This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
Copy pathloss.py
1047 lines (836 loc) · 39.9 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# coding: utf-8
# pylint: disable=arguments-differ
""" losses for training neural networks """
__all__ = ['Loss', 'L2Loss', 'L1Loss',
'SigmoidBinaryCrossEntropyLoss', 'SigmoidBCELoss',
'SoftmaxCrossEntropyLoss', 'SoftmaxCELoss',
'KLDivLoss', 'CTCLoss', 'HuberLoss', 'HingeLoss',
'SquaredHingeLoss', 'LogisticLoss', 'TripletLoss', 'PoissonNLLLoss', 'CosineEmbeddingLoss', 'SDMLLoss']
import numpy as np
from .. import ndarray
from ..base import numeric_types
from .block import HybridBlock
from ..util import is_np_array
def _apply_weighting(F, loss, weight=None, sample_weight=None):
"""Apply weighting to loss.
Parameters
----------
loss : Symbol
The loss to be weighted.
weight : float or None
Global scalar weight for loss.
sample_weight : Symbol or None
Per sample weighting. Must be broadcastable to
the same shape as loss. For example, if loss has
shape (64, 10) and you want to weight each sample
in the batch separately, `sample_weight` should have
shape (64, 1).
Returns
-------
loss : Symbol
Weighted loss
"""
if sample_weight is not None:
if is_np_array():
loss = loss * sample_weight
else:
loss = F.broadcast_mul(loss, sample_weight)
if weight is not None:
assert isinstance(weight, numeric_types), "weight must be a number"
loss = loss * weight
return loss
def _reshape_like(F, x, y):
"""Reshapes x to the same shape as y."""
if F is ndarray:
return x.reshape(y.shape)
elif is_np_array():
F = F.npx
return F.reshape_like(x, y)
class Loss(HybridBlock):
"""Base class for loss.
Parameters
----------
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
"""
def __init__(self, weight, batch_axis, **kwargs):
super(Loss, self).__init__(**kwargs)
self._weight = weight
self._batch_axis = batch_axis
def __repr__(self):
s = '{name}(batch_axis={_batch_axis}, w={_weight})'
return s.format(name=self.__class__.__name__, **self.__dict__)
def hybrid_forward(self, F, x, *args, **kwargs):
"""Overrides to construct symbolic graph for this `Block`.
Parameters
----------
x : Symbol or NDArray
The first input tensor.
*args : list of Symbol or list of NDArray
Additional input tensors.
"""
# pylint: disable= invalid-name
raise NotImplementedError
class L2Loss(Loss):
r"""Calculates the mean squared error between `label` and `pred`.
.. math:: L = \frac{1}{2} \sum_i \vert {label}_i - {pred}_i \vert^2.
`label` and `pred` can have arbitrary shape as long as they have the same
number of elements.
Parameters
----------
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
Inputs:
- **pred**: prediction tensor with arbitrary shape
- **label**: target tensor with the same size as pred.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as pred. For example, if pred has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: loss tensor with shape (batch_size,). Dimenions other than
batch_axis are averaged out.
"""
def __init__(self, weight=1., batch_axis=0, **kwargs):
super(L2Loss, self).__init__(weight, batch_axis, **kwargs)
def hybrid_forward(self, F, pred, label, sample_weight=None):
label = _reshape_like(F, label, pred)
loss = F.np.square(label - pred) if is_np_array() else F.square(label - pred)
loss = _apply_weighting(F, loss, self._weight / 2, sample_weight)
if is_np_array():
if F is ndarray:
return F.np.mean(loss, axis=tuple(range(1, loss.ndim)))
else:
return F.npx.batch_flatten(loss).mean(axis=1)
else:
return F.mean(loss, axis=self._batch_axis, exclude=True)
class L1Loss(Loss):
r"""Calculates the mean absolute error between `label` and `pred`.
.. math:: L = \sum_i \vert {label}_i - {pred}_i \vert.
