-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinal Markdown file.Rmd
612 lines (499 loc) · 14.3 KB
/
Final Markdown file.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
---
title: "Untitled"
author: "Arch Jignesh Desai"
date: "5 December 2018"
output: pdf_document
---
```{r}
library(ggplot2)
library(randomForest)
library(MASS)
library(glmnet)
library(leaps)
```
## Please select Dataset.csv file from your PC:
```{r}
data<-read.csv(file.choose(),header=T)
#View(data)
#str(data)
```
```{r}
#total number of NA values:
sum(is.na(data))
```
```{r}
#calculating the total percentage of missing values in each variables :
missingdata<-as.data.frame(sort(sapply(data, function(x) sum(is.na(x))),decreasing=T))
missingdata<-(missingdata/nrow(data))*100
class(missingdata)
colnames(missingdata)[1]<-"Percentage"
missingdata$predictors<-row.names(missingdata)
missingdata
```
```{r}
#subsetting the variables with 0 percent error into the final dataset:
x<-subset(missingdata,missingdata$Percentage==0)
```
```{r}
#final dataset:
Data<-data[,(x$predictors)]
```
```{r}
Data
```
```{r}
#numbering the variables:
for (i in 1:190)
{
names(Data)[i]<-paste(i)
}
```
```{r}
#Selecting our Response variable, GDP growth:
names(Data)[118]<-paste("GDP.growth")
```
```{r}
Data #final dataset (58*190)
pairs(Data[,1:10]) #correlation matrix
```
```{r}
# Fitting dataset to Multiple Linear Regression Model:
lm.fwd.fit0=lm(GDP.growth~.,data=Data)
sum<-summary(lm.fwd.fit0)
sum #variance too high to consider this model
```
```{r}
#Performing Forward Subset Selection to select the best model:
regfit.fwd=regsubsets(GDP.growth~.,data=Data,nvmax=189, method="forward")
summ<-summary(regfit.fwd)
```
```{r}
#Best model selection through indirect estimate of test model methods:
par(mfrow=c(2,2))
#RSS
plot(summ$rss,xlab="Number of predictors",ylab="RSS",type="l")
#Adjusted R^2
plot(summ$adjr2,xlab="Number of predictors",ylab="Adjusted RSq",type="l")
which.max(summ$adjr2)
points(30,summ$adjr2[30], col="red",cex=2,pch=20)
#Cp
plot(summ$cp,xlab="Number of predictors",ylab="Cp",type='l')
which.min(summ$cp)
points(1,summ$cp[1],col="red",cex=2,pch=20)
#BIC
plot(summ$bic,xlab="Number of predictors",ylab="BIC",type='l')
which.min(summ$bic)
points(30,summ$bic[30],col="red",cex=2,pch=20)
```
```{r}
#best model with 30 predictors, calculating the coefficients of variables:
coef(regfit.fwd,30)
```
```{r}
#best model fitting from forward selection on linear model:
lm.fwd.fit1=lm(GDP.growth~`4`+`14`+`19`+`21`+`23`+`27`+`28`+`43`+`64`+`65`+`66`+`67`+`71`+`74`+`93`+`94`+`103`+`110`+`126`+`130`+`140`+`144`+`150`+ `151` +`153`+`165`+`186`+`187`+`189`+`190`,data=Data)
summary(lm.fwd.fit1)
#daignostic plots
par(mfrow=c(2,2))
plot(lm.fwd.fit1)
```
```{r}
#checking for High leverage Points:
library(stats)
