From ddffee09437db49a6f73eda09ebdbfde5e6afb55 Mon Sep 17 00:00:00 2001 From: zoeygxy Date: Thu, 15 Aug 2019 15:51:26 +0800 Subject: [PATCH 1/3] Completed NDArray indexing fix and numpy ndarray indexing. --- 3rdparty/mshadow/mshadow/extension/slice.h | 4 +- python/mxnet/ndarray/ndarray.py | 421 +++++++++++++----- python/mxnet/ndarray/numpy/_op.py | 57 ++- python/mxnet/numpy/multiarray.py | 427 ++++++++++++++++--- python/mxnet/symbol/numpy/_symbol.py | 55 +++ python/mxnet/test_utils.py | 1 - src/c_api/c_api.cc | 2 - src/ndarray/ndarray.cc | 1 + src/operator/tensor/indexing_op.cc | 2 + src/operator/tensor/init_op.cc | 1 + src/operator/tensor/matrix_op-inl.h | 28 +- src/operator/tensor/matrix_op.cc | 3 + tests/python/unittest/test_ndarray.py | 44 +- tests/python/unittest/test_numpy_ndarray.py | 448 +++++++++++--------- 14 files changed, 1106 insertions(+), 388 deletions(-) diff --git a/3rdparty/mshadow/mshadow/extension/slice.h b/3rdparty/mshadow/mshadow/extension/slice.h index cb2eff4548aa..d0c266284639 100644 --- a/3rdparty/mshadow/mshadow/extension/slice.h +++ b/3rdparty/mshadow/mshadow/extension/slice.h @@ -33,8 +33,8 @@ struct SliceExp : public TRValue::Check(src_); ch_old_ = shape_[dimslice]; - CHECK(begin < shape_[dimslice] && end <= shape_[dimslice]) - << "The slice went out of range"; + CHECK(begin <= shape_[dimslice] && end <= shape_[dimslice]) + << "The slice went out of range. "; shape_[dimslice] = end - begin; } template diff --git a/python/mxnet/ndarray/ndarray.py b/python/mxnet/ndarray/ndarray.py index 612017cdaff7..6c2bb8078922 100644 --- a/python/mxnet/ndarray/ndarray.py +++ b/python/mxnet/ndarray/ndarray.py @@ -51,7 +51,8 @@ "logical_xor", "maximum", "minimum", "moveaxis", "modulo", "multiply", "not_equal", "onehot_encode", "power", "subtract", "true_divide", "waitall", "_new_empty_handle", "histogram", "split_v2", "to_dlpack_for_read", "to_dlpack_for_write", "from_dlpack", - "from_numpy"] + "from_numpy", "zeros", "indexing_key_expand_implicit_axes", "get_indexing_dispatch_code", + "get_oshape_of_gather_nd_op"] _STORAGE_TYPE_UNDEFINED = -1 _STORAGE_TYPE_DEFAULT = 0 @@ -480,40 +481,61 @@ def __setitem__(self, key, value): array([[ 6., 5., 5.], [ 6., 0., 4.]], dtype=float32) """ - if self.ndim == 0 and key == (): - _internal._full(shape=self.shape, value=float(value), ctx=self.context, - dtype=self.dtype, out=self) - return - key = _indexing_key_expand_implicit_axes(key, self.shape) - slc_key = tuple(idx for idx in key if idx is not None) + if self.ndim == 0: + if not isinstance(key, (tuple, py_slice)): + raise IndexError('scalar tensor can only accept `()` and `:` as index') + if isinstance(key, tuple) and len(key) != 0: + raise IndexError('scalar tensor can only accept `()` and `:` as index') + if isinstance(value, numeric_types): + self._full(value) + elif isinstance(value, NDArray) and value.size == 1: + if value.shape != self.shape: + value = value.reshape(self.shape) + value.copyto(self) + elif isinstance(value, (np.ndarray, np.generic)) and value.size == 1: + if isinstance(value, np.generic) or value.shape != self.shape: + value = value.reshape(self.shape) + self._sync_copyfrom(value) + else: + raise ValueError('setting an array element with a sequence.') - if len(slc_key) < self.ndim: - raise RuntimeError( - 'too few indices after normalization: expected `ndim` ({}) ' - 'but got {}. This is a bug, please report it!' - ''.format(self.ndim, len(slc_key)) - ) - if len(slc_key) > self.ndim: - raise IndexError( - 'too many indices ({}) for array with {} dimensions' - ''.format(len(slc_key), self.ndim) - ) + elif self.size == 0: + return - indexing_dispatch_code = _get_indexing_dispatch_code(slc_key) - if indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: - self._set_nd_basic_indexing(slc_key, value) - elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: - self._set_nd_advanced_indexing(slc_key, value) else: - raise ValueError( - 'Indexing NDArray with index {} of type {} is not supported' - ''.format(key, type(key)) - ) + key = indexing_key_expand_implicit_axes(key, self.shape) + slc_key = tuple(idx for idx in key if idx is not None) + + if len(slc_key) < self.ndim: + raise RuntimeError( + 'too few indices after normalization: expected `ndim` ({}) ' + 'but got {}. This is a bug, please report it!' + ''.format(self.ndim, len(slc_key)) + ) + if len(slc_key) > self.ndim: + raise IndexError( + 'too many indices ({}) for array with {} dimensions' + ''.format(len(slc_key), self.ndim) + ) - def __getitem__(self, key): + indexing_dispatch_code = get_indexing_dispatch_code(slc_key) + if indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: + self._set_nd_basic_indexing(key, value) + elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: + self._set_nd_advanced_indexing(key, value) + else: + raise ValueError( + 'Indexing NDArray with index {} of type {} is not supported' + ''.format(key, type(key)) + ) + + def __getitem__(self, key): # pylint: disable=too-many-return-statements """x.__getitem__(i) <=> x[i] - Returns the subarray ``self[key]``. + Returns a sliced view of this array if the elements fetched are contiguous in memory; + otherwise, returns a newly created NDArray. + This functions supports advanced indexing defined in the following reference with + some restrictions. For basic indexing, i.e., if ``key`` consists only of integers, ``slice``, ``Ellipsis`` (``...``) and ``None``, a mutable view is @@ -644,13 +666,41 @@ def __getitem__(self, key): array([[[4., 5.], [6., 7.]]], dtype=float32) """ - if self.ndim == 0 and key == (): + ndim = self.ndim + shape = self.shape + + if ndim == 0 and (key == () or key == slice(None, None, None)): + return self + + # Handle simple cases for higher speed + if isinstance(key, tuple) and len(key) == 0: return self - key = _indexing_key_expand_implicit_axes(key, self.shape) + if isinstance(key, tuple) and len(key) == ndim\ + and all(isinstance(idx, integer_types) for idx in key): + out = self + for idx in key: + out = out[idx] + return out + if isinstance(key, integer_types): + if key > shape[0] - 1: + raise IndexError( + 'index {} is out of bounds for axis 0 with size {}'.format( + key, shape[0])) + return self._at(key) + elif isinstance(key, py_slice): + if (key.step is None or key.step == 1): + if key.start is not None or key.stop is not None: + return self._slice(key.start, key.stop) + else: + return self + elif key.step == 0: + raise ValueError("slice step cannot be zero") + + key = indexing_key_expand_implicit_axes(key, self.shape) if len(key) == 0: raise ValueError('indexing key cannot be an empty tuple') - indexing_dispatch_code = _get_indexing_dispatch_code(key) + indexing_dispatch_code = get_indexing_dispatch_code(key) if indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: return self._get_nd_basic_indexing(key) elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: @@ -658,18 +708,17 @@ def __getitem__(self, key): else: raise RuntimeError - def _prepare_value_nd(self, value, new_axes, bcast_shape): + def _prepare_value_nd(self, value, bcast_shape, squeeze_axes=None): """Return a broadcast `NDArray` with same context and dtype as ``self``. - - Before broadcasting, ``new_axes`` of length 1 will be added to - ``value``. This is done in contrast to blindly reshaping based on - ``bcast_shape``, since the latter would silently ignore wrongly shaped - ``value`` arrays, e.g. ``nd.zeros((2, 3))[:, :1] = nd.ones(2)``. + For setting item, The returned `ndarray` is squeezed according to squeeze_axes since the + value_nd is assigned to not yet expanded space in original array. + `value`: numeric types or array like. + `bcast_shape`: a shape tuple. + `squeeze_axes`: a sequence of axes to squeeze in the value array. """ if isinstance(value, numeric_types): value_nd = full(bcast_shape, value, ctx=self.context, dtype=self.dtype) - new_axes = [] # ignore for scalar - elif isinstance(value, NDArray): + elif type(value) == self.__class__: # pylint: disable=unidiomatic-typecheck value_nd = value.as_in_context(self.context) if value_nd.dtype != self.dtype: value_nd = value_nd.astype(self.dtype) @@ -677,18 +726,20 @@ def _prepare_value_nd(self, value, new_axes, bcast_shape): try: value_nd = array(value, ctx=self.context, dtype=self.dtype) except: - raise TypeError('NDArray does not support assignment with non-array-like ' - 'object {} of type {}'.format(value, type(value))) + raise TypeError('{} does not support assignment with non-array-like ' + 'object {} of type {}'.format(self.__class__, value, type(value))) - # First reshape `value_nd` to a new shape that incorporates existing - # axes, new axes and broadcasting axes in the right way. - tmp_shape = _shape_for_bcast( - value_nd.shape, target_ndim=len(bcast_shape), new_axes=new_axes - ) - value_nd = value_nd.reshape(tmp_shape) + # For setitem, if there is None in indices, we need to squeeze the assigned value_nd + # since None is also ignored in slicing the original array. + if squeeze_axes and value_nd.ndim > len(bcast_shape): + squeeze_axes = tuple([ax for ax in squeeze_axes if ax < len(value_nd.shape)]) + value_nd = value_nd.squeeze(axis=tuple(squeeze_axes)) if value_nd.shape != bcast_shape: - value_nd = value_nd.broadcast_to(bcast_shape) + if value_nd.size == 0: + value_nd = value_nd.reshape(bcast_shape) + else: + value_nd = value_nd.broadcast_to(bcast_shape) return value_nd # pylint: disable=invalid-name @@ -723,24 +774,46 @@ def _basic_indexing_key_int_to_slice(idcs): # pylint: enable=invalid-name @staticmethod - def _new_axes_after_basic_indexing(axes, key_nd): - """Return indices of ``axes`` after slicing with ``key_nd``. + def _new_axes_after_basic_indexing(axes, key): + """Return indices of ``axes`` after slicing with ``key``. This function is used to calculate the positions where new axes should end up after indexing, taking into account the removal of axes by integer indexing. - The ``key_nd`` sequence should contain slices and integers only, no - ``None`` entries. + The ``key`` sequence should be the exapanded key including slices, integer types + and ``None``. """ - steps = [0] + [0 if isinstance(idx, integer_types) else 1 - for idx in key_nd] + steps = [0] + [0 if isinstance(idx, integer_types) else 1 for idx in key] cum_steps = np.cumsum(steps) - axes_in_bounds = [ax for ax in axes if ax < len(cum_steps)] - axes_out_of_bounds = [ax for ax in axes if ax >= len(cum_steps)] - axes_after = tuple(cum_steps[axes_in_bounds]) - oob_offsets = [ax - len(key_nd) for ax in axes_out_of_bounds] - axes_after += tuple(cum_steps[-1] + offset for offset in oob_offsets) + axes_after = tuple(cum_steps[axes]) + return axes_after + + @staticmethod + def _new_axes_after_advanced_indexing(key, adv_axs, bcast_adv_ndim, adv_are_adjacent): # pylint: disable=invalid-name + """ + Return indices of ``axes`` after slicing with ``key_nd``. + + This function is used to calculate the positions where new axes should + end up after indexing, taking into account the removal of axes by + integer indexing. + + The ``key`` sequence should be the exapanded key including slices, array like objects, + integer types and ``None``. + ``adv_axes`` is the sequence of indices of advanced axes. + ``bcast_adv_ndim`` is the number of dimensions of advanced indexing subspace. + ``adv_are_adjacent`` is a boolean value. Value being True means all advanced indicies are adjacent. + + Note: integer indices are also considered advanced indices here. + """ + new_axes = [ax for ax in range(len(key)) if key[ax] is None] + adv_axs_set = set(adv_axs) + if not adv_are_adjacent: + steps = [bcast_adv_ndim] + [0 if ax in adv_axs_set else 1 for ax in range(len(key))] + else: + steps = [0] + [0 if ax in adv_axs_set else 1 for ax in range(len(key))] + cum_steps = np.cumsum(steps) + axes_after = tuple(cum_steps[new_axes]) return axes_after # pylint: disable=invalid-name @@ -807,15 +880,24 @@ def _basic_indexing_contiguous_flat_begin_end(slc_key, shape): def _set_nd_basic_indexing(self, key, value): """This function indexes ``self`` with a tuple of ``slice`` objects only.""" for idx in key: - if not isinstance(idx, (py_slice, integer_types)): + if idx is not None and not isinstance(idx, (py_slice, integer_types)): raise RuntimeError( '`key` may only contain `slice` or integer objects in the ' 'basic implementation, got object of type {}. ' 'This is a bug, please report it!' ''.format(type(idx))) + key_nd = tuple(idx for idx in key if idx is not None) int_axes = [ - ax for ax in range(len(key)) if isinstance(key[ax], integer_types) + ax for ax in range(len(key_nd)) if isinstance(key_nd[ax], integer_types) ] + + # Check bounds for integer axes + for ax in int_axes: # pylint: disable=invalid-name + if not -self.shape[ax] <= key_nd[ax] < self.shape[ax]: + raise IndexError( + 'index {} is out of bounds for axis {} with size {}' + ''.format(key_nd[ax], ax, self.shape[ax])) + begin, end, step = self._basic_indexing_key_to_begin_end_step( key, self.shape, keep_none=False ) @@ -828,10 +910,12 @@ def _set_nd_basic_indexing(self, key, value): begin, end, step = self._basic_indexing_key_to_begin_end_step( key, self.shape, keep_none=True ) + none_axes = [ax for ax in range(len(key)) if key[ax] is None] + new_axes = self._new_axes_after_basic_indexing(none_axes, key) if can_assign_directly: # Easy case, overwrite whole array. - if isinstance(value, NDArray): + if type(value) == self.