`label` and `pred` can have arbitrary shape as long as they have the same
number of elements.
Parameters
----------
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
Inputs:
- **pred**: prediction tensor with arbitrary shape
- **label**: target tensor with the same size as pred.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as pred. For example, if pred has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: loss tensor with shape (batch_size,). Dimenions other than
batch_axis are averaged out.
"""
def __init__(self, weight=None, batch_axis=0, **kwargs):
super(L1Loss, self).__init__(weight, batch_axis, **kwargs)
def hybrid_forward(self, F, pred, label, sample_weight=None):
label = _reshape_like(F, label, pred)
loss = F.np.abs(label - pred) if is_np_array() else F.abs(label - pred)
loss = _apply_weighting(F, loss, self._weight, sample_weight)
if is_np_array():
if F is ndarray:
return F.np.mean(loss, axis=tuple(range(1, loss.ndim)))
else:
return F.npx.batch_flatten(loss).mean(axis=1)
else:
return F.mean(loss, axis=self._batch_axis, exclude=True)
class SigmoidBinaryCrossEntropyLoss(Loss):
r"""The cross-entropy loss for binary classification. (alias: SigmoidBCELoss)
BCE loss is useful when training logistic regression. If `from_sigmoid`
is False (default), this loss computes:
.. math::
prob = \frac{1}{1 + \exp(-{pred})}
L = - \sum_i {label}_i * \log({prob}_i) * pos\_weight +
(1 - {label}_i) * \log(1 - {prob}_i)
If `from_sigmoid` is True, this loss computes:
.. math::
L = - \sum_i {label}_i * \log({pred}_i) * pos\_weight +
(1 - {label}_i) * \log(1 - {pred}_i)
A tensor `pos_weight > 1` decreases the false negative count, hence increasing
the recall.
Conversely setting `pos_weight < 1` decreases the false positive count and
increases the precision.
`pred` and `label` can have arbitrary shape as long as they have the same
number of elements.
Parameters
----------
from_sigmoid : bool, default is `False`
Whether the input is from the output of sigmoid. Set this to false will make
the loss calculate sigmoid and BCE together, which is more numerically
stable through log-sum-exp trick.
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
Inputs:
- **pred**: prediction tensor with arbitrary shape
- **label**: target tensor with values in range `[0, 1]`. Must have the
same size as `pred`.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as pred. For example, if pred has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
- **pos_weight**: a weighting tensor of positive examples. Must be a vector with length
equal to the number of classes.For example, if pred has shape (64, 10),
pos_weight should have shape (1, 10).
Outputs:
- **loss**: loss tensor with shape (batch_size,). Dimenions other than
batch_axis are averaged out.
"""
def __init__(self, from_sigmoid=False, weight=None, batch_axis=0, **kwargs):
super(SigmoidBinaryCrossEntropyLoss, self).__init__(
weight, batch_axis, **kwargs)
self._from_sigmoid = from_sigmoid
def hybrid_forward(self, F, pred, label, sample_weight=None, pos_weight=None):
label = _reshape_like(F, label, pred)
if is_np_array():
relu_fn = F.npx.relu
act_fn = F.npx.activation
abs_fn = F.np.abs
mul_fn = F.np.multiply
log_fn = F.np.log
else:
relu_fn = F.relu
act_fn = F.Activation
abs_fn = F.abs
mul_fn = F.broadcast_mul
log_fn = F.log
if not self._from_sigmoid:
if pos_weight is None:
# We use the stable formula: max(x, 0) - x * z + log(1 + exp(-abs(x)))
loss = relu_fn(pred) - pred * label + \
act_fn(-abs_fn(pred), act_type='softrelu')
else:
# We use the stable formula: x - x * z + (1 + z * pos_weight - z) * \
# (log(1 + exp(-abs(x))) + max(-x, 0))
log_weight = 1 + mul_fn(pos_weight - 1, label)
