-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathxgboost_cost_model.py
584 lines (492 loc) · 20.3 KB
/
xgboost_cost_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name
"""XGBoost as cost model"""
import multiprocessing
import logging
import time
import numpy as np
try:
import xgboost as xgb
except ImportError:
xgb = None
from .. import feature
from ..util import get_rank
from .metric import max_curve, recall_curve, cover_curve
from .model_based_tuner import CostModel, FeatureCache
logger = logging.getLogger('autotvm')
class XGBoostCostModel(CostModel):
"""XGBoost as cost model
Parameters
----------
task: Task
The tuning task
feature_type: str, optional
If is 'itervar', use features extracted from IterVar (loop variable).
If is 'knob', use flatten ConfigEntity directly.
If is 'curve', use sampled curve feature (relation feature).
Note on choosing feature type:
For single task tuning, 'itervar' and 'knob' are good.
'itervar' is more accurate but 'knob' is much faster.
There are some constraints on 'itervar', if you meet
problems with feature extraction when using 'itervar',
you can switch to 'knob'.
For cross-shape tuning (e.g. many convolutions with different shapes),
'itervar' and 'curve' has better transferability,
'knob' is faster.
For cross-device or cross-operator tuning, you can use 'curve' only.
loss_type: str
If is 'reg', use regression loss to train cost model.
The cost model predicts the normalized flops.
If is 'rank', use pairwise rank loss to train cost model.
The cost model predicts relative rank score.
num_threads: int, optional
The number of threads.
log_interval: int, optional
If is not none, the cost model will print training log every `log_interval` iterations.
upper_model: XGBoostCostModel, optional
The upper model used in transfer learning
"""
def __init__(self, task, feature_type, loss_type, num_threads=None, log_interval=25,
upper_model=None):
super(XGBoostCostModel, self).__init__()
if xgb is None:
raise RuntimeError("XGBoost is required for XGBoostCostModel. "
"Please install its python package first. "
"Help: (https://xgboost.readthedocs.io/en/latest/) ")
self.task = task
self.target = task.target
self.space = task.config_space
self.fea_type = feature_type
self.loss_type = loss_type
self.num_threads = num_threads
self.log_interval = log_interval
if loss_type == 'reg':
self.xgb_params = {
'max_depth': 3,
'gamma': 0.0001,
'min_child_weight': 1,
'subsample': 1.0,
'eta': 0.3,
'lambda': 1.00,
'alpha': 0,
'objective': 'reg:linear',
}
elif loss_type == 'rank':
self.xgb_params = {
'max_depth': 3,
'gamma': 0.0001,
'min_child_weight': 1,
'subsample': 1.0,
'eta': 0.3,
'lambda': 1.00,
'alpha': 0,
'objective': 'rank:pairwise',
}
else:
raise RuntimeError("Invalid loss type: " + loss_type)
self.xgb_params['silent'] = 1
if num_threads:
self.xgb_params['nthread'] = num_threads
self.bst = None
if feature_type == 'itervar':
self.feature_extract_func = _extract_itervar_feature_index
elif feature_type == 'knob':
self.feature_extract_func = _extract_knob_feature_index
elif feature_type == 'curve':
self.feature_extract_func = _extract_curve_feature_index
else:
raise RuntimeError("Invalid feature type " + feature_type)
if upper_model: # share a same feature cache with upper model
self.feature_cache = upper_model.feature_cache
else:
self.feature_cache = FeatureCache()
self.upper_model = upper_model
self.feature_extra_ct = 0
self.pool = None
self.base_model = None
self._sample_size = 0
self._reset_pool(self.space, self.target, self.task)
def _reset_pool(self, space, target, task):
"""reset processing pool for feature extraction"""
if self.upper_model: # base model will reuse upper model's pool,
self.upper_model._reset_pool(space, target, task)
return
self._close_pool()
# use global variable to pass common arguments
global _extract_space, _extract_target, _extract_task