__class__: # pylint: disable=unidiomatic-typecheck if value.handle is not self.handle: # Need to do this before `broadcast_to`. tmp_shape = _shape_for_bcast( @@ -844,17 +928,13 @@ def _set_nd_basic_indexing(self, key, value): value.copyto(self) elif isinstance(value, numeric_types): - _internal._full( - shape=self.shape, value=float(value), ctx=self.context, - dtype=self.dtype, out=self - ) + self._full(value) elif isinstance(value, (np.ndarray, np.generic)): tmp_shape = _shape_for_bcast( value.shape, target_ndim=self.ndim, new_axes=int_axes ) value = value.reshape(tmp_shape) - if isinstance(value, np.generic) or value.shape != self.shape: value = np.broadcast_to(value, self.shape) self._sync_copyfrom(value) @@ -862,20 +942,27 @@ def _set_nd_basic_indexing(self, key, value): else: # Other array-like value_nd = self._prepare_value_nd( - value, new_axes=int_axes, bcast_shape=self.shape + value, bcast_shape=self.shape ) value_nd.copyto(self) elif isinstance(value, numeric_types): - _internal._slice_assign_scalar( - self, float(value), begin, end, step, out=self - ) + self.slice_assign_scalar(float(value), begin, end, step) else: + # drop the axis of indexed_shape corresponding to int axes + bcast_shape = [] + for i, size in enumerate(indexed_shape): + if i not in int_axes: + bcast_shape.append(size) + if bcast_shape == []: + bcast_shape = [1] + bcast_shape = tuple(bcast_shape) value_nd = self._prepare_value_nd( - value, new_axes=int_axes, bcast_shape=indexed_shape + value, bcast_shape=bcast_shape, squeeze_axes=new_axes ) - _internal._slice_assign(self, value_nd, begin, end, step, out=self) + value_nd = value_nd.reshape(indexed_shape) + self.slice_assign(value_nd, begin, end, step) def _get_nd_basic_indexing(self, key): """This function indexes ``self`` with a tuple of `slice` objects only.""" @@ -891,10 +978,12 @@ def _get_nd_basic_indexing(self, key): 'too many indices ({}) for array with {} dimensions' ''.format(len(key_nd), self.ndim) ) - - none_axes = [ax for ax in range(len(key)) if key[ax] is None] # pylint: disable=invalid-name slc_key, int_axes = self._basic_indexing_key_int_to_slice(key_nd) - new_axes = self._new_axes_after_basic_indexing(none_axes, key_nd) + none_axes = [ax for ax in range(len(key)) if key[ax] is None] + if none_axes: + new_axes = self._new_axes_after_basic_indexing(none_axes, key) + else: + new_axes = [] # Check bounds for integer axes for ax in int_axes: # pylint: disable=invalid-name @@ -903,27 +992,11 @@ def _get_nd_basic_indexing(self, key): 'index {} is out of bounds for axis {} with size {}' ''.format(key_nd[ax], ax, self.shape[ax])) - # Make sure we don't accidentally have advanced indexing or - # unsupported entries. - for idx in slc_key: - if not isinstance(idx, py_slice): - raise RuntimeError( - 'found object of type {} instead of `slice`. ' - 'This is a bug, please report it!' - ''.format(type(idx))) - # Convert to begin, end and step, and return immediately if the slice # is empty begin, end, step = self._basic_indexing_key_to_begin_end_step( slc_key, self.shape, keep_none=False ) - # Pylint is wrong about this - # pylint: disable=bad-continuation - if any( - b >= e and s > 0 or b <= e and s < 0 for b, e, s in zip(begin, end, step) - ): - return array([], self.context, self.dtype) - # pylint: enable=bad-continuation if self._basic_indexing_slice_is_contiguous(slc_key, self.shape): # Create a shared-memory view by using low-level flat slicing @@ -967,7 +1040,6 @@ def _get_nd_basic_indexing(self, key): if final_shape == []: # Override for single element indexing final_shape = [1] - return sliced.reshape(final_shape) @staticmethod @@ -1056,7 +1128,10 @@ def _drop_slice_none_at_end(key): return tuple(key) def _get_index_nd(self, key): - """Return an index array for use in `scatter_nd` and `gather_nd`.""" + """ + Return an index array for use in `scatter_nd` and `gather_nd`, + and a list of positions of new_axes in ouptut shape. + """ key_nd = tuple(idx for idx in key if idx is not None) if len(key_nd) < self.ndim: raise RuntimeError( @@ -1125,6 +1200,14 @@ def _get_index_nd(self, key): bcast_idcs_permut_short = self._broadcast_advanced_indices( converted_idcs_short, block_axes=block_axs_nd ) + + # Get the ndim of advanced indexing subspace + converted_advanced_idcs = [ + self._advanced_index_to_array(idx, ax_len, self.context) + for idx, ax_len in zip(adv_idcs_nd, [self.shape[ax] for ax in adv_axs_nd]) + ] + bcast_advanced_shape = _broadcast_shapes(converted_advanced_idcs) + # Undo the permutation to restore the original order bcast_idcs_short = [ bcast_idcs_permut_short[ax] @@ -1132,21 +1215,38 @@ def _get_index_nd(self, key): if axs_nd_permut[ax] not in dropped_axs ] - return op.stack(*bcast_idcs_short) + # Calculate where the newaxes are inserted after advanced indexing + new_axes_positions = self._new_axes_after_advanced_indexing(key, adv_axs,\ + len(bcast_advanced_shape), adv_idcs_are_adjacent) + + # if any array is numpy.ndarray, stack in numpy ndarray class. + for idcs in bcast_idcs_short: + if type(idcs) != NDArray: # pylint: disable=unidiomatic-typecheck + return bcast_idcs_short, new_axes_positions + + return op.stack(*bcast_idcs_short), new_axes_positions def _set_nd_advanced_indexing(self, key, value): """This function is called by __setitem__ when key is an advanced index.""" - indices = self._get_index_nd(key) - vshape = _get_oshape_of_gather_nd_op(self.shape, indices.shape) - value_nd = self._prepare_value_nd(value, new_axes=[], bcast_shape=vshape) - _internal._scatter_set_nd( - lhs=self, rhs=value_nd, indices=indices, shape=self.shape, out=self - ) + indices, new_axes = self._get_index_nd(key) + vshape = get_oshape_of_gather_nd_op(self.shape, indices.shape) + value_nd = self._prepare_value_nd(value, bcast_shape=vshape, squeeze_axes=new_axes) + self._scatter_set_nd(value_nd, indices) def _get_nd_advanced_indexing(self, key): """Get item when key is a tuple of any objects of the following types: NDArray, np.ndarray, list, tuple, slice, and integer.""" - return op.gather_nd(self, self._get_index_nd(key)) + slc_key, new_axes = self._get_index_nd(key) + sliced = op.gather_nd(self, slc_key) + + # Reshape due to `None` entries in `key`. + if new_axes: + final_shape = [sliced.shape[i] for i in range(sliced.ndim)] + for ax in new_axes: # pylint: disable=invalid-name + final_shape.insert(ax, 1) + return sliced.reshape(final_shape) + else: + return sliced def _sync_copyfrom(self, source_array): """Performs a synchronized copy from the `source_array` to the current array. @@ -2522,6 +2622,88 @@ def copy(self): """ return self.copyto(self.context) + def slice_assign_scalar(self, value, begin, end, step): + """ + Assign the scalar to a cropped subset of this NDArray. Value will broadcast to the shape of the cropped shape + and will be cast to the same dtype of the NDArray. + + Parameters + ---------- + value: numeric value + Value and this NDArray should be of the same data type. + The shape of rhs should be the same as the cropped shape of this NDArray. + begin: tuple of begin indices + end: tuple of end indices + step: tuple of step lenghths + + Returns + ------- + This NDArray. + + Examples + -------- + >>> from mxnet import nd + >>> x = nd.ones((2, 2, 2)) + >>> y = x.slice_assign_scalar(0, (0, 0, None), (1, 1, None), (None, None, None)) + >>> y + [[[0. 0.] + [1. 1.]] + + [[1. 1.] + [1. 1.]]] + + >>> x + [[[0. 0.] + [1. 1.]] + + [[1. 1.] + [1. 1.]]] + + + """ + return _internal._slice_assign_scalar(self, value, begin=begin, end=end, step=step, out=self) + + def slice_assign(self, rhs, begin, end, step): + """ + Assign the rhs to a cropped subset of this NDarray in place. + Returns the view of this NDArray. + + Parameters + ---------- + rhs: NDArray. + rhs and this NDArray should be of the same data type, and on the same device. + The shape of rhs should be the same as the cropped shape of this NDArray. + begin: tuple of begin indices + end: tuple of end indices + step: tuple of step lenghths + + Returns + ------- + This NDArray. + + Examples + -------- + >>> x = nd.ones((2, 2, 2)) + >>> assigned = nd.zeros((1, 1, 2)) + >>> y = x.slice_assign(assigned, (0, 0, None), (1, 1, None), (None, None, None)) + >>> y + [[[0. 0.] + [1. 1.]] + + [[1. 1.] + [1. 1.]]] + + >>> x + [[[0. 0.] + [1. 1.]] + + [[1. 1.] + [1. 1.]]] + + """ + return _internal._slice_assign(self, rhs, begin=begin, end=end, step=step, out=self) + + def as_in_context(self, context): """Returns an array on the target device with the same value as this array. @@ -2692,20 +2874,32 @@ def to_dlpack_for_write(self): """ return to_dlpack_for_write(self) + def _full(self, value): + """ + This is added as an NDArray class method in order to support polymorphism in NDArray and numpy.ndarray indexing + """ + return _internal._full(self.shape, value=value, ctx=self.context, dtype=self.dtype, out=self) + + def _scatter_set_nd(self, value_nd, indices): + """ + This is added as an NDArray class method in order to support polymorphism in NDArray and numpy.ndarray indexing + """ + return _internal._scatter_set_nd( + lhs=self, rhs=value_nd, indices=indices, shape=self.shape, out=self + ) -def _indexing_key_expand_implicit_axes(key, shape): +def indexing_key_expand_implicit_axes(key, shape): """Make implicit axes explicit by adding ``slice(None)``. - Examples -------- >>> shape = (3, 4, 5) - >>> _indexing_key_expand_implicit_axes(np.s_[2, 1, 1], shape) + >>> indexing_key_expand_implicit_axes(np.s_[2, 1, 1], shape) (2, 1, 1) - >>> _indexing_key_expand_implicit_axes(np.s_[0], shape) + >>> indexing_key_expand_implicit_axes(np.s_[0], shape) (0, slice(None, None, None), slice(None, None, None)) - >>> _indexing_key_expand_implicit_axes(np.s_[0, ...], shape) # equivalent + >>> indexing_key_expand_implicit_axes(np.s_[0, ...], shape) # equivalent (0, slice(None, None, None), slice(None, None, None)) - >>> _indexing_key_expand_implicit_axes(np.s_[:2, None, 0, ...], shape) + >>> indexing_key_expand_implicit_axes(np.s_[:2, None, 0, ...], shape) (slice(None, 2, None), None, 0, slice(None, None, None)) """ if not isinstance(key, tuple): @@ -2794,7 +2988,7 @@ def _is_advanced_index(idx): raise RuntimeError('illegal index type {}'.format(type(idx))) -def _get_indexing_dispatch_code(key): +def get_indexing_dispatch_code(key): """Returns a dispatch code for calling basic or advanced indexing functions.""" assert isinstance(key, tuple) @@ -2854,7 +3048,7 @@ def _get_index_range(start, stop, length, step=1): return start, stop, step -def _get_oshape_of_gather_nd_op(dshape, ishape): +def get_oshape_of_gather_nd_op(dshape, ishape): """Given data and index shapes, get the output `NDArray` shape. This basically implements the infer shape logic of op gather_nd.""" assert len(dshape) > 0 and len(ishape) > 0 @@ -2865,8 +3059,9 @@ def _get_oshape_of_gather_nd_op(dshape, ishape): def _get_dim_size(start, stop, step): - """Given start, stop, and stop, calculate the number of elements - of this slice.""" + """Given start, stop, and step, calculate the number of elements + of this slice. + """ assert step != 0 if stop == start: return 0 diff --git a/python/mxnet/ndarray/numpy/_op.py b/python/mxnet/ndarray/numpy/_op.py index 04b3b19bcf2e..f0785a76818e 100644 --- a/python/mxnet/ndarray/numpy/_op.py +++ b/python/mxnet/ndarray/numpy/_op.py @@ -27,7 +27,7 @@ from . import _internal as _npi from ..ndarray import NDArray -__all__ = ['zeros', 'ones', 'add', 'subtract', 'multiply', 'divide', 'mod', 'power', 'sin', +__all__ = ['zeros', 'ones', 'full', 'add', 'subtract', 'multiply', 'divide', 'mod', 'power', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs', 'absolute', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'fix', 'ceil', 'floor', @@ -103,6 +103,61 @@ def ones(shape, dtype=_np.float32, order='C', ctx=None): return _npi.ones(shape=shape, ctx=ctx, dtype=dtype) +@set_module('mxnet.ndarray.numpy') +def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): # pylint: disable=too-many-arguments + """ + Return a new array of given shape and type, filled with `fill_value`. + Parameters + ---------- + shape : int or sequence of ints + Shape of the new array, e.g., ``(2, 3)`` or ``2``. + fill_value : scalar + Fill value. + dtype : data-type, optional + The desired data-type for the array. The default, `None`, means + `np.array(fill_value).dtype`. + order : {'C'}, optional + Whether to store multidimensional data in C- or Fortran-contiguous + (row- or column-wise) order in memory. Currently only supports C order. + ctx: to specify the device, e.g. the i-th GPU. + out : ndarray or None, optional + A location into which the result