loss = pred - pred * label + log_weight * \
(act_fn(-abs_fn(pred), act_type='softrelu') + relu_fn(-pred))
else:
eps = 1e-12
if pos_weight is None:
loss = -(log_fn(pred + eps) * label
+ log_fn(1. - pred + eps) * (1. - label))
else:
loss = -(mul_fn(log_fn(pred + eps) * label, pos_weight)
+ log_fn(1. - pred + eps) * (1. - label))
loss = _apply_weighting(F, loss, self._weight, sample_weight)
if is_np_array():
if F is ndarray:
return F.np.mean(loss, axis=tuple(range(1, loss.ndim)))
else:
return F.npx.batch_flatten(loss).mean(axis=1)
else:
return F.mean(loss, axis=self._batch_axis, exclude=True)
SigmoidBCELoss = SigmoidBinaryCrossEntropyLoss
class SoftmaxCrossEntropyLoss(Loss):
r"""Computes the softmax cross entropy loss. (alias: SoftmaxCELoss)
If `sparse_label` is `True` (default), label should contain integer
category indicators:
.. math::
\DeclareMathOperator{softmax}{softmax}
p = \softmax({pred})
L = -\sum_i \log p_{i,{label}_i}
`label`'s shape should be `pred`'s shape with the `axis` dimension removed.
i.e. for `pred` with shape (1,2,3,4) and `axis = 2`, `label`'s shape should
be (1,2,4).
If `sparse_label` is `False`, `label` should contain probability distribution
and `label`'s shape should be the same with `pred`:
.. math::
p = \softmax({pred})
L = -\sum_i \sum_j {label}_j \log p_{ij}
Parameters
----------
axis : int, default -1
The axis to sum over when computing softmax and entropy.
sparse_label : bool, default True
Whether label is an integer array instead of probability distribution.
from_logits : bool, default False
Whether input is a log probability (usually from log_softmax) instead
of unnormalized numbers.
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
Inputs:
- **pred**: the prediction tensor, where the `batch_axis` dimension
ranges over batch size and `axis` dimension ranges over the number
of classes.
- **label**: the truth tensor. When `sparse_label` is True, `label`'s
shape should be `pred`'s shape with the `axis` dimension removed.
i.e. for `pred` with shape (1,2,3,4) and `axis = 2`, `label`'s shape
should be (1,2,4) and values should be integers between 0 and 2. If
`sparse_label` is False, `label`'s shape must be the same as `pred`
and values should be floats in the range `[0, 1]`.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as label. For example, if label has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: loss tensor with shape (batch_size,). Dimenions other than
batch_axis are averaged out.
"""
def __init__(self, axis=-1, sparse_label=True, from_logits=False, weight=None,
batch_axis=0, **kwargs):
super(SoftmaxCrossEntropyLoss, self).__init__(
weight, batch_axis, **kwargs)
self._axis = axis
self._sparse_label = sparse_label
self._from_logits = from_logits
def hybrid_forward(self, F, pred, label, sample_weight=None):
if is_np_array():
log_softmax = F.npx.log_softmax
pick = F.npx.pick
else:
log_softmax = F.log_softmax
pick = F.pick
if not self._from_logits:
pred = log_softmax(pred, self._axis)
if self._sparse_label:
loss = -pick(pred, label, axis=self._axis, keepdims=True)
else:
label = _reshape_like(F, label, pred)
loss = -(pred * label).sum(axis=self._axis, keepdims=True)
loss = _apply_weighting(F, loss, self._weight, sample_weight)
if is_np_array():
if F is ndarray:
return loss.mean(axis=tuple(range(1, loss.ndim)))
else:
return F.npx.batch_flatten(loss).mean(axis=1)
else:
return loss.mean(axis=self._batch_axis, exclude=True)
SoftmaxCELoss = SoftmaxCrossEntropyLoss
class KLDivLoss(Loss):
r"""The Kullback-Leibler divergence loss.
KL divergence measures the distance between contiguous distributions. It
can be used to minimize information loss when approximating a distribution.