hlp=cooks.distance(lm.fwd.fit1)>0.333
hlp
```
```{r}
# checking for collinearity of variables :
library(car)
vif(lm.fwd.fit1)
max(vif(lm.fwd.fit1))
```
#Remove '28' with VIF > 5
```{r}
lm.fwd.fit1.whlp2=lm(GDP.growth~`4`+`14`+`19`+`21`+`23`+`27`+`43`+`64`+`65`+`66`+`67`+`71`+`74`+`93`+`94`+`103`+`110`+`126`+`130`+`140`+`144`+`150`+ `151` +`153`+`165`+`186`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp2)
max(vif(lm.fwd.fit1.whlp2))
```
#Remove '94' with VIF > 5
```{r}
lm.fwd.fit1.whlp3=lm(GDP.growth~`4`+`14`+`19`+`21`+`23`+`27`+`43`+`64`+`65`+`66`+`67`+`71`+`74`+`93`+`103`+`110`+`126`+`130`+`140`+`144`+`150`+ `151` +`153`+`165`+`186`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp3)
max(vif(lm.fwd.fit1.whlp3))
```
#Remove '130' with VIF > 5
```{r}
lm.fwd.fit1.whlp4=lm(GDP.growth~`4`+`14`+`19`+`21`+`23`+`27`+`43`+`64`+`65`+`66`+`67`+`71`+`74`+`93`+`103`+`110`+`126`+`140`+`144`+`150`+ `151` +`153`+`165`+`186`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp4)
max(vif(lm.fwd.fit1.whlp4))
```
#Remove '4' with VIF > 5
```{r}
lm.fwd.fit1.whlp5=lm(GDP.growth~`14`+`19`+`21`+`23`+`27`+`43`+`64`+`65`+`66`+`67`+`71`+`74`+`93`+`103`+`110`+`126`+`140`+`144`+`150`+ `151` +`153`+`165`+`186`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp5)
max(vif(lm.fwd.fit1.whlp5))
```
#Remove '93' with VIF > 5
```{r}
lm.fwd.fit1.whlp6=lm(GDP.growth~`14`+`19`+`21`+`23`+`27`+`43`+`64`+`65`+`66`+`67`+`71`+`74`+`103`+`110`+`126`+`140`+`144`+`150`+ `151` +`153`+`165`+`186`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp6)
max(vif(lm.fwd.fit1.whlp6))
```
#Remove '14 and 21' with VIF > 5
```{r}
lm.fwd.fit1.whlp7=lm(GDP.growth~`19`+`23`+`27`+`43`+`64`+`65`+`66`+`67`+`71`+`74`+`103`+`110`+`126`+`140`+`144`+`150`+ `151` +`153`+`165`+`186`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp7)
max(vif(lm.fwd.fit1.whlp7))
```
#Remove '186 and 140' with VIF > 5
```{r}
lm.fwd.fit1.whlp8=lm(GDP.growth~`19`+`23`+`27`+`43`+`64`+`65`+`66`+`67`+`71`+`74`+`103`+`110`+`126`+`144`+`150`+ `151` +`153`+`165`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp8)
max(vif(lm.fwd.fit1.whlp8))
```
#Remove '66 and 144' with VIF > 5
```{r}
lm.fwd.fit1.whlp9=lm(GDP.growth~`19`+`23`+`27`+`43`+`64`+`65`+`67`+`71`+`74`+`103`+`110`+`126`+`150`+ `151` +`153`+`165`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp9)
max(vif(lm.fwd.fit1.whlp9))
```
#Remove '19 and 23' with VIF > 5
```{r}
lm.fwd.fit1.whlp10=lm(GDP.growth~`27`+`43`+`64`+`65`+`67`+`71`+`74`+`103`+`110`+`126`+`150`+ `151` +`153`+`165`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp10)
max(vif(lm.fwd.fit1.whlp10))
```
#Remove '43' with VIF > 5
```{r}
lm.fwd.fit1.whlp11=lm(GDP.growth~`27`+`64`+`65`+`67`+`71`+`74`+`103`+`110`+`126`+`150`+ `151` +`153`+`165`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp11)
