ],\n", + " [0.190107 , 0.190107 , 0.190107 , ..., 0.190107 , 0.190107 ,\n", + " 0.190107 ]])
array([[68.41524 , 68.4265393, 68.4395377, ..., 73.201897 , 73.2074558,\n", + " 73.2145901],\n", + " [53.5475599, 53.5505434, 53.5578993, ..., 57.9020315, 57.9063038,\n", + " 57.9122315],\n", + " [54.5895335, 54.593322 , 54.5978106, ..., 57.4393978, 57.4425156,\n", + " 57.4483009],\n", + " [43.8126236, 43.8212469, 43.8252068, ..., 50.3229112, 50.3373333,\n", + " 50.3444173]])
array([[ 1.41747263e-01, 1.04362073e+00, -5.38911342e-02, ...,\n", + " 4.41053707e-01, -5.41529925e-01, 1.49802290e+01],\n", + " [ 1.47869069e+02, 1.25415033e+01, 4.24994300e-01, ...,\n", + " -1.76456892e-01, 6.14174619e-01, -4.71332171e-01],\n", + " [ 1.30906492e+00, -1.15457186e+00, 5.66484734e-01, ...,\n", + " 4.69185377e-01, 5.51302186e-01, -8.70687360e-01],\n", + " [-4.07278967e-01, -2.04084680e-01, 5.39089895e-01, ...,\n", + " 1.40975003e-01, -4.22518564e-01, -9.95736363e-01]])
<xarray.Dataset>\n", - "Dimensions: (chain: 1, draw: 500, school: 8)\n", + "Dimensions: (chain: 1, draw: 500, school: 8, theta_dim_0: 8)\n", "Coordinates:\n", - " * chain (chain) int32 0\n", - " * draw (draw) int32 0 1 2 3 4 5 6 7 ... 492 493 494 495 496 497 498 499\n", - " * school (school) <U16 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'\n", + " * chain (chain) int32 0\n", + " * draw (draw) int32 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499\n", + " * school (school) <U16 'Choate' 'Deerfield' ... 'Mt. Hermon'\n", + " * theta_dim_0 (theta_dim_0) int32 0 1 2 3 4 5 6 7\n", "Data variables:\n", - " mu (chain, draw) float64 -0.7153 10.56 3.256 ... -5.293 -3.131 4.294\n", - " tau_log__ (chain, draw) float64 0.5034 -2.498 0.9147 ... 0.2578 0.8701 1.41\n", - " theta (chain, draw, school) float64 2.238 -1.46 -3.312 ... 4.409 2.352\n", - " tau (chain, draw) float64 1.654 0.08225 2.496 ... 1.294 2.387 4.097\n", - " theta_t (chain, draw, school) float64 -1.308 -0.07714 ... 0.1931 0.1864\n", + " tau (chain, draw) float64 2.494 6.88 3.25 3.46 ... 10.61 6.3 3.141\n", + " theta_t (chain, draw, school) float64 1.248 -0.07138 ... 0.6023 0.6472\n", + " mu (chain, draw) float64 2.021 6.311 2.41 ... 0.4196 -1.567 -1.855\n", + " theta (chain, draw, theta_dim_0) float64 3.307 3.307 ... -3.564 2.77\n", "Attributes:\n", - " created_at: 2020-07-24T16:02:06.413834\n", - " arviz_version: 0.9.0\n", - " inference_library: pymc3\n", - " inference_library_version: 3.8
array([0])
array([ 0, 1, 2, ..., 497, 498, 499])
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([[-7.15319257e-01, 1.05581863e+01, 3.25614385e+00,\n", - " -3.45752888e+00, 8.09222429e+00, 5.28452357e+00,\n", - " 4.03347863e+00, -3.61141191e+00, 2.29241543e-01,\n", - " 1.48755160e+00, -1.45029969e+00, 3.09399975e+00,\n", - " 2.79770657e+00, -6.75970038e-01, 1.01740193e+00,\n", - " -3.95779532e+00, -1.76774521e+00, -8.07554028e+00,\n", - " -5.55055839e+00, 3.76535003e+00, -1.89401377e+00,\n", - " -5.03825398e-01, 7.52985275e+00, -3.56928731e+00,\n", - " 2.66308240e+00, 1.43081761e+00, 3.40756177e+00,\n", - " -5.68130255e-01, -1.67526860e+00, -3.22929167e+00,\n", - " -4.18943495e-01, 