If `from_logits` is True (default), loss is defined as:
.. math::
L = \sum_i {label}_i * \big[\log({label}_i) - {pred}_i\big]
If `from_logits` is False, loss is defined as:
.. math::
\DeclareMathOperator{softmax}{softmax}
prob = \softmax({pred})
L = \sum_i {label}_i * \big[\log({label}_i) - \log({prob}_i)\big]
`label` and `pred` can have arbitrary shape as long as they have the same
number of elements.
Parameters
----------
from_logits : bool, default is `True`
Whether the input is log probability (usually from log_softmax) instead
of unnormalized numbers.
axis : int, default -1
The dimension along with to compute softmax. Only used when `from_logits`
is False.
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
Inputs:
- **pred**: prediction tensor with arbitrary shape. If `from_logits` is
True, `pred` should be log probabilities. Otherwise, it should be
unnormalized predictions, i.e. from a dense layer.
- **label**: truth tensor with values in range `(0, 1)`. Must have
the same size as `pred`.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as pred. For example, if pred has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: loss tensor with shape (batch_size,). Dimenions other than
batch_axis are averaged out.
References
----------
`Kullback-Leibler divergence
<https://en.wikipedia.org/wiki/Kullback-Leibler_divergence>`_
"""
def __init__(self, from_logits=True, axis=-1, weight=None, batch_axis=0,
**kwargs):
super(KLDivLoss, self).__init__(weight, batch_axis, **kwargs)
self._from_logits = from_logits
self._axis = axis
def hybrid_forward(self, F, pred, label, sample_weight=None):
if not self._from_logits:
pred = F.log_softmax(pred, self._axis)
loss = label * (F.log(label + 1e-12) - pred)
loss = _apply_weighting(F, loss, self._weight, sample_weight)
return F.sum(loss, axis=self._batch_axis, exclude=True)
class CTCLoss(Loss):
r"""Connectionist Temporal Classification Loss.
Parameters
----------
layout : str, default 'NTC'
Layout of prediction tensor. 'N', 'T', 'C' stands for batch size,
sequence length, and alphabet_size respectively.
label_layout : str, default 'NT'
Layout of the labels. 'N', 'T' stands for batch size, and sequence
length respectively.
weight : float or None
Global scalar weight for loss.
Inputs:
- **pred**: unnormalized prediction tensor (before softmax).
Its shape depends on `layout`. If `layout` is 'TNC', pred
should have shape `(sequence_length, batch_size, alphabet_size)`.
Note that in the last dimension, index `alphabet_size-1` is reserved
for internal use as blank label. So `alphabet_size` is one plus the
actual alphabet size.
- **label**: zero-based label tensor. Its shape depends on `label_layout`.
If `label_layout` is 'TN', `label` should have shape
`(label_sequence_length, batch_size)`.
- **pred_lengths**: optional (default None), used for specifying the
length of each entry when different `pred` entries in the same batch
have different lengths. `pred_lengths` should have shape `(batch_size,)`.
- **label_lengths**: optional (default None), used for specifying the
length of each entry when different `label` entries in the same batch
have different lengths. `label_lengths` should have shape `(batch_size,)`.
Outputs:
- **loss**: output loss has shape `(batch_size,)`.
