diff --git a/superset/assets/images/viz_thumbnails/partition.png b/superset/assets/images/viz_thumbnails/partition.png
new file mode 100644
index 0000000000000..7cf6e1358a5fe
Binary files /dev/null and b/superset/assets/images/viz_thumbnails/partition.png differ
diff --git a/superset/assets/javascripts/components/OptionDescription.jsx b/superset/assets/javascripts/components/OptionDescription.jsx
new file mode 100644
index 0000000000000..60cc731e1f514
--- /dev/null
+++ b/superset/assets/javascripts/components/OptionDescription.jsx
@@ -0,0 +1,28 @@
+import React from 'react';
+import PropTypes from 'prop-types';
+
+import InfoTooltipWithTrigger from './InfoTooltipWithTrigger';
+
+const propTypes = {
+ option: PropTypes.object.isRequired,
+};
+
+// This component provides a general tooltip for options
+// in a SelectControl
+export default function OptionDescription({ option }) {
+ return (
+
+
+ {option.label}
+
+ {option.description &&
+
+ }
+ );
+}
+OptionDescription.propTypes = propTypes;
diff --git a/superset/assets/javascripts/explore/stores/controls.jsx b/superset/assets/javascripts/explore/stores/controls.jsx
index 78ef33cf41318..da8f22dc6ff5d 100644
--- a/superset/assets/javascripts/explore/stores/controls.jsx
+++ b/superset/assets/javascripts/explore/stores/controls.jsx
@@ -4,6 +4,7 @@ import * as v from '../validators';
import { ALL_COLOR_SCHEMES, spectrums } from '../../modules/colors';
import MetricOption from '../../components/MetricOption';
import ColumnOption from '../../components/ColumnOption';
+import OptionDescription from '../../components/OptionDescription';
import { t } from '../../locales';
const D3_FORMAT_DOCS = 'D3 format syntax: https://github.com/d3/d3-format';
@@ -98,6 +99,7 @@ export const controls = {
}),
description: t('One or many metrics to display'),
},
+
y_axis_bounds: {
type: 'BoundsControl',
label: t('Y Axis Bounds'),
@@ -108,6 +110,7 @@ export const controls = {
"this feature will only expand the axis range. It won't " +
"narrow the data's extent."),
},
+
order_by_cols: {
type: 'SelectControl',
multi: true,
@@ -909,6 +912,16 @@ export const controls = {
description: D3_FORMAT_DOCS,
},
+ date_time_format: {
+ type: 'SelectControl',
+ freeForm: true,
+ label: t('Date Time Format'),
+ renderTrigger: true,
+ default: 'smart_date',
+ choices: D3_TIME_FORMAT_OPTIONS,
+ description: D3_FORMAT_DOCS,
+ },
+
markup_type: {
type: 'SelectControl',
label: t('Markup Type'),
@@ -1136,6 +1149,14 @@ export const controls = {
description: t('Use a log scale for the X axis'),
},
+ log_scale: {
+ type: 'CheckboxControl',
+ label: t('Log Scale'),
+ default: false,
+ renderTrigger: true,
+ description: t('Use a log scale'),
+ },
+
donut: {
type: 'CheckboxControl',
label: t('Donut'),
@@ -1456,5 +1477,85 @@ export const controls = {
controlName: 'TimeSeriesColumnControl',
},
+ time_series_option: {
+ type: 'SelectControl',
+ label: t('Options'),
+ validators: [v.nonEmpty],
+ default: 'not_time',
+ valueKey: 'value',
+ options: [
+ {
+ label: t('Not Time Series'),
+ value: 'not_time',
+ description: t('Ignore time'),
+ },
+ {
+ label: t('Time Series'),
+ value: 'time_series',
+ description: t('Standard time series'),
+ },
+ {
+ label: t('Aggregate Mean'),
+ value: 'agg_mean',
+ description: t('Mean of values over specified period'),
+ },
+ {
+ label: t('Aggregate Sum'),
+ value: 'agg_sum',
+ description: t('Sum of values over specified period'),
+ },
+ {
+ label: t('Difference'),
+ value: 'point_diff',
+ description: t('Metric change in value from `since` to `until`'),
+ },
+ {
+ label: t('Percent Change'),
+ value: 'point_percent',
+ description: t('Metric percent change in value from `since` to `until`'),
+ },
+ {
+ label: t('Factor'),
+ value: 'point_factor',
+ description: t('Metric factor change from `since` to `until`'),