9.62315096e+00, 3.10283669e+00,\n", - " -9.96484038e+00, -3.49201943e+00, -7.71796736e-01,\n", - " 3.09755377e+00, -1.68866453e+00, 7.47234332e+00,\n", - " -8.87405633e+00, -5.94068634e+00, 6.32396839e+00,\n", - " -4.07549620e+00, -3.90532808e+00, 3.01798512e+00,\n", - " -5.19462453e+00, -3.79187305e+00, 4.58757132e+00,\n", - " 3.31615987e+00, -5.16742456e+00, -3.45714123e+00,\n", - " 4.48086971e+00, 2.03911409e+00, 5.59579574e+00,\n", - " -6.44635275e+00, -2.20186211e-01, 1.22197134e+01,\n", - " 2.94704515e+00, 1.00557118e+01, 1.45704253e+00,\n", + " created_at: 2022-10-12T10:02:07.611352\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7
<xarray.Dataset>\n", - "Dimensions: (chain: 1, draw: 500, school: 8)\n", + "Dimensions: (chain: 1, draw: 500, obs_dim_0: 8)\n", "Coordinates:\n", - " * chain (chain) int32 0\n", - " * draw (draw) int32 0 1 2 3 4 5 6 7 8 ... 492 493 494 495 496 497 498 499\n", - " * school (school) <U16 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'\n", + " * chain (chain) int32 0\n", + " * draw (draw) int32 0 1 2 3 4 5 6 7 ... 492 493 494 495 496 497 498 499\n", + " * obs_dim_0 (obs_dim_0) int32 0 1 2 3 4 5 6 7\n", "Data variables:\n", - " obs (chain, draw, school) float64 14.62 -8.063 -32.39 ... 12.56 28.55\n", + " obs (chain, draw, obs_dim_0) float64 12.22 9.156 ... 11.48 11.51\n", "Attributes:\n", - " created_at: 2020-07-24T16:02:06.415834\n", - " arviz_version: 0.9.0\n", - " inference_library: pymc3\n", - " inference_library_version: 3.8
array([0])
array([ 0, 1, 2, ..., 497, 498, 499])
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([[[ 14.62321281, -8.06339165, -32.38740613, ..., -6.52604156,\n", - " -3.09381498, -16.20497127],\n", - " [ 17.58791276, 24.99083757, 44.32844812, ..., -9.02537812,\n", - " 17.99067373, 0.74449454],\n", - " [ 4.12403435, 10.01089106, 24.38852014, ..., -5.13607075,\n", - " 7.00823438, 6.45077433],\n", + " created_at: 2022-10-12T10:02:07.618182\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7
<xarray.Dataset>\n", - "Dimensions: (school: 8)\n", + "Dimensions: (obs_dim_0: 8)\n", "Coordinates:\n", - " * school (school) <U16 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'\n", + " * obs_dim_0 (obs_dim_0) int32 0 1 2 3 4 5 6 7\n", "Data variables:\n", - " obs (school) float64 28.0 8.0 -3.0 7.0 -1.0 1.0 18.0 12.0\n", + " obs (obs_dim_0) float64 28.0 8.0 -3.0 7.0 -1.0 1.0 18.0 12.0\n", "Attributes:\n", - " created_at: 2020-07-24T16:02:06.416834\n", - " arviz_version: 0.9.0\n", - " inference_library: pymc3\n", - " inference_library_version: 3.8
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter',\n", - " 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
array([28., 8., -3., 7., -1., 1., 18., 12.])
<xarray.Dataset>\n", + "Dimensions: (school: 8)\n", + "Coordinates:\n", + " * school (school) <U16 'Choate' 'Deerfield' ... "St. Paul's" 'Mt. Hermon'\n", + "Data variables:\n", + " scores (school) float64 28.0 8.0 -3.0 7.0 -1.0 1.0 18.0 12.0\n", + "Attributes:\n", + " created_at: 2022-10-12T10:02:07.618182\n", + " arviz_version: 0.13.0.dev0\n", + " inference_library: pymc\n", + " inference_library_version: 4.2.2+7.g8239daa7