diff --git a/superset/assets/javascripts/explore/stores/controls.jsx b/superset/assets/javascripts/explore/stores/controls.jsx
index e926a47960422..fa92cd5c66df9 100644
--- a/superset/assets/javascripts/explore/stores/controls.jsx
+++ b/superset/assets/javascripts/explore/stores/controls.jsx
@@ -100,6 +100,19 @@ export const controls = {
description: t('One or many metrics to display'),
},
+ percent_metrics: {
+ type: 'SelectControl',
+ multi: true,
+ label: t('Percentage Metrics'),
+ valueKey: 'metric_name',
+ optionRenderer: m => ,
+ valueRenderer: m => ,
+ mapStateToProps: state => ({
+ options: (state.datasource) ? state.datasource.metrics : [],
+ }),
+ description: t('Metrics for which percentage of total are to be displayed'),
+ },
+
y_axis_bounds: {
type: 'BoundsControl',
label: t('Y Axis Bounds'),
diff --git a/superset/assets/javascripts/explore/stores/visTypes.js b/superset/assets/javascripts/explore/stores/visTypes.js
index 09755550169b0..c2dc18bd8c7ca 100644
--- a/superset/assets/javascripts/explore/stores/visTypes.js
+++ b/superset/assets/javascripts/explore/stores/visTypes.js
@@ -338,8 +338,9 @@ export const visTypes = {
label: t('GROUP BY'),
description: t('Use this section if you want a query that aggregates'),
controlSetRows: [
- ['groupby', 'metrics'],
- ['include_time', null],
+ ['groupby'],
+ ['metrics', 'percent_metrics'],
+ ['include_time'],
['timeseries_limit_metric', 'order_desc'],
],
},
diff --git a/superset/assets/visualizations/table.js b/superset/assets/visualizations/table.js
index 6985a2587c6a6..2e845b94ac015 100644
--- a/superset/assets/visualizations/table.js
+++ b/superset/assets/visualizations/table.js
@@ -16,8 +16,10 @@ function tableVis(slice, payload) {
const data = payload.data;
const fd = slice.formData;
- // Removing metrics (aggregates) that are strings
let metrics = fd.metrics || [];
+ // Add percent metrics
+ metrics = metrics.concat((fd.percent_metrics || []).map(m => '%' + m));
+ // Removing metrics (aggregates) that are strings
metrics = metrics.filter(m => !isNaN(data.records[0][m]));
function col(c) {
@@ -42,7 +44,18 @@ function tableVis(slice, payload) {
'table-condensed table-hover dataTable no-footer', true)
.attr('width', '100%');
- const cols = data.columns.map(c => slice.datasource.verbose_map[c] || c);
+ const verboseMap = slice.datasource.verbose_map;
+ const cols = data.columns.map((c) => {
+ if (verboseMap[c]) {
+ return verboseMap[c];
+ }
+ // Handle verbose names for percents
+ if (c[0] === '%') {
+ const cName = c.substring(1);
+ return '% ' + (verboseMap[cName] || cName);
+ }
+ return c;
+ });
table.append('thead').append('tr')
.selectAll('th')
@@ -72,6 +85,9 @@ function tableVis(slice, payload) {
if (isMetric) {
html = slice.d3format(c, val);
}
+ if (c[0] === '%') {
+ html = d3.format('.3p')(val);
+ }
return {
col: c,
val,
diff --git a/superset/viz.py b/superset/viz.py
