Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TOPI][PYTORCH]Logical & Bitwise operator support #5341

Merged
merged 1 commit into from
Apr 16, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/api/python/topi.rst
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,7 @@ List of operators
topi.logical_and
topi.logical_or
topi.logical_not
topi.logical_xor
topi.arange
topi.stack
topi.repeat
Expand Down Expand Up @@ -193,6 +194,7 @@ topi
.. autofunction:: topi.logical_and
.. autofunction:: topi.logical_or
.. autofunction:: topi.logical_not
.. autofunction:: topi.logical_xor

topi.nn
~~~~~~~
Expand Down
1 change: 1 addition & 0 deletions docs/langref/relay_op.rst
Original file line number Diff line number Diff line change
Expand Up @@ -150,6 +150,7 @@ This level enables additional math and transform operators.
tvm.relay.logical_and
tvm.relay.logical_or
tvm.relay.logical_not
tvm.relay.logical_xor
tvm.relay.maximum
tvm.relay.minimum
tvm.relay.power
Expand Down
66 changes: 65 additions & 1 deletion python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -1168,7 +1168,6 @@ def _impl(inputs, input_types):

def _clamp():
def _impl(inputs, input_types):
print(inputs, input_types)
data = inputs[0]
amin = inputs[1] if inputs[1] else np.finfo(np.float32).min
amax = inputs[2] if inputs[2] else np.finfo(np.float32).max
Expand Down Expand Up @@ -1298,6 +1297,67 @@ def _impl(inputs, input_types):
return _impl


def _bitwise_not():
def _impl(inputs, input_types):
data = inputs[0]
# The input tensor must be of integral or Boolean types.
# For bool tensors, it computes the logical NOT
if input_types[0] == "bool":
out = _op.logical_not(_op.cast(data, "bool"))
else:
out = _op.bitwise_not(_op.cast(data, "int"))

return out
return _impl


def _bitwise_xor():
def _impl(inputs, input_types):
lhs = inputs[0]

import torch
if isinstance(inputs[1], _expr.Var):
rhs = inputs[1]
elif isinstance(inputs[1], torch.Tensor):
rhs = _wrap_const(inputs[1].numpy())
else:
msg = "Data type %s could not be parsed in bitwise_xor operator." % (type(inputs[1]))
raise AssertionError(msg)

lhs = _op.cast(lhs, "bool") if input_types[0] == "bool" else _op.cast(lhs, "int")
rhs = _op.cast(rhs, "bool") if input_types[1] == "bool" else _op.cast(rhs, "int")

return _op.bitwise_xor(lhs, rhs)
return _impl


def _logical_not():
def _impl(inputs, input_types):
data = inputs[0]

return _op.logical_not(_op.cast(data, "bool"))
return _impl


def _logical_xor():
def _impl(inputs, input_types):
lhs = _op.cast(inputs[0], "bool")

import torch
if isinstance(inputs[1], _expr.Var):
rhs = inputs[1]
elif isinstance(inputs[1], torch.Tensor):
rhs = _wrap_const(inputs[1].numpy())
else:
msg = "Data type %s could not be parsed in logical_xor operator." % (type(inputs[1]))
raise AssertionError(msg)

rhs = _op.cast(rhs, "bool")

return _op.logical_xor(lhs, rhs)
return _impl


def _isfinite():
def _impl(inputs, input_types):
return _op.isfinite(inputs[0])
Expand Down Expand Up @@ -1524,6 +1584,10 @@ def _get_convert_map(prelude):
"aten::ge" : _elemwise("greater_equal"),
"aten::ne" : _elemwise("not_equal"),
"aten::eq" : _elemwise("equal"),
"aten::logical_not" : _logical_not(),
"aten::logical_xor" : _logical_xor(),
"aten::bitwise_not" : _bitwise_not(),
"aten::bitwise_xor" : _bitwise_xor(),
"aten::isfinite" : _isfinite(),
"aten::isnan" : _isnan(),
"aten::Bool" : _Bool(),
Expand Down
2 changes: 2 additions & 0 deletions python/tvm/relay/op/_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@
register_broadcast_schedule("logical_not")
register_broadcast_schedule("logical_and")
register_broadcast_schedule("logical_or")
register_broadcast_schedule("logical_xor")
register_broadcast_schedule("bitwise_not")
register_broadcast_schedule("bitwise_and")
register_broadcast_schedule("bitwise_or")
Expand Down Expand Up @@ -205,6 +206,7 @@ def elemwise_shape_func(attrs, inputs, _):
register_shape_func("floor_mod", False, broadcast_shape_func)
register_shape_func("logical_and", False, broadcast_shape_func)
register_shape_func("logical_or", False, broadcast_shape_func)
register_shape_func("logical_xor", False, broadcast_shape_func)
register_shape_func("bitwise_not", False, broadcast_shape_func)
register_shape_func("bitwise_and", False, broadcast_shape_func)
register_shape_func("bitwise_or", False, broadcast_shape_func)
Expand Down
17 changes: 17 additions & 0 deletions python/tvm/relay/op/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -537,6 +537,23 @@ def logical_or(lhs, rhs):
return _make.logical_or(lhs, rhs)


def logical_xor(lhs, rhs):
"""logical XOR with numpy-style broadcasting.

