diff --git a/.github/workflows/rust.yml b/.github/workflows/rust.yml index 099aab061435..a541091e3a2b 100644 --- a/.github/workflows/rust.yml +++ b/.github/workflows/rust.yml @@ -68,6 +68,9 @@ jobs: - name: Check workspace without default features run: cargo check --no-default-features -p datafusion + - name: Check datafusion-common without default features + run: cargo check --tests --no-default-features -p datafusion-common + - name: Check workspace in debug mode run: cargo check diff --git a/Cargo.toml b/Cargo.toml index 2bcbe059ab25..023dc6c6fc4f 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -46,7 +46,7 @@ license = "Apache-2.0" readme = "README.md" repository = "https://github.com/apache/arrow-datafusion" rust-version = "1.70" -version = "33.0.0" +version = "34.0.0" [workspace.dependencies] arrow = { version = "49.0.0", features = ["prettyprint"] } @@ -59,17 +59,17 @@ async-trait = "0.1.73" bigdecimal = "0.4.1" bytes = "1.4" ctor = "0.2.0" -datafusion = { path = "datafusion/core", version = "33.0.0" } -datafusion-common = { path = "datafusion/common", version = "33.0.0" } -datafusion-expr = { path = "datafusion/expr", version = "33.0.0" } -datafusion-sql = { path = "datafusion/sql", version = "33.0.0" } -datafusion-optimizer = { path = "datafusion/optimizer", version = "33.0.0" } -datafusion-physical-expr = { path = "datafusion/physical-expr", version = "33.0.0" } -datafusion-physical-plan = { path = "datafusion/physical-plan", version = "33.0.0" } -datafusion-execution = { path = "datafusion/execution", version = "33.0.0" } -datafusion-proto = { path = "datafusion/proto", version = "33.0.0" } -datafusion-sqllogictest = { path = "datafusion/sqllogictest", version = "33.0.0" } -datafusion-substrait = { path = "datafusion/substrait", version = "33.0.0" } +datafusion = { path = "datafusion/core", version = "34.0.0" } +datafusion-common = { path = "datafusion/common", version = "34.0.0" } +datafusion-expr = { path = "datafusion/expr", version = "34.0.0" } +datafusion-sql = { path = "datafusion/sql", version = "34.0.0" } +datafusion-optimizer = { path = "datafusion/optimizer", version = "34.0.0" } +datafusion-physical-expr = { path = "datafusion/physical-expr", version = "34.0.0" } +datafusion-physical-plan = { path = "datafusion/physical-plan", version = "34.0.0" } +datafusion-execution = { path = "datafusion/execution", version = "34.0.0" } +datafusion-proto = { path = "datafusion/proto", version = "34.0.0" } +datafusion-sqllogictest = { path = "datafusion/sqllogictest", version = "34.0.0" } +datafusion-substrait = { path = "datafusion/substrait", version = "34.0.0" } dashmap = "5.4.0" doc-comment = "0.3" env_logger = "0.10" diff --git a/benchmarks/Cargo.toml b/benchmarks/Cargo.toml index c5a24a0a5cf9..4ce46968e1f4 100644 --- a/benchmarks/Cargo.toml +++ b/benchmarks/Cargo.toml @@ -18,7 +18,7 @@ [package] name = "datafusion-benchmarks" description = "DataFusion Benchmarks" -version = "33.0.0" +version = "34.0.0" edition = { workspace = true } authors = ["Apache Arrow "] homepage = "https://github.com/apache/arrow-datafusion" @@ -34,8 +34,8 @@ snmalloc = ["snmalloc-rs"] [dependencies] arrow = { workspace = true } -datafusion = { path = "../datafusion/core", version = "33.0.0" } -datafusion-common = { path = "../datafusion/common", version = "33.0.0" } +datafusion = { path = "../datafusion/core", version = "34.0.0" } +datafusion-common = { path = "../datafusion/common", version = "34.0.0" } env_logger = { workspace = true } futures = { workspace = true } log = { workspace = true } @@ -50,4 +50,4 @@ test-utils = { path = "../test-utils/", version = "0.1.0" } tokio = { version = "^1.0", features = ["macros", "rt", "rt-multi-thread", "parking_lot"] } [dev-dependencies] -datafusion-proto = { path = "../datafusion/proto", version = "33.0.0" } +datafusion-proto = { path = "../datafusion/proto", version = "34.0.0" } diff --git a/datafusion-cli/Cargo.lock b/datafusion-cli/Cargo.lock index 76be04d5ef67..19ad6709362d 100644 --- a/datafusion-cli/Cargo.lock +++ b/datafusion-cli/Cargo.lock @@ -384,7 +384,7 @@ checksum = "a66537f1bb974b254c98ed142ff995236e81b9d0fe4db0575f46612cb15eb0f9" dependencies = [ "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] @@ -1074,7 +1074,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "37e366bff8cd32dd8754b0991fb66b279dc48f598c3a18914852a6673deef583" dependencies = [ "quote", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] @@ -1098,7 +1098,7 @@ dependencies = [ [[package]] name = "datafusion" -version = "33.0.0" +version = "34.0.0" dependencies = [ "ahash", "apache-avro", @@ -1145,7 +1145,7 @@ dependencies = [ [[package]] name = "datafusion-cli" -version = "33.0.0" +version = "34.0.0" dependencies = [ "arrow", "assert_cmd", @@ -1172,7 +1172,7 @@ dependencies = [ [[package]] name = "datafusion-common" -version = "33.0.0" +version = "34.0.0" dependencies = [ "ahash", "apache-avro", @@ -1191,7 +1191,7 @@ dependencies = [ [[package]] name = "datafusion-execution" -version = "33.0.0" +version = "34.0.0" dependencies = [ "arrow", "chrono", @@ -1210,7 +1210,7 @@ dependencies = [ [[package]] name = "datafusion-expr" -version = "33.0.0" +version = "34.0.0" dependencies = [ "ahash", "arrow", @@ -1224,7 +1224,7 @@ dependencies = [ [[package]] name = "datafusion-optimizer" -version = "33.0.0" +version = "34.0.0" dependencies = [ "arrow", "async-trait", @@ -1240,7 +1240,7 @@ dependencies = [ [[package]] name = "datafusion-physical-expr" -version = "33.0.0" +version = "34.0.0" dependencies = [ "ahash", "arrow", @@ -1272,7 +1272,7 @@ dependencies = [ [[package]] name = "datafusion-physical-plan" -version = "33.0.0" +version = "34.0.0" dependencies = [ "ahash", "arrow", @@ -1301,7 +1301,7 @@ dependencies = [ [[package]] name = "datafusion-sql" -version = "33.0.0" +version = "34.0.0" dependencies = [ "arrow", "arrow-schema", @@ -1576,7 +1576,7 @@ checksum = "53b153fd91e4b0147f4aced87be237c98248656bb01050b96bf3ee89220a8ddb" dependencies = [ "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] @@ -1752,9 +1752,9 @@ dependencies = [ [[package]] name = "http-body" -version = "0.4.5" +version = "0.4.6" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "d5f38f16d184e36f2408a55281cd658ecbd3ca05cce6d6510a176eca393e26d1" +checksum = "7ceab25649e9960c0311ea418d17bee82c0dcec1bd053b5f9a66e265a693bed2" dependencies = [ "bytes", "http", @@ -1827,7 +1827,7 @@ dependencies = [ "futures-util", "http", "hyper", - "rustls 0.21.9", + "rustls 0.21.10", "tokio", "tokio-rustls 0.24.1", ] @@ -1926,9 +1926,9 @@ dependencies = [ [[package]] name = "itoa" -version = "1.0.9" +version = "1.0.10" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "af150ab688ff2122fcef229be89cb50dd66af9e01a4ff320cc137eecc9bacc38" +checksum = "b1a46d1a171d865aa5f83f92695765caa047a9b4cbae2cbf37dbd613a793fd4c" [[package]] name = "jobserver" @@ -2020,9 +2020,9 @@ dependencies = [ [[package]] name = "libc" -version = "0.2.150" +version = "0.2.151" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "89d92a4743f9a61002fae18374ed11e7973f530cb3a3255fb354818118b2203c" +checksum = "302d7ab3130588088d277783b1e2d2e10c9e9e4a16dd9050e6ec93fb3e7048f4" [[package]] name = "libflate" @@ -2322,9 +2322,9 @@ dependencies = [ [[package]] name = "once_cell" -version = "1.18.0" +version = "1.19.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "dd8b5dd2ae5ed71462c540258bedcb51965123ad7e7ccf4b9a8cafaa4a63576d" +checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92" [[package]] name = "openssl-probe" @@ -2496,7 +2496,7 @@ checksum = "4359fd9c9171ec6e8c62926d6faaf553a8dc3f64e1507e76da7911b4f6a04405" dependencies = [ "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] @@ -2736,7 +2736,7 @@ dependencies = [ "once_cell", "percent-encoding", "pin-project-lite", - "rustls 0.21.9", + "rustls 0.21.10", "rustls-pemfile", "serde", "serde_json", @@ -2833,9 +2833,9 @@ dependencies = [ [[package]] name = "rustix" -version = "0.38.26" +version = "0.38.28" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "9470c4bf8246c8daf25f9598dca807fb6510347b1e1cfa55749113850c79d88a" +checksum = "72e572a5e8ca657d7366229cdde4bd14c4eb5499a9573d4d366fe1b599daa316" dependencies = [ "bitflags 2.4.1", "errno", @@ -2858,9 +2858,9 @@ dependencies = [ [[package]] name = "rustls" -version = "0.21.9" +version = "0.21.10" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "629648aced5775d558af50b2b4c7b02983a04b312126d45eeead26e7caa498b9" +checksum = "f9d5a6813c0759e4609cd494e8e725babae6a2ca7b62a5536a13daaec6fcb7ba" dependencies = [ "log", "ring 0.17.7", @@ -2930,9 +2930,9 @@ dependencies = [ [[package]] name = "ryu" -version = "1.0.15" +version = "1.0.16" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "1ad4cc8da4ef723ed60bced201181d83791ad433213d8c24efffda1eec85d741" +checksum = "f98d2aa92eebf49b69786be48e4477826b256916e84a57ff2a4f21923b48eb4c" [[package]] name = "same-file" @@ -3020,7 +3020,7 @@ checksum = "43576ca501357b9b071ac53cdc7da8ef0cbd9493d8df094cd821777ea6e894d3" dependencies = [ "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] @@ -3196,7 +3196,7 @@ dependencies = [ "proc-macro2", "quote", "rustversion", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] @@ -3218,9 +3218,9 @@ dependencies = [ [[package]] name = "syn" -version = "2.0.39" +version = "2.0.40" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "23e78b90f2fcf45d3e842032ce32e3f2d1545ba6636271dcbf24fa306d87be7a" +checksum = "13fa70a4ee923979ffb522cacce59d34421ebdea5625e1073c4326ef9d2dd42e" dependencies = [ "proc-macro2", "quote", @@ -3299,7 +3299,7 @@ checksum = "266b2e40bc00e5a6c09c3584011e08b06f123c00362c92b975ba9843aaaa14b8" dependencies = [ "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] @@ -3367,9 +3367,9 @@ checksum = "1f3ccbac311fea05f86f61904b462b55fb3df8837a366dfc601a0161d0532f20" [[package]] name = "tokio" -version = "1.34.0" +version = "1.35.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "d0c014766411e834f7af5b8f4cf46257aab4036ca95e9d2c144a10f59ad6f5b9" +checksum = "841d45b238a16291a4e1584e61820b8ae57d696cc5015c459c229ccc6990cc1c" dependencies = [ "backtrace", "bytes", @@ -3391,7 +3391,7 @@ checksum = "5b8a1e28f2deaa14e508979454cb3a223b10b938b45af148bc0986de36f1923b" dependencies = [ "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] @@ -3411,7 +3411,7 @@ version = "0.24.1" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "c28327cf380ac148141087fbfb9de9d7bd4e84ab5d2c28fbc911d753de8a7081" dependencies = [ - "rustls 0.21.9", + "rustls 0.21.10", "tokio", ] @@ -3488,7 +3488,7 @@ checksum = "34704c8d6ebcbc939824180af020566b01a7c01f80641264eba0999f6c2b6be7" dependencies = [ "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] @@ -3502,9 +3502,9 @@ dependencies = [ [[package]] name = "try-lock" -version = "0.2.4" +version = "0.2.5" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "3528ecfd12c466c6f163363caf2d02a71161dd5e1cc6ae7b34207ea2d42d81ed" +checksum = "e421abadd41a4225275504ea4d6566923418b7f05506fbc9c0fe86ba7396114b" [[package]] name = "twox-hash" @@ -3533,7 +3533,7 @@ checksum = "f03ca4cb38206e2bef0700092660bb74d696f808514dae47fa1467cbfe26e96e" dependencies = [ "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] @@ -3544,9 +3544,9 @@ checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825" [[package]] name = "unicode-bidi" -version = "0.3.13" +version = "0.3.14" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "92888ba5573ff080736b3648696b70cafad7d250551175acbaa4e0385b3e1460" +checksum = "6f2528f27a9eb2b21e69c95319b30bd0efd85d09c379741b0f78ea1d86be2416" [[package]] name = "unicode-ident" @@ -3687,7 +3687,7 @@ dependencies = [ "once_cell", "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", "wasm-bindgen-shared", ] @@ -3721,7 +3721,7 @@ checksum = "f0eb82fcb7930ae6219a7ecfd55b217f5f0893484b7a13022ebb2b2bf20b5283" dependencies = [ "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", "wasm-bindgen-backend", "wasm-bindgen-shared", ] @@ -3970,22 +3970,22 @@ dependencies = [ [[package]] name = "zerocopy" -version = "0.7.29" +version = "0.7.30" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "5d075cf85bbb114e933343e087b92f2146bac0d55b534cbb8188becf0039948e" +checksum = "306dca4455518f1f31635ec308b6b3e4eb1b11758cefafc782827d0aa7acb5c7" dependencies = [ "zerocopy-derive", ] [[package]] name = "zerocopy-derive" -version = "0.7.29" +version = "0.7.30" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "86cd5ca076997b97ef09d3ad65efe811fa68c9e874cb636ccb211223a813b0c2" +checksum = "be912bf68235a88fbefd1b73415cb218405958d1655b2ece9035a19920bdf6ba" dependencies = [ "proc-macro2", "quote", - "syn 2.0.39", + "syn 2.0.40", ] [[package]] diff --git a/datafusion-cli/Cargo.toml b/datafusion-cli/Cargo.toml index 5ce318aea3ac..1bf24808fb90 100644 --- a/datafusion-cli/Cargo.toml +++ b/datafusion-cli/Cargo.toml @@ -18,7 +18,7 @@ [package] name = "datafusion-cli" description = "Command Line Client for DataFusion query engine." -version = "33.0.0" +version = "34.0.0" authors = ["Apache Arrow "] edition = "2021" keywords = ["arrow", "datafusion", "query", "sql"] @@ -34,7 +34,7 @@ async-trait = "0.1.41" aws-config = "0.55" aws-credential-types = "0.55" clap = { version = "3", features = ["derive", "cargo"] } -datafusion = { path = "../datafusion/core", version = "33.0.0", features = ["avro", "crypto_expressions", "encoding_expressions", "parquet", "regex_expressions", "unicode_expressions", "compression"] } +datafusion = { path = "../datafusion/core", version = "34.0.0", features = ["avro", "crypto_expressions", "encoding_expressions", "parquet", "regex_expressions", "unicode_expressions", "compression"] } dirs = "4.0.0" env_logger = "0.9" mimalloc = { version = "0.1", default-features = false } diff --git a/datafusion-cli/src/functions.rs b/datafusion-cli/src/functions.rs index 24f3399ee2be..f8d9ed238be4 100644 --- a/datafusion-cli/src/functions.rs +++ b/datafusion-cli/src/functions.rs @@ -31,6 +31,7 @@ use datafusion::logical_expr::Expr; use datafusion::physical_plan::memory::MemoryExec; use datafusion::physical_plan::ExecutionPlan; use datafusion::scalar::ScalarValue; +use parquet::basic::ConvertedType; use parquet::file::reader::FileReader; use parquet::file::serialized_reader::SerializedFileReader; use parquet::file::statistics::Statistics; @@ -246,6 +247,52 @@ impl TableProvider for ParquetMetadataTable { } } +fn convert_parquet_statistics( + value: &Statistics, + converted_type: ConvertedType, +) -> (String, String) { + match (value, converted_type) { + (Statistics::Boolean(val), _) => (val.min().to_string(), val.max().to_string()), + (Statistics::Int32(val), _) => (val.min().to_string(), val.max().to_string()), + (Statistics::Int64(val), _) => (val.min().to_string(), val.max().to_string()), + (Statistics::Int96(val), _) => (val.min().to_string(), val.max().to_string()), + (Statistics::Float(val), _) => (val.min().to_string(), val.max().to_string()), + (Statistics::Double(val), _) => (val.min().to_string(), val.max().to_string()), + (Statistics::ByteArray(val), ConvertedType::UTF8) => { + let min_bytes = val.min(); + let max_bytes = val.max(); + let min = min_bytes + .as_utf8() + .map(|v| v.to_string()) + .unwrap_or_else(|_| min_bytes.to_string()); + + let max = max_bytes + .as_utf8() + .map(|v| v.to_string()) + .unwrap_or_else(|_| max_bytes.to_string()); + (min, max) + } + (Statistics::ByteArray(val), _) => (val.min().to_string(), val.max().to_string()), + (Statistics::FixedLenByteArray(val), ConvertedType::UTF8) => { + let min_bytes = val.min(); + let max_bytes = val.max(); + let min = min_bytes + .as_utf8() + .map(|v| v.to_string()) + .unwrap_or_else(|_| min_bytes.to_string()); + + let max = max_bytes + .as_utf8() + .map(|v| v.to_string()) + .unwrap_or_else(|_| max_bytes.to_string()); + (min, max) + } + (Statistics::FixedLenByteArray(val), _) => { + (val.min().to_string(), val.max().to_string()) + } + } +} + pub struct ParquetMetadataFunc {} impl TableFunctionImpl for ParquetMetadataFunc { @@ -326,34 +373,12 @@ impl TableFunctionImpl for ParquetMetadataFunc { num_values_arr.push(column.num_values()); path_in_schema_arr.push(column.column_path().to_string()); type_arr.push(column.column_type().to_string()); + let converted_type = column.column_descr().converted_type(); + if let Some(s) = column.statistics() { let (min_val, max_val) = if s.has_min_max_set() { - let (min_val, max_val) = match s { - Statistics::Boolean(val) => { - (val.min().to_string(), val.max().to_string()) - } - Statistics::Int32(val) => { - (val.min().to_string(), val.max().to_string()) - } - Statistics::Int64(val) => { - (val.min().to_string(), val.max().to_string()) - } - Statistics::Int96(val) => { - (val.min().to_string(), val.max().to_string()) - } - Statistics::Float(val) => { - (val.min().to_string(), val.max().to_string()) - } - Statistics::Double(val) => { - (val.min().to_string(), val.max().to_string()) - } - Statistics::ByteArray(val) => { - (val.min().to_string(), val.max().to_string()) - } - Statistics::FixedLenByteArray(val) => { - (val.min().to_string(), val.max().to_string()) - } - }; + let (min_val, max_val) = + convert_parquet_statistics(s, converted_type); (Some(min_val), Some(max_val)) } else { (None, None) diff --git a/datafusion-cli/src/main.rs b/datafusion-cli/src/main.rs index 8b1a9816afc0..8b74a797b57b 100644 --- a/datafusion-cli/src/main.rs +++ b/datafusion-cli/src/main.rs @@ -420,4 +420,28 @@ mod tests { Ok(()) } + + #[tokio::test] + async fn test_parquet_metadata_works_with_strings() -> Result<(), DataFusionError> { + let ctx = SessionContext::new(); + ctx.register_udtf("parquet_metadata", Arc::new(ParquetMetadataFunc {})); + + // input with string columns + let sql = + "SELECT * FROM parquet_metadata('../parquet-testing/data/data_index_bloom_encoding_stats.parquet')"; + let df = ctx.sql(sql).await?; + let rbs = df.collect().await?; + + let excepted = [ + +"+-----------------------------------------------------------------+--------------+--------------------+-----------------------+-----------------+-----------+-------------+------------+----------------+------------+-----------+-----------+------------------+----------------------+-----------------+-----------------+--------------------+--------------------------+-------------------+------------------------+------------------+-----------------------+-------------------------+", +"| filename | row_group_id | row_group_num_rows | row_group_num_columns | row_group_bytes | column_id | file_offset | num_values | path_in_schema | type | stats_min | stats_max | stats_null_count | stats_distinct_count | stats_min_value | stats_max_value | compression | encodings | index_page_offset | dictionary_page_offset | data_page_offset | total_compressed_size | total_uncompressed_size |", +"+-----------------------------------------------------------------+--------------+--------------------+-----------------------+-----------------+-----------+-------------+------------+----------------+------------+-----------+-----------+------------------+----------------------+-----------------+-----------------+--------------------+--------------------------+-------------------+------------------------+------------------+-----------------------+-------------------------+", +"| ../parquet-testing/data/data_index_bloom_encoding_stats.parquet | 0 | 14 | 1 | 163 | 0 | 4 | 14 | \"String\" | BYTE_ARRAY | Hello | today | 0 | | Hello | today | GZIP(GzipLevel(6)) | [BIT_PACKED, RLE, PLAIN] | | | 4 | 152 | 163 |", +"+-----------------------------------------------------------------+--------------+--------------------+-----------------------+-----------------+-----------+-------------+------------+----------------+------------+-----------+-----------+------------------+----------------------+-----------------+-----------------+--------------------+--------------------------+-------------------+------------------------+------------------+-----------------------+-------------------------+" + ]; + assert_batches_eq!(excepted, &rbs); + + Ok(()) + } } diff --git a/datafusion-examples/Cargo.toml b/datafusion-examples/Cargo.toml index 676b4aaa78c0..59580bcb6a05 100644 --- a/datafusion-examples/Cargo.toml +++ b/datafusion-examples/Cargo.toml @@ -48,7 +48,7 @@ mimalloc = { version = "0.1", default-features = false } num_cpus = { workspace = true } object_store = { workspace = true, features = ["aws", "http"] } prost = { version = "0.12", default-features = false } -prost-derive = { version = "0.11", default-features = false } +prost-derive = { version = "0.12", default-features = false } serde = { version = "1.0.136", features = ["derive"] } serde_json = { workspace = true } tempfile = { workspace = true } diff --git a/datafusion-examples/examples/simple_udtf.rs b/datafusion-examples/examples/simple_udtf.rs index e120c5e7bf8e..f1d763ba6e41 100644 --- a/datafusion-examples/examples/simple_udtf.rs +++ b/datafusion-examples/examples/simple_udtf.rs @@ -125,6 +125,7 @@ impl TableProvider for LocalCsvTable { )?)) } } + struct LocalCsvTableFunc {} impl TableFunctionImpl for LocalCsvTableFunc { diff --git a/datafusion/CHANGELOG.md b/datafusion/CHANGELOG.md index e224b9387655..d64bbeda877d 100644 --- a/datafusion/CHANGELOG.md +++ b/datafusion/CHANGELOG.md @@ -19,6 +19,7 @@ # Changelog +- [34.0.0](../dev/changelog/34.0.0.md) - [33.0.0](../dev/changelog/33.0.0.md) - [32.0.0](../dev/changelog/32.0.0.md) - [31.0.0](../dev/changelog/31.0.0.md) diff --git a/datafusion/common/src/error.rs b/datafusion/common/src/error.rs index 4ae30ae86cdd..56b52bd73f9b 100644 --- a/datafusion/common/src/error.rs +++ b/datafusion/common/src/error.rs @@ -517,6 +517,9 @@ make_error!(not_impl_err, not_impl_datafusion_err, NotImplemented); // Exposes a macro to create `DataFusionError::Execution` make_error!(exec_err, exec_datafusion_err, Execution); +// Exposes a macro to create `DataFusionError::Substrait` +make_error!(substrait_err, substrait_datafusion_err, Substrait); + // Exposes a macro to create `DataFusionError::SQL` #[macro_export] macro_rules! sql_err { diff --git a/datafusion/common/src/file_options/file_type.rs b/datafusion/common/src/file_options/file_type.rs index a07f2e0cb847..b1d61b1a2567 100644 --- a/datafusion/common/src/file_options/file_type.rs +++ b/datafusion/common/src/file_options/file_type.rs @@ -109,6 +109,7 @@ mod tests { use std::str::FromStr; #[test] + #[cfg(feature = "parquet")] fn from_str() { for (ext, file_type) in [ ("csv", FileType::CSV), diff --git a/datafusion/common/src/file_options/mod.rs b/datafusion/common/src/file_options/mod.rs index b7c1341e3046..f0e49dd85597 100644 --- a/datafusion/common/src/file_options/mod.rs +++ b/datafusion/common/src/file_options/mod.rs @@ -299,6 +299,7 @@ impl Display for FileTypeWriterOptions { mod tests { use std::collections::HashMap; + #[cfg(feature = "parquet")] use parquet::{ basic::{Compression, Encoding, ZstdLevel}, file::properties::{EnabledStatistics, WriterVersion}, @@ -313,9 +314,11 @@ mod tests { use crate::Result; + #[cfg(feature = "parquet")] use super::{parquet_writer::ParquetWriterOptions, StatementOptions}; #[test] + #[cfg(feature = "parquet")] fn test_writeroptions_parquet_from_statement_options() -> Result<()> { let mut option_map: HashMap = HashMap::new(); option_map.insert("max_row_group_size".to_owned(), "123".to_owned()); @@ -386,6 +389,7 @@ mod tests { } #[test] + #[cfg(feature = "parquet")] fn test_writeroptions_parquet_column_specific() -> Result<()> { let mut option_map: HashMap = HashMap::new(); @@ -506,6 +510,8 @@ mod tests { } #[test] + // for StatementOptions + #[cfg(feature = "parquet")] fn test_writeroptions_csv_from_statement_options() -> Result<()> { let mut option_map: HashMap = HashMap::new(); option_map.insert("header".to_owned(), "true".to_owned()); @@ -533,6 +539,8 @@ mod tests { } #[test] + // for StatementOptions + #[cfg(feature = "parquet")] fn test_writeroptions_json_from_statement_options() -> Result<()> { let mut option_map: HashMap = HashMap::new(); option_map.insert("compression".to_owned(), "gzip".to_owned()); diff --git a/datafusion/common/src/test_util.rs b/datafusion/common/src/test_util.rs index 9a4433782157..eeace97eebfa 100644 --- a/datafusion/common/src/test_util.rs +++ b/datafusion/common/src/test_util.rs @@ -285,6 +285,7 @@ mod tests { } #[test] + #[cfg(feature = "parquet")] fn test_happy() { let res = arrow_test_data(); assert!(PathBuf::from(res).is_dir()); diff --git a/datafusion/core/Cargo.toml b/datafusion/core/Cargo.toml index 7caf91e24f2f..0ee83e756745 100644 --- a/datafusion/core/Cargo.toml +++ b/datafusion/core/Cargo.toml @@ -62,11 +62,11 @@ bytes = { workspace = true } bzip2 = { version = "0.4.3", optional = true } chrono = { workspace = true } dashmap = { workspace = true } -datafusion-common = { path = "../common", version = "33.0.0", features = ["object_store"], default-features = false } +datafusion-common = { path = "../common", version = "34.0.0", features = ["object_store"], default-features = false } datafusion-execution = { workspace = true } datafusion-expr = { workspace = true } -datafusion-optimizer = { path = "../optimizer", version = "33.0.0", default-features = false } -datafusion-physical-expr = { path = "../physical-expr", version = "33.0.0", default-features = false } +datafusion-optimizer = { path = "../optimizer", version = "34.0.0", default-features = false } +datafusion-physical-expr = { path = "../physical-expr", version = "34.0.0", default-features = false } datafusion-physical-plan = { workspace = true } datafusion-sql = { workspace = true } flate2 = { version = "1.0.24", optional = true } diff --git a/datafusion/core/src/dataframe/mod.rs b/datafusion/core/src/dataframe/mod.rs index c40dd522a457..4b8a9c5b7d79 100644 --- a/datafusion/core/src/dataframe/mod.rs +++ b/datafusion/core/src/dataframe/mod.rs @@ -1013,11 +1013,16 @@ impl DataFrame { )) } - /// Write this DataFrame to the referenced table + /// Write this DataFrame to the referenced table by name. /// This method uses on the same underlying implementation - /// as the SQL Insert Into statement. - /// Unlike most other DataFrame methods, this method executes - /// eagerly, writing data, and returning the count of rows written. + /// as the SQL Insert Into statement. Unlike most other DataFrame methods, + /// this method executes eagerly. Data is written to the table using an + /// execution plan returned by the [TableProvider]'s insert_into method. + /// Refer to the documentation of the specific [TableProvider] to determine + /// the expected data returned by the insert_into plan via this method. + /// For the built in ListingTable provider, a single [RecordBatch] containing + /// a single column and row representing the count of total rows written + /// is returned. pub async fn write_table( self, table_name: &str, @@ -1271,11 +1276,12 @@ impl DataFrame { /// ``` pub async fn cache(self) -> Result { let context = SessionContext::new_with_state(self.session_state.clone()); - let mem_table = MemTable::try_new( - SchemaRef::from(self.schema().clone()), - self.collect_partitioned().await?, - )?; - + // The schema is consistent with the output + let plan = self.clone().create_physical_plan().await?; + let schema = plan.schema(); + let task_ctx = Arc::new(self.task_ctx()); + let partitions = collect_partitioned(plan, task_ctx).await?; + let mem_table = MemTable::try_new(schema, partitions)?; context.read_table(Arc::new(mem_table)) } } @@ -2633,6 +2639,17 @@ mod tests { Ok(()) } + #[tokio::test] + async fn test_cache_mismatch() -> Result<()> { + let ctx = SessionContext::new(); + let df = ctx + .sql("SELECT CASE WHEN true THEN NULL ELSE 1 END") + .await?; + let cache_df = df.cache().await; + assert!