is stored. + If provided, it must have the same shape and dtype as input ndarray. + If not provided or `None`, a freshly-allocated array is returned. + Returns + ------- + out : ndarray + Array of `fill_value` with the given shape, dtype, and order. + Notes + ----- + This function differs from the original `numpy.full + https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html`_ in + the following way(s): + - Have an additional `ctx` argument to specify the device + - Have an additional `out` argument + - Currently does not support `order` selection + See Also + -------- + empty : Return a new uninitialized array. + ones : Return a new array setting values to one. + zeros : Return a new array setting values to zero. + Examples + -------- + >>> np.full((2, 2), 10) + array([[10., 10.], + [10., 10.]]) + >>> np.full((2, 2), 2, dtype=np.int32, ctx=mx.cpu(0)) + array([[2, 2], + [2, 2]], dtype=int32) + """ + if order != 'C': + raise NotImplementedError + if ctx is None: + ctx = current_context() + dtype = _np.float32 if dtype is None else dtype + return _npi.full(shape=shape, value=fill_value, ctx=ctx, dtype=dtype, out=out) + + @set_module('mxnet.ndarray.numpy') def arange(start, stop=None, step=1, dtype=None, ctx=None): """Return evenly spaced values within a given interval. diff --git a/python/mxnet/numpy/multiarray.py b/python/mxnet/numpy/multiarray.py index a47a9c01b7c4..6b44f6669cbf 100644 --- a/python/mxnet/numpy/multiarray.py +++ b/python/mxnet/numpy/multiarray.py @@ -34,16 +34,19 @@ import warnings import numpy as _np from ..ndarray import NDArray, _DTYPE_NP_TO_MX, _GRAD_REQ_MAP +from ..ndarray import indexing_key_expand_implicit_axes, get_indexing_dispatch_code,\ + get_oshape_of_gather_nd_op from ..ndarray._internal import _set_np_ndarray_class from . import _op as _mx_np_op from ..base import check_call, _LIB, NDArrayHandle from ..base import mx_real_t, c_array_buf, mx_uint, numeric_types, integer_types +from ..context import Context from ..util import _sanity_check_params, set_module from ..context import current_context from ..ndarray import numpy as _mx_nd_np from ..ndarray.numpy import _internal as _npi -__all__ = ['ndarray', 'empty', 'array', 'zeros', 'ones', 'add', 'subtract', 'multiply', 'divide', +__all__ = ['ndarray', 'empty', 'array', 'zeros', 'ones', 'full', 'add', 'subtract', 'multiply', 'divide', 'mod', 'power', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs', 'absolute', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', @@ -51,6 +54,10 @@ 'tensordot', 'linspace', 'expand_dims', 'tile', 'arange', 'split', 'concatenate', 'stack'] +# Return code for dispatching indexing function call +_NDARRAY_UNSUPPORTED_INDEXING = -1 +_NDARRAY_BASIC_INDEXING = 0 +_NDARRAY_ADVANCED_INDEXING = 1 # This function is copied from ndarray.py since pylint # keeps giving false alarm error of undefined-all-variable @@ -101,80 +108,238 @@ def _get_index(idx): @set_module('mxnet.numpy') # pylint: disable=invalid-name class ndarray(NDArray): - """An array object represents a multidimensional, homogeneous array of fixed-size items. + """ + An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.). Arrays should be constructed using - `array`, `zeros` or `empty`. Currently, only c-contiguous arrays are supported.""" + `array`, `zeros` or `empty`. Currently, only c-contiguous arrays are supported. + """ + def _get_np_basic_indexing(self, key): + """ + This function indexes ``self`` with a tuple of `slice` objects only. + """ + key_nd = tuple(idx for idx in key if idx is not None) + if len(key_nd) < self.ndim: + raise RuntimeError( + 'too few indices after normalization: expected `ndim` ({}) ' + 'but got {}. This is a bug, please report it!' + ''.format(self.ndim, len(key_nd)) + ) + if len(key_nd) > self.ndim: + raise IndexError( + 'too many indices ({}) for array with {} dimensions' + ''.format(len(key_nd), self.ndim) + ) + + none_axes = [ax for ax in range(len(key)) if key[ax] is None] # pylint: disable=invalid-name + slc_key, int_axes = self._basic_indexing_key_int_to_slice(key_nd) + new_axes = self._new_axes_after_basic_indexing(none_axes, key) + + # Check bounds for integer axes + for ax in int_axes: # pylint: disable=invalid-name + if not -self.shape[ax] <= key_nd[ax] < self.shape[ax]: + raise IndexError( + 'index {} is out of bounds for axis {} with size {}' + ''.format(key_nd[ax], ax, self.shape[ax])) + + if self._basic_indexing_slice_is_contiguous(slc_key, self.shape): + # Create a shared-memory view by using low-level flat slicing + flat_begin, flat_end = self._basic_indexing_contiguous_flat_begin_end( + slc_key, self.shape + ) + handle = NDArrayHandle() + flat_self = self.reshape_view(-1) + check_call( + _LIB.MXNDArraySlice( + flat_self.handle, + mx_uint(flat_begin), + mx_uint(flat_end), + ctypes.byref(handle), + ) + ) + sliced_shape = self._basic_indexing_sliced_shape(slc_key, self.shape) + sliced = self.__class__(handle=handle, writable=self.writable) + if 0 in sliced_shape: + sliced = sliced.reshape(sliced_shape) + else: + sliced = sliced.reshape_view(sliced_shape) + + else: + begin, end, step = self._basic_indexing_key_to_begin_end_step( + slc_key, self.shape, keep_none=True + ) + sliced = _npi.slice(self, begin, end, step) + + # Reshape to final shape due to integer and `None` entries in `key`. + final_shape = [sliced.shape[i] for i in range(sliced.ndim) if i not in int_axes] + for ax in new_axes: # pylint: disable=invalid-name + final_shape.insert(ax, 1) + + if final_shape == []: + # Override for single element indexing + return sliced.item() + if sliced.size == 0: + return sliced.reshape(tuple(final_shape)) + else: + return sliced.reshape_view(tuple(final_shape)) + + def _get_np_advanced_indexing(self, key): + idcs, new_axes = self._get_index_nd(key) + if type(idcs) == NDArray: # pylint: disable=unidiomatic-typecheck + idcs = idcs.as_np_ndarray() + else: + idcs = _npi.stack(*[i if isinstance(i, self.__class__) else i.as_np_ndarray() for i in idcs]) + sliced = _npi.gather_nd(self, idcs) + # Reshape due to `None` entries in `key`. + if new_axes: + final_shape = [sliced.shape[i] for i in range(sliced.ndim)] + for ax in new_axes: # pylint: disable=invalid-name + final_shape.insert(ax, 1) + return sliced.reshape(tuple(final_shape)) + else: + return sliced + + def _set_np_advanced_indexing(self, key, value): + """This function is called by __setitem__ when key is an advanced index.""" + idcs, new_axes = self._get_index_nd(key) + if type(idcs) == NDArray: # pylint: disable=unidiomatic-typecheck + idcs = idcs.as_np_ndarray() + else: + idcs = _npi.stack(*[i if isinstance(i, self.__class__) else i.as_np_ndarray() for i in idcs]) + vshape = get_oshape_of_gather_nd_op(self.shape, idcs.shape) + value_nd = self._prepare_value_nd(value, bcast_shape=vshape, squeeze_axes=new_axes) + self._scatter_set_nd(value_nd, idcs) # pylint: disable=too-many-return-statements def __getitem__(self, key): - # TODO(junwu): calling base class __getitem__ is a temp solution + """ + Overriding the method in NDArray class in a numpy fashion. + Calling numpy ndarray's _get_np_basic_indexing(key) and _get_np_advanced_indexing(key). + """ ndim = self.ndim shape = self.shape if ndim == 0: if key != (): raise IndexError('scalar tensor can only accept `()` as index') + return self.item() + # Handle simple cases for higher speed if isinstance(key, tuple) and len(key) == 0: return self - elif isinstance(key, tuple) and len(key) == ndim\ + if isinstance(key, tuple) and len(key) == ndim\ and all(isinstance(idx, integer_types) for idx in key): out = self for idx in key: out = out[idx] return out - elif isinstance(key, integer_types): + if isinstance(key, integer_types): if key > shape[0] - 1: raise IndexError( 'index {} is out of bounds for axis 0 with size {}'.format( key, shape[0])) return self._at(key) elif isinstance(key, py_slice): - if key.step is not None and key.step != 1: - if key.step == 0: - raise ValueError("slice step cannot be zero") - return self.as_nd_ndarray().__getitem__(key).as_np_ndarray() - elif key.start is not None or key.stop is not None: - return self._slice(key.start, key.stop) - else: - return self - - if isinstance(key, ndarray): - key = key.as_nd_ndarray() - elif isinstance(key, tuple): - key = [_get_index(idx) for idx in key] - key = tuple(key) - elif isinstance(key, list): - key = [_get_index(idx) for idx in key] - elif sys.version_info[0] > 2 and isinstance(key, range): - key = _get_index(key) - return self.as_nd_ndarray().__getitem__(key).as_np_ndarray() - # pylint: enable=too-many-return-statements + if (key.step is None or key.step == 1): + if key.start is not None or key.stop is not None: + return self._slice(key.start, key.stop) + else: + return self + elif key.step == 0: + raise ValueError("slice step cannot be zero") + + key = indexing_key_expand_implicit_axes(key, self.shape) + indexing_dispatch_code = get_indexing_dispatch_code(key) + if indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: + return self._get_np_basic_indexing(key) + elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: + return self._get_np_advanced_indexing(key) + else: + raise RuntimeError def __setitem__(self, key, value): - # TODO(junwu): calling base class __setitem__ is a temp solution + """ + x.__setitem__(i, y) <=> x[i]=y + Sets ``self[key]`` to ``value``. + + Overriding the method in NDArray class in a numpy fashion. + """ if isinstance(value, NDArray) and not isinstance(value, ndarray): raise TypeError('Cannot assign mx.nd.NDArray to mxnet.numpy.ndarray') if self.ndim == 0: if not isinstance(key, tuple) or len(key) != 0: raise IndexError('scalar tensor can only accept `()` as index') - if isinstance(value, ndarray): - value = value.as_nd_ndarray() - # TODO(junwu): Better handling of this situation - if isinstance(key, tuple) and len(key) == 0: - self.as_nd_ndarray().__setitem__(key, value) - return - - if isinstance(key, ndarray): - key = key.as_nd_ndarray() - elif isinstance(key, tuple): - key = [_get_index(idx) for idx in key] - key = tuple(key) - elif isinstance(key, list): - key = [_get_index(idx) for idx in key] - elif sys.version_info[0] > 2 and isinstance(key, range): - key = _get_index(key) - self.as_nd_ndarray().__setitem__(key, value) + if isinstance(value, numeric_types): + self.full(value) + elif isinstance(value, ndarray) and value.size == 1: + if value.shape != self.shape: + value = value.reshape(self.shape) + value.copyto(self) + elif isinstance(value, (_np.ndarray, _np.generic)) and value.size == 1: + if isinstance(value, _np.generic) or value.shape != self.shape: + value = value.reshape(self.shape) + self._sync_copyfrom(value) + else: + raise ValueError('setting an array element with a sequence.') + else: + key = indexing_key_expand_implicit_axes(key, self.shape) + slc_key = tuple(idx for idx in key if idx is not None) + if len(slc_key) < self.ndim: + raise RuntimeError( + 'too few indices after normalization: expected `ndim` ({}) ' + 'but got {}. This is a bug, please report it!' + ''.format(self.ndim, len(slc_key)) + ) + if len(slc_key) > self.ndim and self.ndim != 0: + raise IndexError( + 'too many indices ({}) for array with {} dimensions' + ''.format(len(slc_key), self.ndim) + ) + indexing_dispatch_code = get_indexing_dispatch_code(slc_key) + if indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: + self._set_nd_basic_indexing(key, value) # function is inheritated from NDArray class + elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: + self._set_np_advanced_indexing(key, value) + else: + raise ValueError( + 'Indexing NDArray with index {} of type {} is not supported' + ''.format(key, type(key)) + ) + + def _prepare_value_nd(self, value, bcast_shape, squeeze_axes=None): + """Return a broadcast `ndarray` with same context and dtype as ``self``. + For setting item, The returned `ndarray` is squeezed according to squeeze_axes since the + value_nd is assigned to not yet expanded space in original array. + `value`: numeric types or array like. + `bcast_shape`: a shape tuple. + `squeeze_axes`: a sequence of axes to squeeze in the value array. + Note: mxnet.numpy.ndarray not support NDArray as assigned value. + """ + if isinstance(value, numeric_types): + value_nd = full(bcast_shape, value, ctx=self.context, dtype=self.dtype) + elif isinstance(value, self.__class__): + value_nd = value.as_in_context(self.context) + if value_nd.dtype != self.dtype: + value_nd = value_nd.astype(self.dtype) + else: + try: + value_nd = array(value, ctx=self.context, dtype=self.dtype) + except: + raise TypeError('mxnet.np.ndarray does not support assignment with non-array-like ' + 'object {} of type {}'.format(value, type(value))) + + # For advanced indexing setitem, if there is None in indices, we need to squeeze the + # assigned value_nd since None is also ignored in slicing the original array. + if squeeze_axes and value_nd.ndim > len(bcast_shape): + squeeze_axes = tuple([ax for ax in squeeze_axes if ax < len(value_nd.shape)]) + value_nd = value_nd.squeeze(axis=tuple(squeeze_axes)) + + if value_nd.shape != bcast_shape: + if value_nd.size == 0: + value_nd = value_nd.reshape(bcast_shape) + else: + value_nd = value_nd.broadcast_to(bcast_shape) + return value_nd + def __add__(self, other): """x.