forked from docker/genai-stack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjira_bot.py
74 lines (57 loc) · 2.17 KB
/
jira_bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import streamlit as st
from langchain.chains import RetrievalQA
from langchain.callbacks.base import BaseCallbackHandler
from langchain.vectorstores.neo4j_vector import Neo4jVector
from streamlit.logger import get_logger
from chains import (
load_embedding_model,
load_llm,
)
# load api key lib
from dotenv import load_dotenv
load_dotenv(".env")
url = os.getenv("NEO4J_URI")
username = os.getenv("NEO4J_USERNAME")
password = os.getenv("NEO4J_PASSWORD")
ollama_base_url = os.getenv("OLLAMA_BASE_URL")
embedding_model_name = os.getenv("EMBEDDING_MODEL")
llm_name = os.getenv("LLM")
# Remapping for Langchain Neo4j integration
os.environ["NEO4J_URL"] = url
logger = get_logger(__name__)
embeddings, dimension = load_embedding_model(
embedding_model_name, config={"ollama_base_url": ollama_base_url}, logger=logger
)
class StreamHandler(BaseCallbackHandler):
def __init__(self, container, initial_text=""):
self.container = container
self.text = initial_text
def on_llm_new_token(self, token: str, **kwargs) -> None:
self.text += token
self.container.markdown(self.text)
llm = load_llm(llm_name, logger=logger, config={"ollama_base_url": ollama_base_url})
def main():
st.header("📄Check with your Jira Project")
# https://python.langchain.com/docs/integrations/vectorstores/neo4jvector
vectorstore = Neo4jVector.from_existing_graph(
embedding=embeddings,
url=url,
username=username,
password=password,
### TODO need address issue create wrong index name always as vector has to match with the loader.
# index_name="jira",
node_label="Issue",
text_node_properties=["text"],
embedding_node_property="embedding"
)
qa = RetrievalQA.from_chain_type(
llm=llm, chain_type="stuff", retriever=vectorstore.as_retriever()
)
# Accept user questions/query
query = st.text_input("Ask questions about your Jira issues")
if query:
stream_handler = StreamHandler(st.empty())
qa.run(query, callbacks=[stream_handler])
if __name__ == "__main__":
main()