(cache_df.is_ok()); + Ok(()) + } + #[tokio::test] async fn cache_test() -> Result<()> { let df = test_table() diff --git a/datafusion/core/src/datasource/listing/helpers.rs b/datafusion/core/src/datasource/listing/helpers.rs index 3536c098bd76..be74afa1f4d6 100644 --- a/datafusion/core/src/datasource/listing/helpers.rs +++ b/datafusion/core/src/datasource/listing/helpers.rs @@ -141,12 +141,18 @@ const CONCURRENCY_LIMIT: usize = 100; /// Partition the list of files into `n` groups pub fn split_files( - partitioned_files: Vec, + mut partitioned_files: Vec, n: usize, ) -> Vec> { if partitioned_files.is_empty() { return vec![]; } + + // ObjectStore::list does not guarantee any consistent order and for some + // implementations such as LocalFileSystem, it may be inconsistent. Thus + // Sort files by path to ensure consistent plans when run more than once. + partitioned_files.sort_by(|a, b| a.path().cmp(b.path())); + // effectively this is div with rounding up instead of truncating let chunk_size = (partitioned_files.len() + n - 1) / n; partitioned_files diff --git a/datafusion/core/src/datasource/listing/mod.rs b/datafusion/core/src/datasource/listing/mod.rs index 87c1663ae718..5e5b96f6ba8c 100644 --- a/datafusion/core/src/datasource/listing/mod.rs +++ b/datafusion/core/src/datasource/listing/mod.rs @@ -109,6 +109,11 @@ impl PartitionedFile { let size = std::fs::metadata(path.clone())?.len(); Ok(Self::new(path, size)) } + + /// Return the path of this partitioned file + pub fn path(&self) -> &Path { + &self.object_meta.location + } } impl From for PartitionedFile { diff --git a/datafusion/core/src/datasource/listing/url.rs b/datafusion/core/src/datasource/listing/url.rs index 9e9fb9210071..3ca7864f7f9e 100644 --- a/datafusion/core/src/datasource/listing/url.rs +++ b/datafusion/core/src/datasource/listing/url.rs @@ -116,6 +116,7 @@ impl ListingTableUrl { /// Get object store for specified input_url /// if input_url is actually not a url, we assume it is a local file path /// if we have a local path, create it if not exists so ListingTableUrl::parse works + #[deprecated(note = "Use parse")] pub fn parse_create_local_if_not_exists( s: impl AsRef, is_directory: bool, @@ -131,6 +132,10 @@ impl ListingTableUrl { if is_directory { fs::create_dir_all(path)?; } else { + // ensure parent directory exists + if let Some(parent) = path.parent() { + fs::create_dir_all(parent)?; + } fs::File::create(path)?; } } diff --git a/datafusion/core/src/datasource/listing_table_factory.rs b/datafusion/core/src/datasource/listing_table_factory.rs index 96436306c641..a9d0c3a0099e 100644 --- a/datafusion/core/src/datasource/listing_table_factory.rs +++ b/datafusion/core/src/datasource/listing_table_factory.rs @@ -148,19 +148,18 @@ impl TableProviderFactory for ListingTableFactory { .unwrap_or(false) }; - let create_local_path = statement_options - .take_bool_option("create_local_path")? - .unwrap_or(false); let single_file = statement_options .take_bool_option("single_file")? .unwrap_or(false); - // Backwards compatibility + // Backwards compatibility (#8547) if let Some(s) = statement_options.take_str_option("insert_mode") { if !s.eq_ignore_ascii_case("append_new_files") { - return plan_err!("Unknown or unsupported insert mode {s}. Only append_to_file supported"); + return plan_err!("Unknown or unsupported insert mode {s}. Only append_new_files supported"); } } + statement_options.take_bool_option("create_local_path")?; + let file_type = file_format.file_type(); // Use remaining options and session state to build FileTypeWriterOptions @@ -199,13 +198,7 @@ impl TableProviderFactory for ListingTableFactory { FileType::AVRO => file_type_writer_options, }; - let table_path = match create_local_path { - true => ListingTableUrl::parse_create_local_if_not_exists( - &cmd.location, - !single_file, - ), - false => ListingTableUrl::parse(&cmd.location), - }?; + let table_path = ListingTableUrl::parse(&cmd.location)?; let options = ListingOptions::new(file_format) .with_collect_stat(state.config().collect_statistics()) diff --git a/datafusion/core/src/datasource/physical_plan/parquet/mod.rs b/datafusion/core/src/datasource/physical_plan/parquet/mod.rs index 718f9f820af1..847ea6505632 100644 --- a/datafusion/core/src/datasource/physical_plan/parquet/mod.rs +++ b/datafusion/core/src/datasource/physical_plan/parquet/mod.rs @@ -468,8 +468,10 @@ impl FileOpener for ParquetOpener { ParquetRecordBatchStreamBuilder::new_with_options(reader, options) .await?; + let file_schema = builder.schema().clone(); + let (schema_mapping, adapted_projections) = - schema_adapter.map_schema(builder.schema())?; + schema_adapter.map_schema(&file_schema)?; // let predicate = predicate.map(|p| reassign_predicate_columns(p, builder.schema(), true)).transpose()?; let mask = ProjectionMask::roots( @@ -481,8 +483,8 @@ impl FileOpener for ParquetOpener { if let Some(predicate) = pushdown_filters.then_some(predicate).flatten() { let row_filter = row_filter::build_row_filter( &predicate, - builder.schema().as_ref(), - table_schema.as_ref(), + &file_schema, + &table_schema, builder.metadata(), reorder_predicates, &file_metrics, @@ -507,6 +509,7 @@ impl FileOpener for ParquetOpener { let file_metadata = builder.metadata().clone(); let predicate = pruning_predicate.as_ref().map(|p| p.as_ref()); let mut row_groups = row_groups::prune_row_groups_by_statistics( + &file_schema, builder.parquet_schema(), file_metadata.row_groups(), file_range, @@ -749,7 +752,7 @@ mod tests { use crate::datasource::file_format::options::CsvReadOptions; use crate::datasource::file_format::parquet::test_util::store_parquet; use crate::datasource::file_format::test_util::scan_format; - use crate::datasource::listing::{FileRange, PartitionedFile}; + use crate::datasource::listing::{FileRange, ListingOptions, PartitionedFile}; use crate::datasource::object_store::ObjectStoreUrl; use crate::execution::context::SessionState; use crate::physical_plan::displayable; @@ -769,8 +772,8 @@ mod tests { }; use arrow_array::Date64Array; use chrono::{TimeZone, Utc}; - use datafusion_common::ScalarValue; use datafusion_common::{assert_contains, ToDFSchema}; + use datafusion_common::{FileType, GetExt, ScalarValue}; use datafusion_expr::{col, lit, when, Expr}; use datafusion_physical_expr::create_physical_expr; use datafusion_physical_expr::execution_props::ExecutionProps; @@ -1938,6 +1941,96 @@ mod tests { Ok(schema) } + #[tokio::test] + async fn write_table_results() -> Result<()> { + // create partitioned input file and context + let tmp_dir = TempDir::new()?; + // let mut ctx = create_ctx(&tmp_dir, 4).await?; + let ctx = SessionContext::new_with_config( + SessionConfig::new().with_target_partitions(8), + ); + let schema = populate_csv_partitions(&tmp_dir, 4, ".csv")?; + // register csv file with the execution context + ctx.register_csv( + "test", + tmp_dir.path().to_str().unwrap(), + CsvReadOptions::new().schema(&schema), + ) + .await?; + + // register a local file system object store for /tmp directory + let local = Arc::new(LocalFileSystem::new_with_prefix(&tmp_dir)?); + let local_url = Url::parse("file://local").unwrap(); + ctx.runtime_env().register_object_store(&local_url, local); + + // Configure listing options + let file_format = ParquetFormat::default().with_enable_pruning(Some(true)); + let listing_options = ListingOptions::new(Arc::new(file_format)) + .with_file_extension(FileType::PARQUET.get_ext()); + + // execute a simple query and write the results to parquet + let out_dir = tmp_dir.as_ref().to_str().unwrap().to_string() + "/out"; + std::fs::create_dir(&out_dir).unwrap(); + let df = ctx.sql("SELECT c1, c2 FROM test").await?; + let schema: Schema = df.schema().into(); + // Register a listing table - this will use all files in the directory as data sources + // for the query + ctx.register_listing_table( + "my_table", + &out_dir, + listing_options, + Some(Arc::new(schema)), + None, + ) + .await + .unwrap(); + df.write_table("my_table", DataFrameWriteOptions::new()) + .await?; + + // create a new context and verify that the results were saved to a partitioned parquet file + let ctx = SessionContext::new(); + + // get write_id + let mut paths = fs::read_dir(&out_dir).unwrap(); + let path = paths.next(); + let name = path + .unwrap()? + .path() + .file_name() + .expect("Should be a file name") + .to_str() + .expect("Should be a str") + .to_owned(); + let (parsed_id, _) = name.split_once('_').expect("File should contain _ !"); + let write_id = parsed_id.to_owned(); + + // register each partition as well as the top level dir + ctx.register_parquet( + "part0", + &format!("{out_dir}/{write_id}_0.parquet"), + ParquetReadOptions::default(), + ) + .await?; + + ctx.register_parquet("allparts", &out_dir, ParquetReadOptions::default()) + .await?; + + let part0 = ctx.sql("SELECT c1, c2 FROM part0").await?.collect().await?; + let allparts = ctx + .sql("SELECT c1, c2 FROM allparts") + .await? + .collect() + .await?; + + let allparts_count: usize = allparts.iter().map(|batch| batch.num_rows()).sum(); + + assert_eq!(part0[0].schema(), allparts[0].schema()); + + assert_eq!(allparts_count, 40); + + Ok(()) + } + #[tokio::test] async fn write_parquet_results() -> Result<()> { // create partitioned input file and context @@ -1982,7 +2075,6 @@ mod tests { .to_str() .expect("Should be a str") .to_owned(); - println!("{name}"); let (parsed_id, _) = name.split_once('_').expect("File should contain _ !"); let write_id = parsed_id.to_owned(); diff --git a/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs b/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs index 65414f5619a5..7c3f7d9384ab 100644 --- a/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs +++ b/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs @@ -55,6 +55,7 @@ use super::ParquetFileMetrics; /// Note: This method currently ignores ColumnOrder /// pub(crate) fn prune_row_groups_by_statistics( + arrow_schema: &Schema, parquet_schema: &SchemaDescriptor, groups: &[RowGroupMetaData], range: Option, @@ -80,7 +81,7 @@ pub(crate) fn prune_row_groups_by_statistics( let pruning_stats = RowGroupPruningStatistics { parquet_schema, row_group_metadata: metadata, - arrow_schema: predicate.schema().as_ref(), + arrow_schema, }; match predicate.prune(&pruning_stats) { Ok(values) => { @@ -416,11 +417,11 @@ mod tests { fn row_group_pruning_predicate_simple_expr() { use datafusion_expr::{col, lit}; // int > 1 => c1_max > 1 - let schema = Schema::new(vec![Field::new("c1", DataType::Int32, false)]); + let schema = + Arc::new(Schema::new(vec![Field::new("c1", DataType::Int32, false)])); let expr = col("c1").gt(lit(15)); let expr = logical2physical(&expr, &schema); - let pruning_predicate = - PruningPredicate::try_new(expr, Arc::new(schema)).unwrap(); + let pruning_predicate = PruningPredicate::try_new(expr, schema.clone()).unwrap(); let field = PrimitiveTypeField::new("c1", PhysicalType::INT32); let schema_descr = get_test_schema_descr(vec![field]); @@ -436,6 +437,7 @@ mod tests { let metrics = parquet_file_metrics(); assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, &[rgm1, rgm2], None, @@ -450,11 +452,11 @@ mod tests { fn row_group_pruning_predicate_missing_stats() { use datafusion_expr::{col, lit}; // int > 1 => c1_max > 1 - let schema = Schema::new(vec![Field::new("c1", DataType::Int32, false)]); + let schema = + Arc::new(Schema::new(vec![Field::new("c1", DataType::Int32, false)])); let expr = col("c1").gt(lit(15)); let expr = logical2physical(&expr, &schema); - let pruning_predicate = - PruningPredicate::try_new(expr, Arc::new(schema)).unwrap(); + let pruning_predicate = PruningPredicate::try_new(expr, schema.clone()).unwrap(); let field = PrimitiveTypeField::new("c1", PhysicalType::INT32); let schema_descr = get_test_schema_descr(vec![field]); @@ -471,6 +473,7 @@ mod tests { // is null / undefined so the first row group can't be filtered out assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, &[rgm1, rgm2], None, @@ -519,6 +522,7 @@ mod tests { // when conditions are joined using AND assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, groups, None, @@ -532,12 +536,13 @@ mod tests { // this bypasses the entire predicate expression and no row groups are filtered out let expr = col("c1").gt(lit(15)).or(col("c2").rem(lit(2)).eq(lit(0))); let expr = logical2physical(&expr, &schema); - let pruning_predicate = PruningPredicate::try_new(expr, schema).unwrap(); + let pruning_predicate = PruningPredicate::try_new(expr, schema.clone()).unwrap(); // if conditions in predicate are joined with OR and an unsupported expression is used // this bypasses the entire predicate expression and no row groups are filtered out assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, groups, None, @@ -548,6 +553,64 @@ mod tests { ); } + #[test] + fn row_group_pruning_predicate_file_schema() { + use datafusion_expr::{col, lit}; + // test row group predicate when file schema is different than table schema + // c1 > 0 + let table_schema = Arc::new(Schema::new(vec![ + Field::new("c1", DataType::Int32, false), + Field::new("c2", DataType::Int32, false), + ])); + let expr = col("c1").gt(lit(0)); + let expr = logical2physical(&expr, &table_schema); + let pruning_predicate = + PruningPredicate::try_new(expr, table_schema.clone()).unwrap(); + + // Model a file schema's column order c2 then c1, which is the opposite + // of the table schema + let file_schema = Arc::new(Schema::new(vec![ + Field::new("c2", DataType::Int32, false), + Field::new("c1", DataType::Int32, false), + ])); + let schema_descr = get_test_schema_descr(vec![ + PrimitiveTypeField::new("c2", PhysicalType::INT32), + PrimitiveTypeField::new("c1", PhysicalType::INT32), + ]); + // rg1 has c2 less than zero, c1 greater than zero + let rgm1 = get_row_group_meta_data( + &schema_descr, + vec![ + ParquetStatistics::int32(Some(-10), Some(-1), None, 0, false), // c2 + ParquetStatistics::int32(Some(1), Some(10), None, 0, false), + ], + ); + // rg1 has c2 greater than zero, c1 less than zero + let rgm2 = get_row_group_meta_data( + &schema_descr, + vec![ + ParquetStatistics::int32(Some(1), Some(10), None, 0, false), + ParquetStatistics::int32(Some(-10), Some(-1), None, 0, false), + ], + ); + + let metrics = parquet_file_metrics(); + let groups = &[rgm1, rgm2]; + // the first row group should be left because c1 is greater than zero + // the second should be filtered out because c1 is less than zero + assert_eq!