__add__(y) <=> x + y""" @@ -550,7 +715,7 @@ def copyto(self, other): ``self.shape`` should be the same. This function copies the value from ``self`` to ``other``. - If ``other`` is a context, a new ``NDArray`` will be first created on + If ``other`` is a context, a new ``np.ndarray`` will be first created on the target context, and the value of ``self`` is copied. Parameters @@ -560,14 +725,14 @@ def copyto(self, other): Returns ------- - ndarray + out: ndarray The copied array. If ``other`` is an ``ndarray``, then the return value and ``other`` will point to the same ``ndarray``. Examples -------- >>> x = np.ones((2,3)) - >>> y = np.zeros((2,3), mx.gpu(0)) + >>> y = np.zeros((2,3), ctx=mx.gpu(0)) >>> z = x.copyto(y) >>> z is y True @@ -576,8 +741,15 @@ def copyto(self, other): [ 1., 1., 1.]], dtype=float32) """ if isinstance(other, ndarray): - other = other.as_nd_ndarray() - return self.as_nd_ndarray().copyto(other).as_np_ndarray() + if other.handle is self.handle: + warnings.warn('You are attempting to copy an array to itself', RuntimeWarning) + return False + return _npi.copyto(self, out=other) + elif isinstance(other, Context): + hret = ndarray(_new_alloc_handle(self.shape, other, True, self.dtype)) + return _npi.copyto(self, out=hret) + else: + raise TypeError('copyto does not support type ' + str(type(other))) def asscalar(self): raise AttributeError('mxnet.numpy.ndarray object has no attribute asscalar') @@ -650,6 +822,12 @@ def reshape_like(self, *args, **kwargs): """ raise AttributeError('mxnet.numpy.ndarray object has no attribute reshape_like') + def reshape_view(self, *shape, **kwargs): + """Returns a **view** of this array with a new shape without altering any data. + Inheritated from NDArray.reshape. + """ + return super(ndarray, self).reshape(*shape, **kwargs) + def zeros_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`zeros_like`. @@ -732,6 +910,82 @@ def slice_like(self, *args, **kwargs): """ raise AttributeError('mxnet.numpy.ndarray object has no attribute slice_like') + def slice_assign_scalar(self, value, begin, end, step): + """ + Assign the scalar to a cropped subset of this ndarray. Value will broadcast to the shape of the cropped shape + and will be cast to the same dtype of the ndarray. + + Parameters + ---------- + value: numeric value + Value and this ndarray should be of the same data type. + The shape of rhs should be the same as the cropped shape of this ndarray. + begin: tuple of begin indices + end: tuple of end indices + step: tuple of step lenghths + + Returns + ------- + This ndarray. + + Examples + -------- + >>> x = np.ones((2, 2, 2)) + >>> y = x.slice_assign_scalar(0, (0, 0, None), (1, 1, None), (None, None, None)) + >>> y + array([[[0., 0.], + [1., 1.]], + + [[1., 1.], + [1., 1.]]]) + >>> x + array([[[0., 0.], + [1., 1.]], + + [[1., 1.], + [1., 1.]]]) + """ + return _npi.slice_assign_scalar(self, value, begin=begin, end=end, step=step, out=self) + + def slice_assign(self, rhs, begin, end, step): + """ + Assign the rhs to a cropped subset of this ndarray in place. + Returns the view of this ndarray. + + Parameters + ---------- + rhs: ndarray. + rhs and this NDArray should be of the same data type, and on the same device. + The shape of rhs should be the same as the cropped shape of this ndarray. + begin: tuple of begin indices + end: tuple of end indices + step: tuple of step lenghths + + Returns + ------- + out : ndarray + This ndarray. + + Examples + -------- + >>> x = np.ones((2, 2, 2)) + >>> assigned = np.zeros((1, 1, 2)) + >>> y = x.slice_assign(assigned, (0, 0, None), (1, 1, None), (None, None, None)) + >>> y + array([[[0., 0.], + [1., 1.]], + + [[1., 1.], + [1., 1.]]]) + >>> x + array([[[0., 0.], + [1., 1.]], + + [[1., 1.], + [1., 1.]]]) + """ + return _npi.slice_assign(self, rhs, begin=begin, end=end, step=step, out=self) + def take(self, *args, **kwargs): """Convenience fluent method for :py:func:`take`. @@ -816,7 +1070,7 @@ def sign(self, *args, **kwargs): The arguments are the same as for :py:func:`sign`, with this array as data. """ - raise AttributeError('mxnet.numpy.ndarray object has no attribute abs') + raise AttributeError('mxnet.numpy.ndarray object has no attribute sign') def flatten(self, order='C'): # pylint: disable=arguments-differ """Return a copy of the array collapsed into one dimension.""" @@ -1252,11 +1506,26 @@ def squeeze(self, axis=None): # pylint: disable=arguments-differ return _mx_np_op.squeeze(self, axis=axis) def broadcast_to(self, shape): - raise AttributeError('mxnet.numpy.ndarray object has no attribute broadcast_to') + return _mx_np_op.broadcast_to(self, shape) def broadcast_like(self, other): raise AttributeError('mxnet.numpy.ndarray object has no attribute broadcast_like') + def _full(self, value): + """ + Currently for internal use only. Implemented for __setitem__. + Assign to self an array of self's same shape and type, filled with value. + """ + return _mx_nd_np.full(self.shape, value, ctx=self.context, dtype=self.dtype, out=self) + + def _scatter_set_nd(self, value_nd, indices): + """ + This is added as an ndarray class method in order to support polymorphism in NDArray and numpy.ndarray indexing + """ + return _npi.scatter_set_nd( + lhs=self, rhs=value_nd, indices=indices, shape=self.shape, out=self + ) + @property def shape(self): return super(ndarray, self).shape @@ -1408,6 +1677,62 @@ def ones(shape, dtype=_np.float32, order='C', ctx=None): return _mx_nd_np.ones(shape, dtype, order, ctx) +@set_module('mxnet.numpy') +def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): # pylint: disable=too-many-arguments + """ + Return a new array of given shape and type, filled with `fill_value`. + + Parameters + ---------- + shape : int or sequence of ints + Shape of the new array, e.g., ``(2, 3)`` or ``2``. + fill_value : scalar + Fill value. + dtype : data-type, optional + The desired data-type for the array. The default, `None`, means + `np.array(fill_value).dtype`. + order : {'C'}, optional + Whether to store multidimensional data in C- or Fortran-contiguous + (row- or column-wise) order in memory. Currently only supports C order. + ctx: to specify the device, e.g. the i-th GPU. + out : ndarray or None, optional + A location into which the result is stored. + If provided, it must have the same shape and dtype as input ndarray. + If not provided or `None`, a freshly-allocated array is returned. + + Returns + ------- + out : ndarray + Array of `fill_value` with the given shape, dtype, and order. + + Notes + ----- + This function differs from the original `numpy.full + https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html`_ in + the following way(s): + + - Has an additional `ctx` argument to specify the device + - Has an additional `out` argument + - Currently does not support `order` selection + + See Also + -------- + empty : Return a new uninitialized array. + ones : Return a new array setting values to one. + zeros : Return a new array setting values to zero. + + Examples + -------- + >>> np.full((2, 2), 10) + array([[10., 10.], + [10., 10.]]) + >>> np.full((2, 2), 2, dtype=np.int32, ctx=mx.cpu(0)) + array([[2, 2], + [2, 2]], dtype=int32) + """ + return _mx_nd_np.full(shape, fill_value, order=order, ctx=ctx, dtype=dtype, out=out) + + @set_module('mxnet.numpy') def add(x1, x2, out=None): """Add arguments element-wise. diff --git a/python/mxnet/symbol/numpy/_symbol.py b/python/mxnet/symbol/numpy/_symbol.py index 251a8a1b8e56..ff20cabdb748 100644 --- a/python/mxnet/symbol/numpy/_symbol.py +++ b/python/mxnet/symbol/numpy/_symbol.py @@ -931,6 +931,61 @@ def ones(shape, dtype=_np.float32, order='C', ctx=None): return _npi.ones(shape=shape, ctx=ctx, dtype=dtype) +@set_module('mxnet.symbol.numpy') +def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): # pylint: disable=too-many-arguments + """ + Return a new array of given shape and type, filled with `fill_value`. + Parameters + ---------- + shape : int or sequence of ints + Shape of the new array, e.g., ``(2, 3)`` or ``2``. + fill_value : scalar + Fill value. + dtype : data-type, optional + The desired data-type for the array. The default, `None`, means + `np.array(fill_value).dtype`. + order : {'C'}, optional + Whether to store multidimensional data in C- or Fortran-contiguous + (row- or column-wise) order in memory. Currently only supports C order. + ctx: to specify the device, e.g. the i-th GPU. + out : ndarray or None, optional + A location into which the result is stored. + If provided, it must have the same shape and dtype as input ndarray. + If not provided or `None`, a freshly-allocated array is returned. + Returns + ------- + out : ndarray + Array of `fill_value` with the given shape, dtype, and order. + Notes + ----- + This function differs from the original `numpy.full + https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html`_ in + the following way(s): + - Have an additional `ctx` argument to specify the device + - Have an additional `out` argument + - Currently does not support `order` selection + See Also + -------- + empty : Return a new uninitialized array. + ones : Return a new array setting values to one. + zeros : Return a new array setting values to zero. + Examples + -------- + >>> np.full((2, 2), 10) + array([[10., 10.], + [10., 10.]]) + >>> np.full((2, 2), 2, dtype=np.int32, ctx=mx.cpu(0)) + array([[2, 2], + [2, 2]], dtype=int32) + """ + if order != 'C': + raise NotImplementedError + if ctx is None: + ctx = current_context() + dtype = _np.float32 if dtype is None else dtype + return _npi.full(shape=shape, value=fill_value, ctx=ctx, dtype=dtype, out=out) + + #pylint: disable= too-many-arguments, no-member, protected-access def _ufunc_helper(lhs, rhs, fn_array, fn_scalar, lfn_scalar, rfn_scalar=None, out=None): """ Helper function for element-wise operation. diff --git a/python/mxnet/test_utils.py b/python/mxnet/test_utils.py index bb730fd3a007..4533729e2c15 100644 --- a/python/mxnet/test_utils.py +++ b/python/mxnet/test_utils.py @@ -1090,7 +1090,6 @@ def check_symbolic_forward(sym, location, expected, rtol=1E-4, atol=None, executor = sym.bind(ctx=ctx, args=location, args_grad=args_grad_data, aux_states=aux_states) for g in executor.grad_arrays: - print(g.shape) if g.ndim == 0: g[()] = 0 else: diff --git a/src/c_api/c_api.cc b/src/c_api/c_api.cc index f6b67d3cb437..71f459d49185 100644 --- a/src/c_api/c_api.cc +++ b/src/c_api/c_api.cc @@ -543,8 +543,6 @@ MXNET_DLL int MXNDArrayReshape64(NDArrayHandle handle, API_BEGIN(); NDArray *arr = static_cast(handle); mxnet::Tuple shape(dims, dims+ndim); - CHECK_GT(arr->shape().Size(), 0) << "Source ndarray's shape is undefined. Input shape: " - << arr->shape(); mxnet::TShape new_shape = mxnet::op::InferReshapeShape(shape, arr->shape(), reverse); *ptr = arr->ReshapeWithRecord(new_shape); *out = ptr; diff --git a/src/ndarray/ndarray.cc b/src/ndarray/ndarray.cc index 7fca6aa3f733..cc21dd242a2d 100644 --- a/src/ndarray/ndarray.cc +++ b/src/ndarray/ndarray.cc @@ -2110,6 +2110,7 @@ void CopyFromToSimple( // copy function is special // that we need to remove kAcceptEmptyMutateTarget from it NNVM_REGISTER_OP(_copyto) +.add_alias("_npi_copyto") .set_num_inputs(1) .set_num_outputs(1) .set_attr("FInferShape", op::ElemwiseShape<1, 1>) diff --git a/src/operator/tensor/indexing_op.cc b/src/operator/tensor/indexing_op.cc index ad4e54db54f1..21aefc5b2fd4 100644 --- a/src/operator/tensor/indexing_op.cc +++ b/src/operator/tensor/indexing_op.cc @@ -815,6 +815,7 @@ Examples:: NNVM_REGISTER_OP(gather_nd) +.add_alias("_npi_gather_nd") .describe(R"code(Gather elements or slices from `data` and store to a tensor whose shape is defined by `indices`. @@ -1008,6 +1009,7 @@ Examples:: .add_arguments(ScatterNDParam::__FIELDS__()); NNVM_REGISTER_OP(_scatter_set_nd) +.add_alias("_npi_scatter_set_nd") .describe(R"code(This operator has the same functionality as scatter_nd except that it does not reset the elements not indexed by the input index `NDArray` in the input data `NDArray`. output should be explicitly diff --git a/src/operator/tensor/init_op.cc b/src/operator/tensor/init_op.cc index 4e8900be24ca..7f60bf4e2246 100644 --- a/src/operator/tensor/init_op.cc +++ b/src/operator/tensor/init_op.cc @@ -82,6 +82,7 @@ NNVM_REGISTER_OP(_ones) .add_arguments(InitOpParam::__FIELDS__()); NNVM_REGISTER_OP(_full) +.add_alias("_npi_full") .describe("fill target with a scalar value") .set_num_inputs(0) .set_num_outputs(1) diff --git a/src/operator/tensor/matrix_op-inl.h b/src/operator/tensor/matrix_op-inl.h index 58a535353e10..c839c6f7cf40 100644 --- a/src/operator/tensor/matrix_op-inl.h +++ b/src/operator/tensor/matrix_op-inl.h @@ -667,13 +667,15 @@ void SliceEx(const nnvm::NodeAttrs& attrs, } template -inline void GetIndexRange(const