max(vif(lm.fwd.fit1.whlp11))
```
#Remove '150 and 110' with VIF > 5
```{r}
lm.fwd.fit1.whlp12=lm(GDP.growth~`27`+`64`+`65`+`67`+`71`+`74`+`103`+`126`+ `151` +`153`+`165`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp12)
max(vif(lm.fwd.fit1.whlp12))
```
#Remove '65' with VIF > 5
```{r}
lm.fwd.fit1.whlp13=lm(GDP.growth~`27`+`64`+`67`+`71`+`74`+`103`+`126`+ `151` +`153`+`165`+`187`+`189`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp13)
max(vif(lm.fwd.fit1.whlp13))
```
#Remove '189 and 27' with VIF > 5
```{r}
lm.fwd.fit1.whlp14=lm(GDP.growth~`64`+`67`+`71`+`74`+`103`+`126`+ `151` +`153`+`165`+`187`+`190`,data=Data)
```
```{r}
vif(lm.fwd.fit1.whlp14)
max(vif(lm.fwd.fit1.whlp14))
```
#Remove '153 and 151' with VIF > 5
```{r}
lm.fwd.fit1.whlp15=lm(GDP.growth~`64`+`67`+`71`+`74`+`103`+`126`+`165`+`187`+`190`,data=Data)
```
```{r}
#Final model with VIF < 5 :
vif(lm.fwd.fit1.whlp15)
max(vif(lm.fwd.fit1.whlp15))
```
```{r}
# checking for non-constant variance of error terms:
ncvTest(lm.fwd.fit1.whlp15)
par(mfrow=c(2,2))
plot(lm.fwd.fit1.whlp15)
```
```{r}
#linear model with predictors with VIF > 5 :
lm.fwd.fit1.whlp15.ncv1=lm((GDP.growth)~`64`+`67`+`71`+`74`+`103`+`126`+`165`+`187`+`190`,data=Data)
ncvTest(lm.fwd.fit1.whlp15.ncv1)
par(mfrow=c(2,2))
plot(lm.fwd.fit1.whlp15.ncv1)
```
Thus at p=0.011498 (>0.01) null hypothesis cant be rejected based on these observations alone, hence we will select GDP.growth as response which passes the model daignostic tests with constant variance of error terms.
```{r}
#removing the Outliers and High leverage points from the dataset:
Data.whlp2 <- Data[-c(15,16,20,6),]
View(Data.whlp2)
```
##FORWARD MODEL TEST MSE
```{r}
#dividing the data over train and test data as 80%:20% :
set.seed(1)
train=sample(1:nrow(Data.whlp2),size=0.8*nrow(Data.whlp2))
Data.train=Data.whlp2[train,]
Data.test=Data.whlp2[-train,]
dim(Data.train)
dim(Data.test)
```
```{r}
#best subset selection model with 9 predictors, fitting over training data:
lm.fwd.fit1.whlp15.ncv1=lm((GDP.growth)~`64`+`67`+`71`+`74`+`103`+`126`+`165`+`187`+`190`,data=Data.train)
summary(lm.fwd.fit1.whlp15.ncv1)
#predicting over test data for test MSE:
pred=predict(lm.fwd.fit1.whlp15.ncv1,Data.test)
mse.fwd=mean((pred-Data.test$GDP.growth)^2)
mse.fwd
plot(Data.test$GDP.growth,pred,xlab="GDP Growth Observations",ylab="GDP Growth Predictions")
abline(lm.fwd.fit1.whlp15.ncv1,type='l',col='blue')
title(main="Model Accuracy")
```
## Ridge Regression:
```{r}
library(glmnet)
library(Matrix)
library(foreach)
x=model.matrix(GDP.growth~.,Data)
y=Data$GDP.growth
grid=10^seq(10,-2,length=100)
```
```{r}
#defining train and test data:
set.seed(1)
train2<-sample(1:nrow(Data),size=0.8*nrow(Data))
test=(-train2)
y.test=y[test]
```
```{r}