**Example**: suppose the vocabulary is `[a, b, c]`, and in one batch we
have three sequences 'ba', 'cbb', and 'abac'. We can index the labels as
`{'a': 0, 'b': 1, 'c': 2, blank: 3}`. Then `alphabet_size` should be 4,
where label 3 is reserved for internal use by `CTCLoss`. We then need to
pad each sequence with `-1` to make a rectangular `label` tensor::
[[1, 0, -1, -1],
[2, 1, 1, -1],
[0, 1, 0, 2]]
References
----------
`Connectionist Temporal Classification: Labelling Unsegmented
Sequence Data with Recurrent Neural Networks
<http://www.cs.toronto.edu/~graves/icml_2006.pdf>`_
"""
def __init__(self, layout='NTC', label_layout='NT', weight=None, **kwargs):
assert layout in ['NTC', 'TNC'],\
"Only 'NTC' and 'TNC' layouts for pred are supported. Got: %s" % layout
assert label_layout in ['NT', 'TN'],\
"Only 'NT' and 'TN' layouts for label are supported. Got: %s" % label_layout
self._layout = layout
self._label_layout = label_layout
batch_axis = label_layout.find('N')
super(CTCLoss, self).__init__(weight, batch_axis, **kwargs)
def hybrid_forward(self, F, pred, label,
pred_lengths=None, label_lengths=None, sample_weight=None):
if self._layout == 'NTC':
pred = F.swapaxes(pred, 0, 1)
if self._batch_axis == 1:
label = F.swapaxes(label, 0, 1)
loss = F.CTCLoss(pred, label, pred_lengths, label_lengths,
use_data_lengths=pred_lengths is not None,
use_label_lengths=label_lengths is not None,
blank_label='last')
return _apply_weighting(F, loss, self._weight, sample_weight)
class HuberLoss(Loss):
r"""Calculates smoothed L1 loss that is equal to L1 loss if absolute error
exceeds rho but is equal to L2 loss otherwise. Also called SmoothedL1 loss.
.. math::
L = \sum_i \begin{cases} \frac{1}{2 {rho}} ({label}_i - {pred}_i)^2 &
\text{ if } |{label}_i - {pred}_i| < {rho} \\
|{label}_i - {pred}_i| - \frac{{rho}}{2} &
\text{ otherwise }
\end{cases}
`label` and `pred` can have arbitrary shape as long as they have the same
number of elements.
Parameters
----------
rho : float, default 1
Threshold for trimmed mean estimator.
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
Inputs:
- **pred**: prediction tensor with arbitrary shape
- **label**: target tensor with the same size as pred.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as pred. For example, if pred has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: loss tensor with shape (batch_size,). Dimenions other than
batch_axis are averaged out.
"""
def __init__(self, rho=1, weight=None, batch_axis=0, **kwargs):
super(HuberLoss, self).__init__(weight, batch_axis, **kwargs)
self._rho = rho
def hybrid_forward(self, F, pred, label, sample_weight=None):
label = _reshape_like(F, label, pred)
loss = F.abs(label - pred)
loss = F.where(loss > self._rho, loss - 0.5 * self._rho,
(0.5 / self._rho) * F.square(loss))
loss = _apply_weighting(F, loss, self._weight, sample_weight)
return F.mean(loss, axis=self._batch_axis, exclude=True)
class HingeLoss(Loss):
r"""Calculates the hinge loss function often used in SVMs:
.. math::
L = \sum_i max(0, {margin} - {pred}_i \cdot {label}_i)
where `pred` is the classifier prediction and `label` is the target tensor
containing values -1 or 1. `label` and `pred` must have the same number of
elements.
Parameters
----------
margin : float
The margin in hinge loss. Defaults to 1.0
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
Inputs:
- **pred**: prediction tensor with arbitrary shape.
- **label**: truth tensor with values -1 or 1. Must have the same size
as pred.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as pred. For example, if pred has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: loss tensor with shape (batch_size,). Dimenions other than
batch_axis are averaged out.
"""
def __init__(self, margin=1, weight=None, batch_axis=0, **kwargs):
super(HingeLoss, self).__init__(weight, batch_axis, **kwargs)
self._margin = margin
def hybrid_forward(self, F, pred, label, sample_weight=None):
label = _reshape_like(F, label, pred)
loss = F.relu(self._margin - pred * label)
loss = _apply_weighting(F, loss, self._weight, sample_weight)
return F.mean(loss, axis=self._batch_axis, exclude=True)
class SquaredHingeLoss(Loss):
r"""Calculates the soft-margin loss function used in SVMs:
.. math::
L = \sum_i max(0, {margin} - {pred}_i \cdot {label}_i)^2
where `pred` is the classifier prediction and `label` is the target tensor
containing values -1 or 1. `label` and `pred` can have arbitrary shape as
long as they have the same number of elements.