( + prune_row_groups_by_statistics( + &file_schema, // NB must be file schema, not table_schema + &schema_descr, + groups, + None, + Some(&pruning_predicate), + &metrics + ), + vec![0] + ); + } + fn gen_row_group_meta_data_for_pruning_predicate() -> Vec { let schema_descr = get_test_schema_descr(vec![ PrimitiveTypeField::new("c1", PhysicalType::INT32), @@ -581,13 +644,14 @@ mod tests { let schema_descr = arrow_to_parquet_schema(&schema).unwrap(); let expr = col("c1").gt(lit(15)).and(col("c2").is_null()); let expr = logical2physical(&expr, &schema); - let pruning_predicate = PruningPredicate::try_new(expr, schema).unwrap(); + let pruning_predicate = PruningPredicate::try_new(expr, schema.clone()).unwrap(); let groups = gen_row_group_meta_data_for_pruning_predicate(); let metrics = parquet_file_metrics(); // First row group was filtered out because it contains no null value on "c2". assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, &groups, None, @@ -613,7 +677,7 @@ mod tests { .gt(lit(15)) .and(col("c2").eq(lit(ScalarValue::Boolean(None)))); let expr = logical2physical(&expr, &schema); - let pruning_predicate = PruningPredicate::try_new(expr, schema).unwrap(); + let pruning_predicate = PruningPredicate::try_new(expr, schema.clone()).unwrap(); let groups = gen_row_group_meta_data_for_pruning_predicate(); let metrics = parquet_file_metrics(); @@ -621,6 +685,7 @@ mod tests { // pass predicates. Ideally these should both be false assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, &groups, None, @@ -639,8 +704,11 @@ mod tests { // INT32: c1 > 5, the c1 is decimal(9,2) // The type of scalar value if decimal(9,2), don't need to do cast - let schema = - Schema::new(vec![Field::new("c1", DataType::Decimal128(9, 2), false)]); + let schema = Arc::new(Schema::new(vec![Field::new( + "c1", + DataType::Decimal128(9, 2), + false, + )])); let field = PrimitiveTypeField::new("c1", PhysicalType::INT32) .with_logical_type(LogicalType::Decimal { scale: 2, @@ -651,8 +719,7 @@ mod tests { let schema_descr = get_test_schema_descr(vec![field]); let expr = col("c1").gt(lit(ScalarValue::Decimal128(Some(500), 9, 2))); let expr = logical2physical(&expr, &schema); - let pruning_predicate = - PruningPredicate::try_new(expr, Arc::new(schema)).unwrap(); + let pruning_predicate = PruningPredicate::try_new(expr, schema.clone()).unwrap(); let rgm1 = get_row_group_meta_data( &schema_descr, // [1.00, 6.00] @@ -680,6 +747,7 @@ mod tests { let metrics = parquet_file_metrics(); assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, &[rgm1, rgm2, rgm3], None, @@ -693,8 +761,11 @@ mod tests { // The c1 type is decimal(9,0) in the parquet file, and the type of scalar is decimal(5,2). // We should convert all type to the coercion type, which is decimal(11,2) // The decimal of arrow is decimal(5,2), the decimal of parquet is decimal(9,0) - let schema = - Schema::new(vec![Field::new("c1", DataType::Decimal128(9, 0), false)]); + let schema = Arc::new(Schema::new(vec![Field::new( + "c1", + DataType::Decimal128(9, 0), + false, + )])); let field = PrimitiveTypeField::new("c1", PhysicalType::INT32) .with_logical_type(LogicalType::Decimal { @@ -709,8 +780,7 @@ mod tests { Decimal128(11, 2), )); let expr = logical2physical(&expr, &schema); - let pruning_predicate = - PruningPredicate::try_new(expr, Arc::new(schema)).unwrap(); + let pruning_predicate = PruningPredicate::try_new(expr, schema.clone()).unwrap(); let rgm1 = get_row_group_meta_data( &schema_descr, // [100, 600] @@ -744,6 +814,7 @@ mod tests { let metrics = parquet_file_metrics(); assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, &[rgm1, rgm2, rgm3, rgm4], None, @@ -754,8 +825,11 @@ mod tests { ); // INT64: c1 < 5, the c1 is decimal(18,2) - let schema = - Schema::new(vec![Field::new("c1", DataType::Decimal128(18, 2), false)]); + let schema = Arc::new(Schema::new(vec![Field::new( + "c1", + DataType::Decimal128(18, 2), + false, + )])); let field = PrimitiveTypeField::new("c1", PhysicalType::INT64) .with_logical_type(LogicalType::Decimal { scale: 2, @@ -766,8 +840,7 @@ mod tests { let schema_descr = get_test_schema_descr(vec![field]); let expr = col("c1").lt(lit(ScalarValue::Decimal128(Some(500), 18, 2))); let expr = logical2physical(&expr, &schema); - let pruning_predicate = - PruningPredicate::try_new(expr, Arc::new(schema)).unwrap(); + let pruning_predicate = PruningPredicate::try_new(expr, schema.clone()).unwrap(); let rgm1 = get_row_group_meta_data( &schema_descr, // [6.00, 8.00] @@ -792,6 +865,7 @@ mod tests { let metrics = parquet_file_metrics(); assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, &[rgm1, rgm2, rgm3], None, @@ -803,8 +877,11 @@ mod tests { // FIXED_LENGTH_BYTE_ARRAY: c1 = decimal128(100000, 28, 3), the c1 is decimal(18,2) // the type of parquet is decimal(18,2) - let schema = - Schema::new(vec![Field::new("c1", DataType::Decimal128(18, 2), false)]); + let schema = Arc::new(Schema::new(vec![Field::new( + "c1", + DataType::Decimal128(18, 2), + false, + )])); let field = PrimitiveTypeField::new("c1", PhysicalType::FIXED_LEN_BYTE_ARRAY) .with_logical_type(LogicalType::Decimal { scale: 2, @@ -818,8 +895,7 @@ mod tests { let left = cast(col("c1"), DataType::Decimal128(28, 3)); let expr = left.eq(lit(ScalarValue::Decimal128(Some(100000), 28, 3))); let expr = logical2physical(&expr, &schema); - let pruning_predicate = - PruningPredicate::try_new(expr, Arc::new(schema)).unwrap(); + let pruning_predicate = PruningPredicate::try_new(expr, schema.clone()).unwrap(); // we must use the big-endian when encode the i128 to bytes or vec[u8]. let rgm1 = get_row_group_meta_data( &schema_descr, @@ -863,6 +939,7 @@ mod tests { let metrics = parquet_file_metrics(); assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, &[rgm1, rgm2, rgm3], None, @@ -874,8 +951,11 @@ mod tests { // BYTE_ARRAY: c1 = decimal128(100000, 28, 3), the c1 is decimal(18,2) // the type of parquet is decimal(18,2) - let schema = - Schema::new(vec![Field::new("c1", DataType::Decimal128(18, 2), false)]); + let schema = Arc::new(Schema::new(vec![Field::new( + "c1", + DataType::Decimal128(18, 2), + false, + )])); let field = PrimitiveTypeField::new("c1", PhysicalType::BYTE_ARRAY) .with_logical_type(LogicalType::Decimal { scale: 2, @@ -889,8 +969,7 @@ mod tests { let left = cast(col("c1"), DataType::Decimal128(28, 3)); let expr = left.eq(lit(ScalarValue::Decimal128(Some(100000), 28, 3))); let expr = logical2physical(&expr, &schema); - let pruning_predicate = - PruningPredicate::try_new(expr, Arc::new(schema)).unwrap(); + let pruning_predicate = PruningPredicate::try_new(expr, schema.clone()).unwrap(); // we must use the big-endian when encode the i128 to bytes or vec[u8]. let rgm1 = get_row_group_meta_data( &schema_descr, @@ -923,6 +1002,7 @@ mod tests { let metrics = parquet_file_metrics(); assert_eq!( prune_row_groups_by_statistics( + &schema, &schema_descr, &[rgm1, rgm2, rgm3], None, diff --git a/datafusion/core/src/datasource/stream.rs b/datafusion/core/src/datasource/stream.rs index e7512499eb9d..b9b45a6c7470 100644 --- a/datafusion/core/src/datasource/stream.rs +++ b/datafusion/core/src/datasource/stream.rs @@ -179,7 +179,10 @@ impl StreamConfig { match &self.encoding { StreamEncoding::Csv => { let header = self.header && !self.location.exists(); - let file = OpenOptions::new().append(true).open(&self.location)?; + let file = OpenOptions::new() + .create(true) + .append(true) + .open(&self.location)?; let writer = arrow::csv::WriterBuilder::new() .with_header(header) .build(file); @@ -187,7 +190,10 @@ impl StreamConfig { Ok(Box::new(writer)) } StreamEncoding::Json => { - let file = OpenOptions::new().append(true).open(&self.location)?; + let file = OpenOptions::new() + .create(true) + .append(true) + .open(&self.location)?; Ok(Box::new(arrow::json::LineDelimitedWriter::new(file))) } } diff --git a/datafusion/core/src/physical_optimizer/aggregate_statistics.rs b/datafusion/core/src/physical_optimizer/aggregate_statistics.rs index 795857b10ef5..86a8cdb7b3d4 100644 --- a/datafusion/core/src/physical_optimizer/aggregate_statistics.rs +++ b/datafusion/core/src/physical_optimizer/aggregate_statistics.rs @@ -397,7 +397,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], source, Arc::clone(&schema), )?; @@ -407,7 +406,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], Arc::new(partial_agg), Arc::clone(&schema), )?; @@ -429,7 +427,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], source, Arc::clone(&schema), )?; @@ -439,7 +436,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], Arc::new(partial_agg), Arc::clone(&schema), )?; @@ -460,7 +456,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], source, Arc::clone(&schema), )?; @@ -473,7 +468,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], Arc::new(coalesce), Arc::clone(&schema), )?; @@ -494,7 +488,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], source, Arc::clone(&schema), )?; @@ -507,7 +500,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], Arc::new(coalesce), Arc::clone(&schema), )?; @@ -539,7 +531,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], filter, Arc::clone(&schema), )?; @@ -549,7 +540,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], Arc::new(partial_agg), Arc::clone(&schema), )?; @@ -586,7 +576,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], filter, Arc::clone(&schema), )?; @@ -596,7 +585,6 @@ pub(crate) mod tests { PhysicalGroupBy::default(), vec![agg.count_expr()], vec![None], - vec![None], Arc::new(partial_agg), Arc::clone(&schema), )?; diff --git a/datafusion/core/src/physical_optimizer/combine_partial_final_agg.rs b/datafusion/core/src/physical_optimizer/combine_partial_final_agg.rs index 0948445de20d..c50ea36b68ec 100644 --- a/datafusion/core/src/physical_optimizer/combine_partial_final_agg.rs +++ b/datafusion/core/src/physical_optimizer/combine_partial_final_agg.rs @@ -91,7 +91,6 @@ impl PhysicalOptimizerRule for CombinePartialFinalAggregate { input_agg_exec.group_by().clone(), input_agg_exec.aggr_expr().to_vec(), input_agg_exec.filter_expr().to_vec(), - input_agg_exec.order_by_expr().to_vec(), input_agg_exec.input().clone(), input_agg_exec.input_schema(), ) @@ -277,7 +276,6 @@ mod tests { group_by, aggr_expr, vec![], - vec![], input, schema, ) @@ -297,7 +295,6 @@ mod tests { group_by, aggr_expr, vec![], - vec![], input, schema, ) @@ -458,7 +455,6 @@ mod tests { final_group_by, aggr_expr, vec![], - vec![], partial_agg, schema, ) diff --git a/datafusion/core/src/physical_optimizer/enforce_distribution.rs b/datafusion/core/src/physical_optimizer/enforce_distribution.rs index 3aed6555f305..f2e04989ef66 100644 --- a/datafusion/core/src/physical_optimizer/enforce_distribution.rs +++ b/datafusion/core/src/physical_optimizer/enforce_distribution.rs @@ -521,7 +521,6 @@ fn reorder_aggregate_keys( new_partial_group_by, agg_exec.aggr_expr().to_vec(), agg_exec.filter_expr().to_vec(), - agg_exec.order_by_expr().to_vec(), agg_exec.input().clone(), agg_exec.input_schema.clone(), )?)) @@ -548,7 +547,6 @@ fn reorder_aggregate_keys( new_group_by, agg_exec.aggr_expr().to_vec(), agg_exec.filter_expr().to_vec(), - agg_exec.order_by_expr().to_vec(), partial_agg, agg_exec.input_schema(), )?); @@ -1129,8 +1127,8 @@ fn replace_order_preserving_variants( /// Assume that following plan is given: /// ```text /// "SortPreservingMergeExec: \[a@0 ASC]" -/// " SortPreservingRepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=10", -/// " SortPreservingRepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=2", +/// " RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=10, preserve_order=true", +/// " RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=2, preserve_order=true", /// " ParquetExec: file_groups={2 groups: \[\[x], \[y]]}, projection=\[a, b, c, d, e], output_ordering=\[a@0 ASC]", /// ``` /// @@ -1909,14 +1907,12 @@ pub(crate) mod tests { final_grouping, vec![], vec![], - vec![], Arc::new( AggregateExec::try_new( AggregateMode::Partial, group_by, vec![], vec![], - vec![], input, schema.clone(), ) @@ -3015,16 +3011,16 @@ pub(crate) mod tests { vec![ top_join_plan.as_str(), join_plan.as_str(), - "SortPreservingRepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, sort_exprs=a@0 ASC", + "RepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[a@0 ASC]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", - "SortPreservingRepartitionExec: partitioning=Hash([b1@1], 10), input_partitions=10, sort_exprs=b1@1 ASC", + "RepartitionExec: partitioning=Hash([b1@1], 10), input_partitions=10, preserve_order=true, sort_exprs=b1@1 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[b1@1 ASC]", "ProjectionExec: expr=[a@0 as a1, b@1 as b1, c@2 as c1, d@3 as d1, e@4 as e1]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", - "SortPreservingRepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, sort_exprs=c@2 ASC", + "RepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, preserve_order=true, sort_exprs=c@2 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[c@2 ASC]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", @@ -3041,21 +3037,21 @@ pub(crate) mod tests { _ => vec![ top_join_plan.as_str(), // Below 4 operators are differences introduced, when join mode is changed - "SortPreservingRepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, sort_exprs=a@0 ASC", + "RepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[a@0 ASC]", "CoalescePartitionsExec", join_plan.as_str(), - "SortPreservingRepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, sort_exprs=a@0 ASC", + "RepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[a@0 ASC]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", - "SortPreservingRepartitionExec: partitioning=Hash([b1@1], 10), input_partitions=10, sort_exprs=b1@1 ASC", + "RepartitionExec: partitioning=Hash([b1@1], 10), input_partitions=10, preserve_order=true, sort_exprs=b1@1 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[b1@1 ASC]", "ProjectionExec: expr=[a@0 as a1, b@1 as b1, c@2 as c1, d@3 as d1, e@4 as e1]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", - "SortPreservingRepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, sort_exprs=c@2 ASC", + "RepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, preserve_order=true, sort_exprs=c@2 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[c@2 ASC]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", @@ -3129,16 +3125,16 @@ pub(crate) mod tests { JoinType::Inner | JoinType::Right => vec![ top_join_plan.as_str(), join_plan.as_str(), - "SortPreservingRepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, sort_exprs=a@0 ASC", + "RepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[a@0 ASC]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", - "SortPreservingRepartitionExec: partitioning=Hash([b1@1], 10), input_partitions=10, sort_exprs=b1@1 ASC", + "RepartitionExec: partitioning=Hash([b1@1], 