#running ridge regression on the model matrix:
ridge.tr<-glmnet(x[train2,],y[train2],alpha=0,lambda=grid)
plot(ridge.tr)
```
```{r}
#selecting best lambda by cross-validation:
cv.out=cv.glmnet(x[train2,],y[train2],alpha=0)
plot(cv.out)
bestlam=cv.out$lambda.min
bestlam
```
```{r}
#predicting over test data for test MSE with best lambda value:
ridge.pred=predict(ridge.tr,s=bestlam,newx=x[test,])
mean((ridge.pred-y.test)^2)
```
```{r}
#coefficients from ridge regession:
out=glmnet(x,y,alpha=0)
ridge.coef=predict(out, type="coefficients",s=bestlam)[1:190,]
ncoef=as.matrix(ridge.coef)
dim(ncoef)
ncoef
coef.Ridge.Reg=ncoef[-1,]
plot(coef.Ridge.Reg)
```
```{r}
# fitering Coefficients greater than 10^-3 (Threshold)
x.n=model.matrix(GDP.growth~`3`+`8`+`18`+`28`+`30`+`31`+`32`+`34`+`36`+`39`+`40`+`41`+`42`+`43`+`44`+`45`+`46`+`47`+`48`+`49`+`51`+`53`+`55`+`56`+`57`+`58`+`59`+`60`+`61`+`62`+`63`+`64`+`65`+`66`+`67`+`68`+`69`+`70`+`71`+`72`+`73`+`74`+`75`+`77`+`79`+`82`+`83`+`84`+`85`+`86`+`87`+`89`+`91`+`93`+`94`+`130`+`132`+`136`+`145`+`153`+`160`+`165`+`171`+`176`+`182`+`187`,Data)
```
```{r}
y.n=Data$GDP.growth
grid.n=10^seq(10,-2,length=100)
```
```{r}
#defining train and test data:
set.seed(1)
train.n<-sample(1:nrow(Data),size=0.8*nrow(Data))
train.n
test.n=(-train.n)
y.test.n=y[test.n]
#ridge regression on the dataset:
ridge.tr.n<-glmnet(x.n[train.n,],y.n[train.n],alpha=0,lambda=grid.n)
plot(ridge.tr.n)
```
```{r}
#cross-validation for best lamda:
cv.out.n=cv.glmnet(x.n[train.n,],y.n[train.n],alpha=0)
plot(cv.out.n)
bestlam.n=cv.out.n$lambda.min
bestlam.n
```
```{r}
#ridge regression over best lambda:
ridge.pred.n=predict(ridge.tr.n,s=bestlam.n,newx=x.n[test.n,])
mse.ridge =mean((ridge.pred.n-y.test.n)^2)
mse.ridge
```
```{r}
#coefficients of ridge regression:
out.n=glmnet(x,y,alpha=0)
ridge.coef.n=predict(out.n, type="coefficients",s=bestlam.n)[1:190,]
ncoef.n=as.matrix(ridge.coef.n)
dim(ncoef.n)
ncoef.ridge=ncoef.n[-1,]
plot(ncoef.ridge)
```
## LASSO regression:
```{r}
library(glmnet)
x=model.matrix(GDP.growth~.,Data)
y=Data$GDP.growth
grid=10^seq(10,-2,length=100)
#lasso regression model:
lasso.mod=glmnet(x,y,alpha=1,lambda=grid)
dim(coef(lasso.mod))
plot(lasso.mod)
```
```{r}
#defining test and training data:
set.seed(1)
train2<-sample(seq(58),size=45,replace=FALSE)
test2=(-train2)
y.test=y[test2]
lasso.tr<-glmnet(x[train2,],y[train2],alpha=1,lambda=grid)
```
```{r}
#cross-validation for best lambda:
set.seed(1)
cv.lasso<-cv.glmnet(x[train2,],y[train2],alpha=1)
plot(cv.lasso)
bestlam=cv.lasso$lambda.min
bestlam
#lasso regression with best lambda:
set.seed(1)
lasso.pred=predict(lasso.tr,s=bestlam,newx=x[test2,])
mean((lasso.pred-y.test)^2)
out=glmnet(x,y,alpha=1,lambda=grid)
lasso.coef=predict(out, type="coefficients",s=bestlam)[1:190,]
#lasso coefficients of predictors:
