-
Notifications
You must be signed in to change notification settings - Fork 233
/
Copy pathapi.md
748 lines (557 loc) · 22.8 KB
/
api.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
---
hide:
- navigation
---
<!--
- Licensed to the Apache Software Foundation (ASF) under one
- or more contributor license agreements. See the NOTICE file
- distributed with this work for additional information
- regarding copyright ownership. The ASF licenses this file
- to you under the Apache License, Version 2.0 (the
- "License"); you may not use this file except in compliance
- with the License. You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
- Unless required by applicable law or agreed to in writing,
- software distributed under the License is distributed on an
- "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- KIND, either express or implied. See the License for the
- specific language governing permissions and limitations
- under the License.
-->
# Python API
PyIceberg is based around catalogs to load tables. First step is to instantiate a catalog that loads tables. Let's use the following configuration to define a catalog called `prod`:
```yaml
catalog:
prod:
uri: http://rest-catalog/ws/
credential: t-1234:secret
```
Note that multiple catalogs can be defined in the same `.pyiceberg.yaml`:
```yaml
catalog:
hive:
uri: thrift://127.0.0.1:9083
s3.endpoint: http://127.0.0.1:9000
s3.access-key-id: admin
s3.secret-access-key: password
rest:
uri: https://rest-server:8181/
warehouse: my-warehouse
```
and loaded in python by calling `load_catalog(name="hive")` and `load_catalog(name="rest")`.
This information must be placed inside a file called `.pyiceberg.yaml` located either in the `$HOME` or `%USERPROFILE%` directory (depending on whether the operating system is Unix-based or Windows-based, respectively) or in the `$PYICEBERG_HOME` directory (if the corresponding environment variable is set).
For more details on possible configurations refer to the [specific page](https://py.iceberg.apache.org/configuration/).
Then load the `prod` catalog:
```python
from pyiceberg.catalog import load_catalog
catalog = load_catalog(
"docs",
**{
"uri": "http://127.0.0.1:8181",
"s3.endpoint": "http://127.0.0.1:9000",
"py-io-impl": "pyiceberg.io.pyarrow.PyArrowFileIO",
"s3.access-key-id": "admin",
"s3.secret-access-key": "password",
}
)
```
Let's create a namespace:
```python
catalog.create_namespace("docs_example")
```
And then list them:
```python
ns = catalog.list_namespaces()
assert ns == [("docs_example",)]
```
And then list tables in the namespace:
```python
catalog.list_tables("docs_example")
```
## Create a table
To create a table from a catalog:
```python
from pyiceberg.schema import Schema
from pyiceberg.types import (
TimestampType,
FloatType,
DoubleType,
StringType,
NestedField,
StructType,
)
schema = Schema(
NestedField(field_id=1, name="datetime", field_type=TimestampType(), required=True),
NestedField(field_id=2, name="symbol", field_type=StringType(), required=True),
NestedField(field_id=3, name="bid", field_type=FloatType(), required=False),
NestedField(field_id=4, name="ask", field_type=DoubleType(), required=False),
NestedField(
field_id=5,
name="details",
field_type=StructType(
NestedField(
field_id=4, name="created_by", field_type=StringType(), required=False
),
),
required=False,
),
)
from pyiceberg.partitioning import PartitionSpec, PartitionField
from pyiceberg.transforms import DayTransform
partition_spec = PartitionSpec(
PartitionField(
source_id=1, field_id=1000, transform=DayTransform(), name="datetime_day"
)
)
from pyiceberg.table.sorting import SortOrder, SortField
from pyiceberg.transforms import IdentityTransform
# Sort on the symbol
sort_order = SortOrder(SortField(source_id=2, transform=IdentityTransform()))
catalog.create_table(
identifier="docs_example.bids",
schema=schema,
location="s3://pyiceberg",
partition_spec=partition_spec,
sort_order=sort_order,
)
```
To create a table using a pyarrow schema:
```python
import pyarrow as pa
schema = pa.schema(
[
pa.field("foo", pa.string(), nullable=True),
pa.field("bar", pa.int32(), nullable=False),
pa.field("baz", pa.bool_(), nullable=True),
]
)
catalog.create_table(
identifier="docs_example.bids",
schema=schema,
)
```
## Load a table
### Catalog table
Loading the `bids` table:
```python
table = catalog.load_table("docs_example.bids")
# Equivalent to:
table = catalog.load_table(("docs_example", "bids"))
# The tuple syntax can be used if the namespace or table contains a dot.
```
This returns a `Table` that represents an Iceberg table that can be queried and altered.
