-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinfer.py
157 lines (133 loc) · 4.45 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import collections
import json
import logging
import math
import os
import random
import sys
from io import open
import time
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from modeling import BertForQuestionAnswering, BertConfig
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from pytorch_pretrained_bert.tokenization import (BasicTokenizer,BertTokenizer,whitespace_tokenize)
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
from infer_utils import *
import spacy
nlp = spacy.load('en_core_web_md')
def is_whitespace(c):
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
return True
return False
def is_punc(c):
if c in '?,.!()[]-_\'"':
return True
return False
def punc_sep(s):
tokens = []
is_prev_white = True
for c in s:
if is_whitespace(c):
is_prev_white = True
else:
if is_punc(c):
tokens.append(c)
is_prev_white = True
else:
if is_prev_white:
is_prev_white = False
tokens.append(c)
else:
tokens[-1]+=c
return ' '.join(tokens)
def str_to_coqa_example(contenxt, question, prev_ques, prev_answ):
paragraph_text = contenxt
doc_tokens = []
char_to_word_offset = []
prev_is_whitespace = True
for c in paragraph_text:
if is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
prev_is_whitespace = False
else:
doc_tokens[-1] += c
char_to_word_offset.append(len(doc_tokens) - 1)
question_text = question
example = CoQAExample(
qas_id='random',
question_text=question_text,
doc_tokens=doc_tokens,
orig_answer_text="",
start_position=0,
end_position=0,
is_impossible=False,
is_yes= False,
is_no=False,
answer_span="",
prev_ques=prev_ques,
prev_answ=prev_answ)
return example
class InferCoQA():
def __init__(self, model_path, lower_case = True):
self.model_path = model_path
self.tokenizer = BertTokenizer.from_pretrained(model_path, do_lower_case=lower_case)
self.model = BertForQuestionAnswering.from_pretrained(model_path)
self.model.cuda()
self.model.eval()
def predict(self, contenxt, question, prev_ques, prev_answ):
t = time.time()
coqa_example = str_to_coqa_example(contenxt, question, prev_ques, prev_answ)
coqa_features = convert_examples_to_features([coqa_example], self.tokenizer, max_seq_length=512,doc_stride=128, max_query_length=100, is_training=False)
all_input_ids = torch.tensor([f.input_ids for f in coqa_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in coqa_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in coqa_features], dtype=torch.long)
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
coqa_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
coqa_sampler = SequentialSampler(coqa_data)
coqa_dataloader = DataLoader(coqa_data, sampler=coqa_sampler, batch_size=1)
all_results = []
for input_ids, input_mask, segment_ids, example_indices in coqa_dataloader:
input_ids = input_ids.cuda()
input_mask = input_mask.cuda()
segment_ids = segment_ids.cuda()
with torch.no_grad():
score = self.model(input_ids, segment_ids, input_mask)
coqa_feature = coqa_features[example_indices[0].item()]
unique_id = int(coqa_feature.unique_id)
all_results.append(RawResult(unique_id=unique_id,score=score[0].cpu(),length=input_ids.size(1)))
output_prediction_file = "predictions.json"
output_nbest_file = "nbest_predictions.json"
output_null_log_odds_file = "null_odds.json"
write_predictions([coqa_example], coqa_features, all_results,
1, 100,
True, output_prediction_file,
output_nbest_file, output_null_log_odds_file, False,
False, 0.0)
os.remove(output_nbest_file)
res = json.loads(open(output_prediction_file).read())['random']
os.remove(output_prediction_file)
print('inference time :',time.time() - t )
return res
# iq = InferCoQA('coqa_ynu_history_1')
# print('done loading model ..')
# context = input("Context : ")
# prev_q = ""
# prev_a = ""
# while True:
# q = input("Question : ")
# a = iq.predict(context,q,prev_q,prev_a)
# print("Answer :",a)
# prev_q = q
# prev_a = a