lasso.coef[lasso.coef!=0]
```
```{r}
lm.fwd.fit1=lm(GDP.growth~`69`+`110`+`127`+`150`,data=Data)
summary(lm.fwd.fit1)
par(mfrow=c(2,2))
plot(lm.fwd.fit1)
```
```{r}
#high leverage points:
hlp=cooks.distance(lm.fwd.fit1)>0.333
hlp
```
```{r}
#multicollinearity, VIF >5
vif(lm.fwd.fit1)
max(vif(lm.fwd.fit1))
```
```{r}
#removing point '110'
lm.fwd.fit12=lm(GDP.growth~`69`+`127`+`150`,data=Data)
summary(lm.fwd.fit12)
```
```{r}
#multicollinearity, VIF >5
vif(lm.fwd.fit12)
max(vif(lm.fwd.fit12))
```
```{r}
#calculating the Test MSE for Lasso:
set.seed (1)
Data.train.mse=sample(seq(58),size=41,replace=FALSE)
Data.test.mse=Data[-Data.train.mse,]
lm.fit12.mse=predict(lm.fwd.fit12,newdata=Data[-Data.train.mse,])
mse.lasso =mean(( lm.fit12.mse-Data.test.mse$GDP.growth)^2)
mse.lasso
```
```{r}
#calculating test MSE through Cross-validation, k-fold, direct MSE approach
library(boot)
set.seed(1)
cv.error.10 = rep(0,10)
for (i in 1:10) {
glm.fit = glm(GDP.growth~`69`+`127`+`150`,data=Data)
cv.error.10[i] = cv.glm(data=Data,glm.fit,K=10)$delta[1]
}
cv.error.10
mean(cv.error.10)
plot(cv.error.10)
```
## Random Forest:
## Please select Dataset.csv file from your PC:
```{r}
library (randomForest)
Data1<-read.csv(file.choose(),header = T)
Data1<-Data1[,-1]
```
```{r}
#checking for percentage of missing data in for every predictor:
missingdata<-as.data.frame(sort(sapply(Data1, function(x) sum(is.na(x))),decreasing=T))
missingdata<-(missingdata/nrow(Data1))*100
class(missingdata)
colnames(missingdata)[1]<-"Percentage"
missingdata$predictors<-row.names(missingdata)
missingdata
```
```{r}
#subsetting dataset with missing values percent as 0:
x<-subset(missingdata,missingdata$Percentage==0)
```
```{r}
#final dataset:
Data1<-Data1[,(x$predictors)]
```
```{r}
#defining train and test data:
set.seed(1)
train<-sample(1:nrow(Data1),size=0.8*nrow(Data1))
Data.train<-Data1[train,]
Data.test<-Data1[-train,]
dim(Data.train)
dim(Data.test)
sum(is.na(Data1))
```
```{r}
#random forest model fitting over train data:
rf<-randomForest(GDP.growth~.,data = Data.train,mtry=63,importance=TRUE)
plot(rf)
```
```{r}
#calculating test MSE:
yhat<-predict(rf,newdata=Data.test)
mse.rf <-mean(( yhat-Data.test$GDP.growth)^2)
mse.rf
#importance of predictors:
importance(rf)
varImpPlot(rf,n.var = 10)
```
##PRINCIPAL COMPONENT ANALYSIS, PCA:
```{r}
PCA<-prcomp(Data,center = T,scale. = T)
library(factoextra)
fviz_pca_var(PCA, col.var = "blue")
```
```{r}
#calculating test mse for PCA:
library(pls)
Y<-Data1$GDP.growth
PCR<-pcr(GDP.growth~.,data=Data.train,scale = TRUE, validation = "CV")
pcr_pred <- predict(PCR, Data.test, ncomp = 2)
mse.pca=mean((pcr_pred - Data.test$GDP.growth)^2)
mse.pca
```
```{r}
#Cross-validation error and Variation of Principal components explained:
summary(PCR)
```