mxnet::TShape& dshape, +inline bool GetIndexRange(const mxnet::TShape& dshape, const mxnet::Tuple>& param_begin, const mxnet::Tuple>& param_end, const mxnet::Tuple>& param_step, common::StaticArray* begin, common::StaticArray* end, common::StaticArray* step) { + // Function returns false if output is zero-sized, true otherwise. + bool size_non_zero = true; CHECK_NE(dshape.ndim(), 0U); CHECK_LE(param_begin.ndim(), dshape.ndim()) << "Slicing axis exceeds data dimensions"; @@ -722,6 +724,10 @@ inline void GetIndexRange(const mxnet::TShape& dshape, (*begin)[i] = b; (*end)[i] = e; (*step)[i] = s; + // checking begin==end + if (b == e) { + size_non_zero = false; + } } for (int i = param_begin.ndim(); i < dshape.ndim(); ++i) { @@ -729,6 +735,8 @@ inline void GetIndexRange(const mxnet::TShape& dshape, (*end)[i] = dshape[i]; (*step)[i] = 1; } + + return size_non_zero; } inline void SetSliceOpOutputDimSize(const mxnet::TShape& dshape, @@ -973,7 +981,7 @@ inline bool SliceAssignOpShape(const nnvm::NodeAttrs& attrs, CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); const mxnet::TShape& dshape = (*in_attrs)[0]; - if (dshape.ndim() == 0U || dshape.Size() == 0U) return false; + if (dshape.ndim() == 0U) return false; mxnet::TShape vshape = dshape; // vshape is the value shape on the right hand side const SliceParam& param = nnvm::get(attrs.parsed); MXNET_NDIM_SWITCH(dshape.ndim(), ndim, { @@ -1016,7 +1024,11 @@ void SliceAssignOpForward(const nnvm::NodeAttrs& attrs, const SliceParam& param = nnvm::get(attrs.parsed); MXNET_NDIM_SWITCH(data.ndim(), ndim, { common::StaticArray begin, end, step; - GetIndexRange(data.shape_, param.begin, param.end, param.step, &begin, &end, &step); + bool non_zero_shape = GetIndexRange(data.shape_, param.begin, param.end, param.step, + &begin, &end, &step); + if (!non_zero_shape) { + return; // slice_assign of zero-sized subspace needs no operation. + } MSHADOW_TYPE_SWITCH(out.type_flag_, DType, { MXNET_ASSIGN_REQ_SWITCH(req[0], Req, { int num_threads = val.shape_.FlatTo2D()[0]; @@ -1117,7 +1129,11 @@ void SliceAssignScalarOpForward(const nnvm::NodeAttrs& attrs, const SliceAssignScalarParam& param = nnvm::get(attrs.parsed); MXNET_NDIM_SWITCH(data.ndim(), ndim, { common::StaticArray begin, end, step; - GetIndexRange(data.shape_, param.begin, param.end, param.step, &begin, &end, &step); + bool non_zero_shape = GetIndexRange(data.shape_, param.begin, param.end, param.step, + &begin, &end, &step); + if (!non_zero_shape) { + return; // slice_assign of zero-sized subspaced needs no operation. + } for (index_t i = 0; i < param.begin.ndim(); ++i) { const int b = begin[i], e = end[i], s = step[i]; SetSliceOpOutputDimSize(data.shape_, i, b, e, s, &vshape); @@ -1250,6 +1266,9 @@ void SliceAxisGrad_(const nnvm::NodeAttrs& attrs, const std::vector& inputs, const std::vector& req, const std::vector& outputs) { + if (outputs[0].shape_.Size() == 0) { + return; + } const SliceAxisParam& param = nnvm::get(attrs.parsed); using namespace mshadow::op; using namespace mshadow::expr; @@ -1258,7 +1277,6 @@ void SliceAxisGrad_(const nnvm::NodeAttrs& attrs, index_t begin, end; GetSliceAxisParams(param, outputs[0].shape_, &axis, &begin, &end); int ndim = outputs[0].shape_.ndim(); - if (axis + 1 == ndim) { MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { mshadow::Tensor ograd = diff --git a/src/operator/tensor/matrix_op.cc b/src/operator/tensor/matrix_op.cc index f02a38ac07c4..d35c364fba47 100644 --- a/src/operator/tensor/matrix_op.cc +++ b/src/operator/tensor/matrix_op.cc @@ -507,6 +507,7 @@ Example:: [1., 3.]] )code" ADD_FILELINE) .add_alias("_npx_slice") +.add_alias("_npi_slice") .set_attr_parser(ParamParser) .set_attr("FInferShape", SliceOpShape) .set_attr("FInferType", ElemwiseType<1, 1>) @@ -531,6 +532,7 @@ NNVM_REGISTER_OP(_backward_slice) NNVM_REGISTER_OP(_slice_assign) .add_alias("_crop_assign") +.add_alias("_npi_slice_assign") .MXNET_DESCRIBE("Assign the rhs to a cropped subset of lhs.\n\n" "Requirements\n" "------------\n" @@ -556,6 +558,7 @@ NNVM_REGISTER_OP(_slice_assign) NNVM_REGISTER_OP(_slice_assign_scalar) .add_alias("_crop_assign_scalar") +.add_alias("_npi_slice_assign_scalar") .MXNET_DESCRIBE("(Assign the scalar to a cropped subset of the input.\n\n" "Requirements\n" "------------\n" diff --git a/tests/python/unittest/test_ndarray.py b/tests/python/unittest/test_ndarray.py index 87d3a41fd5bf..e15240c30dd3 100644 --- a/tests/python/unittest/test_ndarray.py +++ b/tests/python/unittest/test_ndarray.py @@ -141,12 +141,6 @@ def test_ndarray_setitem(): x_np[:, -3:-1, -2:-1] = 1 assert same(x.asnumpy(), x_np) - # Scalar array, no assignment allowed - with mx.np_shape(): - x = mx.nd.zeros(()) - with assert_raises(IndexError): - x[:] = 1 - # Assignments for empty axes for trivial_shape in [(1,), (1, 1), (1, 1, 1)]: x = mx.nd.zeros(trivial_shape) @@ -1387,7 +1381,6 @@ def assert_same(np_array, np_index, mx_array, mx_index, mx_value, np_value=None) except Exception as e: print('Failed with index = {}, value.shape = {}'.format(mx_index, mx_value.shape)) raise e - assert same(np_array, mx_array.asnumpy()) np_index = index @@ -1476,9 +1469,12 @@ def convert(num): np_array = np.arange(np.prod(shape), dtype='int32').reshape(shape) # index_list is a list of tuples. The tuple's first element is the index, the second one is a boolean value # indicating whether we should expect the result as a scalar compared to numpy. - index_list = [(0, False), (np.int32(0), False), (np.int64(0), False), + index_list = [# Basic indexing + # Single int as index + (0, False), (np.int32(0), False), (np.int64(0), False), (5, False), (np.int32(5), False), (np.int64(5), False), (-1, False), (np.int32(-1), False), (np.int64(-1), False), + # Slicing as index (slice(5), False), (np_int(slice(5), np.int32), False), (np_int(slice(5), np.int64), False), (slice(1, 5), False), (np_int(slice(1, 5), np.int32), False), (np_int(slice(1, 5), np.int64), False), (slice(1, 5, 2), False), (np_int(slice(1, 5, 2), np.int32), False), @@ -1499,6 +1495,7 @@ def convert(num): (np_int(slice(None, None, -1)), False), (np_int(slice(None, None, -1), np.int64), False), (slice(None, None, -2), False), (np_int(slice(None, None, -2), np.int32), False), (np_int(slice(None, None, -2), np.int64), False), + # slice(None) as indices ((slice(None), slice(None), 1, 8), False), ((slice(None), slice(None), -1, 8), False), ((slice(None), slice(None), 1, -8), False), @@ -1511,6 +1508,7 @@ def convert(num): ((slice(None), 2, slice(1, 5), 1), False), (np_int((slice(None), 2, slice(1, 5), 1)), False), (np_int((slice(None), 2, slice(1, 5), 1), np.int64), False), + # Multiple ints as indices ((1, 2, 3), False), (np_int((1, 2, 3)), False), (np_int((1, 2, 3), np.int64), False), @@ -1535,6 +1533,19 @@ def convert(num): ((slice(1, 8, 2), 1, slice(3, 8), 2), False), (np_int((slice(1, 8, 2), 1, slice(3, 8), 2)), False), (np_int((slice(1, 8, 2), 1, slice(3, 8), 2), np.int64), False), + # Test Ellipsis ('...') + ((1, Ellipsis, -1), False), + ((slice(2), Ellipsis, None, 0), False), + # Test basic indexing with newaxis + (None, False), + ((1, None, -2, 3, -4), False), + ((1, slice(2, 5), None), False), + ((slice(None), slice(1, 4), None, slice(2, 3)), False), + ((slice(1, 3), slice(1, 3), slice(1, 3), slice(1, 3), None), False), + ((slice(1, 3), slice(1, 3), None, slice(1, 3), slice(1, 3)), False), + ((None, slice(1, 2), 3, None), False), + ((1, None, 2, 3, None, None, 4), False), + # Advanced indexing ([1], False), ([1, 2], False), ([2, 1, 3], False), ([7, 5, 0, 3, 6, 2, 1], False), (np.array([6, 3], dtype=np.int32), False), (np.array([[3, 4], [0, 6]], dtype=np.int32), False), @@ -1571,16 +1582,15 @@ def convert(num): (([[[[1]]]], [[2], [12]], slice(0, 3), slice(None)), False), (([1, 2], slice(3, 5), [2, 3], [3, 4]), False), (([1, 2], slice(3, 5), (2, 3), [3, 4]), False), - ((1, Ellipsis, -1), False), - ((slice(2), Ellipsis, None, 0), False), - (None, False), - ((1, None, -2, 3, -4), False), - # TODO(zoeygxy): Support None in advanced indexing - # (([1, 2], slice(3, 5), None, None, [3, 4]), False), - # ((slice(None), slice(3, 5), None, None, [2, 3], [3, 4]), False), - # ((slice(None), slice(3, 5), None, [2, 3], None, [3, 4]), False), - # ((None, slice(None), slice(3, 5), [2, 3], None, [3, 4]), False), + # Advanced indexing with None + (([1, 2], slice(3, 5), None, None, [3, 4]), False), + ((slice(None), slice(3, 5), None, None, [2, 3], [3, 4]), False), + ((slice(None), slice(3, 5), None, [2, 3], None, [3, 4]), False), + ((None, slice(None), slice(3, 5), [2, 3], None, [3, 4]), False), + ((None, slice(None), None, slice(3, 5), [2, 3], None, [3, 4]), False), + (([2, 3, 4], None, [3, 4, 6], None, slice(1, 2), None, [1, 2, 3]), False), ] + for index in index_list: test_getitem(np_array, index[0], index[1]) test_setitem(np_array, index[0], index[1]) diff --git a/tests/python/unittest/test_numpy_ndarray.py b/tests/python/unittest/test_numpy_ndarray.py index 7fa05206ac09..11d55fd68a06 100644 --- a/tests/python/unittest/test_numpy_ndarray.py +++ b/tests/python/unittest/test_numpy_ndarray.py @@ -377,28 +377,69 @@ def test_np_ndarray_copy(): @with_seed() @use_np def test_np_ndarray_indexing(): - def test_getitem(np_array, index): - """`is_scalar` indicates whether we should expect a scalar for the result. - If so, the indexed array of NDArray should call asscalar to compare - with numpy's indexed array.""" + """ + Test all indexing. + """ + def np_int(index, int_type=np.int32): + """ + Helper function for testing indexing that converts slices to slices of ints or None, and tuples to + tuples of ints or None. + """ + def convert(num): + if num is None: + return num + else: + return int_type(num) + + if isinstance(index, slice): + return slice(convert(index.start), convert(index.stop), convert(index.step)) + elif isinstance(index, tuple): # tuple of slices and integers + ret = [] + for elem in index: + if isinstance(elem, slice): + ret.append(slice(convert(elem.start), convert(elem.stop), convert(elem.step))) + else: + ret.append(convert(elem)) + return tuple(ret) + else: + assert False + + # Copied from test_ndarray.py. Under construction. + def test_getitem(np_array, index, is_scalar=False): + """ + `is_scalar` indicates whether we should expect a scalar for the result. + If so, the indexed array should call asscalar to compare + with numpy's indexed array. + np_array is a native numpy array. + """ np_index = index + if type(index) == mx.nd.NDArray: # use of NDArray is prohibited + assert False if isinstance(index, np.ndarray): np_index = index.asnumpy() if isinstance(index, tuple): - np_index = [] - for idx in index: - if isinstance(idx, np.ndarray): - np_index.append(idx.asnumpy()) - else: - np_index.append(idx) - np_index = tuple(np_index) - + np_index = tuple([ + idx.asnumpy() if isinstance(idx, mx.nd.NDArray) else idx + for idx in index] + ) np_indexed_array = np_array[np_index] - mx_array = np.array(np_array, dtype=np_array.dtype) - mx_indexed_array = mx_array[index].asnumpy() - assert same(np_indexed_array, mx_indexed_array), 'Failed with index=%s' % str(index) - - def test_setitem(np_array, index): + mx_np_array = np.array(np_array, dtype=np_array.dtype) + try: + mx_indexed_array = mx_np_array[index] + except Exception as e: + print('Failed with index = {}'.format(index)) + raise e + if not is_scalar: + mx_indexed_array = mx_indexed_array.asnumpy() + assert same(np_indexed_array, mx_indexed_array), 'Failed with index = {}'.format(index) + + def test_setitem(np_array, index, is_scalar=False): + """ + `is_scalar` indicates whether we should expect a scalar for the result. + If so, the indexed array should call asscalar to compare + with numpy's indexed array. + np_array is a native numpy array. + """ def assert_same(np_array, np_index, mx_array, mx_index, mx_value, np_value=None): if np_value is not None: np_array[np_index] = np_value @@ -406,10 +447,16 @@ def assert_same(np_array, np_index, mx_array, mx_index, mx_value, np_value=None) np_array[np_index] = mx_value.asnumpy() else: np_array[np_index] = mx_value - mx_array[mx_index] = mx_value + + try: + mx_array[mx_index] = mx_value + except Exception as e: + print('Failed with index = {}, value.shape = {}'.format(mx_index, mx_value.shape)) + raise e + assert same(np_array, mx_array.asnumpy()) - np_index = index + np_index = index # keep this native numpy type if isinstance(index, np.ndarray): np_index = index.asnumpy() if isinstance(index, tuple): @@ -421,30 +468,42 @@ def assert_same(np_array, np_index, mx_array, mx_index, mx_value, np_value=None) np_index.append(idx) np_index = tuple(np_index) - mx_array = np.array(np_array, dtype=np_array.dtype) - np_array = mx_array.asnumpy() - indexed_array_shape = np_array[np_index].shape - np_indexed_array = _np.random.randint(low=-10000, high=0, size=indexed_array_shape) - # test value is a numpy array without broadcast - assert_same(np_array, np_index, mx_array, index, np_indexed_array) - # test value is an numeric_type - assert_same(np_array, np_index, mx_array, index, _np.random.randint(low=-10000, high=0)) - if len(indexed_array_shape) > 1: - # test ndarray with broadcast - assert_same(np_array, np_index, mx_array, index, - _np.random.uniform(low=-10000, high=0, size=(indexed_array_shape[-1],))) - # test numpy array with broadcast - assert_same(np_array, np_index, mx_array, index, - _np.random.randint(low=-10000, high=0, size=(indexed_array_shape[-1],))) - # test list with broadcast - assert_same(np_array, np_index, mx_array, index, - [_np.random.randint(low=-10000, high=0)] * indexed_array_shape[-1]) + mx_array = np.array(np_array, dtype=np_array.dtype) # mxnet.np.ndarray + np_array = mx_array.asnumpy() # native numpy array + if is_scalar: + # test value is a numeric type + assert_same(np_array, np_index, mx_array, index, _np.random.randint(low=-10000, high=0)) + value_nd = [_np.random.randint(low=-10000, high=0)] + assert_same(np_array, np_index, mx_array, index, value_nd, value_nd[0]) + else: + indexed_array_shape = np_array[np_index].shape + np_indexed_array = _np.random.randint(low=-10000, high=0, size=indexed_array_shape) + # test value is a native numpy array without broadcast + assert_same(np_array, np_index, mx_array, index, np_indexed_array) + # test value is a mxnet numpy array without broadcast + assert_same(np_array, np_index, mx_array, index, np.array(np_indexed_array)) + # test value is an numeric_type + assert_same(np_array, np_index, mx_array, index, _np.random.randint(low=-10000, high=0)) + if len(indexed_array_shape) > 1: + np_value = _np.random.randint(low=-10000, high=0, size=(indexed_array_shape[-1],)) + # test mxnet ndarray with broadcast + assert_same(np_array, np_index, mx_array, index, np.array(np_value)) + # test native numpy array with broadcast + assert_same(np_array, np_index, mx_array, index, np_value) + # test list with broadcast + assert_same(np_array, np_index, mx_array, index, + [_np.random.randint(low=-10000, high=0)] * indexed_array_shape[-1]) def test_getitem_autograd(np_array, index): + """ + np_array: native numpy array. + """ x = np.array(np_array, dtype=np_array.dtype) x.attach_grad() - with autograd.record(): + with mx.autograd.record(): y = x[index] + if not isinstance(y, np.ndarray): + return y.backward() value = np.ones_like(y) x_grad = np.zeros_like(x) @@ -452,177 +511,174 @@ def test_getitem_autograd(np_array, index): assert same(x_grad.asnumpy(), x.grad.asnumpy()) def test_setitem_autograd(np_array, index): + """ + np_array: native numpy array. + """ x = np.array(np_array, dtype=np_array.dtype) + if not isinstance(x[index], np.ndarray): + return # x[index] is scalar out_shape = x[index].shape y = np.array(_np.random.uniform(size=out_shape)) y.attach_grad() try: - with autograd.record(): + with mx.autograd.record(): x[index] = y - assert False # should not reach here + x.backward() + y_grad = np.ones_like(y) + assert same(y_grad.asnumpy(), y.grad.asnumpy()) except mx.base.MXNetError as err: assert str(err).find('Inplace operations (+=, -=, x[:]=, etc) are not supported when recording with') != -1 - def np_int(index, int_type=_np.int32): - def convert(num): - if num is None: - return num - else: - return int_type(num) - - if isinstance(index, slice): - return slice(convert(index.start), convert(index.stop), convert(index.step)) - elif isinstance(index, tuple): # tuple of slices and integers - ret = [] - for elem in index: - if isinstance(elem, slice): - ret.append(slice(convert(elem.start), convert(elem.stop), convert(elem.step))) - else: - ret.append(convert(elem)) - return tuple(ret) - else: - assert False - shape = (8, 16, 9, 9) - np_array = _np.arange(_np.prod(shape), dtype='int32').reshape(shape) + np_array = _np.arange(_np.prod(_np.array(shape)), dtype='int32').reshape(shape) # native np array index_list = [ - (), - 0, - _np.int32(0), - _np.int64(0), - 5, - _np.int32(5), - _np.int64(5), - -1, - _np.int32(-1), - _np.int64(-1), - slice(5), - np_int(slice(5), _np.int32), - np_int(slice(5), _np.int64), - slice(1, 5), - np_int(slice(1, 5), _np.int32), - np_int(slice(1, 5), _np.int64), - slice(1, 5, 2), - np_int(slice(1, 5, 2), _np.int32), - np_int(slice(1, 5, 2), _np.int64), - slice(7, 0, -1), - np_int(slice(7, 0, -1)), - np_int(slice(7, 0, -1), _np.int64), - slice(None, 6), - np_int(slice(None, 6)), - np_int(slice(None, 6), _np.int64), - slice(None, 6, 3), - np_int(slice(None, 6, 3)), - np_int(slice(None, 6, 3), _np.int64), - slice(1, None), - np_int(slice(1, None)), - np_int(slice(1, None), _np.int64), - slice(1, None, 3), - np_int(slice(1, None, 3)), - np_int(slice(1, None, 3), _np.int64), - slice(None, None, 2), - np_int(slice(None, None, 2)), - np_int(slice(None, None, 2), _np.int64), - slice(None, None, -1), - np_int(slice(None, None, -1)), - np_int(slice(None, None, -1), _np.int64), - slice(None, None, -2), - np_int(slice(None, None, -2), _np.int32), - np_int(slice(None, None, -2), _np.int64), - (slice(None), slice(None), 1, 8), - (slice(None), slice(None), -1, 8), - (slice(None), slice(None), 1, -8), - (slice(None), slice(None), -1, -8), - np_int((slice(None), slice(None), 1, 8)), - np_int((slice(None), slice(None), 1, 8), _np.int64), - (slice(None), slice(None), 1, 8), - np_int((slice(None), slice(None), -1, -8)), - np_int((slice(None), slice(None), -1, -8), _np.int64), - (slice(None), 2, slice(1, 5), 1), - np_int((slice(None), 2, slice(1, 5), 1)), - np_int((slice(None), 2, slice(1, 5), 1), _np.int64), - (1, 2, 3), - np_int((1, 2, 3)), - np_int((1, 2, 3), _np.int64), - (-1, -2, -3), - np_int((-1, -2, -3)), - np_int((-1, -2, -3), _np.int64), - (1, 2, 3, 4), - np_int((1, 2, 3, 4)), - np_int((1, 2, 3, 4), _np.int64), - (-4, -3, -2, -1), - np_int((-4, -3, -2, -1)), - np_int((-4, -3, -2, -1), _np.int64), - (slice(None, None, -1), 2, slice(1, 5), 1), - np_int((slice(None, None, -1), 2, slice(1, 5), 1)), - np_int((slice(None, None, -1), 2, slice(1, 5), 1), _np.int64), - (slice(None, None, -1), 2, slice(1, 7, 2), 1), - np_int((slice(None, None, -1), 2, slice(1, 7, 2), 1)), - np_int((slice(None, None, -1), 2, slice(1, 7, 2), 1), _np.int64), - (slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3)), - np_int((slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3))), - np_int((slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3)), _np.int64), - (slice(1, 8, 2), 1, slice(3, 8), 2), - np_int((slice(1, 8, 2), 1, slice(3, 8), 2)), - np_int((slice(1, 8, 2), 1, slice(3, 8), 2), _np.int64), - [1], - [1, 2], - [2, 1, 3], - [7, 5, 0, 3, 6, 2, 1], - _np.array([6, 3], dtype=_np.int32), - _np.array([[3, 4], [0, 6]], dtype=_np.int32), - _np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=_np.int32), - _np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=_np.int64), - _np.array([[2], [0], [1]], dtype=_np.int32), - _np.array([[2], [0], [1]], dtype=_np.int64), - np.array([4, 7], dtype=_np.int32), - np.array([4, 7], dtype=_np.int64), - np.array([[3, 6], [2, 1]], dtype=_np.int32), - np.array([[3, 6], [2, 1]], dtype=_np.int64), - np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=_np.int32), - np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=_np.int64), - (1, [2, 3]), - (1, [2, 3], _np.array([[3], [0]], dtype=_np.int32)), - (1, [2, 3]), - (1, [2, 3], _np.array([[3], [0]], dtype=_np.int64)), - (1, [2], _np.array([[5], [3]], dtype=_np.int32), slice(None)), - (1, [2], _np.array([[5], [3]], dtype=_np.int64), slice(None)), - (1, [2, 3], _np.array([[6], [0]], dtype=_np.int32), slice(2, 5)), - (1, [2, 3], _np.array([[6], [0]], dtype=_np.int64), slice(2, 5)), - (1, [2, 3], _np.array([[4], [7]], dtype=_np.int32), slice(2, 5, 2)), - (1, [2, 3], _np.array([[4], [7]], dtype=_np.int64), slice(2, 5, 2)), - (1, [2], _np.array([[3]], dtype=_np.int32), slice(None, None, -1)), - (1, [2], _np.array([[3]], dtype=_np.int64), slice(None, None, -1)), - (1, [2], _np.array([[3]], dtype=_np.int32), np.array([[5, 7], [2, 4]], dtype=_np.int64)), - (1, [2], np.array([[4]], dtype=_np.int32), np.array([[1, 3], [5, 7]], dtype='int64')), - [0], - [0, 1], - [1, 2, 3], - [2, 0, 5, 6], - ([1, 1], [2, 3]), - ([1], [4], [5]), - ([1], [4], [5], [6]), - ([[1]], [[2]]), - ([[1]], [[2]], [[3]], [[4]]), - (slice(0, 2), [[1], [6]], slice(0, 2), slice(0, 5, 2)), - ([[[[1]]]], [[1]], slice(0, 3), [1, 5]), - ([[[[1]]]], 3, slice(0, 3), [1, 3]), - ([[[[1]]]], 3, slice(0, 3), 0), - ([[[[1]]]], [[2], [12]], slice(0, 3), slice(None)), - ([1, 2], slice(3, 5), [2, 3], [3, 4]), - ([1, 2], slice(3, 5), (2, 3), [3, 4]), - range(4), - range(3, 0, -1), - (range(4,), [1]), - # slice(0, 0) does not support output zero-size tensor yet + # Basic indexing + # Single int as index + (0, False), (np.int32(0), False), (np.int64(0), False), + (5, False), (np.int32(5), False), (np.int64(5), False), + (-1, False), (np.int32(-1), False), (np.int64(-1), False), + # Slicing as index + (slice(5), False), (np_int(slice(5), np.int32), False), (np_int(slice(5), np.int64), False), + (slice(1, 5), False), (np_int(slice(1, 5), np.int32), False), (np_int(slice(1, 5), np.int64), False), + (slice(1, 5, 2), False), (np_int(slice(1, 5, 2), np.int32), False), + (np_int(slice(1, 5, 2), np.int64), False), + (slice(7, 0, -1), False), (np_int(slice(7, 0, -1)), False), + (np_int(slice(7, 0, -1), np.int64), False), + (slice(None, 6), False), (np_int(slice(None, 6)), False), + (np_int(slice(None, 6), np.int64), False), + (slice(None, 6, 3), False), (np_int(slice(None, 6, 3)), False), + (np_int(slice(None, 6, 3), np.int64), False), + (slice(1, None), False), (np_int(slice(1, None)), False), + (np_int(slice(1, None), np.int64), False), + (slice(1, None, 3), False), (np_int(slice(1, None, 3)), False), + (np_int(slice(1, None, 3), np.int64), False), + (slice(None, None, 2), False), (np_int(slice(None, None, 2)), False), + (np_int(slice(None, None, 2), np.int64), False), + (slice(None, None, -1), False), + (np_int(slice(None, None, -1)), False), (np_int(slice(None, None, -1), np.int64), False), + (slice(None, None, -2), False), + (np_int(slice(None, None, -2), np.int32), False), (np_int(slice(None, None, -2), np.int64), False), + # Multiple ints as indices + ((1, 2, 3), False), + (np_int((1, 2, 3)), False), + (np_int((1, 2, 3), np.int64), False), + ((-1, -2, -3), False), + (np_int((-1, -2, -3)), False), + (np_int((-1, -2, -3), np.int64), False), + ((1, 2, 3, 4), True), + (np_int((1, 2, 3, 4)), True), + (np_int((1, 2, 3, 4), np.int64), True), + ((-4, -3, -2, -1), True), + (np_int((-4, -3, -2, -1)), True), + (np_int((-4, -3, -2, -1), np.int64), True), + # slice(None) as indices + ((slice(None), slice(None), 1, 8), False), + ((slice(None), slice(None), -1, 8), False), + ((slice(None), slice(None), 1, -8), False), + ((slice(None), slice(None), -1, -8), False), + (np_int((slice(None), slice(None), 1, 8)), False), + (np_int((slice(None), slice(None), 1, 8), np.int64), False), + ((slice(None), slice(None), 1, 8), False), + (np_int((slice(None), slice(None), -1, -8)), False), + (np_int((slice(None), slice(None), -1, -8), np.int64), False), + ((slice(None), 2, slice(1, 5), 1), False), + (np_int((slice(None), 2, slice(1, 5), 1)), False), + (np_int((slice(None), 2, slice(1, 5), 1), np.int64), False), + # Mixture of ints and slices as indices + ((slice(None, None, -1), 2, slice(1, 5), 1), False), + (np_int((slice(None, None, -1), 2, slice(1, 5), 1)), False), + (np_int((slice(None, None, -1), 2, slice(1, 5), 1), np.int64), False), + ((slice(None, None, -1), 2, slice(1, 7, 2), 1), False), + (np_int((slice(None, None, -1), 2, slice(1, 7, 2), 1)), False), + (np_int((slice(None, None, -1), 2, slice(1, 7, 2), 1), np.int64), False), + ((slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3)), False), + (np_int((slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3))), False), + (np_int((slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3)), np.int64), False), + ((slice(1, 8, 2), 1, slice(3, 8), 2), False), + (np_int((slice(1, 8, 2), 1, slice(3, 8), 2)), False), + (np_int((slice(1, 8, 2), 1, slice(3, 8), 2), np.int64), False), + # Test Ellipsis ('...') + ((1, Ellipsis, -1), False), + ((slice(2), Ellipsis, None, 0), False), + # Test newaxis + (None, False), + ((1, None, -2, 3, -4), False), + ((1, slice(2, 5), None), False), + ((slice(None), slice(1, 4), None, slice(2, 3)), False), + ((slice(1, 3), slice(1, 3), slice(1, 3), slice(1, 3), None), False), + ((slice(1, 3), slice(1, 3), None, slice(1, 3), slice(1, 3)), False), + ((None, slice(1, 2), 3, None), False), + ((1, None, 2, 3, None, None, 4), False), + # Advanced indexing + (([1, 2], slice(3, 5), None, None, [3, 4]), False), + ((slice(None), slice(3, 5), None, None, [2, 3], [3, 4]), False), + ((slice(None), slice(3, 5), None, [2, 3], None, [3, 4]), False), + ((None, slice(None), slice(3, 5), [2, 3], None, [3, 4]), False), + ([1], False), ([1, 2], False), ([2, 1, 3], False), ([7, 5, 0, 3, 6, 2, 1], False), + (np.array([6, 3], dtype=np.int32), False), + (np.array([[3, 4], [0, 