+ },
+ {
+ label: t('Advanced Analytics'),
+ value: 'adv_anal',
+ description: t('Use the Advanced Analytics options below'),
+ },
+ ],
+ optionRenderer: op => ,
+ valueRenderer: op => ,
+ description: t('Settings for time series'),
+ },
+
+ equal_date_size: {
+ type: 'CheckboxControl',
+ label: t('Equal Date Sizes'),
+ default: true,
+ renderTrigger: true,
+ description: t('Check to force date partitions to have the same height'),
+ },
+
+ partition_limit: {
+ type: 'TextControl',
+ label: t('Partition Limit'),
+ isInt: true,
+ default: '5',
+ description:
+ t('The maximum number of subdivisions of each group; ' +
+ 'lower values are pruned first'),
+ },
+
+ partition_threshold: {
+ type: 'TextControl',
+ label: t('Partition Threshold'),
+ isFloat: true,
+ default: '0.05',
+ description:
+ t('Partitions whose height to parent height proportions are ' +
+ 'below this value are pruned'),
+ },
};
export default controls;
diff --git a/superset/assets/javascripts/explore/stores/visTypes.js b/superset/assets/javascripts/explore/stores/visTypes.js
index da142aec694e7..09755550169b0 100644
--- a/superset/assets/javascripts/explore/stores/visTypes.js
+++ b/superset/assets/javascripts/explore/stores/visTypes.js
@@ -1155,6 +1155,33 @@ export const visTypes = {
},
],
},
+
+ partition: {
+ label: 'Partition Diagram',
+ showOnExplore: true,
+ controlPanelSections: [
+ sections.NVD3TimeSeries[0],
+ {
+ label: t('Time Series Options'),
+ expanded: true,
+ controlSetRows: [
+ ['time_series_option'],
+ ],
+ },
+ {
+ label: t('Chart Options'),
+ expanded: true,
+ controlSetRows: [
+ ['color_scheme'],
+ ['number_format', 'date_time_format'],
+ ['partition_limit', 'partition_threshold'],
+ ['log_scale', 'equal_date_size'],
+ ['rich_tooltip'],
+ ],
+ },
+ sections.NVD3TimeSeries[1],
+ ],
+ },
};
export default visTypes;
diff --git a/superset/assets/package.json b/superset/assets/package.json
index 3dfdb78240f9b..06ae76563b553 100644
--- a/superset/assets/package.json
+++ b/superset/assets/package.json
@@ -52,6 +52,7 @@
"d3-sankey": "^0.4.2",
"d3-svg-legend": "^1.x",
"d3-tip": "^0.6.7",
+ "d3-hierarchy": "^1.1.5",
"datamaps": "^0.5.8",
"datatables.net-bs": "^1.10.15",
"distributions": "^1.0.0",
diff --git a/superset/assets/visualizations/main.js b/superset/assets/visualizations/main.js
index dc5ee30516270..78e81ab6d7340 100644
--- a/superset/assets/visualizations/main.js
+++ b/superset/assets/visualizations/main.js
@@ -35,5 +35,6 @@ const vizMap = {
dual_line: require('./nvd3_vis.js'),
event_flow: require('./EventFlow.jsx'),
paired_ttest: require('./paired_ttest.jsx'),
+ partition: require('./partition.js'),
};
export default vizMap;
diff --git a/superset/assets/visualizations/partition.css b/superset/assets/visualizations/partition.css
new file mode 100644
index 0000000000000..e23cca795203f
--- /dev/null
+++ b/superset/assets/visualizations/partition.css
@@ -0,0 +1,27 @@
+.partition .chart {
+ display: block;
+ margin: auto;
+ font-size: 11px;
+}
+
+.partition rect {
+ stroke: #eee;
+ fill: #aaa;
+ fill-opacity: .8;
+ transition: fill-opacity 180ms linear;
+ cursor: pointer;
+}
+
+.partition rect:hover {
+ fill-opacity: 1;
+}
+
+.partition g text {
+ font-weight: bold;
+ pointer-events: none;
+ fill: rgba(0, 0, 0, 0.8);
+}
+
+.partition g:hover text {
+ fill: rgba(0, 0, 0, 1);
+}
diff --git a/superset/assets/visualizations/partition.js b/superset/assets/visualizations/partition.js
new file mode 100644
index 0000000000000..a91611ce007bf
--- /dev/null
+++ b/superset/assets/visualizations/partition.js
@@ -0,0 +1,333 @@
+/* eslint no-param-reassign: [2, {"props": false}] */
+/* eslint no-use-before-define: ["error", { "functions": false }] */
+import d3 from 'd3';
+import {
+ d3TimeFormatPreset,