### Static table
To load a table directly from a metadata file (i.e., **without** using a catalog), you can use a `StaticTable` as follows:
```python
from pyiceberg.table import StaticTable
static_table = StaticTable.from_metadata(
"s3://warehouse/wh/nyc.db/taxis/metadata/00002-6ea51ce3-62aa-4197-9cf8-43d07c3440ca.metadata.json"
)
```
The static-table is considered read-only.
## Write support
With PyIceberg 0.6.0 write support is added through Arrow. Let's consider an Arrow Table:
```python
import pyarrow as pa
df = pa.Table.from_pylist(
[
{"city": "Amsterdam", "lat": 52.371807, "long": 4.896029},
{"city": "San Francisco", "lat": 37.773972, "long": -122.431297},
{"city": "Drachten", "lat": 53.11254, "long": 6.0989},
{"city": "Paris", "lat": 48.864716, "long": 2.349014},
],
)
```
Next, create a table based on the schema:
```python
from pyiceberg.catalog import load_catalog
catalog = load_catalog("default")
from pyiceberg.schema import Schema
from pyiceberg.types import NestedField, StringType, DoubleType
schema = Schema(
NestedField(1, "city", StringType(), required=False),
NestedField(2, "lat", DoubleType(), required=False),
NestedField(3, "long", DoubleType(), required=False),
)
tbl = catalog.create_table("default.cities", schema=schema)
```
Now write the data to the table:
<!-- prettier-ignore-start -->
!!! note inline end "Fast append"
PyIceberg default to the [fast append](https://iceberg.apache.org/spec/#snapshots) to minimize the amount of data written. This enables quick writes, reducing the possibility of conflicts. The downside of the fast append is that it creates more metadata than a normal commit. [Compaction is planned](https://github.com/apache/iceberg-python/issues/270) and will automatically rewrite all the metadata when a threshold is hit, to maintain performant reads.
<!-- prettier-ignore-end -->
```python
tbl.append(df)
# or
tbl.overwrite(df)
```
The data is written to the table, and when the table is read using `tbl.scan().to_arrow()`:
```
pyarrow.Table
city: string
lat: double
long: double
----
city: [["Amsterdam","San Francisco","Drachten","Paris"]]
lat: [[52.371807,37.773972,53.11254,48.864716]]
long: [[4.896029,-122.431297,6.0989,2.349014]]
```
You both can use `append(df)` or `overwrite(df)` since there is no data yet. If we want to add more data, we can use `.append()` again:
```python
df = pa.Table.from_pylist(
[{"city": "Groningen", "lat": 53.21917, "long": 6.56667}],
)
tbl.append(df)
```
When reading the table `tbl.scan().to_arrow()` you can see that `Groningen` is now also part of the table:
```
pyarrow.Table
city: string
lat: double
long: double
----
city: [["Amsterdam","San Francisco","Drachten","Paris"],["Groningen"]]
lat: [[52.371807,37.773972,53.11254,48.864716],[53.21917]]
long: [[4.896029,-122.431297,6.0989,2.349014],[6.56667]]
```
The nested lists indicate the different Arrow buffers, where the first write results into a buffer, and the second append in a separate buffer. This is expected since it will read two parquet files.
<!-- prettier-ignore-start -->
!!! example "Under development"
Writing using PyIceberg is still under development. Support for [partial overwrites](https://github.com/apache/iceberg-python/issues/268) and writing to [partitioned tables](https://github.com/apache/iceberg-python/issues/208) is planned and being worked on.
<!-- prettier-ignore-end -->
## Schema evolution
PyIceberg supports full schema evolution through the Python API. It takes care of setting the field-IDs and makes sure that only non-breaking changes are done (can be overriden).
In the examples below, the `.update_schema()` is called from the table itself.