6]], dtype=np.int32), False), + (np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int32), False), + (np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int64), False), + (np.array([[2], [0], [1]], dtype=np.int32), False), + (np.array([[2], [0], [1]], dtype=np.int64), False), + (np.array([4, 7], dtype=np.int32), False), + (np.array([4, 7], dtype=np.int64), False), + (np.array([[3, 6], [2, 1]], dtype=np.int32), False), + (np.array([[3, 6], [2, 1]], dtype=np.int64), False), + (np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int32), False), + (np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int64), False), + ((1, [2, 3]), False), ((1, [2, 3], np.array([[3], [0]], dtype=np.int32)), False), + ((1, [2, 3]), False), ((1, [2, 3], np.array([[3], [0]], dtype=np.int64)), False), + ((1, [2], np.array([[5], [3]], dtype=np.int32), slice(None)), False), + ((1, [2], np.array([[5], [3]], dtype=np.int64), slice(None)), False), + ((1, [2, 3], np.array([[6], [0]], dtype=np.int32), slice(2, 5)), False), + ((1, [2, 3], np.array([[6], [0]], dtype=np.int64), slice(2, 5)), False), + ((1, [2, 3], np.array([[4], [7]], dtype=np.int32), slice(2, 5, 2)), False), + ((1, [2, 3], np.array([[4], [7]], dtype=np.int64), slice(2, 5, 2)), False), + ((1, [2], np.array([[3]], dtype=np.int32), slice(None, None, -1)), False), + ((1, [2], np.array([[3]], dtype=np.int64), slice(None, None, -1)), False), + ((1, [2], np.array([[3]], dtype=np.int32), np.array([[5, 7], [2, 4]], dtype=np.int64)), False), + ((1, [2], np.array([[4]], dtype=np.int32), np.array([[1, 3], [5, 7]], dtype='int64')), + False), + ([0], False), ([0, 1], False), ([1, 2, 3], False), ([2, 0, 5, 6], False), + (([1, 1], [2, 3]), False), (([1], [4], [5]), False), (([1], [4], [5], [6]), False), + (([[1]], [[2]]), False), (([[1]], [[2]], [[3]], [[4]]), False), + ((slice(0, 2), [[1], [6]], slice(0, 2), slice(0, 5, 2)), False), + (([[[[1]]]], [[1]], slice(0, 3), [1, 5]), False), + (([[[[1]]]], 3, slice(0, 3), [1, 3]), False), + (([[[[1]]]], 3, slice(0, 3), 0), False), + (([[[[1]]]], [[2], [12]], slice(0, 3), slice(None)), False), + (([1, 2], slice(3, 5), [2, 3], [3, 4]), False), + (([1, 2], slice(3, 5), (2, 3), [3, 4]), False), ] for index in index_list: - test_getitem(np_array, index) - test_setitem(np_array, index) - test_getitem_autograd(np_array, index) - if not isinstance(index, tuple) or len(index) != 0: - # When index = (), this is same a[()] = b is equivalent to b.copyto(a) - # which should have no problem to do autograd + test_getitem(np_array, index[0], index[1]) + test_setitem(np_array, index[0], index[1]) + test_getitem_autograd(np_array, index[0]) + test_setitem_autograd(np_array, index[0]) + + # Test indexing to zero-size tensors + index_list = [ + ((slice(0, 0), slice(0, 0), 1, 2), False), + ((slice(0, 0), slice(0, 0), slice(0, 0), slice(0, 0)), False), + ] + for index in index_list: + test_getitem(np_array, index[0], index[1]) + test_setitem(np_array, index[0]) + test_getitem_autograd(np_array, index[0]) + test_setitem_autograd(np_array, index[0]) + + # test zero-size tensors get and setitem + shapes_indices = [ + ((0), [slice(None, None, None)]), + ((3, 0), [2, (slice(None, None, None)), (slice(None, None, None), None)]), + ] + for shape, indices in shapes_indices: + for index in indices: + np_array = np.zeros(shape) + test_getitem(np_array, index, False) + test_setitem(np_array, index, False) + test_getitem_autograd(np_array, index) test_setitem_autograd(np_array, index) From 2052fb7b304f744b1a919f519a069cbf9a2d9869 Mon Sep 17 00:00:00 2001 From: zoeygxy Date: Tue, 27 Aug 2019 16:49:30 +0800 Subject: [PATCH 2/3] Style and test fixed --- python/mxnet/numpy/multiarray.py | 4 - src/operator/tensor/matrix_op-inl.h | 16 +- tests/python/unittest/test_numpy_ndarray.py | 337 ++++++++++---------- 3 files changed, 180 insertions(+), 177 deletions(-) diff --git a/python/mxnet/numpy/multiarray.py b/python/mxnet/numpy/multiarray.py index 6b44f6669cbf..5e7129226e34 100644 --- a/python/mxnet/numpy/multiarray.py +++ b/python/mxnet/numpy/multiarray.py @@ -176,9 +176,6 @@ def _get_np_basic_indexing(self, key): for ax in new_axes: # pylint: disable=invalid-name final_shape.insert(ax, 1) - if final_shape == []: - # Override for single element indexing - return sliced.item() if sliced.size == 0: return sliced.reshape(tuple(final_shape)) else: @@ -222,7 +219,6 @@ def __getitem__(self, key): if ndim == 0: if key != (): raise IndexError('scalar tensor can only accept `()` as index') - return self.item() # Handle simple cases for higher speed if isinstance(key, tuple) and len(key) == 0: return self diff --git a/src/operator/tensor/matrix_op-inl.h b/src/operator/tensor/matrix_op-inl.h index c839c6f7cf40..0d66907ad6cd 100644 --- a/src/operator/tensor/matrix_op-inl.h +++ b/src/operator/tensor/matrix_op-inl.h @@ -675,7 +675,7 @@ inline bool GetIndexRange(const mxnet::TShape& dshape, common::StaticArray* end, common::StaticArray* step) { // Function returns false if output is zero-sized, true otherwise. - bool size_non_zero = true; + bool zero_size_shape = false; CHECK_NE(dshape.ndim(), 0U); CHECK_LE(param_begin.ndim(), dshape.ndim()) << "Slicing axis exceeds data dimensions"; @@ -726,7 +726,7 @@ inline bool GetIndexRange(const mxnet::TShape& dshape, (*step)[i] = s; // checking begin==end if (b == e) { - size_non_zero = false; + zero_size_shape = true; } } @@ -736,7 +736,7 @@ inline bool GetIndexRange(const mxnet::TShape& dshape, (*step)[i] = 1; } - return size_non_zero; + return zero_size_shape; } inline void SetSliceOpOutputDimSize(const mxnet::TShape& dshape, @@ -981,7 +981,7 @@ inline bool SliceAssignOpShape(const nnvm::NodeAttrs& attrs, CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); const mxnet::TShape& dshape = (*in_attrs)[0]; - if (dshape.ndim() == 0U) return false; + if (!mxnet::ndim_is_known(dshape)) return false; mxnet::TShape vshape = dshape; // vshape is the value shape on the right hand side const SliceParam& param = nnvm::get(attrs.parsed); MXNET_NDIM_SWITCH(dshape.ndim(), ndim, { @@ -1024,9 +1024,9 @@ void SliceAssignOpForward(const nnvm::NodeAttrs& attrs, const SliceParam& param = nnvm::get(attrs.parsed); MXNET_NDIM_SWITCH(data.ndim(), ndim, { common::StaticArray begin, end, step; - bool non_zero_shape = GetIndexRange(data.shape_, param.begin, param.end, param.step, + bool zero_size_shape = GetIndexRange(data.shape_, param.begin, param.end, param.step, &begin, &end, &step); - if (!non_zero_shape) { + if (zero_size_shape) { return; // slice_assign of zero-sized subspace needs no operation. } MSHADOW_TYPE_SWITCH(out.type_flag_, DType, { @@ -1129,9 +1129,9 @@ void SliceAssignScalarOpForward(const nnvm::NodeAttrs& attrs, const SliceAssignScalarParam& param = nnvm::get(attrs.parsed); MXNET_NDIM_SWITCH(data.ndim(), ndim, { common::StaticArray begin, end, step; - bool non_zero_shape = GetIndexRange(data.shape_, param.begin, param.end, param.step, + bool zero_size_shape = GetIndexRange(data.shape_, param.begin, param.end, param.step, &begin, &end, &step); - if (!non_zero_shape) { + if (zero_size_shape) { return; // slice_assign of zero-sized subspaced needs no operation. } for (index_t i = 0; i < param.begin.ndim(); ++i) { diff --git a/tests/python/unittest/test_numpy_ndarray.py b/tests/python/unittest/test_numpy_ndarray.py index 11d55fd68a06..54ba2fe108c7 100644 --- a/tests/python/unittest/test_numpy_ndarray.py +++ b/tests/python/unittest/test_numpy_ndarray.py @@ -405,13 +405,7 @@ def convert(num): assert False # Copied from test_ndarray.py. Under construction. - def test_getitem(np_array, index, is_scalar=False): - """ - `is_scalar` indicates whether we should expect a scalar for the result. - If so, the indexed array should call asscalar to compare - with numpy's indexed array. - np_array is a native numpy array. - """ + def test_getitem(np_array, index): np_index = index if type(index) == mx.nd.NDArray: # use of NDArray is prohibited assert False @@ -429,17 +423,10 @@ def test_getitem(np_array, index, is_scalar=False): except Exception as e: print('Failed with index = {}'.format(index)) raise e - if not is_scalar: - mx_indexed_array = mx_indexed_array.asnumpy() + mx_indexed_array = mx_indexed_array.asnumpy() assert same(np_indexed_array, mx_indexed_array), 'Failed with index = {}'.format(index) - def test_setitem(np_array, index, is_scalar=False): - """ - `is_scalar` indicates whether we should expect a scalar for the result. - If so, the indexed array should call asscalar to compare - with numpy's indexed array. - np_array is a native numpy array. - """ + def test_setitem(np_array, index): def assert_same(np_array, np_index, mx_array, mx_index, mx_value, np_value=None): if np_value is not None: np_array[np_index] = np_value @@ -447,7 +434,6 @@ def assert_same(np_array, np_index, mx_array, mx_index, mx_value, np_value=None) np_array[np_index] = mx_value.asnumpy() else: np_array[np_index] = mx_value - try: mx_array[mx_index] = mx_value except Exception as e: @@ -470,29 +456,23 @@ def assert_same(np_array, np_index, mx_array, mx_index, mx_value, np_value=None) mx_array = np.array(np_array, dtype=np_array.dtype) # mxnet.np.ndarray np_array = mx_array.asnumpy() # native numpy array - if is_scalar: - # test value is a numeric type - assert_same(np_array, np_index, mx_array, index, _np.random.randint(low=-10000, high=0)) - value_nd = [_np.random.randint(low=-10000, high=0)] - assert_same(np_array, np_index, mx_array, index, value_nd, value_nd[0]) - else: - indexed_array_shape = np_array[np_index].shape - np_indexed_array = _np.random.randint(low=-10000, high=0, size=indexed_array_shape) - # test value is a native numpy array without broadcast - assert_same(np_array, np_index, mx_array, index, np_indexed_array) - # test value is a mxnet numpy array without broadcast - assert_same(np_array, np_index, mx_array, index, np.array(np_indexed_array)) - # test value is an numeric_type - assert_same(np_array, np_index, mx_array, index, _np.random.randint(low=-10000, high=0)) - if len(indexed_array_shape) > 1: - np_value = _np.random.randint(low=-10000, high=0, size=(indexed_array_shape[-1],)) - # test mxnet ndarray with broadcast - assert_same(np_array, np_index, mx_array, index, np.array(np_value)) - # test native numpy array with broadcast - assert_same(np_array, np_index, mx_array, index, np_value) - # test list with broadcast - assert_same(np_array, np_index, mx_array, index, - [_np.random.randint(low=-10000, high=0)] * indexed_array_shape[-1]) + indexed_array_shape = np_array[np_index].shape + np_indexed_array = _np.random.randint(low=-10000, high=0, size=indexed_array_shape) + # test value is a native numpy array without broadcast + assert_same(np_array, np_index, mx_array, index, np_indexed_array) + # test value is a mxnet numpy array without broadcast + assert_same(np_array, np_index, mx_array, index, np.array(np_indexed_array)) + # test value is an numeric_type + assert_same(np_array, np_index, mx_array, index, _np.random.randint(low=-10000, high=0)) + if len(indexed_array_shape) > 1: + np_value = _np.random.randint(low=-10000, high=0, size=(indexed_array_shape[-1],)) + # test mxnet ndarray with broadcast + assert_same(np_array, np_index, mx_array, index, np.array(np_value)) + # test native numpy array with broadcast + assert_same(np_array, np_index, mx_array, index, np_value) + # test list with broadcast + assert_same(np_array, np_index, mx_array, index, + [_np.random.randint(low=-10000, high=0)] * indexed_array_shape[-1]) def test_getitem_autograd(np_array, index): """ @@ -502,8 +482,6 @@ def test_getitem_autograd(np_array, index): x.attach_grad() with mx.autograd.record(): y = x[index] - if not isinstance(y, np.ndarray): - return y.backward() value = np.ones_like(y) x_grad = np.zeros_like(x) @@ -515,8 +493,6 @@ def test_setitem_autograd(np_array, index): np_array: native numpy array. """ x = np.array(np_array, dtype=np_array.dtype) - if not isinstance(x[index], np.ndarray): - return # x[index] is scalar out_shape = x[index].shape y = np.array(_np.random.uniform(size=out_shape)) y.attach_grad() @@ -531,142 +507,173 @@ def test_setitem_autograd(np_array, index): shape = (8, 16, 9, 9) np_array = _np.arange(_np.prod(_np.array(shape)), dtype='int32').reshape(shape) # native np array + + # Test sliced output being ndarray: index_list = [ # Basic indexing # Single int as index - (0, False), (np.int32(0), False), (np.int64(0), False), - (5, False), (np.int32(5), False), (np.int64(5), False), - (-1, False), (np.int32(-1), False), (np.int64(-1), False), + 0, + np.int32(0), + np.int64(0), + 5, + np.int32(5), + np.int64(5), + -1, + np.int32(-1), + np.int64(-1), # Slicing as index - (slice(5), False), (np_int(slice(5), np.int32), False), (np_int(slice(5), np.int64), False), - (slice(1, 5), False), (np_int(slice(1, 5), np.int32), False), (np_int(slice(1, 5), np.int64), False), - (slice(1, 5, 2), False), (np_int(slice(1, 5, 2), np.int32), False), - (np_int(slice(1, 5, 2), np.int64), False), - (slice(7, 0, -1), False), (np_int(slice(7, 0, -1)), False), - (np_int(slice(7, 0, -1), np.int64), False), - (slice(None, 