_extract_space = space
_extract_target = target
_extract_task = task
self.pool = multiprocessing.Pool(self.num_threads)
def _close_pool(self):
if self.pool:
self.pool.terminate()
self.pool.join()
self.pool = None
def _get_pool(self):
if self.upper_model:
return self.upper_model._get_pool()
return self.pool
def _base_model_discount(self):
return 1.0 / (2 ** (self._sample_size / 64.0))
def fit(self, xs, ys, plan_size):
tic = time.time()
self._reset_pool(self.space, self.target, self.task)
x_train = self._get_feature(xs)
y_train = np.array(ys)
y_max = np.max(y_train)
y_train = y_train / max(y_max, 1e-8)
valid_index = y_train > 1e-6
index = np.random.permutation(len(x_train))
dtrain = xgb.DMatrix(x_train[index], y_train[index])
self._sample_size = len(x_train)
if self.base_model:
discount = self._base_model_discount()
if discount < 0.05: # discard base model
self.base_model.upper_model = None
self.base_model = None
else:
dtrain.set_base_margin(discount * self.base_model.predict(xs, output_margin=True))
self.bst = xgb.train(self.xgb_params, dtrain,
num_boost_round=8000,
callbacks=[custom_callback(
stopping_rounds=20,
metric='tr-a-recall@%d' % plan_size,
evals=[(dtrain, 'tr')],
maximize=True,
fevals=[
xgb_average_recalln_curve_score(plan_size),
],
verbose_eval=self.log_interval)])
logger.debug("XGB train: %.2f\tobs: %d\terror: %d\tn_cache: %d",
time.time() - tic, len(xs),
len(xs) - np.sum(valid_index),
self.feature_cache.size(self.fea_type))
def fit_log(self, records, plan_size):
tic = time.time()
# filter data, only pick the data with a same task
data = []
for inp, res in records:
if inp.task.name == self.task.name:
data.append((inp, res))
logger.debug("XGB load %d entries from history log file", len(data))
# extract feature
self._reset_pool(self.space, self.target, self.task)
pool = self._get_pool()
if self.fea_type == 'itervar':
feature_extract_func = _extract_itervar_feature_log
elif self.fea_type == 'knob':
feature_extract_func = _extract_knob_feature_log
elif self.fea_type == 'curve':
feature_extract_func = _extract_curve_feature_log
else:
raise RuntimeError("Invalid feature type: " + self.fea_type)
res = pool.map(feature_extract_func, data)
# filter out feature with different shapes
fea_len = len(self._get_feature([0])[0])
xs, ys = [], []
for x, y in res:
if len(x) == fea_len:
xs.append(x)
ys.append(y)
if len(xs) < 500: # no enough samples
return False
xs, ys = np.array(xs), np.array(ys)
x_train = xs
y_train = ys
y_max = np.max(y_train)
y_train = y_train / max(y_max, 1e-8)
index = np.random.permutation(len(x_train))
dtrain = xgb.DMatrix(x_train[index], y_train[index])
plan_size *= 2
self.bst = xgb.train(self.xgb_params, dtrain,
num_boost_round=400,
callbacks=[custom_callback(
stopping_rounds=100,
metric='tr-a-recall@%d' % plan_size,
evals=[(dtrain, 'tr')],
maximize=True,
fevals=[
xgb_average_recalln_curve_score(plan_size),
],
verbose_eval=self.log_interval)])
logger.debug("XGB train: %.2f\tobs: %d", time.time() - tic, len(xs))
return True
def predict(self, xs, output_margin=False):
feas = self._get_feature(xs)
dtest = xgb.DMatrix(feas)
if self.base_model:
dtest.set_base_margin(self._base_model_discount() *
self.base_model.predict(xs, output_margin=True))
return self.bst.predict(dtest, output_margin=output_margin)
def load_basemodel(self, base_model):
self.base_model = base_model
self.base_model._close_pool()
self.base_model.upper_model = self
def spawn_base_model(self):
return XGBoostCostModel(self.task, self.fea_type, self.loss_type,
self.num_threads, self.log_interval, self)
def _get_feature(self, indexes):
"""get features for indexes, run extraction if we do not have cache for them"""
# free feature cache
if self.feature_cache.size(self.fea_type) >= 100000:
self.feature_cache.clear(self.fea_type)