```python
with table.update_schema() as update:
update.add_column("some_field", IntegerType(), "doc")
```
You can also initiate a transaction if you want to make more changes than just evolving the schema:
```python
with table.transaction() as transaction:
with transaction.update_schema() as update_schema:
update.add_column("some_other_field", IntegerType(), "doc")
# ... Update properties etc
```
### Union by Name
Using `.union_by_name()` you can merge another schema into an existing schema without having to worry about field-IDs:
```python
from pyiceberg.catalog import load_catalog
from pyiceberg.schema import Schema
from pyiceberg.types import NestedField, StringType, DoubleType, LongType
catalog = load_catalog()
schema = Schema(
NestedField(1, "city", StringType(), required=False),
NestedField(2, "lat", DoubleType(), required=False),
NestedField(3, "long", DoubleType(), required=False),
)
table = catalog.create_table("default.locations", schema)
new_schema = Schema(
NestedField(1, "city", StringType(), required=False),
NestedField(2, "lat", DoubleType(), required=False),
NestedField(3, "long", DoubleType(), required=False),
NestedField(10, "population", LongType(), required=False),
)
with table.update_schema() as update:
update.union_by_name(new_schema)
```
Now the table has the union of the two schemas `print(table.schema())`:
```
table {
1: city: optional string
2: lat: optional double
3: long: optional double
4: population: optional long
}
```
### Add column
Using `add_column` you can add a column, without having to worry about the field-id:
```python
with table.update_schema() as update:
update.add_column("retries", IntegerType(), "Number of retries to place the bid")
# In a struct
update.add_column("details.confirmed_by", StringType(), "Name of the exchange")
```
### Rename column
Renaming a field in an Iceberg table is simple:
```python
with table.update_schema() as update:
update.rename_column("retries", "num_retries")
# This will rename `confirmed_by` to `exchange`
update.rename_column("properties.confirmed_by", "exchange")
```
### Move column
Move a field inside of struct:
```python
with table.update_schema() as update:
update.move_first("symbol")
update.move_after("bid", "ask")
# This will move `confirmed_by` before `exchange`
update.move_before("details.created_by", "details.exchange")
```
### Update column
Update a fields' type, description or required.
```python
with table.update_schema() as update:
# Promote a float to a double
update.update_column("bid", field_type=DoubleType())
# Make a field optional
update.update_column("symbol", required=False)
# Update the documentation
update.update_column("symbol", doc="Name of the share on the exchange")
```
Be careful, some operations are not compatible, but can still be done at your own risk by setting `allow_incompatible_changes`:
```python
with table.update_schema(allow_incompatible_changes=True) as update:
# Incompatible change, cannot require an optional field
update.update_column("symbol", required=True)
```
### Delete column
Delete a field, careful this is a incompatible change (readers/writers might expect this field):
```python
with table.update_schema(allow_incompatible_changes=True) as update:
update.delete_column("some_field")
```
## Partition evolution
PyIceberg supports partition evolution. See the [partition evolution](https://iceberg.apache.org/spec/#partition-evolution)
for more details.
The API to use when evolving partitions is the `update_spec` API on the table.
```python
with table.update_spec() as update:
update.add_field("id", BucketTransform(16), "bucketed_id")
update.add_field("event_ts", DayTransform(), "day_ts")
```
Updating the partition spec can also be done as part of a transaction with other operations.
```python
with table.transaction() as transaction:
with transaction.update_spec() as update_spec:
update_spec.add_field("id", BucketTransform(16), "bucketed_id")
update_spec.add_field("event_ts", DayTransform(), "day_ts")
# ... Update properties etc
```
### Add fields
New partition fields can be added via the `add_field` API which takes in the field name to partition on,
the partition transform, and an optional partition name. If the partition name is not specified,
one will be created.
```python
with table.update_spec() as update:
update.add_field("id", BucketTransform(16), "bucketed_id")
update.add_field("event_ts", DayTransform(), "day_ts")
# identity is a shortcut API for adding an IdentityTransform
update.identity("some_field")
```
### Remove fields
Partition fields can also be removed via the `remove_field` API if it no longer makes sense to partition on those fields.