+} from '../javascripts/modules/utils';
+import { getColorFromScheme } from '../javascripts/modules/colors';
+
+import './partition.css';
+
+d3.hierarchy = require('d3-hierarchy').hierarchy;
+d3.partition = require('d3-hierarchy').partition;
+
+function init(root) {
+ // Compute dx, dy, x, y for each node and
+ // return an array of nodes in breadth-first order
+ const flat = [];
+ const dy = 1.0 / (root.height + 1);
+ let prev = null;
+ root.each((n) => {
+ n.y = dy * n.depth;
+ n.dy = dy;
+ if (!n.parent) {
+ n.x = 0;
+ n.dx = 1;
+ } else {
+ n.x = prev.depth === n.parent.depth ? 0 : prev.x + prev.dx;
+ n.dx = n.weight / n.parent.sum * n.parent.dx;
+ }
+ prev = n;
+ flat.push(n);
+ });
+ return flat;
+}
+
+// This vis is based on
+// http://mbostock.github.io/d3/talk/20111018/partition.html
+function partitionVis(slice, payload) {
+ const data = payload.data;
+ const fd = slice.formData;
+ const div = d3.select(slice.selector);
+ const metrics = fd.metrics || [];
+
+ // Chart options
+ const logScale = fd.log_scale || false;
+ const chartType = fd.time_series_option || 'not_time';
+ const hasTime = ['adv_anal', 'time_series'].indexOf(chartType) >= 0;
+ const format = d3.format(fd.number_format);
+ const timeFormat = d3TimeFormatPreset(fd.date_time_format);
+
+ div.selectAll('*').remove();
+ d3.selectAll('.nvtooltip').remove();
+ const tooltip = d3
+ .select('body')
+ .append('div')
+ .attr('class', 'nvtooltip')
+ .style('opacity', 0)
+ .style('top', 0)
+ .style('left', 0)
+ .style('position', 'fixed');
+
+ function drawVis(i, dat) {
+ const datum = dat[i];
+ const w = slice.width();
+ const h = slice.height() / data.length;
+ const x = d3.scale.linear().range([0, w]);
+ const y = d3.scale.linear().range([0, h]);
+
+ const viz = div
+ .append('div')
+ .attr('class', 'chart')
+ .style('width', w + 'px')
+ .style('height', h + 'px')
+ .append('svg:svg')
+ .attr('width', w)
+ .attr('height', h);
+
+ // Add padding between multiple visualizations
+ if (i !== data.length - 1 && data.length > 1) {
+ viz.style('padding-bottom', '3px');
+ }
+ if (i !== 0 && data.length > 1) {
+ viz.style('padding-top', '3px');
+ }
+
+ const root = d3.hierarchy(datum);
+
+ function hasDateNode(n) {
+ return metrics.indexOf(n.data.name) >= 0 && hasTime;
+ }
+
+ // node.name is the metric/group name
+ // node.disp is the display value
+ // node.value determines sorting order
+ // node.weight determines partition height
+ // node.sum is the sum of children weights
+ root.eachAfter((n) => {
+ n.disp = n.data.val;
+ n.value = n.disp < 0 ? -n.disp : n.disp;
+ n.weight = n.value;
+ n.name = n.data.name;
+ // If the parent is a metric and we still have
+ // the time column, perform a date-time format
+ if (n.parent && hasDateNode(n.parent)) {
+ // Format timestamp values
+ n.weight = fd.equal_date_size ? 1 : n.value;
+ n.value = n.name;
+ n.name = timeFormat(n.name);
+ }
+ if (logScale) n.weight = Math.log(n.weight + 1);
+ n.disp = n.disp && !isNaN(n.disp) && isFinite(n.disp) ? format(n.disp) : '';
+ });
+ // Perform sort by weight
+ root.sort((a, b) => {
+ const v = b.value - a.value;
+ if (v === 0) {
+ return b.name > a.name ? 1 : -1;
+ }
+ return v;
+ });
+
+ // Prune data based on partition limit and threshold
+ // both are applied at the same time
+ if (fd.partition_threshold && fd.partition_threshold >= 0) {
+ // Compute weight sums as we go
+ root.each((n) => {
+ n.sum = n.children ? n.children.reduce((a, v) => a + v.weight, 0) || 1 : 1;
+ if (n.children) {
+ // Dates are not ordered by weight
+ if (hasDateNode(n)) {
+ if (fd.equal_date_size) {
+ return;
+ }
+ const removeIndices = [];
+ // Keep at least one child
+ for (let j = 1; j < n.children.length; j++) {
+ if (n.children[j].weight / n.sum < fd.partition_threshold) {
+ removeIndices.push(j);