index 1d701b0a656e6..025e9c52b0c52 100644
--- a/superset/viz.py
+++ b/superset/viz.py
@@ -384,13 +384,43 @@ def query_obj(self):
d['metrics'] += [sort_by]
d['orderby'] = [(sort_by, not fd.get("order_desc", True))]
+ # Add all percent metrics that are not already in the list
+ if 'percent_metrics' in fd:
+ d['metrics'] = d['metrics'] + list(filter(
+ lambda m: m not in d['metrics'],
+ fd['percent_metrics']
+ ))
+
d['is_timeseries'] = self.should_be_timeseries()
return d
def get_data(self, df):
+ fd = self.form_data
if not self.should_be_timeseries() and DTTM_ALIAS in df:
del df[DTTM_ALIAS]
+ # Sum up and compute percentages for all percent metrics
+ percent_metrics = fd.get('percent_metrics', [])
+ if len(percent_metrics):
+ percent_metrics = list(filter(lambda m: m in df, percent_metrics))
+ metric_sums = {
+ m: reduce(lambda a, b: a + b, df[m])
+ for m in percent_metrics
+ }
+ metric_percents = {
+ m: list(map(lambda a: a / metric_sums[m], df[m]))
+ for m in percent_metrics
+ }
+ for m in percent_metrics:
+ m_name = '%' + m
+ df[m_name] = pd.Series(metric_percents[m], name=m_name)
+ # Remove metrics that are not in the main metrics list
+ for m in filter(
+ lambda m: m not in fd['metrics'] and m in df.columns,
+ percent_metrics
+ ):
+ del df[m]
+
return dict(
records=df.to_dict(orient="records"),
columns=list(df.columns),
diff --git a/tests/viz_tests.py b/tests/viz_tests.py
index fec424a25ac90..99111b5c95e05 100644
--- a/tests/viz_tests.py
+++ b/tests/viz_tests.py
@@ -1,9 +1,236 @@
import unittest
import pandas as pd
import superset.viz as viz
+import superset.utils as utils
from superset.utils import DTTM_ALIAS
from mock import Mock, patch
+from datetime import datetime, timedelta
+
+class BaseVizTestCase(unittest.TestCase):
+ def test_constructor_exception_no_datasource(self):
+ form_data = {}
+ datasource = None
+ with self.assertRaises(Exception):
+ viz.BaseViz(datasource, form_data)
+
+ def test_get_fillna_returns_default_on_null_columns(self):
+ form_data = {
+ 'viz_type': 'table',
+ 'token': '12345',
+ }
+ datasource = {'type': 'table'}
+ test_viz = viz.BaseViz(datasource, form_data);
+ self.assertEqual(
+ test_viz.default_fillna,
+ test_viz.get_fillna_for_columns()
+ )
+
+ def test_get_df_returns_empty_df(self):
+ datasource = Mock()
+ datasource.type = 'table'
+ mock_dttm_col = Mock()
+ mock_dttm_col.python_date_format = Mock()
+ datasource.get_col = Mock(return_value=mock_dttm_col)
+ form_data = {'dummy': 123}
+ query_obj = {'granularity': 'day'}
+ results = Mock()
+ results.query = Mock()
+ results.status = Mock()
+ results.error_message = None
+ results.df = Mock()
+ results.df.empty = True
+ datasource.query = Mock(return_value=results)
+ test_viz = viz.BaseViz(datasource, form_data)
+ result = test_viz.get_df(query_obj)
+ self.assertEqual(type(result), pd.DataFrame)
+ self.assertTrue(result.empty)
+ self.assertEqual(test_viz.error_message, 'No data.')