```python
with table.update_spec() as update:some_partition_name
# Remove the partition field with the name
update.remove_field("some_partition_name")
```
### Rename fields
Partition fields can also be renamed via the `rename_field` API.
```python
with table.update_spec() as update:
# Rename the partition field with the name bucketed_id to sharded_id
update.rename_field("bucketed_id", "sharded_id")
```
## Table properties
Set and remove properties through the `Transaction` API:
```python
with table.transaction() as transaction:
transaction.set_properties(abc="def")
assert table.properties == {"abc": "def"}
with table.transaction() as transaction:
transaction.remove_properties("abc")
assert table.properties == {}
```
Or, without context manager:
```python
table = table.transaction().set_properties(abc="def").commit_transaction()
assert table.properties == {"abc": "def"}
table = table.transaction().remove_properties("abc").commit_transaction()
assert table.properties == {}
```
## Query the data
To query a table, a table scan is needed. A table scan accepts a filter, columns, optionally a limit and a snapshot ID:
```python
from pyiceberg.catalog import load_catalog
from pyiceberg.expressions import GreaterThanOrEqual
catalog = load_catalog("default")
table = catalog.load_table("nyc.taxis")
scan = table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
limit=100,
)
# Or filter using a string predicate
scan = table.scan(
row_filter="trip_distance > 10.0",
)
[task.file.file_path for task in scan.plan_files()]
```
The low level API `plan_files` methods returns a set of tasks that provide the files that might contain matching rows:
```json
[
"s3://warehouse/wh/nyc/taxis/data/00003-4-42464649-92dd-41ad-b83b-dea1a2fe4b58-00001.parquet"
]
```
In this case it is up to the engine itself to filter the file itself. Below, `to_arrow()` and `to_duckdb()` that already do this for you.
### Apache Arrow
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [`pyarrow` to be installed](index.md).
<!-- prettier-ignore-end -->
Using PyIceberg it is filter out data from a huge table and pull it into a PyArrow table:
```python
table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_arrow()
```
This will return a PyArrow table:
```
pyarrow.Table
VendorID: int64
tpep_pickup_datetime: timestamp[us, tz=+00:00]
tpep_dropoff_datetime: timestamp[us, tz=+00:00]
----
VendorID: [[2,1,2,1,1,...,2,2,2,2,2],[2,1,1,1,2,...,1,1,2,1,2],...,[2,2,2,2,2,...,2,6,6,2,2],[2,2,2,2,2,...,2,2,2,2,2]]
tpep_pickup_datetime: [[2021-04-01 00:28:05.000000,...,2021-04-30 23:44:25.000000]]
tpep_dropoff_datetime: [[2021-04-01 00:47:59.000000,...,2021-05-01 00:14:47.000000]]
```
This will only pull in the files that that might contain matching rows.
### Pandas
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [`pandas` to be installed](index.md).
<!-- prettier-ignore-end -->
PyIceberg makes it easy to filter out data from a huge table and pull it into a Pandas dataframe locally. This will only fetch the relevant Parquet files for the query and apply the filter. This will reduce IO and therefore improve performance and reduce cost.
```python
table.scan(
row_filter="trip_distance >= 10.0",
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_pandas()
```
This will return a Pandas dataframe:
```
VendorID tpep_pickup_datetime tpep_dropoff_datetime
0 2 2021-04-01 00:28:05+00:00 2021-04-01 00:47:59+00:00
1 1 2021-04-01 00:39:01+00:00 2021-04-01 00:57:39+00:00
2 2 2021-04-01 00:14:42+00:00 2021-04-01 00:42:59+00:00
3 1 2021-04-01 00:17:17+00:00 2021-04-01 00:43:38+00:00
4 1 2021-04-01 00:24:04+00:00 2021-04-01 00:56:20+00:00
... ... ... ...
