forked from tag-bio/umap-java
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrichard-notes.txt
37 lines (28 loc) · 1.33 KB
/
richard-notes.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Functions/methods from python libraries that are needed:
To implement scipy.optimize
curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(-np.inf, np.inf), method=None, jac=None, **kwargs)
* called with curve, xs and ys, returns params, covr but only params used
* other parameters at defaults
* a lot of checking/setup code can be removed - setup based of default value paths
* calls leastsq(func, x0, args=(), Dfun=None, full_output=0,
col_deriv=0, ftol=1.49012e-8, xtol=1.49012e-8,
gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None)
- only func, x0 and Dfun set (Dfun == None in default params path of curve_fit)
- hits many matrix functions from numpy/scipy
. _minpack._lmdif
. _minpack._lmder
. take, eye, transpose, tri/tril/triu, dot, inv, ...
. numpy.sum, finfo/iinfo - machine limits for data types,
. max of values in array
- calls svd - from decomp_svd
* things like _check_func not needed, as we are in control of the shape of the matricies?
* What exceptions/errors to throw?
Debug of iris dataset run.
UMAP.fit_transform(X, y)
- X : 2D ndarray of float64 (150,4)
- y : None
find_ab_params(spread, min_dist)
- spread : 1.0
- min_dist : 0.1
curve_fit()
- always called with default settings, so always returns same values