10), input_partitions=10, preserve_order=true, sort_exprs=b1@1 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[b1@1 ASC]", "ProjectionExec: expr=[a@0 as a1, b@1 as b1, c@2 as c1, d@3 as d1, e@4 as e1]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", - "SortPreservingRepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, sort_exprs=c@2 ASC", + "RepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, preserve_order=true, sort_exprs=c@2 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[c@2 ASC]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", @@ -3146,21 +3142,21 @@ pub(crate) mod tests { // Should include 8 RepartitionExecs (4 of them preserves order) and 4 SortExecs JoinType::Left | JoinType::Full => vec![ top_join_plan.as_str(), - "SortPreservingRepartitionExec: partitioning=Hash([b1@6], 10), input_partitions=10, sort_exprs=b1@6 ASC", + "RepartitionExec: partitioning=Hash([b1@6], 10), input_partitions=10, preserve_order=true, sort_exprs=b1@6 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[b1@6 ASC]", "CoalescePartitionsExec", join_plan.as_str(), - "SortPreservingRepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, sort_exprs=a@0 ASC", + "RepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[a@0 ASC]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", - "SortPreservingRepartitionExec: partitioning=Hash([b1@1], 10), input_partitions=10, sort_exprs=b1@1 ASC", + "RepartitionExec: partitioning=Hash([b1@1], 10), input_partitions=10, preserve_order=true, sort_exprs=b1@1 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[b1@1 ASC]", "ProjectionExec: expr=[a@0 as a1, b@1 as b1, c@2 as c1, d@3 as d1, e@4 as e1]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", - "SortPreservingRepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, sort_exprs=c@2 ASC", + "RepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, preserve_order=true, sort_exprs=c@2 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[c@2 ASC]", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", @@ -3251,7 +3247,7 @@ pub(crate) mod tests { let expected_first_sort_enforcement = &[ "SortMergeJoin: join_type=Inner, on=[(b3@1, b2@1), (a3@0, a2@0)]", - "SortPreservingRepartitionExec: partitioning=Hash([b3@1, a3@0], 10), input_partitions=10, sort_exprs=b3@1 ASC,a3@0 ASC", + "RepartitionExec: partitioning=Hash([b3@1, a3@0], 10), input_partitions=10, preserve_order=true, sort_exprs=b3@1 ASC,a3@0 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[b3@1 ASC,a3@0 ASC]", "CoalescePartitionsExec", @@ -3262,7 +3258,7 @@ pub(crate) mod tests { "AggregateExec: mode=Partial, gby=[b@1 as b1, a@0 as a1], aggr=[]", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "ParquetExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e]", - "SortPreservingRepartitionExec: partitioning=Hash([b2@1, a2@0], 10), input_partitions=10, sort_exprs=b2@1 ASC,a2@0 ASC", + "RepartitionExec: partitioning=Hash([b2@1, a2@0], 10), input_partitions=10, preserve_order=true, sort_exprs=b2@1 ASC,a2@0 ASC", "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", "SortExec: expr=[b2@1 ASC,a2@0 ASC]", "CoalescePartitionsExec", @@ -4347,7 +4343,7 @@ pub(crate) mod tests { let expected = &[ "SortPreservingMergeExec: [c@2 ASC]", "FilterExec: c@2 = 0", - "SortPreservingRepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=2, sort_exprs=c@2 ASC", + "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=2, preserve_order=true, sort_exprs=c@2 ASC", "ParquetExec: file_groups={2 groups: [[x], [y]]}, projection=[a, b, c, d, e], output_ordering=[c@2 ASC]", ]; diff --git a/datafusion/core/src/physical_optimizer/enforce_sorting.rs b/datafusion/core/src/physical_optimizer/enforce_sorting.rs index 14715ede500a..277404b301c4 100644 --- a/datafusion/core/src/physical_optimizer/enforce_sorting.rs +++ b/datafusion/core/src/physical_optimizer/enforce_sorting.rs @@ -2162,7 +2162,7 @@ mod tests { ]; let expected_optimized = [ "SortPreservingMergeExec: [a@0 ASC]", - " SortPreservingRepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, sort_exprs=a@0 ASC", + " RepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC", " RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", " CsvExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e], infinite_source=true, output_ordering=[a@0 ASC], has_header=false", ]; @@ -2191,7 +2191,7 @@ mod tests { ]; let expected_optimized = [ "SortPreservingMergeExec: [a@0 ASC]", - " SortPreservingRepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, sort_exprs=a@0 ASC", + " RepartitionExec: partitioning=Hash([c@2], 10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC", " RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", " CsvExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e], infinite_source=true, output_ordering=[a@0 ASC], has_header=false", ]; @@ -2263,7 +2263,7 @@ mod tests { let expected_input = [ "BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow }], mode=[Sorted]", " SortPreservingMergeExec: [a@0 ASC,b@1 ASC]", - " SortPreservingRepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=10, sort_exprs=a@0 ASC,b@1 ASC", + " RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC,b@1 ASC", " RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1", " SortExec: expr=[a@0 ASC,b@1 ASC]", " CsvExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e], has_header=false", diff --git a/datafusion/core/src/physical_optimizer/limited_distinct_aggregation.rs b/datafusion/core/src/physical_optimizer/limited_distinct_aggregation.rs index 8f5dbc2e9214..540f9a6a132b 100644 --- a/datafusion/core/src/physical_optimizer/limited_distinct_aggregation.rs +++ b/datafusion/core/src/physical_optimizer/limited_distinct_aggregation.rs @@ -55,7 +55,6 @@ impl LimitedDistinctAggregation { aggr.group_by().clone(), aggr.aggr_expr().to_vec(), aggr.filter_expr().to_vec(), - aggr.order_by_expr().to_vec(), aggr.input().clone(), aggr.input_schema(), ) @@ -307,7 +306,6 @@ mod tests { build_group_by(&schema.clone(), vec!["a".to_string()]), vec![], /* aggr_expr */ vec![None], /* filter_expr */ - vec![None], /* order_by_expr */ source, /* input */ schema.clone(), /* input_schema */ )?; @@ -316,7 +314,6 @@ mod tests { build_group_by(&schema.clone(), vec!["a".to_string()]), vec![], /* aggr_expr */ vec![None], /* filter_expr */ - vec![None], /* order_by_expr */ Arc::new(partial_agg), /* input */ schema.clone(), /* input_schema */ )?; @@ -359,7 +356,6 @@ mod tests { build_group_by(&schema.clone(), vec!["a".to_string()]), vec![], /* aggr_expr */ vec![None], /* filter_expr */ - vec![None], /* order_by_expr */ source, /* input */ schema.clone(), /* input_schema */ )?; @@ -401,7 +397,6 @@ mod tests { build_group_by(&schema.clone(), vec!["a".to_string()]), vec![], /* aggr_expr */ vec![None], /* filter_expr */ - vec![None], /* order_by_expr */ source, /* input */ schema.clone(), /* input_schema */ )?; @@ -443,7 +438,6 @@ mod tests { build_group_by(&schema.clone(), vec!["a".to_string(), "b".to_string()]), vec![], /* aggr_expr */ vec![None], /* filter_expr */ - vec![None], /* order_by_expr */ source, /* input */ schema.clone(), /* input_schema */ )?; @@ -452,7 +446,6 @@ mod tests { build_group_by(&schema.clone(), vec!["a".to_string()]), vec![], /* aggr_expr */ vec![None], /* filter_expr */ - vec![None], /* order_by_expr */ Arc::new(group_by_agg), /* input */ schema.clone(), /* input_schema */ )?; @@ -495,7 +488,6 @@ mod tests { build_group_by(&schema.clone(), vec![]), vec![], /* aggr_expr */ vec![None], /* filter_expr */ - vec![None], /* order_by_expr */ source, /* input */ schema.clone(), /* input_schema */ )?; @@ -526,7 +518,6 @@ mod tests { build_group_by(&schema.clone(), vec!["a".to_string()]), vec![agg.count_expr()], /* aggr_expr */ vec![None], /* filter_expr */ - vec![None], /* order_by_expr */ source, /* input */ schema.clone(), /* input_schema */ )?; @@ -563,7 +554,6 @@ mod tests { build_group_by(&schema.clone(), vec!["a".to_string()]), vec![], /* aggr_expr */ vec![filter_expr], /* filter_expr */ - vec![None], /* order_by_expr */ source, /* input */ schema.clone(), /* input_schema */ )?; @@ -592,22 +582,15 @@ mod tests { let source = parquet_exec_with_sort(vec![sort_key]); let schema = source.schema(); - // `SELECT a FROM MemoryExec GROUP BY a ORDER BY a LIMIT 10;`, Single AggregateExec - let order_by_expr = Some(vec![PhysicalSortExpr { - expr: expressions::col("a", &schema.clone()).unwrap(), - options: SortOptions::default(), - }]); - // `SELECT a FROM MemoryExec WHERE a > 1 GROUP BY a LIMIT 10;`, Single AggregateExec // the `a > 1` filter is applied in the AggregateExec let single_agg = AggregateExec::try_new( AggregateMode::Single, build_group_by(&schema.clone(), vec!["a".to_string()]), - vec![], /* aggr_expr */ - vec![None], /* filter_expr */ - vec![order_by_expr], /* order_by_expr */ - source, /* input */ - schema.clone(), /* input_schema */ + vec![], /* aggr_expr */ + vec![None], /* filter_expr */ + source, /* input */ + schema.clone(), /* input_schema */ )?; let limit_exec = LocalLimitExec::new( Arc::new(single_agg), diff --git a/datafusion/core/src/physical_optimizer/replace_with_order_preserving_variants.rs b/datafusion/core/src/physical_optimizer/replace_with_order_preserving_variants.rs index 09274938cbce..af45df7d8474 100644 --- a/datafusion/core/src/physical_optimizer/replace_with_order_preserving_variants.rs +++ b/datafusion/core/src/physical_optimizer/replace_with_order_preserving_variants.rs @@ -366,7 +366,7 @@ mod tests { ]; let expected_optimized = [ "SortPreservingMergeExec: [a@0 ASC NULLS LAST]", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=a@0 ASC NULLS LAST", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST", " RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1", " CsvExec: file_groups={1 group: [[file_path]]}, projection=[a, c, d], infinite_source=true, output_ordering=[a@0 ASC NULLS LAST], has_header=true", ]; @@ -414,10 +414,10 @@ mod tests { let expected_optimized = [ "SortPreservingMergeExec: [a@0 ASC]", " FilterExec: c@1 > 3", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=a@0 ASC", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=a@0 ASC", " RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1", " SortPreservingMergeExec: [a@0 ASC]", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=a@0 ASC", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=a@0 ASC", " RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1", " CsvExec: file_groups={1 group: [[file_path]]}, projection=[a, c, d], infinite_source=true, output_ordering=[a@0 ASC], has_header=true", ]; @@ -448,7 +448,7 @@ mod tests { ]; let expected_optimized = [ "SortPreservingMergeExec: [a@0 ASC NULLS LAST]", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=a@0 ASC NULLS LAST", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST", " FilterExec: c@1 > 3", " RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1", " CsvExec: file_groups={1 group: [[file_path]]}, projection=[a, c, d], infinite_source=true, output_ordering=[a@0 ASC NULLS LAST], has_header=true", @@ -484,7 +484,7 @@ mod tests { "SortPreservingMergeExec: [a@0 ASC NULLS LAST]", " CoalesceBatchesExec: target_batch_size=8192", " FilterExec: c@1 > 3", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=a@0 ASC NULLS LAST", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST", " RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1", " CsvExec: file_groups={1 group: [[file_path]]}, projection=[a, c, d], infinite_source=true, output_ordering=[a@0 ASC NULLS LAST], has_header=true", ]; @@ -522,7 +522,7 @@ mod tests { "SortPreservingMergeExec: [a@0 ASC NULLS LAST]", " CoalesceBatchesExec: target_batch_size=8192", " FilterExec: c@1 > 3", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=a@0 ASC NULLS LAST", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST", " CoalesceBatchesExec: target_batch_size=8192", " RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1", " CsvExec: file_groups={1 group: [[file_path]]}, projection=[a, c, d], infinite_source=true, output_ordering=[a@0 ASC NULLS LAST], has_header=true", @@ -591,10 +591,10 @@ mod tests { ]; let expected_optimized = [ "SortPreservingMergeExec: [a@0 ASC NULLS LAST]", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=a@0 ASC NULLS LAST", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST", " CoalesceBatchesExec: target_batch_size=8192", " FilterExec: c@1 > 3", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=a@0 ASC NULLS LAST", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST", " RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1", " CsvExec: file_groups={1 group: [[file_path]]}, projection=[a, c, d], infinite_source=true, output_ordering=[a@0 ASC NULLS LAST], has_header=true", ]; @@ -658,7 +658,7 @@ mod tests { ]; let expected_optimized = [ "SortPreservingMergeExec: [a@0 ASC NULLS LAST]", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=a@0 ASC NULLS LAST", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST", " RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1", " CsvExec: file_groups={1 group: [[file_path]]}, projection=[a, c, d], infinite_source=true, output_ordering=[a@0 ASC NULLS LAST], has_header=true", ]; @@ -706,7 +706,7 @@ mod tests { let expected_optimized = [ "SortPreservingMergeExec: [c@1 ASC]", " FilterExec: c@1 > 3", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=c@1 ASC", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=c@1 ASC", " RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1", " SortExec: expr=[c@1 ASC]", " CoalescePartitionsExec", @@ -800,7 +800,7 @@ mod tests { ]; let expected_optimized = [ "SortPreservingMergeExec: [a@0 ASC NULLS LAST]", - " SortPreservingRepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, sort_exprs=a@0 ASC NULLS LAST", + " RepartitionExec: partitioning=Hash([c@1], 8), input_partitions=8, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST", " RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1", " CsvExec: file_groups={1 group: [[file_path]]}, projection=[a, c, d], output_ordering=[a@0 ASC NULLS LAST], has_header=true", ]; diff --git a/datafusion/core/src/physical_optimizer/test_utils.rs b/datafusion/core/src/physical_optimizer/test_utils.rs index 37a76eff1ee2..678dc1f373e3 100644 --- a/datafusion/core/src/physical_optimizer/test_utils.rs +++ b/datafusion/core/src/physical_optimizer/test_utils.rs @@ -339,7 +339,6 @@ pub fn aggregate_exec(input: Arc) -> Arc { PhysicalGroupBy::default(), vec![], vec![], - vec![], input, schema, ) diff --git a/datafusion/core/src/physical_optimizer/topk_aggregation.rs b/datafusion/core/src/physical_optimizer/topk_aggregation.rs index 52d34d4f8198..dd0261420304 100644 --- a/datafusion/core/src/physical_optimizer/topk_aggregation.rs +++ b/datafusion/core/src/physical_optimizer/topk_aggregation.rs @@ -73,7 +73,6 @@ impl TopKAggregation { aggr.group_by().clone(), aggr.aggr_expr().to_vec(), aggr.filter_expr().to_vec(), - aggr.order_by_expr().to_vec(), aggr.input().clone(), aggr.input_schema(), ) diff --git a/datafusion/core/src/physical_planner.rs b/datafusion/core/src/physical_planner.rs index ab38b3ec6d2f..e5816eb49ebb 100644 --- a/datafusion/core/src/physical_planner.rs +++ b/datafusion/core/src/physical_planner.rs @@ -571,11 +571,7 @@ impl DefaultPhysicalPlanner { copy_options, }) => { let input_exec = self.create_initial_plan(input, session_state).await?; - - // TODO: make this behavior configurable via options (should copy to create path/file as needed?) - // TODO: add additional configurable options for if existing files should be overwritten or - // appended to - let parsed_url = ListingTableUrl::parse_create_local_if_not_exists(output_url, !