-
Notifications
You must be signed in to change notification settings - Fork 0
/
WordCount.java
100 lines (84 loc) · 3.63 KB
/
WordCount.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*
* Author: Arun K Thomas
* email : [email protected]
* Date : 10/03/2018
*/
import java.io.IOException;
import java.util.regex.Pattern;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.Logger;
import org.apache.log4j.Priority;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
/*
* This program will give the output as each unique word and its number of occurrence in each file
*
*/
public class WordCount extends Configured implements Tool {
static String delimiter="#####";
private static final Logger LOG = Logger .getLogger( WordCount.class);
public static void main( String[] args) throws Exception {
int res = ToolRunner .run( new WordCount(), args);
System .exit(res);
}
/* Job is configured here based on the input and output files, Mapper and Reducer class*/
public int run( String[] args) throws Exception {
Job job = Job .getInstance(getConf(), " wordcount ");
job.setJarByClass( this .getClass());
FileInputFormat.addInputPaths(job, args[0]);
FileOutputFormat.setOutputPath(job, new Path(args[ 1]));
job.setMapperClass( Map .class);
job.setReducerClass( Reduce .class);
job.setOutputKeyClass( Text .class);
job.setOutputValueClass( IntWritable .class);
return job.waitForCompletion( true) ? 0 : 1;
}
/* Map will take produce the intermediate result and it will pass as input to reducer. Output of mapper is Text as key and IntWritable as value */
public static class Map extends Mapper<LongWritable , Text , Text , IntWritable > {
private final static IntWritable one = new IntWritable( 1);
private Text word = new Text();
private static final Pattern WORD_BOUNDARY = Pattern .compile("\\s*\\b\\s*");
public void map( LongWritable offset, Text lineText, Context context)
throws IOException, InterruptedException {
String line = lineText.toString();
Text currentWord = new Text();
// filename is found using below method
String fileName = ((FileSplit) context.getInputSplit()).getPath().getName();
LOG.log(Priority.INFO, fileName);
for ( String word : WORD_BOUNDARY .split(line)) {
if (word.isEmpty()) {
continue;
}
word=word.toLowerCase();
word=word+WordCount.delimiter+fileName;
currentWord = new Text(word);
context.write(currentWord,one);
}
}
}
/*
* Reducer takes the input from mapper and its in the form of Text as key (word#####filename) and Iterable of IntWritable as value. it will calculate the total number of occurrence in each file . Output will be
* stored in given output location in HDFS
* */
public static class Reduce extends Reducer<Text , IntWritable , Text , IntWritable > {
@Override
public void reduce( Text word, Iterable<IntWritable > counts, Context context)
throws IOException, InterruptedException {
int sum = 0;
for ( IntWritable count : counts) {
sum += count.get();
}
context.write(word, new IntWritable(sum));
}
}
}