116976 2 2021-04-30 23:56:18+00:00 2021-05-01 00:29:13+00:00
116977 2 2021-04-30 23:07:41+00:00 2021-04-30 23:37:18+00:00
116978 2 2021-04-30 23:38:28+00:00 2021-05-01 00:12:04+00:00
116979 2 2021-04-30 23:33:00+00:00 2021-04-30 23:59:00+00:00
116980 2 2021-04-30 23:44:25+00:00 2021-05-01 00:14:47+00:00
[116981 rows x 3 columns]
```
It is recommended to use Pandas 2 or later, because it stores the data in an [Apache Arrow backend](https://datapythonista.me/blog/pandas-20-and-the-arrow-revolution-part-i) which avoids copies of data.
### DuckDB
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [DuckDB to be installed](index.md).
<!-- prettier-ignore-end -->
A table scan can also be converted into a in-memory DuckDB table:
```python
con = table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_duckdb(table_name="distant_taxi_trips")
```
Using the cursor that we can run queries on the DuckDB table:
```python
print(
con.execute(
"SELECT tpep_dropoff_datetime - tpep_pickup_datetime AS duration FROM distant_taxi_trips LIMIT 4"
).fetchall()
)
[
(datetime.timedelta(seconds=1194),),
(datetime.timedelta(seconds=1118),),
(datetime.timedelta(seconds=1697),),
(datetime.timedelta(seconds=1581),),
]
```
### Ray
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [Ray to be installed](index.md).
<!-- prettier-ignore-end -->
A table scan can also be converted into a Ray dataset:
```python
ray_dataset = table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_ray()
```
This will return a Ray dataset:
```
Dataset(
num_blocks=1,
num_rows=1168798,
schema={
VendorID: int64,
tpep_pickup_datetime: timestamp[us, tz=UTC],
tpep_dropoff_datetime: timestamp[us, tz=UTC]
}
)
```
Using [Ray Dataset API](https://docs.ray.io/en/latest/data/api/dataset.html) to interact with the dataset:
```python
print(ray_dataset.take(2))
[
{
"VendorID": 2,
"tpep_pickup_datetime": datetime.datetime(2008, 12, 31, 23, 23, 50),
"tpep_dropoff_datetime": datetime.datetime(2009, 1, 1, 0, 34, 31),
},
{
"VendorID": 2,
"tpep_pickup_datetime": datetime.datetime(2008, 12, 31, 23, 5, 3),
"tpep_dropoff_datetime": datetime.datetime(2009, 1, 1, 16, 10, 18),
},
]
```
### Daft
PyIceberg interfaces closely with Daft Dataframes (see also: [Daft integration with Iceberg](https://www.getdaft.io/projects/docs/en/latest/user_guide/integrations/iceberg.html)) which provides a full lazily optimized query engine interface on top of PyIceberg tables.
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [Daft to be installed](index.md).
<!-- prettier-ignore-end -->
A table can be read easily into a Daft Dataframe:
```python
df = table.to_daft() # equivalent to `daft.read_iceberg(table)`
df = df.where(df["trip_distance"] >= 10.0)
df = df.select("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime")
```
This returns a Daft Dataframe which is lazily materialized. Printing `df` will display the schema:
```
╭──────────┬───────────────────────────────┬───────────────────────────────╮
│ VendorID ┆ tpep_pickup_datetime ┆ tpep_dropoff_datetime │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Timestamp(Microseconds, None) ┆ Timestamp(Microseconds, None) │
╰──────────┴───────────────────────────────┴───────────────────────────────╯
(No data to display: Dataframe not materialized)
```
We can execute the Dataframe to preview the first few rows of the query with `df.show()`.
This is correctly optimized to take advantage of Iceberg features such as hidden partitioning and file-level statistics for efficient reads.
```python
df.show(2)
```
```
╭──────────┬───────────────────────────────┬───────────────────────────────╮
│ VendorID ┆ tpep_pickup_datetime ┆ tpep_dropoff_datetime │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Timestamp(Microseconds, None) ┆ Timestamp(Microseconds, None) │
╞══════════╪═══════════════════════════════╪═══════════════════════════════╡
│ 2 ┆ 2008-12-31T23:23:50.000000 ┆ 2009-01-01T00:34:31.000000 │
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ 2008-12-31T23:05:03.000000 ┆ 2009-01-01T16:10:18.000000 │
╰──────────┴───────────────────────────────┴───────────────────────────────╯
(Showing first 2 rows)
```