forked from stripe/veneur
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerging_digest.go
427 lines (374 loc) · 14 KB
/
merging_digest.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
// Package tdigest provides an implementation of Ted Dunning's t-digest, an
// approximate histogram for online, distributed applications. For more details,
// refer to Dunning's paper and the reference implementations.
//
// https://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf
//
// https://github.com/tdunning/t-digest/blob/master/src/main/java/com/tdunning/math/stats/
package tdigest
import (
"bytes"
"encoding/gob"
"math"
"math/rand"
"sort"
)
// A t-digest using the merging implementation. MergingDigest is not safe for
// use by multiple goroutines simultaneously, and its methods must not be
// invoked concurrently (including Quantile and CDF).
type MergingDigest struct {
compression float64
// main list of centroids
mainCentroids []Centroid
// total weight of unmerged centroids
mainWeight float64
// centroids that have been added but not yet merged into main list
tempCentroids []Centroid
// total weight of unmerged centroids
tempWeight float64
min float64
max float64
debug bool
}
// fields must be exported to allow encoding
type Centroid struct {
Mean float64
Weight float64
Samples []float64
}
var _ sort.Interface = centroidList{}
// sort centroids by their mean
type centroidList []Centroid
func (cl centroidList) Len() int {
return len(cl)
}
func (cl centroidList) Less(i, j int) bool {
return cl[i].Mean < cl[j].Mean
}
func (cl centroidList) Swap(i, j int) {
cl[i], cl[j] = cl[j], cl[i]
}
// Initializes a new merging t-digest using the given compression parameter.
// Lower compression values result in reduced memory consumption and less
// precision, especially at the median. Values from 20 to 1000 are recommended
// in Dunning's paper.
//
// The debug flag adds a list to each centroid, which stores all the samples
// that have gone into that centroid. While this is useful for statistical
// analysis, it makes the t-digest significantly slower and requires it to
// store every sample. This defeats the purpose of using an approximating
// histogram at all, so this feature should only be used in tests.
func NewMerging(compression float64, debug bool) *MergingDigest {
// this is a provable upper bound on the size of the centroid list
// TODO: derive it myself
sizeBound := int((math.Pi * compression / 2) + 0.5)
return &MergingDigest{
compression: compression,
mainCentroids: make([]Centroid, 0, sizeBound),
tempCentroids: make([]Centroid, 0, estimateTempBuffer(compression)),
min: math.Inf(+1),
max: math.Inf(-1),
debug: debug,
}
}
func estimateTempBuffer(compression float64) int {
// this heuristic comes from Dunning's paper
// 925 is the maximum point of this quadratic equation
// TODO: let's derive and justify this heuristic
tempCompression := math.Min(925, math.Max(20, compression))
return int(7.5 + 0.37*tempCompression - 2e-4*tempCompression*tempCompression)
}
// Adds a new value to the t-digest, with a given weight that must be positive.
// Infinities and NaN cannot be added.
func (td *MergingDigest) Add(value float64, weight float64) {
if math.IsNaN(value) || math.IsInf(value, 0) || weight <= 0 {
panic("invalid value added")
}
if len(td.tempCentroids) == cap(td.tempCentroids) {
td.mergeAllTemps()
}
td.min = math.Min(td.min, value)
td.max = math.Max(td.max, value)
next := Centroid{
Mean: value,
Weight: weight,
}
if td.debug {
next.Samples = []float64{value}
}
td.tempCentroids = append(td.tempCentroids, next)
td.tempWeight += weight
}
// combine the mainCentroids and tempCentroids in-place into mainCentroids
func (td *MergingDigest) mergeAllTemps() {
// this optimization is really important! if you remove it, the main list
// will get merged into itself every time this is called
if len(td.tempCentroids) == 0 {
return
}
// we iterate over both centroid lists from least to greatest mean, so first
// we have to sort this one
sort.Sort(centroidList(td.tempCentroids))
tempIndex := 0
// total weight that the final t-digest will have, after everything is merged
totalWeight := td.mainWeight + td.tempWeight
// how much weight has been merged so far
mergedWeight := 0.0
// the index of the last quantile to be merged into the previous centroid
// this value gets updated each time we split a new centroid out instead of
// merging into the current one
lastMergedIndex := 0.0
// since we will be merging in-place into td.mainCentroids, we need to keep
// track of the indices of the remaining elements
actualMainCentroids := td.mainCentroids
td.mainCentroids = td.mainCentroids[:0]
// to facilitate the in-place merge, we will need a place to store the main
// centroids that would be overwritten - we will use space from the start
