Skip to content
/ ml-aim Public

This repository provides the code and model checkpoints for AIMv1 and AIMv2 research projects.

License

Notifications You must be signed in to change notification settings

apple/ml-aim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Autoregressive Pre-training of Large Vision Encoders

This repository is the entry point for all things AIM, a family of autoregressive models that push the boundaries of visual and multimodal learning:

*: Equal technical contribution

If you're looking for the original AIM model (AIMv1), please refer to the README here.


Overview of AIMv2

We introduce the AIMv2 family of vision models pre-trained with a multimodal autoregressive objective. AIMv2 pre-training is simple and straightforward to train and to scale effectively. Some AIMv2 highlights include:

  1. Outperforms OAI CLIP and SigLIP on the majority of multimodal understanding benchmarks.
  2. Outperforms DINOv2 on open-vocabulary object detection and referring expression comprehension.
  3. Exhibits strong recognition performance with AIMv2-3B achieving 89.5% on ImageNet using a frozen trunk.

gh_aimv2_dark gh_aimv2_light

AIMv2 Model Gallery

PyTorch JAX MLX HuggingFace

We share with the community AIMv2 pre-trained checkpoints of varying capacities, pre-training resolutions:

Installation

Please install PyTorch using the official installation instructions. Afterward, install the package as:

pip install 'git+https://github.com/apple/ml-aim.git#subdirectory=aim-v1'
pip install 'git+https://github.com/apple/ml-aim.git#subdirectory=aim-v2'

We also offer MLX backend support for research and experimentation on Apple silicon. To enable MLX support, simply run:

pip install mlx

Examples

Using PyTorch

from PIL import Image

from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms

img = Image.open(...)
model = load_pretrained("aimv2-large-patch14-336", backend="torch")
transform = val_transforms(img_size=336)

inp = transform(img).unsqueeze(0)
features = model(inp)

Using MLX

from PIL import Image
import mlx.core as mx

from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms

img = Image.open(...)
model = load_pretrained("aimv2-large-patch14-336", backend="mlx")
transform = val_transforms(img_size=336)

inp = transform(img).unsqueeze(0)
inp = mx.array(inp.numpy())
features = model(inp)

Using JAX

from PIL import Image
import jax.numpy as jnp

from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms

img = Image.open(...)
model, params = load_pretrained("aimv2-large-patch14-336", backend="jax")
transform = val_transforms(img_size=336)

inp = transform(img).unsqueeze(0)
inp = jnp.array(inp)
features = model.apply({"params": params}, inp)

Pre-trained Checkpoints

The pre-trained models can be accessed via HuggingFace Hub as:

from PIL import Image
from transformers import AutoImageProcessor, AutoModel

image = Image.open(...)
processor = AutoImageProcessor.from_pretrained("apple/aimv2-large-patch14-336")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-336", trust_remote_code=True)

inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)

AIMv2 with 224px

model_id #params IN-1k HF Link Backbone
aimv2-large-patch14-224 0.3B 86.6 🤗link link
aimv2-huge-patch14-224 0.6B 87.5 🤗link link
aimv2-1B-patch14-224 1.2B 88.1 🤗link link
aimv2-3B-patch14-224 2.7B 88.5 🤗link link

AIMv2 with 336px

model_id #params IN-1k HF Link Backbone
aimv2-large-patch14-336 0.3B 87.6 🤗link link
aimv2-huge-patch14-336 0.6B 88.2 🤗link link
aimv2-1B-patch14-336 1.2B 88.7 🤗link link
aimv2-3B-patch14-336 2.7B 89.2 🤗link link

AIMv2 with 448px

model_id #params IN-1k HF Link Backbone
aimv2-large-patch14-448 0.3B 87.9 🤗link link
aimv2-huge-patch14-448 0.6B 88.6 🤗link link
aimv2-1B-patch14-448 1.2B 89.0 🤗link link
aimv2-3B-patch14-448 2.7B 89.5 🤗link link

AIMv2 with Native Resolution

We additionally provide an AIMv2-L checkpoint that is finetuned to process a wide range of image resolutions and aspect ratios. Regardless of the aspect ratio, the image is patchified (patch_size=14) and a 2D sinusoidal positional embedding is added to the linearly projected input patches. This checkpoint supports number of patches in the range of [112, 4096].

model_id #params IN-1k HF Link Backbone
aimv2-large-patch14-native 0.3B 87.3 🤗link link

AIMv2 distilled ViT-Large

We provide an AIMv2-L checkpoint distilled from AIMv2-3B that provides a remarkable performance for multimodal understanding benchmarks.

Model VQAv2 GQA OKVQA TextVQA DocVQA InfoVQA ChartQA SciQA MMEp
AIMv2-L 80.2 72.6 60.9 53.9 26.8 22.4 20.3 74.5 1457
AIMv2-L-distilled 81.1 73.0 61.4 53.5 29.2 23.3 24.0 76.3 1627
model_id #params Res. HF Link Backbone
aimv2-large-patch14-224-distilled 0.3B 224px 🤗link link
aimv2-large-patch14-336-distilled 0.3B 336px 🤗link link

Zero-shot Adapted AIMv2

We provide the AIMv2-L vision and text encoders after LiT tuning to enable zero-shot recognition.

model #params zero-shot IN1-k Backbone
AIMv2-L 0.3B 77.0 link

Citation

If you find our work useful, please consider citing us as:

AIMv2 bibtex

@misc{fini2024multimodal,
    title={Multimodal Autoregressive Pre-training of Large Vision Encoders},
    author={Enrico Fini and Mustafa Shukor and Xiujun Li and Philipp Dufter and Michal Klein and David Haldimann and Sai Aitharaju and Victor Guilherme Turrisi da Costa and Louis Béthune and Zhe Gan and Alexander T Toshev and Marcin Eichner and Moin Nabi and Yinfei Yang and Joshua M. Susskind and Alaaeldin El-Nouby},
    year={2024},
    eprint={2411.14402},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

AIMv1 bibtex

@InProceedings{pmlr-v235-el-nouby24a,
  title     = {Scalable Pre-training of Large Autoregressive Image Models},
  author    = {El-Nouby, Alaaeldin and Klein, Michal and Zhai, Shuangfei and Bautista, Miguel \'{A}ngel and Shankar, Vaishaal and Toshev, Alexander T and Susskind, Joshua M. and Joulin, Armand},
  booktitle = {Proceedings of the 41st International Conference on Machine Learning},
  pages     = {12371--12384},
  year      = {2024},
}

License

Please check out the repository LICENSE before using the provided code and models.