6), False), (np_int(slice(None, 6)), False), - (np_int(slice(None, 6), np.int64), False), - (slice(None, 6, 3), False), (np_int(slice(None, 6, 3)), False), - (np_int(slice(None, 6, 3), np.int64), False), - (slice(1, None), False), (np_int(slice(1, None)), False), - (np_int(slice(1, None), np.int64), False), - (slice(1, None, 3), False), (np_int(slice(1, None, 3)), False), - (np_int(slice(1, None, 3), np.int64), False), - (slice(None, None, 2), False), (np_int(slice(None, None, 2)), False), - (np_int(slice(None, None, 2), np.int64), False), - (slice(None, None, -1), False), - (np_int(slice(None, None, -1)), False), (np_int(slice(None, None, -1), np.int64), False), - (slice(None, None, -2), False), - (np_int(slice(None, None, -2), np.int32), False), (np_int(slice(None, None, -2), np.int64), False), + slice(5), + np_int(slice(5), np.int32), + np_int(slice(5), np.int64), + slice(1, 5), + np_int(slice(1, 5), np.int32), + np_int(slice(1, 5), np.int64), + slice(1, 5, 2), + np_int(slice(1, 5, 2), np.int32), + np_int(slice(1, 5, 2), np.int64), + slice(7, 0, -1), + np_int(slice(7, 0, -1)), + np_int(slice(7, 0, -1), np.int64), + slice(None, 6), + np_int(slice(None, 6)), + np_int(slice(None, 6), np.int64), + slice(None, 6, 3), + np_int(slice(None, 6, 3)), + np_int(slice(None, 6, 3), np.int64), + slice(1, None), + np_int(slice(1, None)), + np_int(slice(1, None), np.int64), + slice(1, None, 3), + np_int(slice(1, None, 3)), + np_int(slice(1, None, 3), np.int64), + slice(None, None, 2), + np_int(slice(None, None, 2)), + np_int(slice(None, None, 2), np.int64), + slice(None, None, -1), + np_int(slice(None, None, -1)), + np_int(slice(None, None, -1), np.int64), + slice(None, None, -2), + np_int(slice(None, None, -2), np.int32), + np_int(slice(None, None, -2), np.int64), # Multiple ints as indices - ((1, 2, 3), False), - (np_int((1, 2, 3)), False), - (np_int((1, 2, 3), np.int64), False), - ((-1, -2, -3), False), - (np_int((-1, -2, -3)), False), - (np_int((-1, -2, -3), np.int64), False), - ((1, 2, 3, 4), True), - (np_int((1, 2, 3, 4)), True), - (np_int((1, 2, 3, 4), np.int64), True), - ((-4, -3, -2, -1), True), - (np_int((-4, -3, -2, -1)), True), - (np_int((-4, -3, -2, -1), np.int64), True), + (1, 2, 3), + np_int((1, 2, 3)), + np_int((1, 2, 3), np.int64), + (-1, -2, -3), + np_int((-1, -2, -3)), + np_int((-1, -2, -3), np.int64), + (1, 2, 3, 4), + np_int((1, 2, 3, 4)), + np_int((1, 2, 3, 4), np.int64), + (-4, -3, -2, -1), + np_int((-4, -3, -2, -1)), + np_int((-4, -3, -2, -1), np.int64), # slice(None) as indices - ((slice(None), slice(None), 1, 8), False), - ((slice(None), slice(None), -1, 8), False), - ((slice(None), slice(None), 1, -8), False), - ((slice(None), slice(None), -1, -8), False), - (np_int((slice(None), slice(None), 1, 8)), False), - (np_int((slice(None), slice(None), 1, 8), np.int64), False), - ((slice(None), slice(None), 1, 8), False), - (np_int((slice(None), slice(None), -1, -8)), False), - (np_int((slice(None), slice(None), -1, -8), np.int64), False), - ((slice(None), 2, slice(1, 5), 1), False), - (np_int((slice(None), 2, slice(1, 5), 1)), False), - (np_int((slice(None), 2, slice(1, 5), 1), np.int64), False), + (slice(None), slice(None), 1, 8), + (slice(None), slice(None), -1, 8), + (slice(None), slice(None), 1, -8), + (slice(None), slice(None), -1, -8), + np_int((slice(None), slice(None), 1, 8)), + np_int((slice(None), slice(None), 1, 8), np.int64), + (slice(None), slice(None), 1, 8), + np_int((slice(None), slice(None), -1, -8)), + np_int((slice(None), slice(None), -1, -8), np.int64), + (slice(None), 2, slice(1, 5), 1), + np_int((slice(None), 2, slice(1, 5), 1)), + np_int((slice(None), 2, slice(1, 5), 1), np.int64), # Mixture of ints and slices as indices - ((slice(None, None, -1), 2, slice(1, 5), 1), False), - (np_int((slice(None, None, -1), 2, slice(1, 5), 1)), False), - (np_int((slice(None, None, -1), 2, slice(1, 5), 1), np.int64), False), - ((slice(None, None, -1), 2, slice(1, 7, 2), 1), False), - (np_int((slice(None, None, -1), 2, slice(1, 7, 2), 1)), False), - (np_int((slice(None, None, -1), 2, slice(1, 7, 2), 1), np.int64), False), - ((slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3)), False), - (np_int((slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3))), False), - (np_int((slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3)), np.int64), False), - ((slice(1, 8, 2), 1, slice(3, 8), 2), False), - (np_int((slice(1, 8, 2), 1, slice(3, 8), 2)), False), - (np_int((slice(1, 8, 2), 1, slice(3, 8), 2), np.int64), False), + (slice(None, None, -1), 2, slice(1, 5), 1), + np_int((slice(None, None, -1), 2, slice(1, 5), 1)), + np_int((slice(None, None, -1), 2, slice(1, 5), 1), np.int64), + (slice(None, None, -1), 2, slice(1, 7, 2), 1), + np_int((slice(None, None, -1), 2, slice(1, 7, 2), 1)), + np_int((slice(None, None, -1), 2, slice(1, 7, 2), 1), np.int64), + (slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3)), + np_int((slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3))), + np_int((slice(1, 8, 2), slice(14, 2, -2), slice(3, 8), slice(0, 7, 3)), np.int64), + (slice(1, 8, 2), 1, slice(3, 8), 2), + np_int((slice(1, 8, 2), 1, slice(3, 8), 2)), + np_int((slice(1, 8, 2), 1, slice(3, 8), 2), np.int64), # Test Ellipsis ('...') - ((1, Ellipsis, -1), False), - ((slice(2), Ellipsis, None, 0), False), + (1, Ellipsis, -1), + (slice(2), Ellipsis, None, 0), # Test newaxis - (None, False), - ((1, None, -2, 3, -4), False), - ((1, slice(2, 5), None), False), - ((slice(None), slice(1, 4), None, slice(2, 3)), False), - ((slice(1, 3), slice(1, 3), slice(1, 3), slice(1, 3), None), False), - ((slice(1, 3), slice(1, 3), None, slice(1, 3), slice(1, 3)), False), - ((None, slice(1, 2), 3, None), False), - ((1, None, 2, 3, None, None, 4), False), + None, + (1, None, -2, 3, -4), + (1, slice(2, 5), None), + (slice(None), slice(1, 4), None, slice(2, 3)), + (slice(1, 3), slice(1, 3), slice(1, 3), slice(1, 3), None), + (slice(1, 3), slice(1, 3), None, slice(1, 3), slice(1, 3)), + (None, slice(1, 2), 3, None), + (1, None, 2, 3, None, None, 4), # Advanced indexing - (([1, 2], slice(3, 5), None, None, [3, 4]), False), - ((slice(None), slice(3, 5), None, None, [2, 3], [3, 4]), False), - ((slice(None), slice(3, 5), None, [2, 3], None, [3, 4]), False), - ((None, slice(None), slice(3, 5), [2, 3], None, [3, 4]), False), - ([1], False), ([1, 2], False), ([2, 1, 3], False), ([7, 5, 0, 3, 6, 2, 1], False), - (np.array([6, 3], dtype=np.int32), False), - (np.array([[3, 4], [0, 6]], dtype=np.int32), False), - (np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int32), False), - (np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int64), False), - (np.array([[2], [0], [1]], dtype=np.int32), False), - (np.array([[2], [0], [1]], dtype=np.int64), False), - (np.array([4, 7], dtype=np.int32), False), - (np.array([4, 7], dtype=np.int64), False), - (np.array([[3, 6], [2, 1]], dtype=np.int32), False), - (np.array([[3, 6], [2, 1]], dtype=np.int64), False), - (np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int32), False), - (np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int64), False), - ((1, [2, 3]), False), ((1, [2, 3], np.array([[3], [0]], dtype=np.int32)), False), - ((1, [2, 3]), False), ((1, [2, 3], np.array([[3], [0]], dtype=np.int64)), False), - ((1, [2], np.array([[5], [3]], dtype=np.int32), slice(None)), False), - ((1, [2], np.array([[5], [3]], dtype=np.int64), slice(None)), False), - ((1, [2, 3], np.array([[6], [0]], dtype=np.int32), slice(2, 5)), False), - ((1, [2, 3], np.array([[6], [0]], dtype=np.int64), slice(2, 5)), False), - ((1, [2, 3], np.array([[4], [7]], dtype=np.int32), slice(2, 5, 2)), False), - ((1, [2, 3], np.array([[4], [7]], dtype=np.int64), slice(2, 5, 2)), False), - ((1, [2], np.array([[3]], dtype=np.int32), slice(None, None, -1)), False), - ((1, [2], np.array([[3]], dtype=np.int64), slice(None, None, -1)), False), - ((1, [2], np.array([[3]], dtype=np.int32), np.array([[5, 7], [2, 4]], dtype=np.int64)), False), - ((1, [2], np.array([[4]], dtype=np.int32), np.array([[1, 3], [5, 7]], dtype='int64')), - False), - ([0], False), ([0, 1], False), ([1, 2, 3], False), ([2, 0, 5, 6], False), - (([1, 1], [2, 3]), False), (([1], [4], [5]), False), (([1], [4], [5], [6]), False), - (([[1]], [[2]]), False), (([[1]], [[2]], [[3]], [[4]]), False), - ((slice(0, 2), [[1], [6]], slice(0, 2), slice(0, 5, 2)), False), - (([[[[1]]]], [[1]], slice(0, 3), [1, 5]), False), - (([[[[1]]]], 3, slice(0, 3), [1, 3]), False), - (([[[[1]]]], 3, slice(0, 3), 0), False), - (([[[[1]]]], [[2], [12]], slice(0, 3), slice(None)), False), - (([1, 2], slice(3, 5), [2, 3], [3, 4]), False), - (([1, 2], slice(3, 5), (2, 3), [3, 4]), False), + ([1, 2], slice(3, 5), None, None, [3, 4]), + (slice(None), slice(3, 5), None, None, [2, 3], [3, 4]), + (slice(None), slice(3, 5), None, [2, 3], None, [3, 4]), + (None, slice(None), slice(3, 5), [2, 3], None, [3, 4]), + [1], + [1, 2], + [2, 1, 3], + [7, 5, 0, 3, 6, 2, 1], + np.array([6, 3], dtype=np.int32), + np.array([[3, 4], [0, 6]], dtype=np.int32), + np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int32), + np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int64), + np.array([[2], [0], [1]], dtype=np.int32), + np.array([[2], [0], [1]], dtype=np.int64), + np.array([4, 7], dtype=np.int32), + np.array([4, 7], dtype=np.int64), + np.array([[3, 6], [2, 1]], dtype=np.int32), + np.array([[3, 6], [2, 1]], dtype=np.int64), + np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int32), + np.array([[7, 3], [2, 6], [0, 5], [4, 1]], dtype=np.int64), + (1, [2, 3]), + (1, [2, 3], np.array([[3], [0]], dtype=np.int32)), + (1, [2, 3]), + (1, [2, 3], np.array([[3], [0]], dtype=np.int64)), + (1, [2], np.array([[5], [3]], dtype=np.int32), slice(None)), + (1, [2], np.array([[5], [3]], dtype=np.int64), slice(None)), + (1, [2, 3], np.array([[6], [0]], dtype=np.int32), slice(2, 5)), + (1, [2, 3], np.array([[6], [0]], dtype=np.int64), slice(2, 5)), + (1, [2, 3], np.array([[4], [7]], dtype=np.int32), slice(2, 5, 2)), + (1, [2, 3], np.array([[4], [7]], dtype=np.int64), slice(2, 5, 2)), + (1, [2], np.array([[3]], dtype=np.int32), slice(None, None, -1)), + (1, [2], np.array([[3]], dtype=np.int64), slice(None, None, -1)), + (1, [2], np.array([[3]], dtype=np.int32), np.array([[5, 7], [2, 4]], dtype=np.int64)), + (1, [2], np.array([[4]], dtype=np.int32), np.array([[1, 3], [5, 7]], dtype='int64')), + [0], + [0, 1], + [1, 2, 3], + [2, 0, 5, 6], + ([1, 1], [2, 3]), + ([1], [4], [5]), + ([1], [4], [5], [6]), + ([[1]], [[2]]), + ([[1]], [[2]], [[3]], [[4]]), + (slice(0, 2), [[1], [6]], slice(0, 2), slice(0, 5, 2)), + ([[[[1]]]], [[1]], slice(0, 3), [1, 5]), + ([[[[1]]]], 3, slice(0, 3), [1, 3]), + ([[[[1]]]], 3, slice(0, 3), 0), + ([[[[1]]]], [[2], [12]], slice(0, 3), slice(None)), + ([1, 2], slice(3, 5), [2, 3], [3, 4]), + ([1, 2], slice(3, 5), (2, 3), [3, 4]), ] for index in index_list: - test_getitem(np_array, index[0], index[1]) - test_setitem(np_array, index[0], index[1]) - test_getitem_autograd(np_array, index[0]) - test_setitem_autograd(np_array, index[0]) + test_getitem(np_array, index) + test_setitem(np_array, index) + test_getitem_autograd(np_array, index) + test_setitem_autograd(np_array, index) # Test indexing to zero-size tensors index_list = [ - ((slice(0, 0), slice(0, 0), 1, 2), False), - ((slice(0, 0), slice(0, 0), slice(0, 0), slice(0, 0)), False), + (slice(0, 0), slice(0, 0), 1, 2), + (slice(0, 0), slice(0, 0), slice(0, 0), slice(0, 0)), ] for index in index_list: - test_getitem(np_array, index[0], index[1]) - test_setitem(np_array, index[0]) - test_getitem_autograd(np_array, index[0]) - test_setitem_autograd(np_array, index[0]) + test_getitem(np_array, index) + test_setitem(np_array, index) + test_getitem_autograd(np_array, index) + test_setitem_autograd(np_array, index) # test zero-size tensors get and setitem shapes_indices = [ @@ -676,8 +683,8 @@ def test_setitem_autograd(np_array, index): for shape, indices in shapes_indices: for index in indices: np_array = np.zeros(shape) - test_getitem(np_array, index, False) - test_setitem(np_array, index, False) + test_getitem(np_array, index) + test_setitem(np_array, index) test_getitem_autograd(np_array, index) test_setitem_autograd(np_array, index) From a85bdea9139bfbc834471b54571f2e410224cde1 Mon Sep 17 00:00:00 2001 From: Zoey Xinyi Ge Date: Wed, 28 Aug 2019 00:48:31 +0800 Subject: [PATCH 3/3] Retrigger CI --- tests/python/unittest/test_numpy_ndarray.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/tests/python/unittest/test_numpy_ndarray.py b/tests/python/unittest/test_numpy_ndarray.py index 54ba2fe108c7..6dd7b43cd82c 100644 --- a/tests/python/unittest/test_numpy_ndarray.py +++ b/tests/python/unittest/test_numpy_ndarray.py @@ -644,9 +644,9 @@ def test_setitem_autograd(np_array, index): [0], [0, 1], [1, 2, 3], - [2, 0, 5, 6], - ([1, 1], [2, 3]), - ([1], [4], [5]), + [2, 0, 5, 6], + ([1, 1], [2, 3]), + ([1], [4], [5]), ([1], [4], [5], [6]), ([[1]], [[2]]), ([[1]], [[2]], [[3]], [[4]]),