+ }
+ }
+ for (let j = removeIndices.length - 1; j >= 0; j--) {
+ n.children.splice(removeIndices[j], 1);
+ }
+ } else {
+ // Find first child that falls below the threshold
+ let j;
+ for (j = 1; j < n.children.length; j++) {
+ if (n.children[j].weight / n.sum < fd.partition_threshold) {
+ break;
+ }
+ }
+ n.children = n.children.slice(0, j);
+ }
+ }
+ });
+ }
+ if (fd.partition_limit && fd.partition_limit >= 0) {
+ root.each((n) => {
+ if (n.children && n.children.length > fd.partition_limit) {
+ if (!hasDateNode(n)) {
+ n.children = n.children.slice(0, fd.partition_limit);
+ }
+ }
+ });
+ }
+ // Compute final weight sums
+ root.eachAfter((n) => {
+ n.sum = n.children ? n.children.reduce((a, v) => a + v.weight, 0) || 1 : 1;
+ });
+
+ const verboseMap = slice.datasource.verbose_map;
+ function getCategory(depth) {
+ if (!depth) {
+ return 'Metric';
+ }
+ if (hasTime && depth === 1) {
+ return 'Date';
+ }
+ const col = fd.groupby[depth - (hasTime ? 2 : 1)];
+ return verboseMap[col] || col;
+ }
+
+ function getAncestors(d) {
+ const ancestors = [d];
+ let node = d;
+ while (node.parent) {
+ ancestors.push(node.parent);
+ node = node.parent;
+ }
+ return ancestors;
+ }
+
+ function positionAndPopulate(tip, d) {
+ let t = '
';
+ if (!fd.rich_tooltip) {
+ t += (
+ '' +
+ `${getCategory(d.depth)}` +
+ ' |
'
+ );
+ t += (
+ '' +
+ '' +
+ `' +
+ ' | ' +
+ `${d.name} | ` +
+ `${d.disp} | ` +
+ '
'
+ );
+ } else {
+ const nodes = getAncestors(d);
+ nodes.forEach((n) => {
+ const atNode = n.depth === d.depth;
+ t += '';
+ t += (
+ `` +
+ `` +
+ '' +
+ ' | ' +
+ `${n.name} | ` +
+ `${n.disp} | ` +
+ `${getCategory(n.depth)} | ` +
+ '
'
+ );
+ });
+ }
+ t += '
';
+ tip.html(t)
+ .style('left', (d3.event.pageX + 13) + 'px')
+ .style('top', (d3.event.pageY - 10) + 'px');
+ }
+
+ const g = viz
+ .selectAll('g')
+ .data(init(root))
+ .enter()
+ .append('svg:g')
+ .attr('transform', d => `translate(${x(d.y)},${y(d.x)})`)
+ .on('click', click)
+ .on('mouseover', (d) => {
+ tooltip
+ .interrupt()
+ .transition()
+ .duration(100)
+ .style('opacity', 0.9);
+ positionAndPopulate(tooltip, d);
+ })
+ .on('mousemove', (d) => {
+ positionAndPopulate(tooltip, d);
+ })
+ .on('mouseout', () => {
+ tooltip
+ .interrupt()
+ .transition()
+ .duration(250)
+ .style('opacity', 0);
+ });
+
+ let kx = w / root.dx;
+ let ky = h / 1;
+
+ g.append('svg:rect')
+ .attr('width', root.dy * kx)
+ .attr('height', d => d.dx * ky);
+
+ g.append('svg:text')
+ .attr('transform', transform)
+ .attr('dy', '0.35em')
+ .style('opacity', d => d.dx * ky > 12 ? 1 : 0)
+ .text((d) => {
+ if (!d.disp) {
+ return d.name;
+ }
+ return `${d.name}: ${d.disp}`;
+ });
+
+ // Apply color scheme
+ g.selectAll('rect')
+ .style('fill', (d) => {
+ d.color = getColorFromScheme(d.name, fd.color_scheme);
+ return d.color;
+ });
+
+ // Zoom out when clicking outside vis
+ // d3.select(window)
+ // .on('click', () => click(root));
+
+ // Keep text centered in its division
+ function transform(d) {
+ return `translate(8,${d.dx * ky / 2})`;
+ }
+
+ // When clicking a subdivision, the vis will zoom in to it
+ function click(d) {
+ if (!d.children) {
+ if (d.parent) {
+ // Clicking on the rightmost level should zoom in
+ return click(d.parent);
+ }
+ return false;
+ }
+ kx = (d.y ? w - 40 : w) / (1 - d.y);
+ ky = h / d.dx;
+ x.domain([d.y, 1]).range([d.y ? 40 : 0, w]);
+ y.domain([d.x, d.x + d.dx]);
+
+ const t = g
+ .transition()
+ .duration(d3.event.altKey ? 7500 : 750)
+ .attr('transform', nd => `translate(${x(nd.y)},${y(nd.x)})`);
+
+ t.select('rect')
+ .attr('width', d.dy * kx)
+ .attr('height', nd => nd.dx * ky);
+
+ t.select('text')
+ .attr('transform', transform)
+ .style('opacity', nd => nd.dx * ky > 12 ? 1 : 0);
+
+ d3.event.stopPropagation();
+ return true;
+ }
+ }