Parameters
----------
lhs : relay.Expr
The left hand side input data
rhs : relay.Expr
The right hand side input data

Returns
-------
result : relay.Expr
The computed result.
"""
return _make.logical_xor(lhs, rhs)

def bitwise_and(lhs, rhs):
"""bitwise AND with numpy-style broadcasting.

Expand Down
6 changes: 6 additions & 0 deletions src/relay/op/tensor/binary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,12 @@ RELAY_REGISTER_BINARY_OP("logical_or")
.set_attr<FTVMCompute>("FTVMCompute", RELAY_BINARY_COMPUTE(topi::logical_or));


RELAY_REGISTER_BINARY_OP("logical_xor")
.describe("Elementwise logical XOR with broadcasting")
.set_support_level(4)
.set_attr<FTVMCompute>("FTVMCompute", RELAY_BINARY_COMPUTE(topi::logical_xor));


RELAY_REGISTER_BINARY_OP("bitwise_and")
.describe("Elementwise bitwise AND with broadcasting")
.set_support_level(4)
Expand Down
95 changes: 94 additions & 1 deletion tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,7 @@ def verify_model(model_name, input_data=[],
if isinstance(baseline_outputs, tuple):
baseline_outputs = tuple(out.cpu().numpy() for out in baseline_outputs)
else:
baseline_outputs = (baseline_outputs.float().cpu().numpy(),)
baseline_outputs = (baseline_outputs.cpu().numpy(),)

trace = torch.jit.trace(baseline_model, baseline_input).float().eval()

Expand Down Expand Up @@ -1600,6 +1600,95 @@ def forward(self, *args):
verify_model(Topk6().float().eval(), input_data=input_data)


def test_forward_logical_not():
torch.set_grad_enabled(False)

class LogicalNot1(Module):
def forward(self, *args):
return torch.logical_not(args[0])

input_data = torch.tensor([True, False])
verify_model(LogicalNot1().float().eval(), input_data=input_data)

input_data = torch.tensor([0, 1, -10], dtype=torch.int8)
verify_model(LogicalNot1().float().eval(), input_data=input_data)

input_data = torch.tensor([0., 1.5, -10.], dtype=torch.double)
verify_model(LogicalNot1().float().eval(), input_data=input_data)

input_data = torch.tensor([0., 1., -10.], dtype=torch.int32)
verify_model(LogicalNot1().float().eval(), input_data=input_data)


def test_forward_bitwise_not():
torch.set_grad_enabled(False)

class BitwiseNot1(Module):
def forward(self, *args):
return torch.bitwise_not(args[0])

input_data = torch.tensor([0, 1, -10], dtype=torch.int8)
verify_model(BitwiseNot1().float().eval(), input_data=input_data)

input_data = torch.tensor([0., 1., -10.], dtype=torch.int32)
verify_model(BitwiseNot1().float().eval(), input_data=input_data)

input_data = torch.tensor([True, False])
verify_model(BitwiseNot1().float().eval(), input_data=input_data)


def test_forward_bitwise_xor():
torch.set_grad_enabled(False)

class BitwiseXor1(Module):
def forward(self, *args):
return torch.bitwise_xor(args[0], args[1])

class BitwiseXor2(Module):
def forward(self, *args):
rhs = torch.tensor([1, 0, 3], dtype=torch.int8)
if torch.cuda.is_available():
rhs = rhs.cuda()
return torch.bitwise_xor(args[0], rhs)

lhs = torch.tensor([-1, -2, 3], dtype=torch.int8)
rhs = torch.tensor([1, 0, 3], dtype=torch.int8)
verify_model(BitwiseXor1().float().eval(), input_data=[lhs, rhs])

lhs = torch.tensor([True, True, False])
rhs = torch.tensor([False, True, False])
verify_model(BitwiseXor1().float().eval(), input_data=[lhs, rhs])

lhs = torch.tensor([-1, -2, 3], dtype=torch.int8)
verify_model(BitwiseXor2().float().eval(), input_data=[lhs])


def test_forward_logical_xor():
torch.set_grad_enabled(False)

class LogicalXor1(Module):
def forward(self, *args):
return torch.logical_xor(args[0], args[1])

class LogicalXor2(Module):