+ self.assertEqual(test_viz.status, utils.QueryStatus.FAILED)
+
+ def test_get_df_handles_dttm_col(self):
+ datasource = Mock()
+ datasource.type = 'table'
+ datasource.offset = 1
+ mock_dttm_col = Mock()
+ mock_dttm_col.python_date_format = 'epoch_ms'
+ datasource.get_col = Mock(return_value=mock_dttm_col)
+ form_data = {'dummy': 123}
+ query_obj = {'granularity': 'day'}
+ results = Mock()
+ results.query = Mock()
+ results.status = Mock()
+ results.error_message = Mock()
+ df = Mock()
+ df.columns = [DTTM_ALIAS]
+ f_datetime = datetime(1960, 1, 1, 5, 0)
+ df.__getitem__ = Mock(return_value=pd.Series([f_datetime]))
+ df.__setitem__ = Mock()
+ df.replace = Mock()
+ df.fillna = Mock()
+ results.df = df
+ results.df.empty = False
+ datasource.query = Mock(return_value=results)
+ test_viz = viz.BaseViz(datasource, form_data)
+ test_viz.get_fillna_for_columns = Mock(return_value=0)
+ result = test_viz.get_df(query_obj)
+ mock_call = df.__setitem__.mock_calls[0]
+ self.assertEqual(mock_call[1][0], DTTM_ALIAS)
+ self.assertFalse(mock_call[1][1].empty)
+ self.assertEqual(mock_call[1][1][0], f_datetime)
+ mock_call = df.__setitem__.mock_calls[1]
+ self.assertEqual(mock_call[1][0], DTTM_ALIAS)
+ self.assertEqual(mock_call[1][1][0].hour, 6)
+ self.assertEqual(mock_call[1][1].dtype, 'datetime64[ns]')
+ mock_dttm_col.python_date_format = 'utc'
+ result = test_viz.get_df(query_obj)
+ mock_call = df.__setitem__.mock_calls[2]
+ self.assertEqual(mock_call[1][0], DTTM_ALIAS)
+ self.assertFalse(mock_call[1][1].empty)
+ self.assertEqual(mock_call[1][1][0].hour, 6)
+ mock_call = df.__setitem__.mock_calls[3]
+ self.assertEqual(mock_call[1][0], DTTM_ALIAS)
+ self.assertEqual(mock_call[1][1][0].hour, 7)
+ self.assertEqual(mock_call[1][1].dtype, 'datetime64[ns]')
+
+ def test_cache_timeout(self):
+ datasource = Mock()
+ form_data = {'cache_timeout': '10'}
+ test_viz = viz.BaseViz(datasource, form_data)
+ self.assertEqual(10, test_viz.cache_timeout)
+ del form_data['cache_timeout']
+ datasource.cache_timeout = 156
+ self.assertEqual(156, test_viz.cache_timeout)
+ datasource.cache_timeout = None
+ datasource.database = Mock()
+ datasource.database.cache_timeout= 1666
+ self.assertEqual(1666, test_viz.cache_timeout)
+
+
+class TableVizTestCase(unittest.TestCase):
+ def test_get_data_applies_percentage(self):
+ form_data = {
+ 'percent_metrics': ['sum__A', 'avg__B'],
+ 'metrics': ['sum__A', 'count', 'avg__C'],
+ }
+ datasource = Mock()
+ raw = {}
+ raw['sum__A'] = [15, 20, 25, 40]
+ raw['avg__B'] = [10, 20, 5, 15]
+ raw['avg__C'] = [11, 22, 33, 44]
+ raw['count'] = [6, 7, 8, 9]
+ raw['groupA'] = ['A', 'B', 'C', 'C']
+ raw['groupB'] = ['x', 'x', 'y', 'z']
+ df = pd.DataFrame(raw)
+ test_viz = viz.TableViz(datasource, form_data)
+ data = test_viz.get_data(df)
+ # Check method correctly transforms data and computes percents
+ self.assertEqual(set([
+ 'groupA', 'groupB', 'count',
+ 'sum__A', 'avg__C',
+ '%sum__A', '%avg__B',
+ ]), set(data['columns']))
+ expected = [
+ {
+ 'groupA': 'A', 'groupB': 'x',
+ 'count': 6, 'sum__A': 15, 'avg__C': 11,
+ '%sum__A': 0.15, '%avg__B': 0.2,
+ },
+ {
+ 'groupA': 'B', 'groupB': 'x',
+ 'count': 7, 'sum__A': 20, 'avg__C': 22,
