forked from TUMFTM/race-simulation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunWorker.py
410 lines (324 loc) · 19.6 KB
/
runWorker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import racesim
import helper_funcs
from racesim.src.race_handle import race_handle
from concurrent import futures # required for parallel computing
import numpy as np
import time
import os
import pkg_resources
import pickle
import pika, ast, threading, functools
"""
author:
Alexander Heilmeier
date:
12.07.2018
.. description::
This file includes the main function as well as required plot functions. The script part required to run
the simulation is located at the bottom. Have a look there to insert the required user parameters.
"""
# ----------------------------------------------------------------------------------------------------------------------
# CHECK PYTHON DEPENDENCIES --------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# get repo path
repo_path_ = os.path.dirname(os.path.abspath(__file__))
# read dependencies from requirements.txt
requirements_path = os.path.join(repo_path_, 'requirements.txt')
dependencies = []
with open(requirements_path, 'r') as fh_:
line = fh_.readline()
while line:
dependencies.append(line.rstrip())
line = fh_.readline()
# check dependencies
# pkg_resources.require(dependencies)
# ----------------------------------------------------------------------------------------------------------------------
# MAIN FUNCTION --------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
def main(sim_opts: dict, race_pars_file: str, mcs_pars_file: str, mcs_driver: str) -> list:
# ------------------------------------------------------------------------------------------------------------------
# INITIALIZATION ---------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------------------
# get repo path
repo_path = os.path.dirname(os.path.abspath(__file__))
# create output folders (if not existing)
output_path = os.path.join(repo_path, "racesim", "output")
results_path = os.path.join(output_path, "results")
os.makedirs(results_path, exist_ok=True)
invalid_dumps_path = os.path.join(output_path, "invalid_dumps")
os.makedirs(invalid_dumps_path, exist_ok=True)
testobjects_path = os.path.join(output_path, "testobjects")
os.makedirs(testobjects_path, exist_ok=True)
# load parameters
overwrite_dict=None
pars_in, vse_paths = racesim.src.import_pars.import_pars(use_print=sim_opts["use_print"],
use_vse=sim_opts["use_vse"],
race_pars_file=race_pars_file,
mcs_pars_file=mcs_pars_file,
overwrite_dict=overwrite_dict)
# check parameters
racesim.src.check_pars.check_pars(sim_opts=sim_opts, pars_in=pars_in)
# ------------------------------------------------------------------------------------------------------------------
# SIMULATION -------------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------------------
# create list containing the simulated race object (single run) or dicts with valid results (multiple runs)
race_results = []
# save start time for runtime calculation
if sim_opts["use_print"]:
print("INFO: Starting simulations...")
t_start = time.perf_counter()
# iteration variables
no_sim_runs_left = sim_opts["no_sim_runs"] # counter for the number of races left for simulation
ctr_invalid = 0 # counter for the number of simulated races marked as invalid
# SINGLE PROCESS ---------------------------------------------------------------------------------------------------
if sim_opts["no_workers"] == 1:
while no_sim_runs_left > 0:
# simulate race
tmp_race_handle = race_handle(pars_in=pars_in,
use_prob_infl=sim_opts['use_prob_infl'],