+ for (let i = 0; i < data.length; i++) {
+ drawVis(i, data);
+ }
+}
+
+module.exports = partitionVis;
diff --git a/superset/viz.py b/superset/viz.py
index a800bc0375a88..1d701b0a656e6 100644
--- a/superset/viz.py
+++ b/superset/viz.py
@@ -27,6 +27,7 @@
from markdown import markdown
import simplejson as json
from six import string_types, PY3
+from six.moves import reduce
from dateutil import relativedelta as rdelta
from superset import app, utils, cache, get_manifest_file
@@ -915,7 +916,7 @@ def to_series(self, df, classed='', title_suffix=''):
if isinstance(series_title, string_types):
series_title += title_suffix
elif title_suffix and isinstance(series_title, (list, tuple)):
- series_title.append(title_suffix)
+ series_title = series_title + (title_suffix,)
d = {
"key": series_title,
@@ -928,16 +929,24 @@ def to_series(self, df, classed='', title_suffix=''):
chart_data.append(d)
return chart_data
- def process_data(self, df):
+ def process_data(self, df, aggregate=False):
fd = self.form_data
df = df.fillna(0)
if fd.get("granularity") == "all":
raise Exception(_("Pick a time granularity for your time series"))
- df = df.pivot_table(
- index=DTTM_ALIAS,
- columns=fd.get('groupby'),
- values=fd.get('metrics'))
+ if not aggregate:
+ df = df.pivot_table(
+ index=DTTM_ALIAS,
+ columns=fd.get('groupby'),
+ values=fd.get('metrics'))
+ else:
+ df = df.pivot_table(
+ index=DTTM_ALIAS,
+ columns=fd.get('groupby'),
+ values=fd.get('metrics'),
+ fill_value=0,
+ aggfunc=sum)
fm = fd.get("resample_fillmethod")
if not fm:
@@ -1782,6 +1791,142 @@ def get_data(self, df):
return data
+class PartitionViz(NVD3TimeSeriesViz):
+
+ """
+ A hierarchical data visualization with support for time series.
+ """
+
+ viz_type = 'partition'
+ verbose_name = _("Partition Diagram")
+
+ def query_obj(self):
+ query_obj = super(PartitionViz, self).query_obj()
+ time_op = self.form_data.get('time_series_option', 'not_time')
+ # Return time series data if the user specifies so
+ query_obj['is_timeseries'] = time_op != 'not_time'
+ return query_obj
+
+ def levels_for(self, time_op, groups, df):
+ """
+ Compute the partition at each `level` from the dataframe.
+ """
+ levels = {}
+ for i in range(0, len(groups) + 1):
+ agg_df = df.groupby(groups[:i]) if i else df
+ levels[i] = (
+ agg_df.mean() if time_op == 'agg_mean'
+ else agg_df.sum(numeric_only=True))
+ return levels
+
+ def levels_for_diff(self, time_op, groups, df):
+ # Obtain a unique list of the time grains
+ times = list(set(df[DTTM_ALIAS]))
+ times.sort()
+ until = times[len(times) - 1]
+ since = times[0]
+ # Function describing how to calculate the difference
+ func = {
+ 'point_diff': [
+ pd.Series.sub,
+ lambda a, b, fill_value: a - b,
+ ],
+ 'point_factor': [
+ pd.Series.div,
+ lambda a, b, fill_value: a / float(b),
+ ],
+ 'point_percent': [
+ lambda a, b, fill_value=0: a.div(b, fill_value=fill_value) - 1,
+ lambda a, b, fill_value: a / float(b) - 1,
+ ],
+ }[time_op]
+ agg_df = df.groupby(DTTM_ALIAS).sum()
+ levels = {0: pd.Series({
+ m: func[1](agg_df[m][until], agg_df[m][since], 0)
+ for m in agg_df.columns})}
+ for i in range(1, len(groups) + 1):
+ agg_df = df.groupby([DTTM_ALIAS] + groups[:i]).sum()
+ levels[i] = pd.DataFrame({
+ m: func[0](agg_df[m][until], agg_df[m][since], fill_value=0)
+ for m in agg_df.columns})
+ return levels
+
+ def levels_for_time(self, groups, df):
+ procs = {}
+ for i in range(0, len(groups) + 1):
+ self.form_data['groupby'] = groups[:i]
+ df_drop = df.drop(groups[i:], 1)
+ procs[i] = self.process_data(df_drop, aggregate=True).fillna(0)
+ self.form_data['groupby'] = groups
+ return procs
+
+ def nest_values(self, levels, level=0, metric=None, dims=()):
+ """
+ Nest values at each level on the back-end with
+ access and setting, instead of summing from the bottom.