// of tempCentroids for this
swappedCentroids := td.tempCentroids[:0]
for len(actualMainCentroids)+len(swappedCentroids) != 0 || tempIndex < len(td.tempCentroids) {
nextTemp := Centroid{
Mean: math.Inf(+1),
Weight: 0,
}
if tempIndex < len(td.tempCentroids) {
nextTemp = td.tempCentroids[tempIndex]
}
nextMain := Centroid{
Mean: math.Inf(+1),
Weight: 0,
}
if len(swappedCentroids) != 0 {
nextMain = swappedCentroids[0]
} else if len(actualMainCentroids) != 0 {
nextMain = actualMainCentroids[0]
}
if nextMain.Mean < nextTemp.Mean {
if len(actualMainCentroids) != 0 {
if len(swappedCentroids) != 0 {
// if this came from swap, before merging, we have to save
// the next main centroid at the end
// this copy is probably the most expensive part of the
// in-place merge, compared to merging into a separate buffer
copy(swappedCentroids, swappedCentroids[1:])
swappedCentroids[len(swappedCentroids)-1] = actualMainCentroids[0]
}
actualMainCentroids = actualMainCentroids[1:]
} else {
// the real main has been completely exhausted, so we're just
// cleaning out swapped mains now
swappedCentroids = swappedCentroids[1:]
}
lastMergedIndex = td.mergeOne(mergedWeight, totalWeight, lastMergedIndex, nextMain)
mergedWeight += nextMain.Weight
} else {
// before merging, we have to save the next main centroid somewhere
// else, so that we don't overwrite it
if len(actualMainCentroids) != 0 {
swappedCentroids = append(swappedCentroids, actualMainCentroids[0])
actualMainCentroids = actualMainCentroids[1:]
}
tempIndex++
lastMergedIndex = td.mergeOne(mergedWeight, totalWeight, lastMergedIndex, nextTemp)
mergedWeight += nextTemp.Weight
}
}
td.tempCentroids = td.tempCentroids[:0]
td.tempWeight = 0
td.mainWeight = totalWeight
}
// merges a single centroid into the mergedCentroids list
// note that "merging" sometimes creates a new centroid in the list, however
// the length of the list has a strict upper bound (see constructor)
func (td *MergingDigest) mergeOne(beforeWeight, totalWeight, beforeIndex float64, next Centroid) float64 {
// compute the quantile index of the element we're about to merge
nextIndex := td.indexEstimate((beforeWeight + next.Weight) / totalWeight)
if nextIndex-beforeIndex > 1 || len(td.mainCentroids) == 0 {
// the new index is far away from the last index of the current centroid
// therefore we cannot merge into the current centroid or it would
// become too wide, so we will append a new centroid
td.mainCentroids = append(td.mainCentroids, next)
// return the last index that was merged into the previous centroid
return td.indexEstimate(beforeWeight / totalWeight)
} else {
// the new index fits into the range of the current centroid, so we
// combine it into the current centroid's values
// this computation is known as welford's method, the order matters
// weight must be updated before mean
td.mainCentroids[len(td.mainCentroids)-1].Weight += next.Weight
td.mainCentroids[len(td.mainCentroids)-1].Mean += (next.Mean - td.mainCentroids[len(td.mainCentroids)-1].Mean) * next.Weight / td.mainCentroids[len(td.mainCentroids)-1].Weight
if td.debug {
td.mainCentroids[len(td.mainCentroids)-1].Samples = append(td.mainCentroids[len(td.mainCentroids)-1].Samples, next.Samples...)
}
// we did not create a new centroid, so the trailing index of the previous
// centroid remains
return beforeIndex
}
}
// given a quantile, estimate the index of the centroid that contains it using
// the given compression
func (td *MergingDigest) indexEstimate(quantile float64) float64 {
// TODO: a polynomial approximation of arcsine should be a lot faster
return td.compression * ((math.Asin(2*quantile-1) / math.Pi) + 0.5)
}
// Returns the approximate percentage of values in td that are below value (ie
// the cumulative distribution function). Returns NaN if the digest is empty.
func (td *MergingDigest) CDF(value float64) float64 {
td.mergeAllTemps()
if len(td.mainCentroids) == 0 {
return math.NaN()
}
if value <= td.min {
return 0
}
if value >= td.max {
return 1
}
weightSoFar := 0.0
lowerBound := td.min
for i, c := range td.mainCentroids {
upperBound := td.centroidUpperBound(i)
if value < upperBound {
// the value falls inside the bounds of this centroid
// based on the assumed uniform distribution, we calculate how much
// of this centroid's weight is below the value
weightSoFar += c.Weight * (value - lowerBound) / (upperBound - lowerBound)
return weightSoFar / td.mainWeight
}
// the value is above this centroid, so sum the weight and carry on
weightSoFar += c.Weight
lowerBound = upperBound
}
// should never be reached, since the final loop comparison is value < td.max
return math.NaN()
}
// Returns a value such that the fraction of values in td below that value is
// approximately equal to quantile. Returns NaN if the digest is empty.