create_rand_events=sim_opts['create_rand_events'],
vse_paths=vse_paths)
no_sim_runs_left -= 1
# CASE 1: result is valid
if tmp_race_handle.result_status == 0:
# save race object for later evaluation (single race) or simple race results (MCS)
if sim_opts["no_sim_runs"] > 1:
race_results.append(tmp_race_handle.get_race_results())
else:
race_results.append(tmp_race_handle)
# CASE 2: result is invalid
else:
# increase no_sim_runs_left
ctr_invalid += 1
no_sim_runs_left += 1
# pickle race object for further analysis
if tmp_race_handle.result_status >= 10 or tmp_race_handle.result_status == -1:
cur_time_str = time.strftime("%Y%m%d_%H%M%S")
tmp_file_path = os.path.join(invalid_dumps_path, cur_time_str + "_invalid_race_%i_%i.pkl"
% (ctr_invalid, tmp_race_handle.result_status))
with open(tmp_file_path, 'wb') as fh:
pickle.dump(tmp_race_handle, fh)
# print progressbar
if sim_opts["use_print"]:
helper_funcs.src.progressbar.progressbar(i=sim_opts["no_sim_runs"] - no_sim_runs_left,
i_total=sim_opts["no_sim_runs"],
prefix="INFO: Simulation progress:")
# MULTIPLE PROCESSES -----------------------------------------------------------------------------------------------
else:
# set maximum number of jobs in the waiting queue at the same time -> limits RAM usage
max_no_concurrent_jobs = 200
# create executor instance (pool of processes available for parallel calculations)
with futures.ProcessPoolExecutor(max_workers=sim_opts["no_workers"]) as executor:
while no_sim_runs_left > 0:
# reset job queue (list containing current simulation jobs)
job_queue = []
# submit simulations to the waiting queue of the executor instance as long as we have races left for
# simulation and the job queue is not full
while len(job_queue) <= max_no_concurrent_jobs and no_sim_runs_left > 0:
job_queue.append(executor.submit(race_handle,
pars_in,
sim_opts['use_prob_infl'],
sim_opts['create_rand_events'],
vse_paths))
no_sim_runs_left -= 1
# collect results as soon as they are available
for job_handle in futures.as_completed(job_queue):
tmp_race_handle = job_handle.result()
# CASE 1: result is valid
if tmp_race_handle.result_status == 0:
# save race object for later evaluation (single race) or simple race results (MCS)
if sim_opts["no_sim_runs"] > 1:
race_results.append(tmp_race_handle.get_race_results())
else:
race_results.append(tmp_race_handle)
# CASE 2: result is invalid
else:
# increase no_sim_runs_left
ctr_invalid += 1
no_sim_runs_left += 1
# pickle race object for further analysis
if tmp_race_handle.result_status >= 10 or tmp_race_handle.result_status == -1:
cur_time_str = time.strftime("%Y%m%d_%H%M%S")
tmp_file_path = os.path.join(invalid_dumps_path, cur_time_str + "_invalid_race_%i_%i.pkl"
% (ctr_invalid, tmp_race_handle.result_status))
with open(tmp_file_path, 'wb') as fh:
pickle.dump(tmp_race_handle, fh)
# print progressbar
if sim_opts["use_print"]:
helper_funcs.src.progressbar.progressbar(i=sim_opts["no_sim_runs"] - no_sim_runs_left,
i_total=sim_opts["no_sim_runs"],
prefix="INFO: Simulation progress:")
# print number of invalid races
if sim_opts["use_print"]:
print("INFO: There were %i invalid races!" % ctr_invalid)
# print runtime into console window
if sim_opts["use_print"]:
runtime = time.perf_counter() - t_start
print("INFO: Simulation runtime: {:.3f}s ({:.3f}ms per race)".format(runtime,
runtime / sim_opts["no_sim_runs"] * 1000))
# ------------------------------------------------------------------------------------------------------------------
# POSTPROCESSING ---------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------------------
if sim_opts["use_print"]:
print("INFO: Postprocessing in progress...")