Parameters
----------
margin : float
The margin in hinge loss. Defaults to 1.0
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
Inputs:
- **pred**: prediction tensor with arbitrary shape
- **label**: truth tensor with values -1 or 1. Must have the same size
as pred.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as pred. For example, if pred has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: loss tensor with shape (batch_size,). Dimenions other than
batch_axis are averaged out.
"""
def __init__(self, margin=1, weight=None, batch_axis=0, **kwargs):
super(SquaredHingeLoss, self).__init__(weight, batch_axis, **kwargs)
self._margin = margin
def hybrid_forward(self, F, pred, label, sample_weight=None):
label = _reshape_like(F, label, pred)
loss = F.square(F.relu(self._margin - pred * label))
loss = _apply_weighting(F, loss, self._weight, sample_weight)
return F.mean(loss, axis=self._batch_axis, exclude=True)
class LogisticLoss(Loss):
r"""Calculates the logistic loss (for binary losses only):
.. math::
L = \sum_i \log(1 + \exp(- {pred}_i \cdot {label}_i))
where `pred` is the classifier prediction and `label` is the target tensor
containing values -1 or 1 (0 or 1 if `label_format` is binary).
`label` and `pred` can have arbitrary shape as long as they have the same number of elements.
Parameters
----------
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
label_format : str, default 'signed'
Can be either 'signed' or 'binary'. If the label_format is 'signed', all label values should
be either -1 or 1. If the label_format is 'binary', all label values should be either
0 or 1.
Inputs:
- **pred**: prediction tensor with arbitrary shape.
- **label**: truth tensor with values -1/1 (label_format is 'signed')
or 0/1 (label_format is 'binary'). Must have the same size as pred.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as pred. For example, if pred has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: loss tensor with shape (batch_size,). Dimenions other than
batch_axis are averaged out.
"""
def __init__(self, weight=None, batch_axis=0, label_format='signed', **kwargs):
super(LogisticLoss, self).__init__(weight, batch_axis, **kwargs)
self._label_format = label_format
if self._label_format not in ["signed", "binary"]:
raise ValueError("label_format can only be signed or binary, recieved %s."
% label_format)
def hybrid_forward(self, F, pred, label, sample_weight=None):
label = _reshape_like(F, label, pred)
if self._label_format == 'signed':
label = (label + 1.0) / 2.0 # Transform label to be either 0 or 1
# Use a stable formula in computation
loss = F.relu(pred) - pred * label + \
F.Activation(-F.abs(pred), act_type='softrelu')
loss = _apply_weighting(F, loss, self._weight, sample_weight)
return F.mean(loss, axis=self._batch_axis, exclude=True)
class TripletLoss(Loss):
r"""Calculates triplet loss given three input tensors and a positive margin.
Triplet loss measures the relative similarity between a positive
example, a negative example, and prediction:
.. math::
L = \sum_i \max(\Vert {pos_i}_i - {pred} \Vert_2^2 -
\Vert {neg_i}_i - {pred} \Vert_2^2 + {margin}, 0)
`positive`, `negative`, and 'pred' can have arbitrary shape as long as they
have the same number of elements.
Parameters
----------
margin : float
Margin of separation between correct and incorrect pair.
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
Inputs:
- **pred**: prediction tensor with arbitrary shape
- **positive**: positive example tensor with arbitrary shape. Must have
the same size as pred.
- **negative**: negative example tensor with arbitrary shape Must have
the same size as pred.
Outputs:
- **loss**: loss tensor with shape (batch_size,).
