diff --git a/src/pass/vectorize_loop.cc b/src/pass/vectorize_loop.cc index 649258b361f5..187033092e76 100644 --- a/src/pass/vectorize_loop.cc +++ b/src/pass/vectorize_loop.cc @@ -368,7 +368,6 @@ class Vectorizer : public IRMutator { CHECK(!op->extent.type().is_vector()); Expr extent = Mutate(op->extent); if (extent.type().is_vector()) { - // LOG(WARNING) << "Detect vectorized extent type, scalarizing..."; return Scalarize(s); } Stmt body = Mutate(op->body); @@ -386,7 +385,6 @@ class Vectorizer : public IRMutator { CHECK(!op->condition.type().is_vector()); Expr condition = this->Mutate(op->condition); if (condition.type().is_vector()) { - // LOG(WARNING) << "Detect vector condition in Vectorized Loop, scalarizing..."; return Scalarize(s); } Stmt then_case = this->Mutate(op->then_case); diff --git a/topi/python/topi/cuda/conv2d_hwcn.py b/topi/python/topi/cuda/conv2d_hwcn.py index 38e3f00ab9b3..18a624a67aea 100644 --- a/topi/python/topi/cuda/conv2d_hwcn.py +++ b/topi/python/topi/cuda/conv2d_hwcn.py @@ -82,7 +82,7 @@ def schedule(Apad, W, B): # Scheduling step = 8 - bz = sch[Out].fuse(hi, wi) # FIXME: Does it assume square images? + bz = sch[Out].fuse(hi, wi) by, tyz, ty, fi = cfg['tile_fi'].apply(sch, Out, fi) bx, txz, tx, ni = cfg['tile_ni'].apply(sch, Out, ni) sch[Out].reorder(bz, by, bx, tyz, txz, ty, tx, fi, ni) diff --git a/topi/tests/python/test_topi_conv2d_hwcn.py b/topi/tests/python/test_topi_conv2d_hwcn.py index 297df827b542..35423a686e8f 100644 --- a/topi/tests/python/test_topi_conv2d_hwcn.py +++ b/topi/tests/python/test_topi_conv2d_hwcn.py @@ -29,24 +29,25 @@ def verify_conv2d_hwcn(batch, in_channel, in_size, num_filter, kernel, stride, p A = tvm.placeholder((in_height, in_width, in_channel, batch), name='A') W = tvm.placeholder((kernel, kernel, in_channel, num_filter), name='W') - B = topi.nn.conv2d_hwcn(A, W, stride, padding, dilation) - C = topi.nn.relu(B) - s1 = topi.cuda.schedule_conv2d_hwcn([B]) - s2 = topi.cuda.schedule_conv2d_hwcn([C]) + B = tvm.placeholder((1, num_filter, 1), name='bias') a_shape = get_const_tuple(A.shape) w_shape = get_const_tuple(W.shape) + b_shape = get_const_tuple(B.shape) dtype = A.dtype @memoize("topi.tests.test_topi_conv2d_hwcn.verify_hwcn") def get_ref_data(): a_np = np.random.uniform(size=a_shape).astype(dtype) w_np = np.random.uniform(size=w_shape).astype(dtype) + b_np = np.random.uniform(size=b_shape).astype(dtype) dw_np = topi.testing.dilate_python(w_np, (dilation, dilation, 1, 1)) - b_np = topi.testing.conv2d_hwcn_python(a_np, dw_np, stride, padding) - c_np = np.maximum(b_np, 0) - return a_np, w_np, b_np, c_np - a_np, w_np, b_np, c_np = get_ref_data() + c1_np = topi.testing.conv2d_hwcn_python(a_np, dw_np, stride, padding) + c2_np = c1_np + b_np + c3_np = np.maximum(c2_np, 0) + return a_np, w_np, b_np, c1_np, c2_np, c3_np + + a_np, w_np, b_np, c1_np, c2_np, c3_np = get_ref_data() def check_device(device): ctx = tvm.context(device, 0) @@ -54,16 +55,32 @@ def check_device(device): print("Skip because %s is not enabled" % device) return print("Running on target: %s" % device) + with tvm.target.create(device): + t_conv = topi.nn.conv2d(A, W, stride, padding, dilation, layout='HWCN') + t_bias = topi.add(t_conv, B) + t_relu = topi.nn.relu(t_bias) + s1 = topi.generic.schedule_conv2d_hwcn([t_conv]) + s2 = topi.generic.schedule_conv2d_hwcn([t_bias]) + s3 = topi.generic.schedule_conv2d_hwcn([t_relu]) a = tvm.nd.array(a_np, ctx) w = tvm.nd.array(w_np, ctx) - b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx) - c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx) - func1 = tvm.build(s1, [A, W, B], device) - func2 = tvm.build(s2, [A, W, C], device) - func1(a, w, b) - func2(a, w, c) - tvm.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5) - tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5) + b = tvm.nd.array(b_np, ctx) + + conv_out = tvm.nd.array( + np.zeros(get_const_tuple(t_conv.shape), dtype=t_conv.dtype), ctx) + bias_out = tvm.nd.array( + np.zeros(get_const_tuple(t_bias.shape), dtype=t_bias.dtype), ctx) + relu_out = tvm.nd.array( + np.zeros(get_const_tuple(t_relu.shape), dtype=t_relu.dtype), ctx) + func1 = tvm.build(s1, [A, W, t_conv], device) + func2 = tvm.build(s2, [A, W, B, t_bias], device) + func3 = tvm.build(s3, [A, W, B, t_relu], device) + func1(a, w, conv_out) + func2(a, w, b, bias_out) + func3(a, w, b, relu_out) + tvm.testing.assert_allclose(conv_out.asnumpy(), c1_np, rtol=1e-5) + tvm.testing.assert_allclose(bias_out.asnumpy(), c2_np, rtol=1e-5) + tvm.testing.assert_allclose(relu_out.asnumpy(), c3_np, rtol=1e-5) for device in ['cuda', 'opencl', 'metal', 'rocm', 'vulkan', 'nvptx']: check_device(device) diff --git a/topi/tests/python/test_topi_conv2d_nchw.py b/topi/tests/python/test_topi_conv2d_nchw.py index ca1cef22d9c8..d7c39a9cc016 100644 --- a/topi/tests/python/test_topi_conv2d_nchw.py +++ b/topi/tests/python/test_topi_conv2d_nchw.py @@ -48,7 +48,6 @@ def get_ref_data(): dw_np = topi.testing.dilate_python(w_np, (1, 1, dilation, dilation)) c_np = topi.testing.conv2d_nchw_python(a_np, dw_np, stride, padding) if add_bias: - b_np = np.random.uniform(size=bias_shape).astype(dtype) c_np += b_np if add_relu: c_np = np.maximum(c_np, 0)