# SINGLE RACE ------------------------------------------------------------------------------------------------------
if sim_opts["no_sim_runs"] == 1:
race_results[0].check_valid_result()
if sim_opts["use_print_result"]:
race_results[0].print_result()
# race_results[0].print_details()
if sim_opts["use_plot"]:
# race_results[0].plot_laptimes()
# race_results[0].plot_positions()
# race_results[0].plot_racetime_diffto_refdriver(1)
# race_results[0].plot_raceprogress_over_racetime()
laps_simulated = race_results[0].cur_lap
t_race_winner = np.sort(race_results[0].racetimes[laps_simulated, :])[0]
race_results[0].plot_racetime_diffto_reflaptime(ref_laptime=t_race_winner / laps_simulated)
# evaluation
# race_results[0].print_race_standings(racetime=2520.2)
# save lap times, race times and positions to csv files
race_results[0].export_results_as_csv(results_path=results_path)
# pickle race object for possible CI testing
result_objects_file_path = os.path.join(testobjects_path, "testobj_racesim_%s_%i.pkl"
% (pars_in["track_pars"]["name"], pars_in["race_pars"]["season"]))
with open(result_objects_file_path, 'wb') as fh:
pickle.dump(race_results[0], fh)
# MULTIPLE RACES ---------------------------------------------------------------------------------------------------
else:
# plot histograms
mean_pos = racesim.src.mcs_analysis.mcs_analysis(race_results=race_results,
use_print_result=sim_opts["use_print_result"],
use_plot=sim_opts["use_plot"],
mcs_driver=mcs_driver)
if sim_opts["use_print"]:
print("INFO: Simulation finished successfully!")
return mean_pos # return required in case of CI testing
# ----------------------------------------------------------------------------------------------------------------------
# MAIN FUNCTION CALL ---------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# def callback(ch, method, properties, body):
# strategy =ast.literal_eval(body.decode('utf-8'))
# race_pars_file_= strategy['Input_file']
# sim_opts_ = {"use_prob_infl": True,
# "create_rand_events": True,
# "use_vse": False,
# "no_sim_runs": 1000,
# "no_workers": 1,
# "use_print": True,
# "use_print_result": True,
# "use_plot": True}
# mcs_pars_file_ = 'pars_mcs.ini'
# print(strategy["strategy"])
# main(sim_opts=sim_opts_,
# race_pars_file=race_pars_file_,
# mcs_pars_file=mcs_pars_file_)
### Arnaud OLD
# def ack_message(ch, delivery_tag):
# """Note that `ch` must be the same pika channel instance via which
# the message being ACKed was retrieved (AMQP protocol constraint).
# """
# if ch.is_open:
# ch.basic_ack(delivery_tag)
# else:
# # Channel is already closed, so we can't ACK this message;
# # log and/or do something that makes sense for your app in this case.
# pass
# def do_work(conn, ch, delivery_tag, body):
# thread_id = threading.get_ident()
# strategy =ast.literal_eval(body.decode('utf-8'))
# race_pars_file_= strategy['Input_file']
# sim_opts_ = strategy['sim_opts']
# mcs_pars_file_ = 'pars_mcs.ini'
# results = main(sim_opts=sim_opts_,
# race_pars_file=race_pars_file_,
# mcs_pars_file=mcs_pars_file_,
# mcs_driver=strategy['driver'])
# cb = functools.partial(ack_message, ch, delivery_tag)
# conn.add_callback_threadsafe(cb)
# connection2 = pika.BlockingConnection(pika.ConnectionParameters(os.environ['RABBITMQ_HOST']))
# channel_producer = self.connection.channel()
# _queue = str(strategy[]) + "_result"
# channel_producer.queue_declare(queue=_queue)
# def on_message(ch, method_frame, _header_frame, body, args):
# (conn, thrds) = args
# delivery_tag = method_frame.delivery_tag
# t = threading.Thread(target=do_work, args=(conn, ch, delivery_tag, body))
# t.start()
# thrds.append(t)
# t.join()
### Arnaud OLD
def callback(ch, method, properties, body):
strategy = ast.literal_eval(body.decode('utf-8'))
race_pars_file_= strategy['Input_file']
sim_opts_ = strategy['sim_opts']
mcs_pars_file_ = 'pars_mcs.ini'
results = main(sim_opts=sim_opts_,
race_pars_file=race_pars_file_,
mcs_pars_file=mcs_pars_file_,
mcs_driver=strategy['driver'])
