-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathOptimizers.py
72 lines (53 loc) · 1.83 KB
/
Optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# adopted from:
# https://github.com/openai/evolution-strategies-starter/blob/master/es_distributed/optimizers.py
import numpy as np
class Optimizer(object):
def __init__(self, epsilon=1e-08):
self.epsilon = epsilon
def step(self, grad):
raise NotImplementedError
class BasicSGD(Optimizer):
"""
Standard gradient descent
"""
def __init__(self, stepsize):
Optimizer.__init__(self)
self.stepsize = stepsize
def step(self, grad):
step = -self.stepsize * grad
return step
class SGD(Optimizer):
"""
Gradient descent with momentum
"""
def __init__(self, stepsize, momentum=0.9):
Optimizer.__init__(self)
self.stepsize, self.momentum = stepsize, momentum
def step(self, grad):
if not hasattr(self, 'v'):
self.v = np.zeros(grad.shape[0], dtype=np.float32)
self.v = self.momentum * self.v + (1. - self.momentum) * grad
step = -self.stepsize * self.v
return step
class Adam(Optimizer):
"""
Adam optimizer
"""
def __init__(self, stepsize, beta1=0.99, beta2=0.999):
Optimizer.__init__(self)
self.stepsize = stepsize
self.beta1 = beta1
self.beta2 = beta2
self.t = 0
def step(self, grad):
if not hasattr(self, "m"):
self.m = np.zeros(grad.shape[0], dtype=np.float32)
if not hasattr(self, "v"):
self.v = np.zeros(grad.shape[0], dtype=np.float32)
self.t += 1
a = self.stepsize * np.sqrt(1 - self.beta2 **
self.t) / (1 - self.beta1 ** self.t)
self.m = self.beta1 * self.m + (1 - self.beta1) * grad
self.v = self.beta2 * self.v + (1 - self.beta2) * (grad * grad)
step = -a * self.m / (np.sqrt(self.v) + self.epsilon)
return step