+ """
+ if not level:
+ return [{
+ 'name': m,
+ 'val': levels[0][m],
+ 'children': self.nest_values(levels, 1, m),
+ } for m in levels[0].index]
+ if level == 1:
+ return [{
+ 'name': i,
+ 'val': levels[1][metric][i],
+ 'children': self.nest_values(levels, 2, metric, (i,)),
+ } for i in levels[1][metric].index]
+ if level >= len(levels):
+ return []
+ return [{
+ 'name': i,
+ 'val': levels[level][metric][dims][i],
+ 'children': self.nest_values(
+ levels, level + 1, metric, dims + (i,)
+ ),
+ } for i in levels[level][metric][dims].index]
+
+ def nest_procs(self, procs, level=-1, dims=(), time=None):
+ if level == -1:
+ return [{
+ 'name': m,
+ 'children': self.nest_procs(procs, 0, (m,)),
+ } for m in procs[0].columns]
+ if not level:
+ return [{
+ 'name': t,
+ 'val': procs[0][dims[0]][t],
+ 'children': self.nest_procs(procs, 1, dims, t),
+ } for t in procs[0].index]
+ if level >= len(procs):
+ return []
+ return [{
+ 'name': i,
+ 'val': procs[level][dims][i][time],
+ 'children': self.nest_procs(procs, level + 1, dims + (i,), time)
+ } for i in procs[level][dims].columns]
+
+ def get_data(self, df):
+ fd = self.form_data
+ groups = fd.get('groupby', [])
+ time_op = fd.get('time_series_option', 'not_time')
+ if not len(groups):
+ raise ValueError('Please choose at least one groupby')
+ if time_op == 'not_time':
+ levels = self.levels_for('agg_sum', groups, df)
+ elif time_op in ['agg_sum', 'agg_mean']:
+ levels = self.levels_for(time_op, groups, df)
+ elif time_op in ['point_diff', 'point_factor', 'point_percent']:
+ levels = self.levels_for_diff(time_op, groups, df)
+ elif time_op == 'adv_anal':
+ procs = self.levels_for_time(groups, df)
+ return self.nest_procs(procs)
+ else:
+ levels = self.levels_for('agg_sum', [DTTM_ALIAS] + groups, df)
+ return self.nest_values(levels)
+
+
viz_types = {
o.viz_type: o for o in globals().values()
if (
diff --git a/tests/viz_tests.py b/tests/viz_tests.py
index a4beab3e987d8..fec424a25ac90 100644
--- a/tests/viz_tests.py
+++ b/tests/viz_tests.py
@@ -3,6 +3,7 @@
import superset.viz as viz
from superset.utils import DTTM_ALIAS
+from mock import Mock, patch
class PairedTTestTestCase(unittest.TestCase):
@@ -135,3 +136,227 @@ def test_get_data_empty_null_keys(self):
],
}
self.assertEquals(data, expected)
+
+
+class PartitionVizTestCase(unittest.TestCase):
+
+ @patch('superset.viz.BaseViz.query_obj')
+ def test_query_obj_time_series_option(self, super_query_obj):
+ datasource = Mock()
+ form_data = {}
+ test_viz = viz.PartitionViz(datasource, form_data)
+ super_query_obj.return_value = {}
+ query_obj = test_viz.query_obj()
+ self.assertFalse(query_obj['is_timeseries'])
+ test_viz.form_data['time_series_option'] = 'agg_sum'
+ query_obj = test_viz.query_obj()
+ self.assertTrue(query_obj['is_timeseries'])
+
+ def test_levels_for_computes_levels(self):
+ raw = {}
+ raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
+ raw['groupA'] = ['a1', 'a1', 'a1', 'b1', 'b1', 'b1', 'c1', 'c1', 'c1']
+ raw['groupB'] = ['a2', 'a2', 'a2', 'b2', 'b2', 'b2', 'c2', 'c2', 'c2']
+ raw['groupC'] = ['a3', 'a3', 'a3', 'b3', 'b3', 'b3', 'c3', 'c3', 'c3']
+ raw['metric1'] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+ raw['metric2'] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
+ raw['metric3'] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
+ df = pd.DataFrame(raw)
+ groups = ['groupA', 'groupB', 'groupC']
+ time_op = 'agg_sum'
+ test_viz = viz.PartitionViz(Mock(), {})
+ levels = test_viz.levels_for(time_op, groups, df)
+ self.assertEqual(4, len(levels))
+ expected = {
+ DTTM_ALIAS: 1800,
+ 'metric1': 45,
+ 'metric2': 450,
+ 'metric3': 4500,
+ }
+ self.assertEqual(expected, levels[0].to_dict())
+ expected = {
+ DTTM_ALIAS: {'a1': 600, 'b1': 600, 'c1': 600},
+ 'metric1': {'a1': 6, 'b1': 15, 'c1': 24},
+ 'metric2': {'a1': 60, 'b1': 150, 'c1': 240},