body = {'strategy':strategy,'results':results,'level':strategy['level'],'no_sim_runs':sim_opts_["no_sim_runs"]}
if strategy["level"] == 1:
_queue = str(mc_strategy["scenario_id"]) + "_result"
else:
_queue = str(strategy["scenario_id"]) + "_" + str(strategy["strategy_id"])
channel_producer.queue_declare(queue=_queue)
channel_producer.basic_publish(exchange='', routing_key=_queue, body=str(body))
# _queue = str(_portfolio_id) + "_" + str(_parent_id)
# self.channel_producer.queue_declare(queue=_queue)
# self.channel_producer.basic_publish(exchange='', routing_key=_queue, body=json.dumps(result))
if __name__ == '__main__':
# ------------------------------------------------------------------------------------------------------------------
# USER INPUT -------------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------------------
# set race parameter file names
# race_pars_file_ = 'pars_Spielberg_2019_mc.ini'
connection = pika.BlockingConnection(pika.ConnectionParameters(os.environ['RABBITMQ_HOST']))
channel_consumer = connection.channel()
channel_producer = connection.channel()
channel_consumer.queue_declare(queue=os.environ['RABBITMQ_TASKQUEUE'], arguments={"x-max-priority": 10})
channel_consumer.basic_qos(prefetch_count=int(os.environ['RABBITMQ_PREFETCHCOUNT']))
channel_consumer.basic_consume(queue=os.environ['RABBITMQ_TASKQUEUE'], auto_ack=True, on_message_callback=callback)
channel_consumer.start_consuming()
### Arnaud OLD
# connection = pika.BlockingConnection(pika.ConnectionParameters(host=os.environ['RABBITMQ_HOST']))
# channel = connection.channel()
# threads = []
# on_message_callback = functools.partial(on_message, args=(connection, threads))
# channel.basic_consume(queue=os.environ['RABBITMQ_TASKQUEUE'], on_message_callback=on_message_callback)
# channel.start_consuming()
# for thread in threads:
# thread.join()
### Arnaud OLD
# set simulation options
# use_prob_infl: activates probabilistic influences within the race simulation -> lap times, pit stop
# durations, race start performance
# create_rand_events: activates the random creation of FCY (full course yellow) phases and retirements in the race
# simulation -> they will only be created if the according entries in the parameter file
# contain empty lists, otherwise the file entries are used
# use_vse: determines if the VSE (virtual strategy engineer) is used to take tire change decisions
# -> the VSE type is defined in the parameter file (VSE_PARS)
# no_sim_runs: number of (valid) races to simulate
# no_workers: defines number of workers for multiprocess calculations, 1 for single process, >1 for
# multi-process (you can use print(multiprocessing.cpu_count()) to determine the max. number)
# use_print: set if prints to console should be used or not (does not suppress hints/warnings)
# use_print_result: set if result should be printed to console or not
# use_plot: set if plotting should be used or not
# ------------------------------------------------------------------------------------------------------------------
# SIMULATION CALL --------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------------------
# if use_print:
# print("INFO: Loading race parameters...")
# par_file_path = os.path.join(repo_path, "racesim", "input", "parameters", race_pars_file)
# parser = configparser.ConfigParser()
# pars_in = {}
# if not parser.read(par_file_path):
# raise RuntimeError('Specified race parameter config file does not exist or is empty!')
# pars_in["race_pars"] = json.loads(parser.get('RACE_PARS', 'race_pars'))
# pars_in["monte_carlo_pars"] = json.loads(parser.get('MONTE_CARLO_PARS', 'monte_carlo_pars'))
# pars_in["track_pars"] = json.loads(parser.get('TRACK_PARS', 'track_pars'))
# pars_in["car_pars"] = json.loads(parser.get('CAR_PARS', 'car_pars'))
# pars_in["tireset_pars"] = json.loads(parser.get('TIRESET_PARS', 'tireset_pars'))
# pars_in["driver_pars"] = json.loads(parser.get('DRIVER_PARS', 'driver_pars'))
# pars_in["event_pars"] = json.loads(parser.get('EVENT_PARS', 'event_pars'))
# pars_in["vse_pars"] = json.loads(parser.get('VSE_PARS', 'vse_pars'))