*single_file_output)?; + let parsed_url = ListingTableUrl::parse(output_url)?; let object_store_url = parsed_url.object_store(); let schema: Schema = (**input.schema()).clone().into(); @@ -799,14 +795,13 @@ impl DefaultPhysicalPlanner { }) .collect::>>()?; - let (aggregates, filters, order_bys) : (Vec<_>, Vec<_>, Vec<_>) = multiunzip(agg_filter); + let (aggregates, filters, _order_bys) : (Vec<_>, Vec<_>, Vec<_>) = multiunzip(agg_filter); let initial_aggr = Arc::new(AggregateExec::try_new( AggregateMode::Partial, groups.clone(), aggregates.clone(), filters.clone(), - order_bys, input_exec, physical_input_schema.clone(), )?); @@ -824,7 +819,6 @@ impl DefaultPhysicalPlanner { // To reflect such changes to subsequent stages, use the updated // `AggregateExpr`/`PhysicalSortExpr` objects. let updated_aggregates = initial_aggr.aggr_expr().to_vec(); - let updated_order_bys = initial_aggr.order_by_expr().to_vec(); let next_partition_mode = if can_repartition { // construct a second aggregation with 'AggregateMode::FinalPartitioned' @@ -848,7 +842,6 @@ impl DefaultPhysicalPlanner { final_grouping_set, updated_aggregates, filters, - updated_order_bys, initial_aggr, physical_input_schema.clone(), )?)) diff --git a/datafusion/core/tests/dataframe/mod.rs b/datafusion/core/tests/dataframe/mod.rs index c6b8e0e01b4f..ba661aa2445c 100644 --- a/datafusion/core/tests/dataframe/mod.rs +++ b/datafusion/core/tests/dataframe/mod.rs @@ -39,7 +39,7 @@ use datafusion::prelude::JoinType; use datafusion::prelude::{CsvReadOptions, ParquetReadOptions}; use datafusion::test_util::parquet_test_data; use datafusion::{assert_batches_eq, assert_batches_sorted_eq}; -use datafusion_common::{DataFusionError, ScalarValue, UnnestOptions}; +use datafusion_common::{assert_contains, DataFusionError, ScalarValue, UnnestOptions}; use datafusion_execution::config::SessionConfig; use datafusion_expr::expr::{GroupingSet, Sort}; use datafusion_expr::{ @@ -1408,6 +1408,28 @@ async fn unnest_with_redundant_columns() -> Result<()> { Ok(()) } +#[tokio::test] +async fn unnest_analyze_metrics() -> Result<()> { + const NUM_ROWS: usize = 5; + + let df = table_with_nested_types(NUM_ROWS).await?; + let results = df + .unnest_column("tags")? + .explain(false, true)? + .collect() + .await?; + let formatted = arrow::util::pretty::pretty_format_batches(&results) + .unwrap() + .to_string(); + assert_contains!(&formatted, "elapsed_compute="); + assert_contains!(&formatted, "input_batches=1"); + assert_contains!(&formatted, "input_rows=5"); + assert_contains!(&formatted, "output_rows=10"); + assert_contains!(&formatted, "output_batches=1"); + + Ok(()) +} + async fn create_test_table(name: &str) -> Result { let schema = Arc::new(Schema::new(vec![ Field::new("a", DataType::Utf8, false), diff --git a/datafusion/core/tests/fuzz_cases/aggregate_fuzz.rs b/datafusion/core/tests/fuzz_cases/aggregate_fuzz.rs index 821f236af87b..9069dbbd5850 100644 --- a/datafusion/core/tests/fuzz_cases/aggregate_fuzz.rs +++ b/datafusion/core/tests/fuzz_cases/aggregate_fuzz.rs @@ -109,7 +109,6 @@ async fn run_aggregate_test(input1: Vec, group_by_columns: Vec<&str group_by.clone(), aggregate_expr.clone(), vec![None], - vec![None], running_source, schema.clone(), ) @@ -122,7 +121,6 @@ async fn run_aggregate_test(input1: Vec, group_by_columns: Vec<&str group_by.clone(), aggregate_expr.clone(), vec![None], - vec![None], usual_source, schema.clone(), ) diff --git a/datafusion/expr/src/expr.rs b/datafusion/expr/src/expr.rs index 958f4f4a3456..f0aab95b8f0d 100644 --- a/datafusion/expr/src/expr.rs +++ b/datafusion/expr/src/expr.rs @@ -373,6 +373,24 @@ impl ScalarFunctionDefinition { ScalarFunctionDefinition::Name(func_name) => func_name.as_ref(), } } + + /// Whether this function is volatile, i.e. whether it can return different results + /// when evaluated multiple times with the same input. + pub fn is_volatile(&self) -> Result { + match self { + ScalarFunctionDefinition::BuiltIn(fun) => { + Ok(fun.volatility() == crate::Volatility::Volatile) + } + ScalarFunctionDefinition::UDF(udf) => { + Ok(udf.signature().volatility == crate::Volatility::Volatile) + } + ScalarFunctionDefinition::Name(func) => { + internal_err!( + "Cannot determine volatility of unresolved function: {func}" + ) + } + } + } } impl ScalarFunction { @@ -1692,14 +1710,28 @@ fn create_names(exprs: &[Expr]) -> Result { .join(", ")) } +/// Whether the given expression is volatile, i.e. whether it can return different results +/// when evaluated multiple times with the same input. +pub fn is_volatile(expr: &Expr) -> Result { + match expr { + Expr::ScalarFunction(func) => func.func_def.is_volatile(), + _ => Ok(false), + } +} + #[cfg(test)] mod test { use crate::expr::Cast; use crate::expr_fn::col; - use crate::{case, lit, Expr}; + use crate::{ + case, lit, BuiltinScalarFunction, ColumnarValue, Expr, ReturnTypeFunction, + ScalarFunctionDefinition, ScalarFunctionImplementation, ScalarUDF, Signature, + Volatility, + }; use arrow::datatypes::DataType; use datafusion_common::Column; use datafusion_common::{Result, ScalarValue}; + use std::sync::Arc; #[test] fn format_case_when() -> Result<()> { @@ -1800,4 +1832,45 @@ mod test { "UInt32(1) OR UInt32(2)" ); } + + #[test] + fn test_is_volatile_scalar_func_definition() { + // BuiltIn + assert!( + ScalarFunctionDefinition::BuiltIn(BuiltinScalarFunction::Random) + .is_volatile() + .unwrap() + ); + assert!( + !ScalarFunctionDefinition::BuiltIn(BuiltinScalarFunction::Abs) + .is_volatile() + .unwrap() + ); + + // UDF + let return_type: ReturnTypeFunction = + Arc::new(move |_| Ok(Arc::new(DataType::Utf8))); + let fun: ScalarFunctionImplementation = + Arc::new(move |_| Ok(ColumnarValue::Scalar(ScalarValue::new_utf8("a")))); + let udf = Arc::new(ScalarUDF::new( + "TestScalarUDF", + &Signature::uniform(1, vec![DataType::Float32], Volatility::Stable), + &return_type, + &fun, + )); + assert!(!ScalarFunctionDefinition::UDF(udf).is_volatile().unwrap()); + + let udf = Arc::new(ScalarUDF::new( + "TestScalarUDF", + &Signature::uniform(1, vec![DataType::Float32], Volatility::Volatile), + &return_type, + &fun, + )); + assert!(ScalarFunctionDefinition::UDF(udf).is_volatile().unwrap()); + + // Unresolved function + ScalarFunctionDefinition::Name(Arc::from("UnresolvedFunc")) + .is_volatile() + .expect_err("Shouldn't determine volatility of unresolved function"); + } } diff --git a/datafusion/expr/src/lib.rs b/datafusion/expr/src/lib.rs index 6172d17365ad..48532e13dcd7 100644 --- a/datafusion/expr/src/lib.rs +++ b/datafusion/expr/src/lib.rs @@ -49,7 +49,6 @@ pub mod field_util; pub mod function; pub mod interval_arithmetic; pub mod logical_plan; -pub mod struct_expressions; pub mod tree_node; pub mod type_coercion; pub mod utils; diff --git a/datafusion/expr/src/logical_plan/builder.rs b/datafusion/expr/src/logical_plan/builder.rs index be2c45b901fa..88310dab82a2 100644 --- a/datafusion/expr/src/logical_plan/builder.rs +++ b/datafusion/expr/src/logical_plan/builder.rs @@ -1343,7 +1343,7 @@ pub fn subquery_alias( plan: LogicalPlan, alias: impl Into, ) -> Result { - SubqueryAlias::try_new(plan, alias).map(LogicalPlan::SubqueryAlias) + SubqueryAlias::try_new(Arc::new(plan), alias).map(LogicalPlan::SubqueryAlias) } /// Create a LogicalPlanBuilder representing a scan of a table with the provided name and schema. diff --git a/datafusion/expr/src/logical_plan/plan.rs b/datafusion/expr/src/logical_plan/plan.rs index d74015bf094d..1f3711407a14 100644 --- a/datafusion/expr/src/logical_plan/plan.rs +++ b/datafusion/expr/src/logical_plan/plan.rs @@ -792,7 +792,7 @@ impl LogicalPlan { })) } LogicalPlan::SubqueryAlias(SubqueryAlias { alias, .. }) => { - SubqueryAlias::try_new(inputs[0].clone(), alias.clone()) + SubqueryAlias::try_new(Arc::new(inputs[0].clone()), alias.clone()) .map(LogicalPlan::SubqueryAlias) } LogicalPlan::Limit(Limit { skip, fetch, .. }) => { @@ -1855,7 +1855,7 @@ pub struct SubqueryAlias { impl SubqueryAlias { pub fn try_new( - plan: LogicalPlan, + plan: Arc, alias: impl Into, ) -> Result { let alias = alias.into(); @@ -1868,7 +1868,7 @@ impl SubqueryAlias { .with_functional_dependencies(func_dependencies)?, ); Ok(SubqueryAlias { - input: Arc::new(plan), + input: plan, alias, schema, }) diff --git a/datafusion/expr/src/struct_expressions.rs b/datafusion/expr/src/struct_expressions.rs deleted file mode 100644 index bbfcac0e2396..000000000000 --- a/datafusion/expr/src/struct_expressions.rs +++ /dev/null @@ -1,35 +0,0 @@ -// Licensed to the Apache Software Foundation (ASF) under one -// or more contributor license agreements. See the NOTICE file -// distributed with this work for additional information -// regarding copyright ownership. The ASF licenses this file -// to you under the Apache License, Version 2.0 (the -// "License"); you may not use this file except in compliance -// with the License. You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, -// software distributed under the License is distributed on an -// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -// KIND, either express or implied. See the License for the -// specific language governing permissions and limitations -// under the License. - -use arrow::datatypes::DataType; - -/// Currently supported types by the struct function. -pub static SUPPORTED_STRUCT_TYPES: &[DataType] = &[ - DataType::Boolean, - DataType::UInt8, - DataType::UInt16, - DataType::UInt32, - DataType::UInt64, - DataType::Int8, - DataType::Int16, - DataType::Int32, - DataType::Int64, - DataType::Float32, - DataType::Float64, - DataType::Utf8, - DataType::LargeUtf8, -]; diff --git a/datafusion/optimizer/Cargo.toml b/datafusion/optimizer/Cargo.toml index fac880867fef..b350d41d3fe3 100644 --- a/datafusion/optimizer/Cargo.toml +++ b/datafusion/optimizer/Cargo.toml @@ -44,7 +44,7 @@ async-trait = { workspace = true } chrono = { workspace = true } datafusion-common = { workspace = true } datafusion-expr = { workspace = true } -datafusion-physical-expr = { path = "../physical-expr", version = "33.0.0", default-features = false } +datafusion-physical-expr = { path = "../physical-expr", version = "34.0.0", default-features = false } hashbrown = { version = "0.14", features = ["raw"] } itertools = { workspace = true } log = { workspace = true } @@ -52,5 +52,5 @@ regex-syntax = "0.8.0" [dev-dependencies] ctor = { workspace = true } -datafusion-sql = { path = "../sql", version = "33.0.0" } +datafusion-sql = { path = "../sql", version = "34.0.0" } env_logger = "0.10.0" diff --git a/datafusion/optimizer/src/common_subexpr_eliminate.rs b/datafusion/optimizer/src/common_subexpr_eliminate.rs index 1d21407a6985..1e089257c61a 100644 --- a/datafusion/optimizer/src/common_subexpr_eliminate.rs +++ b/datafusion/optimizer/src/common_subexpr_eliminate.rs @@ -29,7 +29,7 @@ use datafusion_common::tree_node::{ use datafusion_common::{ internal_err, Column, DFField, DFSchema, DFSchemaRef, DataFusionError, Result, }; -use datafusion_expr::expr::Alias; +use datafusion_expr::expr::{is_volatile, Alias}; use datafusion_expr::logical_plan::{ Aggregate, Filter, LogicalPlan, Projection, Sort, Window, }; @@ -113,6 +113,8 @@ impl CommonSubexprEliminate { let Projection { expr, input, .. } = projection; let input_schema = Arc::clone(input.schema()); let mut expr_set = ExprSet::new(); + + // Visit expr list and build expr identifier to occuring count map (`expr_set`). let arrays = to_arrays(expr, input_schema, &mut expr_set, ExprMask::Normal)?; let (mut new_expr, new_input) = @@ -516,7 +518,7 @@ enum ExprMask { } impl ExprMask { - fn ignores(&self, expr: &Expr) -> bool { + fn ignores(&self, expr: &Expr) -> Result { let is_normal_minus_aggregates = matches!( expr, Expr::Literal(..) @@ -527,12 +529,14 @@ impl ExprMask { | Expr::Wildcard { .. } ); + let is_volatile = is_volatile(expr)?; + let is_aggr = matches!