func (td *MergingDigest) Quantile(quantile float64) float64 {
if quantile < 0 || quantile > 1 {
panic("quantile out of bounds")
}
td.mergeAllTemps()
// add up the weights of centroids in ascending order until we reach a
// centroid that pushes us over the quantile
q := quantile * td.mainWeight
weightSoFar := 0.0
lowerBound := td.min
for i, c := range td.mainCentroids {
upperBound := td.centroidUpperBound(i)
if q <= weightSoFar+c.Weight {
// the target quantile is somewhere inside this centroid
// we compute how much of this centroid's weight falls into the quantile
proportion := (q - weightSoFar) / c.Weight
// and interpolate what value that corresponds to inside a uniform
// distribution
return lowerBound + (proportion * (upperBound - lowerBound))
}
// the quantile is above this centroid, so sum the weight and carry on
weightSoFar += c.Weight
lowerBound = upperBound
}
// should never be reached unless empty, since the final comparison is
// q <= td.mainWeight
return math.NaN()
}
func (td *MergingDigest) Min() float64 {
return td.min
}
func (td *MergingDigest) Max() float64 {
return td.max
}
func (td *MergingDigest) Count() float64 {
return td.mainWeight + td.tempWeight
}
// we assume each centroid contains a uniform distribution of values
// the lower bound of the distribution is the midpoint between this centroid and
// the previous one (or the minimum, if this is the lowest centroid)
// similarly, the upper bound is the midpoint between this centroid and the
// next one (or the maximum, if this is the greatest centroid)
// this function returns the position of the upper bound (the lower bound is
// equal to the upper bound of the previous centroid)
// this assumption is justified empirically in dunning's paper
// TODO: does this assumption actually apply to our implementation?
func (td *MergingDigest) centroidUpperBound(i int) float64 {
if i != len(td.mainCentroids)-1 {
return (td.mainCentroids[i+1].Mean + td.mainCentroids[i].Mean) / 2
} else {
return td.max
}
}
// Merge another digest into this one. Neither td nor other can be shared
// concurrently during the execution of this method.
func (td *MergingDigest) Merge(other *MergingDigest) {
shuffledIndices := rand.Perm(len(other.mainCentroids))
for _, i := range shuffledIndices {
td.Add(other.mainCentroids[i].Mean, other.mainCentroids[i].Weight)
}
// we did not merge other's temps, so we need to add those too
// they're unsorted so there's no need to shuffle them
for i := range other.tempCentroids {
td.Add(other.tempCentroids[i].Mean, other.tempCentroids[i].Weight)
}
}
var _ gob.GobEncoder = &MergingDigest{}
var _ gob.GobDecoder = &MergingDigest{}
func (td *MergingDigest) GobEncode() ([]byte, error) {
td.mergeAllTemps()
buf := bytes.Buffer{}
enc := gob.NewEncoder(&buf)
if err := enc.Encode(td.mainCentroids); err != nil {
return nil, err
}
if err := enc.Encode(td.compression); err != nil {
return nil, err
}
if err := enc.Encode(td.min); err != nil {
return nil, err
}
if err := enc.Encode(td.max); err != nil {
return nil, err
}
return buf.Bytes(), nil
}
func (td *MergingDigest) GobDecode(b []byte) error {
dec := gob.NewDecoder(bytes.NewReader(b))
if err := dec.Decode(&td.mainCentroids); err != nil {
return err
}
if err := dec.Decode(&td.compression); err != nil {
return err
}
if err := dec.Decode(&td.min); err != nil {
return err
}
if err := dec.Decode(&td.max); err != nil {
return err
}
// reinitialize the remaining variables
td.mainWeight = 0
for _, c := range td.mainCentroids {
td.mainWeight += c.Weight
}
td.tempWeight = 0
if tempSize := estimateTempBuffer(td.compression); cap(td.tempCentroids) != tempSize {
td.tempCentroids = make([]Centroid, 0, tempSize)
} else {
// discard any unmerged centroids if we didn't reallocate
td.tempCentroids = td.tempCentroids[:0]
}
return nil
}
// This function provides direct access to the internal list of centroids in
// this t-digest. Having access to this list is very important for analyzing the
// t-digest's statistical properties. However, since it violates the encapsulation
// of the t-digest, it should be used sparingly. Mutating the returned slice can
// result in undefined behavior.
//
// This function will panic if debug is not enabled for this t-digest.
func (td *MergingDigest) Centroids() []Centroid {
if !td.debug {
panic("must enable debug to call Centroids()")
}
td.mergeAllTemps()
return td.mainCentroids
}