+ 'metric3': {'a1': 600, 'b1': 1500, 'c1': 2400},
+ }
+ self.assertEqual(expected, levels[1].to_dict())
+ self.assertEqual(['groupA', 'groupB'], levels[2].index.names)
+ self.assertEqual(
+ ['groupA', 'groupB', 'groupC'],
+ levels[3].index.names,
+ )
+ time_op = 'agg_mean'
+ levels = test_viz.levels_for(time_op, groups, df)
+ self.assertEqual(4, len(levels))
+ expected = {
+ DTTM_ALIAS: 200.0,
+ 'metric1': 5.0,
+ 'metric2': 50.0,
+ 'metric3': 500.0,
+ }
+ self.assertEqual(expected, levels[0].to_dict())
+ expected = {
+ DTTM_ALIAS: {'a1': 200, 'c1': 200, 'b1': 200},
+ 'metric1': {'a1': 2, 'b1': 5, 'c1': 8},
+ 'metric2': {'a1': 20, 'b1': 50, 'c1': 80},
+ 'metric3': {'a1': 200, 'b1': 500, 'c1': 800},
+ }
+ self.assertEqual(expected, levels[1].to_dict())
+ self.assertEqual(['groupA', 'groupB'], levels[2].index.names)
+ self.assertEqual(
+ ['groupA', 'groupB', 'groupC'],
+ levels[3].index.names,
+ )
+
+ def test_levels_for_diff_computes_difference(self):
+ raw = {}
+ raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
+ raw['groupA'] = ['a1', 'a1', 'a1', 'b1', 'b1', 'b1', 'c1', 'c1', 'c1']
+ raw['groupB'] = ['a2', 'a2', 'a2', 'b2', 'b2', 'b2', 'c2', 'c2', 'c2']
+ raw['groupC'] = ['a3', 'a3', 'a3', 'b3', 'b3', 'b3', 'c3', 'c3', 'c3']
+ raw['metric1'] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+ raw['metric2'] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
+ raw['metric3'] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
+ df = pd.DataFrame(raw)
+ groups = ['groupA', 'groupB', 'groupC']
+ test_viz = viz.PartitionViz(Mock(), {})
+ time_op = 'point_diff'
+ levels = test_viz.levels_for_diff(time_op, groups, df)
+ expected = {
+ 'metric1': 6,
+ 'metric2': 60,
+ 'metric3': 600,
+ }
+ self.assertEqual(expected, levels[0].to_dict())
+ expected = {
+ 'metric1': {'a1': 2, 'b1': 2, 'c1': 2},
+ 'metric2': {'a1': 20, 'b1': 20, 'c1': 20},
+ 'metric3': {'a1': 200, 'b1': 200, 'c1': 200},
+ }
+ self.assertEqual(expected, levels[1].to_dict())
+ self.assertEqual(4, len(levels))
+ self.assertEqual(['groupA', 'groupB', 'groupC'], levels[3].index.names)
+
+ def test_levels_for_time_calls_process_data_and_drops_cols(self):
+ raw = {}
+ raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
+ raw['groupA'] = ['a1', 'a1', 'a1', 'b1', 'b1', 'b1', 'c1', 'c1', 'c1']
+ raw['groupB'] = ['a2', 'a2', 'a2', 'b2', 'b2', 'b2', 'c2', 'c2', 'c2']
+ raw['groupC'] = ['a3', 'a3', 'a3', 'b3', 'b3', 'b3', 'c3', 'c3', 'c3']
+ raw['metric1'] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+ raw['metric2'] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
+ raw['metric3'] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
+ df = pd.DataFrame(raw)
+ groups = ['groupA', 'groupB', 'groupC']
+ test_viz = viz.PartitionViz(Mock(), {'groupby': groups})
+
+ def return_args(df_drop, aggregate):
+ return df_drop
+ test_viz.process_data = Mock(side_effect=return_args)
+ levels = test_viz.levels_for_time(groups, df)
+ self.assertEqual(4, len(levels))
+ cols = [DTTM_ALIAS, 'metric1', 'metric2', 'metric3']
+ self.assertEqual(sorted(cols), sorted(levels[0].columns.tolist()))
+ cols += ['groupA']
+ self.assertEqual(sorted(cols), sorted(levels[1].columns.tolist()))
+ cols += ['groupB']
+ self.assertEqual(sorted(cols), sorted(levels[2].columns.tolist()))
+ cols += ['groupC']
+ self.assertEqual(sorted(cols), sorted(levels[3].columns.tolist()))
+ self.assertEqual(4, len(test_viz.process_data.mock_calls))
+
+ def test_nest_values_returns_hierarchy(self):
+ raw = {}
+ raw['groupA'] = ['a1', 'a1', 'a1', 'b1', 'b1', 'b1', 'c1', 'c1', 'c1']
+ raw['groupB'] = ['a2', 'a2', 'a2', 'b2', 'b2', 'b2', 'c2', 'c2', 'c2']
+ raw['groupC'] = ['a3', 'a3', 'a3', 'b3', 'b3', 'b3', 'c3', 'c3', 'c3']
+ raw['metric1'] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+ raw['metric2'] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