(expr, Expr::AggregateFunction(..)); - match self { - Self::Normal => is_normal_minus_aggregates || is_aggr, - Self::NormalAndAggregates => is_normal_minus_aggregates, - } + Ok(match self { + Self::Normal => is_volatile || is_normal_minus_aggregates || is_aggr, + Self::NormalAndAggregates => is_volatile || is_normal_minus_aggregates, + }) } } @@ -624,7 +628,7 @@ impl TreeNodeVisitor for ExprIdentifierVisitor<'_> { let (idx, sub_expr_desc) = self.pop_enter_mark(); // skip exprs should not be recognize. - if self.expr_mask.ignores(expr) { + if self.expr_mask.ignores(expr)? { self.id_array[idx].0 = self.series_number; let desc = Self::desc_expr(expr); self.visit_stack.push(VisitRecord::ExprItem(desc)); diff --git a/datafusion/physical-expr/src/aggregate/count.rs b/datafusion/physical-expr/src/aggregate/count.rs index 738ca4e915f7..8e9ae5cea36b 100644 --- a/datafusion/physical-expr/src/aggregate/count.rs +++ b/datafusion/physical-expr/src/aggregate/count.rs @@ -123,7 +123,7 @@ impl GroupsAccumulator for CountGroupsAccumulator { self.counts.resize(total_num_groups, 0); accumulate_indices( group_indices, - values.nulls(), // ignore values + values.logical_nulls().as_ref(), opt_filter, |group_index| { self.counts[group_index] += 1; @@ -198,16 +198,18 @@ fn null_count_for_multiple_cols(values: &[ArrayRef]) -> usize { if values.len() > 1 { let result_bool_buf: Option = values .iter() - .map(|a| a.nulls()) + .map(|a| a.logical_nulls()) .fold(None, |acc, b| match (acc, b) { (Some(acc), Some(b)) => Some(acc.bitand(b.inner())), (Some(acc), None) => Some(acc), - (None, Some(b)) => Some(b.inner().clone()), + (None, Some(b)) => Some(b.into_inner()), _ => None, }); result_bool_buf.map_or(0, |b| values[0].len() - b.count_set_bits()) } else { - values[0].null_count() + values[0] + .logical_nulls() + .map_or(0, |nulls| nulls.null_count()) } } diff --git a/datafusion/physical-expr/src/aggregate/count_distinct.rs b/datafusion/physical-expr/src/aggregate/count_distinct.rs index f5242d983d4c..c2fd32a96c4f 100644 --- a/datafusion/physical-expr/src/aggregate/count_distinct.rs +++ b/datafusion/physical-expr/src/aggregate/count_distinct.rs @@ -152,7 +152,12 @@ impl Accumulator for DistinctCountAccumulator { if values.is_empty() { return Ok(()); } + let arr = &values[0]; + if arr.data_type() == &DataType::Null { + return Ok(()); + } + (0..arr.len()).try_for_each(|index| { if !arr.is_null(index) { let scalar = ScalarValue::try_from_array(arr, index)?; diff --git a/datafusion/physical-expr/src/aggregate/first_last.rs b/datafusion/physical-expr/src/aggregate/first_last.rs index 0dc27dede8b6..5e2012bdbb67 100644 --- a/datafusion/physical-expr/src/aggregate/first_last.rs +++ b/datafusion/physical-expr/src/aggregate/first_last.rs @@ -61,6 +61,31 @@ impl FirstValue { ordering_req, } } + + /// Returns the name of the aggregate expression. + pub fn name(&self) -> &str { + &self.name + } + + /// Returns the input data type of the aggregate expression. + pub fn input_data_type(&self) -> &DataType { + &self.input_data_type + } + + /// Returns the data types of the order-by columns. + pub fn order_by_data_types(&self) -> &Vec { + &self.order_by_data_types + } + + /// Returns the expression associated with the aggregate function. + pub fn expr(&self) -> &Arc { + &self.expr + } + + /// Returns the lexical ordering requirements of the aggregate expression. + pub fn ordering_req(&self) -> &LexOrdering { + &self.ordering_req + } } impl AggregateExpr for FirstValue { @@ -285,6 +310,31 @@ impl LastValue { ordering_req, } } + + /// Returns the name of the aggregate expression. + pub fn name(&self) -> &str { + &self.name + } + + /// Returns the input data type of the aggregate expression. + pub fn input_data_type(&self) -> &DataType { + &self.input_data_type + } + + /// Returns the data types of the order-by columns. + pub fn order_by_data_types(&self) -> &Vec { + &self.order_by_data_types + } + + /// Returns the expression associated with the aggregate function. + pub fn expr(&self) -> &Arc { + &self.expr + } + + /// Returns the lexical ordering requirements of the aggregate expression. + pub fn ordering_req(&self) -> &LexOrdering { + &self.ordering_req + } } impl AggregateExpr for LastValue { diff --git a/datafusion/physical-expr/src/analysis.rs b/datafusion/physical-expr/src/analysis.rs index f43434362a19..6d36e2233cdd 100644 --- a/datafusion/physical-expr/src/analysis.rs +++ b/datafusion/physical-expr/src/analysis.rs @@ -95,7 +95,8 @@ impl ExprBoundaries { col_index: usize, ) -> Result { let field = &schema.fields()[col_index]; - let empty_field = ScalarValue::try_from(field.data_type())?; + let empty_field = + ScalarValue::try_from(field.data_type()).unwrap_or(ScalarValue::Null); let interval = Interval::try_new( col_stats .min_value diff --git a/datafusion/physical-expr/src/datetime_expressions.rs b/datafusion/physical-expr/src/datetime_expressions.rs index bbeb2b0dce86..f6373d40d965 100644 --- a/datafusion/physical-expr/src/datetime_expressions.rs +++ b/datafusion/physical-expr/src/datetime_expressions.rs @@ -21,12 +21,6 @@ use crate::datetime_expressions; use crate::expressions::cast_column; use arrow::array::Float64Builder; use arrow::compute::cast; -use arrow::{ - array::TimestampNanosecondArray, - compute::kernels::temporal, - datatypes::TimeUnit, - temporal_conversions::{as_datetime_with_timezone, timestamp_ns_to_datetime}, -}; use arrow::{ array::{Array, ArrayRef, Float64Array, OffsetSizeTrait, PrimitiveArray}, compute::kernels::cast_utils::string_to_timestamp_nanos, @@ -36,11 +30,14 @@ use arrow::{ TimestampMillisecondType, TimestampNanosecondType, TimestampSecondType, }, }; -use arrow_array::types::ArrowTimestampType; -use arrow_array::{ - timezone::Tz, TimestampMicrosecondArray, TimestampMillisecondArray, - TimestampSecondArray, +use arrow::{ + compute::kernels::temporal, + datatypes::TimeUnit, + temporal_conversions::{as_datetime_with_timezone, timestamp_ns_to_datetime}, }; +use arrow_array::temporal_conversions::NANOSECONDS; +use arrow_array::timezone::Tz; +use arrow_array::types::ArrowTimestampType; use chrono::prelude::*; use chrono::{Duration, Months, NaiveDate}; use datafusion_common::cast::{ @@ -647,89 +644,104 @@ fn date_bin_impl( return exec_err!("DATE_BIN stride must be non-zero"); } - let f_nanos = |x: Option| x.map(|x| stride_fn(stride, x, origin)); - let f_micros = |x: Option| { - let scale = 1_000; - x.map(|x| stride_fn(stride, x * scale, origin) / scale) - }; - let f_millis = |x: Option| { - let scale = 1_000_000; - x.map(|x| stride_fn(stride, x * scale, origin) / scale) - }; - let f_secs = |x: Option| { - let scale = 1_000_000_000; - x.map(|x| stride_fn(stride, x * scale, origin) / scale) - }; + fn stride_map_fn( + origin: i64, + stride: i64, + stride_fn: fn(i64, i64, i64) -> i64, + ) -> impl Fn(Option) -> Option { + let scale = match T::UNIT { + TimeUnit::Nanosecond => 1, + TimeUnit::Microsecond => NANOSECONDS / 1_000_000, + TimeUnit::Millisecond => NANOSECONDS / 1_000, + TimeUnit::Second => NANOSECONDS, + }; + move |x: Option| x.map(|x| stride_fn(stride, x * scale, origin) / scale) + } Ok(match array { ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(v, tz_opt)) => { + let apply_stride_fn = + stride_map_fn::(origin, stride, stride_fn); ColumnarValue::Scalar(ScalarValue::TimestampNanosecond( - f_nanos(*v), + apply_stride_fn(*v), tz_opt.clone(), )) } ColumnarValue::Scalar(ScalarValue::TimestampMicrosecond(v, tz_opt)) => { + let apply_stride_fn = + stride_map_fn::(origin, stride, stride_fn); ColumnarValue::Scalar(ScalarValue::TimestampMicrosecond( - f_micros(*v), + apply_stride_fn(*v), tz_opt.clone(), )) } ColumnarValue::Scalar(ScalarValue::TimestampMillisecond(v, tz_opt)) => { + let apply_stride_fn = + stride_map_fn::(origin, stride, stride_fn); ColumnarValue::Scalar(ScalarValue::TimestampMillisecond( - f_millis(*v), + apply_stride_fn(*v), tz_opt.clone(), )) } ColumnarValue::Scalar(ScalarValue::TimestampSecond(v, tz_opt)) => { + let apply_stride_fn = + stride_map_fn::(origin, stride, stride_fn); ColumnarValue::Scalar(ScalarValue::TimestampSecond( - f_secs(*v), + apply_stride_fn(*v), tz_opt.clone(), )) } - ColumnarValue::Array(array) => match array.data_type() { - DataType::Timestamp(TimeUnit::Nanosecond, tz_opt) => { - let array = as_timestamp_nanosecond_array(array)? - .iter() - .map(f_nanos) - .collect::() - .with_timezone_opt(tz_opt.clone()); - - ColumnarValue::Array(Arc::new(array)) - } - DataType::Timestamp(TimeUnit::Microsecond, tz_opt) => { - let array = as_timestamp_microsecond_array(array)? - .iter() - .map(f_micros) - .collect::() - .with_timezone_opt(tz_opt.clone()); - - ColumnarValue::Array(Arc::new(array)) - } - DataType::Timestamp(TimeUnit::Millisecond, tz_opt) => { - let array = as_timestamp_millisecond_array(array)? - .iter() - .map(f_millis) - .collect::() - .with_timezone_opt(tz_opt.clone()); - ColumnarValue::Array(Arc::new(array)) - } - DataType::Timestamp(TimeUnit::Second, tz_opt) => { - let array = as_timestamp_second_array(array)? + ColumnarValue::Array(array) => { + fn transform_array_with_stride( + origin: i64, + stride: i64, + stride_fn: fn(i64, i64, i64) -> i64, + array: &ArrayRef, + tz_opt: &Option>, + ) -> Result + where + T: ArrowTimestampType, + { + let array = as_primitive_array::(array)?; + let apply_stride_fn = stride_map_fn::(origin, stride, stride_fn); + let array = array .iter() - .map(f_secs) - .collect::() + .map(apply_stride_fn) + .collect::>() .with_timezone_opt(tz_opt.clone()); - ColumnarValue::Array(Arc::new(array)) + Ok(ColumnarValue::Array(Arc::new(array))) } - _ => { - return exec_err!( - "DATE_BIN expects source argument to be a TIMESTAMP but got {}", - array.data_type() - ) + match array.data_type() { + DataType::Timestamp(TimeUnit::Nanosecond, tz_opt) => { + transform_array_with_stride::( + origin, stride, stride_fn, array, tz_opt, + )? + } + DataType::Timestamp(TimeUnit::Microsecond, tz_opt) => { + transform_array_with_stride::( + origin, stride, stride_fn, array, tz_opt, + )? + } + DataType::Timestamp(TimeUnit::Millisecond, tz_opt) => { + transform_array_with_stride::( + origin, stride, stride_fn, array, tz_opt, + )? + } + DataType::Timestamp(TimeUnit::Second, tz_opt) => { + transform_array_with_stride::( + origin, stride, stride_fn, array, tz_opt, + )? + } + _ => { + return exec_err!( + "DATE_BIN expects source argument to be a TIMESTAMP but got {}", + array.data_type() + ) + } } - }, + } _ => { return exec_err!( "DATE_BIN expects source argument to be a TIMESTAMP scalar or array" @@ -1061,6 +1073,7 @@ mod tests { use arrow::array::{ as_primitive_array, ArrayRef, Int64Array, IntervalDayTimeArray, StringBuilder, }; + use arrow_array::TimestampNanosecondArray; use super::*; diff --git a/datafusion/physical-expr/src/expressions/case.rs b/datafusion/physical-expr/src/expressions/case.rs index 5fcfd61d90e4..52fb85657f4e 100644 --- a/datafusion/physical-expr/src/expressions/case.rs +++ b/datafusion/physical-expr/src/expressions/case.rs @@ -145,6 +145,8 @@ impl CaseExpr { 0 => Cow::Borrowed(&when_match), _ => Cow::Owned(prep_null_mask_filter(&when_match)), }; + // Make sure we only consider rows that have not been matched yet + let when_match = and(&when_match, &remainder)?; let then_value = self.when_then_expr[i] .1 @@ -206,6 +208,8 @@ impl CaseExpr { 0 => Cow::Borrowed(when_value), _ => Cow::Owned(prep_null_mask_filter(when_value)), }; + // Make sure we only consider rows that have not been matched yet + let when_value = and(&when_value, &remainder)?; let then_value = self.when_then_expr[i] .1 diff --git a/datafusion/physical-plan/src/aggregates/mod.rs b/datafusion/physical-plan/src/aggregates/mod.rs index 2f69ed061ce1..c74c4ac0f821 100644 --- a/datafusion/physical-plan/src/aggregates/mod.rs +++ b/datafusion/physical-plan/src/aggregates/mod.rs @@ -279,8 +279,6 @@ pub struct AggregateExec { aggr_expr: Vec>, /// FILTER (WHERE clause) expression for each aggregate expression filter_expr: Vec>>, - /// (ORDER BY clause) expression for each aggregate expression - order_by_expr: Vec>, /// Set if the output of this aggregation is truncated by a upstream sort/limit clause limit: Option, /// Input plan, could be a partial aggregate or the input to the aggregate @@ -468,8 +466,6 @@ impl AggregateExec { group_by: PhysicalGroupBy, mut aggr_expr: Vec>, filter_expr: Vec>>, - // Ordering requirement of each aggregate expression - mut order_by_expr: Vec>, input: Arc, input_schema: SchemaRef, ) -> Result { @@ -487,10 +483,10 @@ impl AggregateExec { )); let original_schema = Arc::new(original_schema); // Reset ordering requirement to `None` if aggregator is not order-sensitive - order_by_expr = aggr_expr + let mut order_by_expr = aggr_expr .iter() - .zip(order_by_expr) - .map(|(aggr_expr, fn_reqs)| { + .map(|aggr_expr| { + let fn_reqs = aggr_expr.order_bys().map(|ordering| ordering.to_vec()); // If // - aggregation function is order-sensitive and // - aggregation is performing a "first stage" calculation, and @@ -558,7 +554,6 @@ impl AggregateExec { group_by, aggr_expr, filter_expr, - order_by_expr, input, original_schema, schema, @@ -602,11 +597,6 @@ impl AggregateExec { &self.filter_expr } - /// ORDER BY clause expression for each aggregate expression - pub fn order_by_expr(&self) -> &[Option] { - &self.order_by_expr - } - /// Input plan pub fn input(&self) -> &Arc { &self.input @@ -684,7 +674,7 @@ impl AggregateExec { return false; } // ensure there are no order by expressions - if self.order_by_expr().iter().any(|e| e.is_some()) { + if self.aggr_expr().iter().any(|e| e.order_bys().is_some()) { return false; } // ensure there is no output ordering; can this rule be relaxed? @@ -873,7 +863,6 @@ impl ExecutionPlan for AggregateExec { self.group_by.clone(), self.aggr_expr.clone(), self.filter_expr.clone(), - self.order_by_expr.clone(), children[0].clone(), self.input_schema.clone(), )?; @@ -1395,7 +1384,6 @@ mod tests { grouping_set.clone(), aggregates.clone(), vec![None], - vec![None], input, input_schema.clone(), )?); @@ -1474,7 +1462,6 @@ mod tests { final_grouping_set, aggregates, vec![None], - vec![None], merge, input_schema, )?); @@ -1540,7 +1527,6 @@ mod tests { grouping_set.clone(), aggregates.clone(), vec![None], - vec![None], input, input_schema.clone(), )?); @@ -1588,7 +1574,6 @@ mod tests { final_grouping_set, aggregates, vec![None], - vec![None], merge, input_schema, )?); @@ -1855,7 +1840,6 @@ mod tests { groups, aggregates, vec![None; 3], - vec![None; 3], input.clone(), input_schema.clone(), )?); @@ -1911,7 +1895,6 @@ mod tests { groups.clone(), aggregates.clone(), vec![None], - vec![None], blocking_exec, schema, )?); @@ -1950,7 +1933,6 @@ mod tests { groups, aggregates.clone(), vec![None], - vec![None], blocking_exec, schema, )?); @@ -2052,7 +2034,6 @@ mod tests { groups.clone(), aggregates.clone(), vec![None], - vec![Some(ordering_req.clone())], memory_exec, schema.clone(), )?); @@ -2068,7 +2049,6 @@ mod tests { groups, aggregates.clone(), vec![None], - vec![Some(ordering_req)], coalesce, schema, )?) as Arc; diff --git a/datafusion/physical-plan/src/common.rs b/datafusion/physical-plan/src/common.rs index 649f3a31aa7e..e83dc2525b9f 100644 --- a/datafusion/physical-plan/src/common.rs +++ b/datafusion/physical-plan/src/common.rs @@ -30,6 +30,7 @@ use