fea_cache = self.feature_cache.get(self.fea_type)
indexes = np.array(indexes)
need_extract = [x for x in indexes if x not in fea_cache]
if need_extract:
pool = self._get_pool()
feas = pool.map(self.feature_extract_func, need_extract)
for i, fea in zip(need_extract, feas):
fea_cache[i] = fea
feature_len = None
for idx in indexes:
if fea_cache[idx] is not None:
feature_len = fea_cache[idx].shape[-1]
break
ret = np.empty((len(indexes), feature_len), dtype=np.float32)
for i, ii in enumerate(indexes):
t = fea_cache[ii]
ret[i, :] = t if t is not None else 0
return ret
def __del__(self):
self._close_pool()
_extract_space = None
_extract_target = None
_extract_task = None
def _extract_itervar_feature_index(index):
"""extract iteration var feature for an index in extract_space"""
try:
config = _extract_space.get(index)
with _extract_target:
sch, args = _extract_task.instantiate(config)
fea = feature.get_itervar_feature_flatten(sch, args, take_log=True)
fea = np.concatenate((fea, list(config.get_other_option().values())))
return fea
except Exception: # pylint: disable=broad-except
return None
def _extract_itervar_feature_log(arg):
"""extract iteration var feature for log items"""
try:
inp, res = arg
config = inp.config
with inp.target:
sch, args = inp.task.instantiate(config)
fea = feature.get_itervar_feature_flatten(sch, args, take_log=True)
x = np.concatenate((fea, list(config.get_other_option().values())))
if res.error_no == 0:
y = inp.task.flop / np.mean(res.costs)
else:
y = 0.0
return x, y
except Exception: # pylint: disable=broad-except
return None
def _extract_knob_feature_index(index):
"""extract knob feature for an index in extract_space"""
try:
config = _extract_space.get(index)
return config.get_flatten_feature()
except Exception: # pylint: disable=broad-except
return None
def _extract_knob_feature_log(arg):
"""extract knob feature for log items"""
try:
inp, res = arg
config = inp.config
x = config.get_flatten_feature()
if res.error_no == 0:
with inp.target: # necessary, for calculating flops of this task
inp.task.instantiate(config)
y = inp.task.flop / np.mean(res.costs)
else:
y = 0.0
return x, y
except Exception: # pylint: disable=broad-except
return None
def _extract_curve_feature_index(index):
"""extract sampled curve feature for an index in extract_space"""
try:
config = _extract_space.get(index)
with _extract_target:
sch, args = _extract_task.instantiate(config)
fea = feature.get_buffer_curve_sample_flatten(sch, args, sample_n=20)
fea = np.concatenate((fea, list(config.get_other_option().values())))
return np.array(fea)
except Exception: # pylint: disable=broad-except
return None
def _extract_curve_feature_log(arg):
"""extract sampled curve feature for log items"""
try:
inp, res = arg
config = inp.config
with inp.target:
sch, args = inp.task.instantiate(config)
fea = feature.get_buffer_curve_sample_flatten(sch, args, sample_n=20)
x = np.concatenate((fea, list(config.get_other_option().values())))
if res.error_no == 0:
y = inp.task.flop / np.mean(res.costs)
else:
y = 0.0
return x, y
except Exception: # pylint: disable=broad-except
return None
def custom_callback(stopping_rounds, metric, fevals, evals=(), log_file=None,
maximize=False, verbose_eval=True):
"""callback function for xgboost to support multiple custom evaluation functions"""
# pylint: disable=import-outside-toplevel
from xgboost.core import EarlyStopException
from xgboost.callback import _fmt_metric
from xgboost.training import aggcv
state = {}
metric_shortname = metric.split("-")[1]
def init(env):
"""internal function"""
bst = env.model
state['maximize_score'] = maximize
state['best_iteration'] = 0
if maximize:
state['best_score'] = float('-inf')
else:
state['best_score'] = float('inf')
if bst is not None:
if bst.attr('best_score') is not None:
state['best_score'] = float(bst.attr('best_score'))
state['best_iteration'] = int(bst.attr('best_iteration'))
state['best_msg'] = bst.attr('best_msg')
else:
bst.set_attr(best_iteration=str(state['best_iteration']))
bst.set_attr(best_score=str(state['best_score']))
else:
assert env.cvfolds is not None
def callback(env):
"""internal function"""
if not state:
init(env)
bst = env.model
i = env.iteration
cvfolds = env.cvfolds
res_dict = {}
##### evaluation #####
if cvfolds is not None:
for feval in fevals:
tmp = aggcv([f.eval(i, feval) for f in cvfolds])
for k, mean, std in tmp:
res_dict[k] = [mean, std]
else:
for feval in fevals:
bst_eval = bst.eval_set(evals, i, feval)
res = [x.split(':') for x in bst_eval.split()]
for kv in res[1:]:
res_dict[kv[0]] = [float(kv[1])]
eval_res = []
keys = list(res_dict.keys())
keys.sort(key=lambda x: x if metric_shortname not in x else "a" + x)
for key in keys:
v = res_dict[key]
eval_res.append([key] + v)
##### print eval result #####
infos = ["XGB iter: %3d" % i]
for item in eval_res:
if 'null' in item[0]:
continue
infos.append("%s: %.6f" % (item[0], item[1]))
if not isinstance(verbose_eval, bool) and verbose_eval and i % verbose_eval == 0:
logger.debug("\t".join(infos))
if log_file:
with open(log_file, "a") as fout:
fout.write("\t".join(infos) + '\n')
##### choose score and do early stopping #####
score = None
for item in eval_res:
if item[0] == metric:
score = item[1]
break
assert score is not None
best_score = state['best_score']
best_iteration = state['best_iteration']
maximize_score = state['maximize_score']
if (maximize_score and score > best_score) or \
(not maximize_score and score < best_score):
msg = '[%d] %s' % (
env.iteration,
'\t'.join([_fmt_metric(x) for x in eval_res]))
state['best_msg'] = msg
state['best_score'] = score
state['best_iteration'] = env.iteration
# save the property to attributes, so they will occur in checkpoint.
if env.model is not None:
env.model.set_attr(best_score=str(state['best_score']),
best_iteration=str(state['best_iteration']),
best_msg=state['best_msg'])
elif env.iteration - best_iteration >= stopping_rounds:
best_msg = state['best_msg']
if verbose_eval and env.rank == 0:
logger.debug("XGB stopped. Best iteration: %s ", best_msg)
raise EarlyStopException(best_iteration)
return callback
# feval wrapper for xgboost
def xgb_max_curve_score(N):
"""evaluate max curve score for xgb"""
def feval(preds, labels):
labels = labels.get_label()
trials = np.argsort(preds)[::-1]
scores = labels[trials]
curve = max_curve(scores)
return "Smax@%d" % N, curve[N] / np.max(labels)
return feval
def xgb_recalln_curve_score(N):
"""evaluate recall-n curve score for xgb"""
def feval(preds, labels):
labels = labels.get_label()
trials = np.argsort(preds)[::-1]
ranks = get_rank(labels[trials])
curve = recall_curve(ranks)
return "recall@%d" % N, curve[N]
return feval
def xgb_average_recalln_curve_score(N):
"""evaluate average recall-n curve score for xgb"""
def feval(preds, labels):
labels = labels.get_label()
trials = np.argsort(preds)[::-1]
ranks = get_rank(labels[trials])
curve = recall_curve(ranks)
return "a-recall@%d" % N, np.sum(curve[:N]) / N
return feval
def xgb_recallk_curve_score(N, topk):
"""evaluate recall-k curve score for xgb"""
def feval(preds, labels):
labels = labels.get_label()
trials = np.argsort(preds)[::-1]
ranks = get_rank(labels[trials])
curve = recall_curve(ranks, topk)
return "recall@%d" % topk, curve[N]
return feval
def xgb_cover_curve_score(N):
"""evaluate cover curve score for xgb"""
def feval(preds, labels):
labels = labels.get_label()
trials = np.argsort(preds)[::-1]
ranks = get_rank(labels[trials])
curve = cover_curve(ranks)
return "cover@%d" % N, curve[N]
return feval
def xgb_null_score(_):
"""empty score function for xgb"""
def feval(__, ___):
return "null", 0
return feval