"""
def __init__(self, margin=1, weight=None, batch_axis=0, **kwargs):
super(TripletLoss, self).__init__(weight, batch_axis, **kwargs)
self._margin = margin
def hybrid_forward(self, F, pred, positive, negative):
positive = _reshape_like(F, positive, pred)
negative = _reshape_like(F, negative, pred)
loss = F.sum(F.square(positive - pred) - F.square(negative - pred),
axis=self._batch_axis, exclude=True)
loss = F.relu(loss + self._margin)
return _apply_weighting(F, loss, self._weight, None)
class PoissonNLLLoss(Loss):
r"""For a target (Random Variable) in a Poisson distribution, the function calculates the Negative
Log likelihood loss.
PoissonNLLLoss measures the loss accrued from a poisson regression prediction made by the model.
.. math::
L = \text{pred} - \text{target} * \log(\text{pred}) +\log(\text{target!})
`target`, 'pred' can have arbitrary shape as long as they have the same number of elements.
Parameters
----------
from_logits : boolean, default True
indicating whether log(predicted) value has already been computed. If True, the loss is computed as
:math:`\exp(\text{pred}) - \text{target} * \text{pred}`, and if False, then loss is computed as
:math:`\text{pred} - \text{target} * \log(\text{pred}+\text{epsilon})`.The default value
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
compute_full: boolean, default False
Indicates whether to add an approximation(Stirling factor) for the Factorial term in the formula for the loss.
The Stirling factor is:
:math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})`
epsilon: float, default 1e-08
This is to avoid calculating log(0) which is not defined.
Inputs:
- **pred**: Predicted value
- **target**: Random variable(count or number) which belongs to a Poisson distribution.
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as pred. For example, if pred has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: Average loss (shape=(1,1)) of the loss tensor with shape (batch_size,).
"""
def __init__(self, weight=None, from_logits=True, batch_axis=0, compute_full=False, **kwargs):
super(PoissonNLLLoss, self).__init__(weight, batch_axis, **kwargs)
self._from_logits = from_logits
self._compute_full = compute_full
def hybrid_forward(self, F, pred, target, sample_weight=None, epsilon=1e-08):
target = _reshape_like(F, target, pred)
if self._from_logits:
loss = F.exp(pred) - target * pred
else:
loss = pred - target * F.log(pred + epsilon)
if self._compute_full:
# Using numpy's pi value
stirling_factor = target * \
F.log(target) - target + 0.5 * F.log(2 * target * np.pi)
target_gt_1 = target > 1
stirling_factor *= target_gt_1
loss += stirling_factor
loss = _apply_weighting(F, loss, self._weight, sample_weight)
return F.mean(loss)
class CosineEmbeddingLoss(Loss):
r"""For a target label 1 or -1, vectors input1 and input2, the function computes the cosine distance
between the vectors. This can be interpreted as how similar/dissimilar two input vectors are.
.. math::
L = \sum_i \begin{cases} 1 - {cos\_sim({input1}_i, {input2}_i)} & \text{ if } {label}_i = 1\\
{cos\_sim({input1}_i, {input2}_i)} & \text{ if } {label}_i = -1 \end{cases}\\
cos\_sim(input1, input2) = \frac{{input1}_i.{input2}_i}{||{input1}_i||.||{input2}_i||}
`input1`, `input2` can have arbitrary shape as long as they have the same number of elements.
Parameters
----------
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
margin : float
Margin of separation between correct and incorrect pair.
Inputs:
- **input1**: a tensor with arbitrary shape
- **input2**: another tensor with same shape as pred to which input1 is
compared for similarity and loss calculation
- **label**: A 1-D tensor indicating for each pair input1 and input2, target label is 1 or -1
- **sample_weight**: element-wise weighting tensor. Must be broadcastable
to the same shape as input1. For example, if input1 has shape (64, 10)
and you want to weigh each sample in the batch separately,
sample_weight should have shape (64, 1).
Outputs:
- **loss**: The loss tensor with shape (batch_size,).