+ raw['metric3'] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
+ df = pd.DataFrame(raw)
+ test_viz = viz.PartitionViz(Mock(), {})
+ groups = ['groupA', 'groupB', 'groupC']
+ levels = test_viz.levels_for('agg_sum', groups, df)
+ nest = test_viz.nest_values(levels)
+ self.assertEqual(3, len(nest))
+ for i in range(0, 3):
+ self.assertEqual('metric' + str(i + 1), nest[i]['name'])
+ self.assertEqual(3, len(nest[0]['children']))
+ self.assertEqual(1, len(nest[0]['children'][0]['children']))
+ self.assertEqual(1, len(nest[0]['children'][0]['children'][0]['children']))
+
+ def test_nest_procs_returns_hierarchy(self):
+ raw = {}
+ raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
+ raw['groupA'] = ['a1', 'a1', 'a1', 'b1', 'b1', 'b1', 'c1', 'c1', 'c1']
+ raw['groupB'] = ['a2', 'a2', 'a2', 'b2', 'b2', 'b2', 'c2', 'c2', 'c2']
+ raw['groupC'] = ['a3', 'a3', 'a3', 'b3', 'b3', 'b3', 'c3', 'c3', 'c3']
+ raw['metric1'] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+ raw['metric2'] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
+ raw['metric3'] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
+ df = pd.DataFrame(raw)
+ test_viz = viz.PartitionViz(Mock(), {})
+ groups = ['groupA', 'groupB', 'groupC']
+ metrics = ['metric1', 'metric2', 'metric3']
+ procs = {}
+ for i in range(0, 4):
+ df_drop = df.drop(groups[i:], 1)
+ pivot = df_drop.pivot_table(
+ index=DTTM_ALIAS,
+ columns=groups[:i],
+ values=metrics,
+ )
+ procs[i] = pivot
+ nest = test_viz.nest_procs(procs)
+ self.assertEqual(3, len(nest))
+ for i in range(0, 3):
+ self.assertEqual('metric' + str(i + 1), nest[i]['name'])
+ self.assertEqual(None, nest[i].get('val'))
+ self.assertEqual(3, len(nest[0]['children']))
+ self.assertEqual(3, len(nest[0]['children'][0]['children']))
+ self.assertEqual(1, len(nest[0]['children'][0]['children'][0]['children']))
+ self.assertEqual(1,
+ len(nest[0]['children']
+ [0]['children']
+ [0]['children']
+ [0]['children'])
+ )
+
+ def test_get_data_calls_correct_method(self):
+ test_viz = viz.PartitionViz(Mock(), {})
+ df = Mock()
+ with self.assertRaises(ValueError):
+ test_viz.get_data(df)
+ test_viz.levels_for = Mock(return_value=1)
+ test_viz.nest_values = Mock(return_value=1)
+ test_viz.form_data['groupby'] = ['groups']
+ test_viz.form_data['time_series_option'] = 'not_time'
+ test_viz.get_data(df)
+ self.assertEqual('agg_sum', test_viz.levels_for.mock_calls[0][1][0])
+ test_viz.form_data['time_series_option'] = 'agg_sum'
+ test_viz.get_data(df)
+ self.assertEqual('agg_sum', test_viz.levels_for.mock_calls[1][1][0])
+ test_viz.form_data['time_series_option'] = 'agg_mean'
+ test_viz.get_data(df)
+ self.assertEqual('agg_mean', test_viz.levels_for.mock_calls[2][1][0])
+ test_viz.form_data['time_series_option'] = 'point_diff'
+ test_viz.levels_for_diff = Mock(return_value=1)
+ test_viz.get_data(df)
+ self.assertEqual('point_diff', test_viz.levels_for_diff.mock_calls[0][1][0])
+ test_viz.form_data['time_series_option'] = 'point_percent'
+ test_viz.get_data(df)
+ self.assertEqual('point_percent', test_viz.levels_for_diff.mock_calls[1][1][0])
+ test_viz.form_data['time_series_option'] = 'point_factor'
+ test_viz.get_data(df)
+ self.assertEqual('point_factor', test_viz.levels_for_diff.mock_calls[2][1][0])
+ test_viz.levels_for_time = Mock(return_value=1)
+ test_viz.nest_procs = Mock(return_value=1)
+ test_viz.form_data['time_series_option'] = 'adv_anal'
+ test_viz.get_data(df)
+ self.assertEqual(1, len(test_viz.levels_for_time.mock_calls))
+ self.assertEqual(1, len(test_viz.nest_procs.mock_calls))
+ test_viz.form_data['time_series_option'] = 'time_series'
+ test_viz.get_data(df)
+ self.assertEqual('agg_sum', test_viz.levels_for.mock_calls[3][1][0])
+ self.assertEqual(7, len(test_viz.nest_values.mock_calls))