def forward(self, *args):
rhs = torch.tensor([1, 0, 3], dtype=torch.int8)
if torch.cuda.is_available():
rhs = rhs.cuda()
return torch.logical_xor(args[0], rhs)

lhs = torch.tensor([-1, -2, 3], dtype=torch.int8)
rhs = torch.tensor([1, 0, 3], dtype=torch.int8)
verify_model(LogicalXor1().float().eval(), input_data=[lhs, rhs])

lhs = torch.tensor([True, True, False])
rhs = torch.tensor([False, True, False])
verify_model(LogicalXor1().float().eval(), input_data=[lhs, rhs])

lhs = torch.tensor([-1, -2, 3], dtype=torch.int8)
verify_model(LogicalXor2().float().eval(), input_data=[lhs])


if __name__ == "__main__":
# Single operator tests
test_forward_add()
Expand Down Expand Up @@ -1663,6 +1752,10 @@ def forward(self, *args):
test_forward_clamp()
test_forward_floor()
test_forward_round()
test_forward_logical_not()
test_forward_bitwise_not()
test_forward_bitwise_xor()
test_forward_logical_xor()
test_forward_isfinite()
test_forward_isnan()
test_forward_isinf()
Expand Down
13 changes: 13 additions & 0 deletions topi/include/topi/broadcast.h
Original file line number Diff line number Diff line change
Expand Up @@ -140,6 +140,19 @@ TOPI_DEFINE_OP_OVERLOAD(operator&&, logical_and);
TOPI_DEFINE_BCAST_OP(logical_or, { return a || b; });
TOPI_DEFINE_OP_OVERLOAD(operator||, logical_or);

/*!
* \fn logical_xor
* \brief Compute A ^ B with auto-broadcasting.
*
* \param A The first tensor, or Expr
* \param B The second tensor, or Expr
* \param name The name of the operation
* \param tag The tag to mark the operation
*
* \return The result.
*/
TOPI_DEFINE_BCAST_OP(logical_xor, { return a ^ b; });

/*!
* \fn bitwise_and
* \brief Compute A & B with auto-broadcasting.
Expand Down
19 changes: 19 additions & 0 deletions topi/python/topi/broadcast.py
Original file line number Diff line number Diff line change
Expand Up @@ -420,6 +420,25 @@ def logical_or(lhs, rhs):
return _cpp.logical_or(lhs, rhs)


def logical_xor(lhs, rhs):
"""Compute element-wise logical xor of data.

Parameters
----------
lhs : tvm.te.Tensor or Expr
The left operand
rhs : tvm.te.Tensor or Expr
The right operand

Returns
-------
ret : tvm.te.Tensor or Expr
Returns Expr if both operands are Expr.
Otherwise returns Tensor.
"""
return _cpp.logical_xor(lhs, rhs)


def bitwise_and(lhs, rhs):
"""Compute element-wise bitwise and of data.

Expand Down
1 change: 1 addition & 0 deletions topi/src/broadcast.cc
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ TOPI_REGISTER_BCAST_OP("topi.power", topi::power);
TOPI_REGISTER_BCAST_OP("topi.left_shift", topi::left_shift);
TOPI_REGISTER_BCAST_OP("topi.logical_and", topi::logical_and);
TOPI_REGISTER_BCAST_OP("topi.logical_or", topi::logical_or);
TOPI_REGISTER_BCAST_OP("topi.logical_xor", topi::logical_xor);
TOPI_REGISTER_BCAST_OP("topi.bitwise_and", topi::bitwise_and);
TOPI_REGISTER_BCAST_OP("topi.bitwise_or", topi::bitwise_or);
TOPI_REGISTER_BCAST_OP("topi.bitwise_xor", topi::bitwise_xor);
Expand Down
2 changes: 2 additions & 0 deletions topi/tests/python/test_topi_broadcast.py
Original file line number Diff line number Diff line change
Expand Up @@ -355,6 +355,8 @@ def check_device(device):
test_apply(topi.logical_and, "logical_and", np.logical_and, [True, False], [False, False])
test_apply(topi.logical_or, "logical_or", np.logical_or, True, False)
test_apply(topi.logical_or, "logical_or", np.logical_or, [True, False], [False, False])
test_apply(topi.logical_xor, "logical_xor", np.logical_xor, True, False)
test_apply(topi.logical_xor, "logical_xor", np.logical_xor, [True, False], [False, False])


def test_bitwise_and():
Expand Down