+ '%sum__A': 0.2, '%avg__B': 0.4,
+ },
+ {
+ 'groupA': 'C', 'groupB': 'y',
+ 'count': 8, 'sum__A': 25, 'avg__C': 33,
+ '%sum__A': 0.25, '%avg__B': 0.1,
+ },
+ {
+ 'groupA': 'C', 'groupB': 'z',
+ 'count': 9, 'sum__A': 40, 'avg__C': 44,
+ '%sum__A': 0.40, '%avg__B': 0.3,
+ },
+ ]
+ self.assertEqual(expected, data['records'])
+
+ @patch('superset.viz.BaseViz.query_obj')
+ def test_query_obj_merges_percent_metrics(self, super_query_obj):
+ datasource = Mock()
+ form_data = {
+ 'percent_metrics': ['sum__A', 'avg__B', 'max__Y'],
+ 'metrics': ['sum__A', 'count', 'avg__C'],
+ }
+ test_viz = viz.TableViz(datasource, form_data)
+ f_query_obj = {
+ 'metrics': form_data['metrics']
+ }
+ super_query_obj.return_value = f_query_obj
+ query_obj = test_viz.query_obj()
+ self.assertEqual([
+ 'sum__A', 'count', 'avg__C',
+ 'avg__B', 'max__Y'
+ ], query_obj['metrics'])
+
+ @patch('superset.viz.BaseViz.query_obj')
+ def test_query_obj_throws_columns_and_metrics(self, super_query_obj):
+ datasource = Mock()
+ form_data = {
+ 'all_columns': ['A', 'B'],
+ 'metrics': ['x', 'y'],
+ }
+ super_query_obj.return_value = {}
+ test_viz = viz.TableViz(datasource, form_data)
+ with self.assertRaises(Exception):
+ test_viz.query_obj()
+ del form_data['metrics']
+ form_data['groupby'] = ['B', 'C']
+ test_viz = viz.TableViz(datasource, form_data)
+ with self.assertRaises(Exception):
+ test_viz.query_obj()
+
+ @patch('superset.viz.BaseViz.query_obj')
+ def test_query_obj_merges_all_columns(self, super_query_obj):
+ datasource = Mock()
+ form_data = {
+ 'all_columns': ['colA', 'colB', 'colC'],
+ 'order_by_cols': ['["colA", "colB"]', '["colC"]']
+ }
+ super_query_obj.return_value = {
+ 'columns': ['colD', 'colC'],
+ 'groupby': ['colA', 'colB'],
+ }
+ test_viz = viz.TableViz(datasource, form_data)
+ query_obj = test_viz.query_obj()
+ self.assertEqual(form_data['all_columns'], query_obj['columns'])
+ self.assertEqual([], query_obj['groupby'])
+ self.assertEqual([['colA', 'colB'], ['colC']], query_obj['orderby'])
+
+ @patch('superset.viz.BaseViz.query_obj')
+ def test_query_obj_uses_sortby(self, super_query_obj):
+ datasource = Mock()
+ form_data = {
+ 'timeseries_limit_metric': '__time__',
+ 'order_desc': False
+ }
+ super_query_obj.return_value = {
+ 'metrics': ['colA', 'colB']
+ }
+ test_viz = viz.TableViz(datasource, form_data)
+ query_obj = test_viz.query_obj()
+ self.assertEqual([
+ 'colA', 'colB', '__time__'
+ ], query_obj['metrics'])
+ self.assertEqual([(
+ '__time__', True
+ )], query_obj['orderby'])
+
+ def test_should_be_timeseries_raises_when_no_granularity(self):
+ datasource = Mock()
+ form_data = {'include_time': True}
+ test_viz = viz.TableViz(datasource, form_data)
+ with self.assertRaises(Exception):
+ test_viz.should_be_timeseries()
class PairedTTestTestCase(unittest.TestCase):
@@ -97,7 +324,7 @@ def test_get_data_transforms_dataframe(self):
},
],
}
- self.assertEquals(data, expected)
+ self.assertEqual(data, expected)
def test_get_data_empty_null_keys(self):
form_data = {
@@ -135,7 +362,7 @@ def test_get_data_empty_null_keys(self):
},
],
}
- self.assertEquals(data, expected)
+ self.assertEqual(data, expected)
class PartitionVizTestCase(unittest.TestCase):