forked from VoiceBeer/MS-MDA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
378 lines (322 loc) · 11.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
'''
Description:
Author: voicebeer
Date: 2020-09-08 07:00:34
LastEditTime: 2021-12-22 01:53:49
'''
# For SEED data loading
from torch.utils.data import Dataset, DataLoader
import torch
import pickle
import copy
import os
import scipy.io as scio
# standard package
import numpy as np
import random
random.seed(0)
# DL
dataset_path = {'seed4': 'eeg_feature_smooth', 'seed3': 'ExtractedFeatures'}
'''
Tools
'''
def norminx(data):
'''
description: norm in x dimension
param {type}:
data: array
return {type}
'''
for i in range(data.shape[0]):
data[i] = normalization(data[i])
return data
def norminy(data):
dataT = data.T
for i in range(dataT.shape[0]):
dataT[i] = normalization(dataT[i])
return dataT.T
def normalization(data):
'''
description:
param {type}
return {type}
'''
_range = np.max(data) - np.min(data)
return (data - np.min(data)) / _range
# package the data and label into one class
class CustomDataset(Dataset):
# initialization: data and label
def __init__(self, Data, Label):
self.Data = Data
self.Label = Label
# get the size of data
def __len__(self):
return len(self.Data)
# get the data and label
def __getitem__(self, index):
data = torch.Tensor(self.Data[index])
label = torch.LongTensor(self.Label[index])
return data, label
# mmd loss and guassian kernel
def guassian_kernel(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
n_samples = int(source.size()[0])+int(target.size()[0])
total = torch.cat([source, target], dim=0)
total0 = total.unsqueeze(0).expand(
int(total.size(0)), int(total.size(0)), int(total.size(1)))
total1 = total.unsqueeze(1).expand(
int(total.size(0)), int(total.size(0)), int(total.size(1)))
L2_distance = ((total0-total1)**2).sum(2)
if fix_sigma:
bandwidth = fix_sigma
else:
bandwidth = torch.sum(L2_distance.data) / (n_samples**2-n_samples)
bandwidth /= kernel_mul ** (kernel_num // 2)
bandwidth_list = [bandwidth * (kernel_mul**i) for i in range(kernel_num)]
kernel_val = [torch.exp(-L2_distance / bandwidth_temp)
for bandwidth_temp in bandwidth_list]
return sum(kernel_val) # /len(kernel_val)
def mmd(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
batch_size = int(source.size()[0])
kernels = guassian_kernel(source, target,
kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
XX = kernels[:batch_size, :batch_size]
YY = kernels[batch_size:, batch_size:]
XY = kernels[:batch_size, batch_size:]
YX = kernels[batch_size:, :batch_size]
loss = torch.mean(XX + YY - XY - YX)
return loss
def mmd_rbf_accelerate(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
batch_size = int(source.size()[0])
kernels = guassian_kernel(source, target,
kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
loss = 0
for i in range(batch_size):
s1, s2 = i, (i+1) % batch_size
t1, t2 = s1+batch_size, s2+batch_size
loss += kernels[s1, s2] + kernels[t1, t2]
loss -= kernels[s1, t2] + kernels[s2, t1]
return loss / float(batch_size)
def mmd_linear(f_of_X, f_of_Y):
delta = f_of_X - f_of_Y
loss = torch.mean(torch.mm(delta, torch.transpose(delta, 0, 1)))
return loss
def CORAL(source, target):
d = source.data.shape[1]
# source covariance
xm = torch.mean(source, 1, keepdim=True) - source
xc = torch.matmul(torch.transpose(xm, 0, 1), xm)
# target covariance
xmt = torch.mean(target, 1, keepdim=True) - target