"""
def __init__(self, weight=None, batch_axis=0, margin=0, **kwargs):
super(CosineEmbeddingLoss, self).__init__(weight, batch_axis, **kwargs)
self._margin = margin
def hybrid_forward(self, F, input1, input2, label, sample_weight=None):
input1 = _reshape_like(F, input1, input2)
label = label.reshape((-1, 1))
cos_sim = self._cosine_similarity(F, input1, input2)
y_1 = label == 1
y_minus_1 = label == -1
cos_sim_a = (1 - cos_sim) * y_1
if F is ndarray:
z_array = F.array([0])
else:
z_array = F.zeros((1, 1))
cos_sim_b = F.broadcast_maximum(
z_array, y_minus_1 * (cos_sim - self._margin), axis=1)
loss = cos_sim_a + cos_sim_b
loss = _apply_weighting(F, loss, self._weight, sample_weight)
return loss
def _cosine_similarity(self, F, x, y, axis=-1):
# Calculates the cosine similarity between 2 vectors
x_norm = F.norm(x, axis=axis).reshape((-1, 1))
y_norm = F.norm(y, axis=axis).reshape((-1, 1))
x_dot_y = F.sum(x * y, axis=axis).reshape((-1, 1))
if F is ndarray:
eps_arr = F.array([1e-12])
else:
eps_arr = F.full((1, 1), 1e-12)
return (x_dot_y / F.broadcast_maximum(x_norm * y_norm, eps_arr))
class SDMLLoss(Loss):
r"""Calculates Batchwise Smoothed Deep Metric Learning (SDML) Loss given two input tensors and a smoothing weight
SDM Loss learns similarity between paired samples by using unpaired samples in the minibatch
as potential negative examples.
The loss is described in greater detail in
"Large Scale Question Paraphrase Retrieval with Smoothed Deep Metric Learning."
- by Bonadiman, Daniele, Anjishnu Kumar, and Arpit Mittal. arXiv preprint arXiv:1905.12786 (2019).
URL: https://arxiv.org/pdf/1905.12786.pdf
According to the authors, this loss formulation achieves comparable or higher accuracy to
Triplet Loss but converges much faster.
The loss assumes that the items in both tensors in each minibatch
are aligned such that x1[0] corresponds to x2[0] and all other datapoints in the minibatch are unrelated.
`x1` and `x2` are minibatches of vectors.
Parameters
----------
smoothing_parameter : float
Probability mass to be distributed over the minibatch. Must be < 1.0.
weight : float or None
Global scalar weight for loss.
batch_axis : int, default 0
The axis that represents mini-batch.
Inputs:
- **x1**: Minibatch of data points with shape (batch_size, vector_dim)
- **x2**: Minibatch of data points with shape (batch_size, vector_dim)
Each item in x2 is a positive sample for the same index in x1.
That is, x1[0] and x2[0] form a positive pair, x1[1] and x2[1] form a positive pair - and so on.
All data points in different rows should be decorrelated
Outputs:
- **loss**: loss tensor with shape (batch_size,).
"""
def __init__(self, smoothing_parameter=0.3, weight=1., batch_axis=0, **kwargs):
super(SDMLLoss, self).__init__(weight, batch_axis, **kwargs)
self.kl_loss = KLDivLoss(from_logits=True)
self.smoothing_parameter = smoothing_parameter # Smoothing probability mass
def _compute_distances(self, x1, x2):
"""
This function computes the euclidean distance between every vector
in the two batches in input.
"""
# extracting sizes expecting [batch_size, dim]
assert x1.shape == x2.shape
batch_size, dim = x1.shape
# expanding both tensor form [batch_size, dim] to [batch_size, batch_size, dim]
x1_ = x1.expand_dims(1).broadcast_to([batch_size, batch_size, dim])
x2_ = x2.expand_dims(0).broadcast_to([batch_size, batch_size, dim])
# pointwise squared differences
squared_diffs = (x1_ - x2_)**2
# sum of squared differences distance
return squared_diffs.sum(axis=2)
def _compute_labels(self, F, batch_size):
"""
The function creates the label matrix for the loss.
It is an identity matrix of size [BATCH_SIZE x BATCH_SIZE]
labels:
[[1, 0]
[0, 1]]