-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset.py
46 lines (39 loc) · 1.72 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import csv
class Dataset:
def __init__(self, csv_file, column_type):
"""Accepts a csv file and a list of what data type the columns are (binary, categorical (string),
or continuous) """
# The functions in this __init__ are temporally coupled
# The order in which they are called does matter
self.csv_file = csv_file
self.column_type = column_type
self.rows = self.get_rows()
self.column_headers = self.rows.pop(0)
self.columns = self.get_columns()
self.convert_to_type()
self.cls = self.columns.pop()
self.cls_type = self.column_type.pop()
def columns_that_are(self, column_type):
"""Returns columns that are of a certain type (based on self.column_type)"""
ret = []
for i, ct in enumerate(self.column_type):
if ct == column_type:
ret.append(self.columns[i])
return ret
def get_rows(self):
"""Returns the dataset's rows"""
with open(self.csv_file) as f:
reader = csv.reader(f)
return [row[1:] for row in list(reader)] # Slice each row to remove ids
def convert_to_type(self):
"""Converts continuous data to floating type, and binary data into bool type"""
for i, ct in enumerate(self.column_type):
if ct == 'continuous':
self.columns[i] = list(map(float, self.columns[i]))
elif ct == 'binary':
self.columns[i] = list(map(int, self.columns[i]))
self.columns[i] = list(map(bool, self.columns[i]))
self.rows = list(zip(*self.columns))
def get_columns(self):
"""Returns the dataset's columns"""
return list(zip(*self.rows))