xct = torch.matmul(torch.transpose(xmt, 0, 1), xmt)
# frobenius norm between source and target
loss = torch.mean(torch.mul((xc - xct), (xc - xct)))
loss = loss / (4*d*4)
return loss
def EntropyLoss(input_):
mask = input_.ge(0.000001)
mask_out = torch.masked_select(input_, mask)
entropy = -(torch.sum(mask_out * torch.log(mask_out)))
return entropy / float(input_.size(0))
def PADA(features, ad_net, grl_layer, weight_ad, use_gpu=True):
ad_out = ad_net(grl_layer(features))
batch_size = ad_out.size(0) // 2
dc_target = torch.from_numpy(
np.array([[1]] * batch_size + [[0]] * batch_size)).float()
if use_gpu:
dc_target = dc_target.cuda()
weight_ad = weight_ad.cuda()
return nn.BCELoss(weight=weight_ad.view(-1))(ad_out.view(-1), dc_target.view(-1))
def get_number_of_label_n_trial(dataset_name):
'''
description: get the number of categories, trial number and the corresponding labels
param {type}
return {type}:
trial: int
label: int
label_xxx: list 3*15
'''
# global variables
label_seed4 = [[1, 2, 3, 0, 2, 0, 0, 1, 0, 1, 2, 1, 1, 1, 2, 3, 2, 2, 3, 3, 0, 3, 0, 3],
[2, 1, 3, 0, 0, 2, 0, 2, 3, 3, 2, 3, 2,
0, 1, 1, 2, 1, 0, 3, 0, 1, 3, 1],
[1, 2, 2, 1, 3, 3, 3, 1, 1, 2, 1, 0, 2, 3, 3, 0, 2, 3, 0, 0, 2, 0, 1, 0]]
label_seed3 = [[2, 1, 0, 0, 1, 2, 0, 1, 2, 2, 1, 0, 1, 2, 0],
[2, 1, 0, 0, 1, 2, 0, 1, 2, 2, 1, 0, 1, 2, 0],
[2, 1, 0, 0, 1, 2, 0, 1, 2, 2, 1, 0, 1, 2, 0]]
if dataset_name == 'seed3':
label = 3
trial = 15
return trial, label, label_seed3
elif dataset_name == 'seed4':
label = 4
trial = 24
return trial, label, label_seed4
else:
print('Unexcepted dataset name')
def reshape_data(data, label):
'''
description: reshape data and initiate corresponding label vectors
param {type}:
data: list
label: list
return {type}:
reshape_data: array, x*310
reshape_label: array, x*1
'''
reshape_data = None
reshape_label = None
for i in range(len(data)):
one_data = np.reshape(np.transpose(
data[i], (1, 2, 0)), (-1, 310), order='F')
one_label = np.full((one_data.shape[0], 1), label[i])
if reshape_data is not None:
reshape_data = np.vstack((reshape_data, one_data))
reshape_label = np.vstack((reshape_label, one_label))
else:
reshape_data = one_data
reshape_label = one_label
return reshape_data, reshape_label
def get_data_label_frommat(mat_path, dataset_name, session_id):
'''
description: load data from mat path and reshape to 851*310
param {type}:
mat_path: String
session_id: int
return {type}:
one_sub_data, one_sub_label: array (851*310, 851*1)
'''
_, _, labels = get_number_of_label_n_trial(dataset_name)
mat_data = scio.loadmat(mat_path)
mat_de_data = {key: value for key,
value in mat_data.items() if key.startswith('de_LDS')}
mat_de_data = list(mat_de_data.values())
one_sub_data, one_sub_label = reshape_data(mat_de_data, labels[session_id])
return one_sub_data, one_sub_label
def sample_by_value(list, value, number):
'''
@Description: sample the given list randomly with given value
@param {type}:
list: list
value: int {0,1,2,3}
number: number of sampling
@return:
result_index: list
'''
result_index = []
index_for_value = [i for (i, v) in enumerate(list) if v == value]
result_index.extend(random.sample(index_for_value, number))
return result_index
'''
For loading data
'''
def get_allmats_name(dataset_name):
'''
description: get the names of all the .mat files
param {type}
return {type}:
allmats: list (3*15)
'''
path = dataset_path[dataset_name]
sessions = os.listdir(path)
sessions.sort()
allmats = []
for session in sessions:
if session != '.DS_Store':
mats = os.listdir(path + '/' + session)
mats.sort()
mats_list = []
for mat in mats:
mats_list.append(mat)
allmats.append(mats_list)
return path, allmats
def load_data(dataset_name):
'''
description: get all the data from one dataset
param {type}
return {type}:
data: list 3(sessions) * 15(subjects), each data is x * 310
label: list 3*15, x*1
'''
path, allmats = get_allmats_name(dataset_name)
data = [([0] * 15) for i in range(3)]
label = [([0] * 15) for i in range(3)]
for i in range(len(allmats)):
for j in range(len(allmats[0])):
mat_path = path + '/' + str(i+1) + '/' + allmats[i][j]
one_data, one_label = get_data_label_frommat(
mat_path, dataset_name, i)
data[i][j] = one_data.copy()
label[i][j] = one_label.copy()
return np.array(data), np.array(label)
# def load_deap():
# '''
# description:
# param {type}
# return {type}
# '''
# path = 'deap'
# dats = os.listdir(path)
# dats.sort()
# for i in range(1, len(dats)):
# temp_dat_file = pickle.load(open((path+"/"+dats[i]), 'rb'), encoding='iso-8859-1')
# temp_data, temp_label = temp_dat_file['data'], temp_dat_file['labels']
# np.vstack((data, temp_data))
# np.vstack((label, temp_label))
# print(data.shape, label.shape)
# for i in range()
# x = pickle.load(open('deap/s01.dat', 'rb'), encoding='iso-8859-1')
# return x
# print(load_deap()['data'].shape)
# load_deap()
# def initial_cd_ud(data, label, cd_count=16, dataset_name):
# cd_list, ud_list = [], []
# number_trial, number_label, _ = get_number_of_label_n_trial(dataset_name)
# for i in range(number_label):
# cd_list.extend(sample_by_value(label, i, int(cd_count/number_label)))
# ud_list.extend([i for i in range(number_trial) if i not in cd_list])
# cd_label_list = copy.deepcopy(cd_list)
# ud_label_list = copy.deepcopy(ud_list)
# for i in range(len(cd_list)):
# cd_list[i] =
def pick_one_data(dataset_name, session_id=1, cd_count=4, sub_id=0):
'''
@Description: pick one data from session 2 (or from other sessions),
@param {type}:
session_id: int
cd_count: int (to indicate the number of calibration data)
@return:
832 for session 1, 851 for session 0
cd_data: array (x*310, x is determined by cd_count)
ud_data: array ((832-x)*310, the rest of that sub data)
cd_label: array (x*1)
ud_label: array ((832-x)*1)
'''
path, allmats = get_allmats_name(dataset_name)
mat_path = path + "/" + str(session_id+1) + \
"/" + allmats[session_id][sub_id]
mat_data = scio.loadmat(mat_path)
mat_de_data = {key: value for key,
value in mat_data.items() if key.startswith('de_LDS')}
mat_de_data = list(mat_de_data.values()) # 24 * 62 * x * 5
cd_list = []
ud_list = []
number_trial, number_label, labels = get_number_of_label_n_trial(
dataset_name)
session_label_one_data = labels[session_id]
for i in range(number_label):
# 根据给定的label值从label链表中拿到全部的index后根据数量随机采样
cd_list.extend(sample_by_value(
session_label_one_data, i, int(cd_count/number_label)))
ud_list.extend([i for i in range(number_trial) if i not in cd_list])
cd_label_list = copy.deepcopy(cd_list)
ud_label_list = copy.deepcopy(ud_list)
for i in range(len(cd_list)):
cd_list[i] = mat_de_data[cd_list[i]]
cd_label_list[i] = labels[session_id][cd_label_list[i]]
for i in range(len(ud_list)):
ud_list[i] = mat_de_data[ud_list[i]]
ud_label_list[i] = labels[session_id][ud_label_list[i]]
# reshape
cd_data, cd_label = reshape_data(cd_list, cd_label_list)
ud_data, ud_label = reshape_data(ud_list, ud_label_list)
return cd_data, cd_label, ud_data, ud_label