crate::{ColumnStatistics, ExecutionPlan, Statistics}; use arrow::datatypes::Schema; use arrow::ipc::writer::{FileWriter, IpcWriteOptions}; use arrow::record_batch::RecordBatch; +use arrow_array::Array; use datafusion_common::stats::Precision; use datafusion_common::{plan_err, DataFusionError, Result}; use datafusion_execution::memory_pool::MemoryReservation; @@ -139,17 +140,22 @@ pub fn compute_record_batch_statistics( ) -> Statistics { let nb_rows = batches.iter().flatten().map(RecordBatch::num_rows).sum(); - let total_byte_size = batches - .iter() - .flatten() - .map(|b| b.get_array_memory_size()) - .sum(); - let projection = match projection { Some(p) => p, None => (0..schema.fields().len()).collect(), }; + let total_byte_size = batches + .iter() + .flatten() + .map(|b| { + projection + .iter() + .map(|index| b.column(*index).get_array_memory_size()) + .sum::() + }) + .sum(); + let mut column_statistics = vec![ColumnStatistics::new_unknown(); projection.len()]; for partition in batches.iter() { @@ -388,6 +394,7 @@ mod tests { datatypes::{DataType, Field, Schema}, record_batch::RecordBatch, }; + use arrow_array::UInt64Array; use datafusion_expr::Operator; use datafusion_physical_expr::expressions::{col, Column}; @@ -685,20 +692,30 @@ mod tests { let schema = Arc::new(Schema::new(vec![ Field::new("f32", DataType::Float32, false), Field::new("f64", DataType::Float64, false), + Field::new("u64", DataType::UInt64, false), ])); let batch = RecordBatch::try_new( Arc::clone(&schema), vec![ Arc::new(Float32Array::from(vec![1., 2., 3.])), Arc::new(Float64Array::from(vec![9., 8., 7.])), + Arc::new(UInt64Array::from(vec![4, 5, 6])), ], )?; + + // just select f32,f64 + let select_projection = Some(vec![0, 1]); + let byte_size = batch + .project(&select_projection.clone().unwrap()) + .unwrap() + .get_array_memory_size(); + let actual = - compute_record_batch_statistics(&[vec![batch]], &schema, Some(vec![0, 1])); + compute_record_batch_statistics(&[vec![batch]], &schema, select_projection); - let mut expected = Statistics { + let expected = Statistics { num_rows: Precision::Exact(3), - total_byte_size: Precision::Exact(464), // this might change a bit if the way we compute the size changes + total_byte_size: Precision::Exact(byte_size), column_statistics: vec![ ColumnStatistics { distinct_count: Precision::Absent, @@ -715,9 +732,6 @@ mod tests { ], }; - // Prevent test flakiness due to undefined / changing implementation details - expected.total_byte_size = actual.total_byte_size.clone(); - assert_eq!(actual, expected); Ok(()) } diff --git a/datafusion/physical-plan/src/display.rs b/datafusion/physical-plan/src/display.rs index 612e164be0e2..19c2847b09dc 100644 --- a/datafusion/physical-plan/src/display.rs +++ b/datafusion/physical-plan/src/display.rs @@ -260,8 +260,8 @@ impl<'a, 'b> ExecutionPlanVisitor for IndentVisitor<'a, 'b> { } } } - let stats = plan.statistics().map_err(|_e| fmt::Error)?; if self.show_statistics { + let stats = plan.statistics().map_err(|_e| fmt::Error)?; write!(self.f, ", statistics=[{}]", stats)?; } writeln!(self.f)?; @@ -341,8 +341,8 @@ impl ExecutionPlanVisitor for GraphvizVisitor<'_, '_> { } }; - let stats = plan.statistics().map_err(|_e| fmt::Error)?; let statistics = if self.show_statistics { + let stats = plan.statistics().map_err(|_e| fmt::Error)?; format!("statistics=[{}]", stats) } else { "".to_string() @@ -436,3 +436,126 @@ impl<'a> fmt::Display for OutputOrderingDisplay<'a> { write!(f, "]") } } + +#[cfg(test)] +mod tests { + use std::fmt::Write; + use std::sync::Arc; + + use datafusion_common::DataFusionError; + + use crate::{DisplayAs, ExecutionPlan}; + + use super::DisplayableExecutionPlan; + + #[derive(Debug, Clone, Copy)] + enum TestStatsExecPlan { + Panic, + Error, + Ok, + } + + impl DisplayAs for TestStatsExecPlan { + fn fmt_as( + &self, + _t: crate::DisplayFormatType, + f: &mut std::fmt::Formatter, + ) -> std::fmt::Result { + write!(f, "TestStatsExecPlan") + } + } + + impl ExecutionPlan for TestStatsExecPlan { + fn as_any(&self) -> &dyn std::any::Any { + self + } + + fn schema(&self) -> arrow_schema::SchemaRef { + Arc::new(arrow_schema::Schema::empty()) + } + + fn output_partitioning(&self) -> datafusion_physical_expr::Partitioning { + datafusion_physical_expr::Partitioning::UnknownPartitioning(1) + } + + fn output_ordering( + &self, + ) -> Option<&[datafusion_physical_expr::PhysicalSortExpr]> { + None + } + + fn children(&self) -> Vec> { + vec![] + } + + fn with_new_children( + self: Arc, + _: Vec>, + ) -> datafusion_common::Result> { + unimplemented!() + } + + fn execute( + &self, + _: usize, + _: Arc, + ) -> datafusion_common::Result + { + todo!() + } + + fn statistics(&self) -> datafusion_common::Result { + match self { + Self::Panic => panic!("expected panic"), + Self::Error => { + Err(DataFusionError::Internal("expected error".to_string())) + } + Self::Ok => Ok(datafusion_common::Statistics::new_unknown( + self.schema().as_ref(), + )), + } + } + } + + fn test_stats_display(exec: TestStatsExecPlan, show_stats: bool) { + let display = + DisplayableExecutionPlan::new(&exec).set_show_statistics(show_stats); + + let mut buf = String::new(); + write!(&mut buf, "{}", display.one_line()).unwrap(); + let buf = buf.trim(); + assert_eq!(buf, "TestStatsExecPlan"); + } + + #[test] + fn test_display_when_stats_panic_with_no_show_stats() { + test_stats_display(TestStatsExecPlan::Panic, false); + } + + #[test] + fn test_display_when_stats_error_with_no_show_stats() { + test_stats_display(TestStatsExecPlan::Error, false); + } + + #[test] + fn test_display_when_stats_ok_with_no_show_stats() { + test_stats_display(TestStatsExecPlan::Ok, false); + } + + #[test] + #[should_panic(expected = "expected panic")] + fn test_display_when_stats_panic_with_show_stats() { + test_stats_display(TestStatsExecPlan::Panic, true); + } + + #[test] + #[should_panic(expected = "Error")] // fmt::Error + fn test_display_when_stats_error_with_show_stats() { + test_stats_display(TestStatsExecPlan::Error, true); + } + + #[test] + fn test_display_when_stats_ok_with_show_stats() { + test_stats_display(TestStatsExecPlan::Ok, false); + } +} diff --git a/datafusion/physical-plan/src/joins/stream_join_utils.rs b/datafusion/physical-plan/src/joins/stream_join_utils.rs index 090c071cbe8e..f54f902b648b 100644 --- a/datafusion/physical-plan/src/joins/stream_join_utils.rs +++ b/datafusion/physical-plan/src/joins/stream_join_utils.rs @@ -24,7 +24,8 @@ use std::task::{Context, Poll}; use std::usize; use crate::joins::utils::{JoinFilter, JoinHashMapType, StatefulStreamResult}; -use crate::{handle_async_state, handle_state}; +use crate::metrics::{ExecutionPlanMetricsSet, MetricBuilder}; +use crate::{handle_async_state, handle_state, metrics}; use arrow::compute::concat_batches; use arrow_array::{ArrowPrimitiveType, NativeAdapter, PrimitiveArray, RecordBatch}; @@ -757,6 +758,10 @@ pub trait EagerJoinStream { ) -> Result>> { match self.right_stream().next().await { Some(Ok(batch)) => { + if batch.num_rows() == 0 { + return Ok(StreamJoinStateResult::Continue); + } + self.set_state(EagerJoinStreamState::PullLeft); self.process_batch_from_right(batch) } @@ -782,6 +787,9 @@ pub trait EagerJoinStream { ) -> Result>> { match self.left_stream().next().await { Some(Ok(batch)) => { + if batch.num_rows() == 0 { + return Ok(StreamJoinStateResult::Continue); + } self.set_state(EagerJoinStreamState::PullRight); self.process_batch_from_left(batch) } @@ -807,7 +815,12 @@ pub trait EagerJoinStream { &mut self, ) -> Result>> { match self.left_stream().next().await { - Some(Ok(batch)) => self.process_batch_after_right_end(batch), + Some(Ok(batch)) => { + if batch.num_rows() == 0 { + return Ok(StreamJoinStateResult::Continue); + } + self.process_batch_after_right_end(batch) + } Some(Err(e)) => Err(e), None => { self.set_state(EagerJoinStreamState::BothExhausted { @@ -832,7 +845,12 @@ pub trait EagerJoinStream { &mut self, ) -> Result>> { match self.right_stream().next().await { - Some(Ok(batch)) => self.process_batch_after_left_end(batch), + Some(Ok(batch)) => { + if batch.num_rows() == 0 { + return Ok(StreamJoinStateResult::Continue); + } + self.process_batch_after_left_end(batch) + } Some(Err(e)) => Err(e), None => { self.set_state(EagerJoinStreamState::BothExhausted { @@ -953,6 +971,65 @@ pub trait EagerJoinStream { fn state(&mut self) -> EagerJoinStreamState; } +#[derive(Debug)] +pub struct StreamJoinSideMetrics { + /// Number of batches consumed by this operator + pub(crate) input_batches: metrics::Count, + /// Number of rows consumed by this operator + pub(crate) input_rows: metrics::Count, +} + +/// Metrics for HashJoinExec +#[derive(Debug)] +pub struct StreamJoinMetrics { + /// Number of left batches/rows consumed by this operator + pub(crate) left: StreamJoinSideMetrics, + /// Number of right batches/rows consumed by this operator + pub(crate) right: StreamJoinSideMetrics, + /// Memory used by sides in bytes + pub(crate) stream_memory_usage: metrics::Gauge, + /// Number of batches produced by this operator + pub(crate) output_batches: metrics::Count, + /// Number of rows produced by this operator + pub(crate) output_rows: metrics::Count, +} + +impl StreamJoinMetrics { + pub fn new(partition: usize, metrics: &ExecutionPlanMetricsSet) -> Self { + let input_batches = + MetricBuilder::new(metrics).counter("input_batches", partition); + let input_rows = MetricBuilder::new(metrics).counter("input_rows", partition); + let left = StreamJoinSideMetrics { + input_batches, + input_rows, + }; + + let input_batches = + MetricBuilder::new(metrics).counter("input_batches", partition); + let input_rows = MetricBuilder::new(metrics).counter("input_rows", partition); + let right = StreamJoinSideMetrics { + input_batches, + input_rows, + }; + + let stream_memory_usage = + MetricBuilder::new(metrics).gauge("stream_memory_usage", partition); + + let output_batches = + MetricBuilder::new(metrics).counter("output_batches", partition); + + let output_rows = MetricBuilder::new(metrics).output_rows(partition); + + Self { + left, + right, + output_batches, + stream_memory_usage, + output_rows, + } + } +} + #[cfg(test)] pub mod tests { use std::sync::Arc; diff --git a/datafusion/physical-plan/src/joins/symmetric_hash_join.rs b/datafusion/physical-plan/src/joins/symmetric_hash_join.rs index 0878b0b3332a..b9101b57c3e5 100644 --- a/datafusion/physical-plan/src/joins/symmetric_hash_join.rs +++ b/datafusion/physical-plan/src/joins/symmetric_hash_join.rs @@ -37,7 +37,7 @@ use crate::joins::stream_join_utils::{ calculate_filter_expr_intervals, combine_two_batches, convert_sort_expr_with_filter_schema, get_pruning_anti_indices, get_pruning_semi_indices, record_visited_indices, EagerJoinStream, - EagerJoinStreamState, PruningJoinHashMap, SortedFilterExpr, + EagerJoinStreamState, PruningJoinHashMap, SortedFilterExpr, StreamJoinMetrics, }; use crate::joins::utils::{ build_batch_from_indices, build_join_schema, check_join_is_valid, @@ -47,7 +47,7 @@ use crate::joins::utils::{ use crate::{ expressions::{Column, PhysicalSortExpr}, joins::StreamJoinPartitionMode, - metrics::{self, ExecutionPlanMetricsSet, MetricBuilder, MetricsSet}, + metrics::{ExecutionPlanMetricsSet, MetricsSet}, DisplayAs, DisplayFormatType, Distribution, EquivalenceProperties, ExecutionPlan, Partitioning, RecordBatchStream, SendableRecordBatchStream, Statistics, }; @@ -184,65 +184,6 @@ pub struct SymmetricHashJoinExec { mode: StreamJoinPartitionMode, } -#[derive(Debug)] -pub struct StreamJoinSideMetrics { - /// Number of batches consumed by this operator - pub(crate) input_batches: metrics::Count, - /// Number of rows consumed by this operator - pub(crate) input_rows: metrics::Count, -} - -/// Metrics for HashJoinExec -#[derive(Debug)] -pub struct StreamJoinMetrics { - /// Number of left batches/rows consumed by this operator - pub(crate) left: StreamJoinSideMetrics, - /// Number of right batches/rows consumed by this operator - pub(crate) right: StreamJoinSideMetrics, - /// Memory used by sides in bytes - pub(crate) stream_memory_usage: metrics::Gauge, - /// Number of batches produced by this operator - pub(crate) output_batches: metrics::Count, - /// Number of rows produced by this operator - pub(crate) output_rows: metrics::Count, -} - -impl StreamJoinMetrics { - pub fn new(partition: usize, metrics: &ExecutionPlanMetricsSet) -> Self { - let input_batches = - MetricBuilder::new(metrics).counter("input_batches", partition); - let input_rows = MetricBuilder::new(metrics).counter("input_rows", partition); - let left = StreamJoinSideMetrics { - input_batches, - input_rows, - }; - - let input_batches = - MetricBuilder::new(metrics).counter("input_batches", partition); - let input_rows = MetricBuilder::new(metrics).counter("input_rows", partition); - let right = StreamJoinSideMetrics { - input_batches, - input_rows, - }; - - let stream_memory_usage = - MetricBuilder::new(metrics).gauge("stream_memory_usage", partition); - - let output_batches = - MetricBuilder::new(metrics).counter("output_batches", partition); - - let output_rows = MetricBuilder::new(metrics).output_rows(partition); - - Self { - left, - right, - output_batches, - stream_memory_usage, - output_rows, - } - } -} - impl SymmetricHashJoinExec { /// Tries to create a new [SymmetricHashJoinExec]. /// # Error diff --git a/datafusion/physical-plan/src/limit.rs b/datafusion/physical-plan/src/limit.rs index 355561c36f35..37e8ffd76159 100644 --- a/datafusion/physical-plan/src/limit.rs +++ b/datafusion/physical-plan/src/limit.rs @@ -878,7 +878,6 @@ mod tests { build_group_by(&csv.schema().clone(), vec!["i".to_string()]), vec![], vec![None], - vec![None], csv.clone(), csv.schema().clone(), )?; diff --git a/datafusion/physical-plan/src/placeholder_row.rs b/datafusion/physical-plan/src/placeholder_row.rs index 94f32788530b..3ab3de62f37a 100644 --- a/datafusion/physical-plan/src/placeholder_row.rs +++ b/datafusion/physical-plan/src/placeholder_row.rs @@ -27,6 +27,7 @@ use crate::{memory::MemoryStream, DisplayFormatType, ExecutionPlan, Partitioning use arrow::array::{ArrayRef, NullArray}; use arrow::datatypes::{DataType, Field, Fields, Schema, SchemaRef}; use arrow::record_batch::RecordBatch; +use arrow_array::RecordBatchOptions; use datafusion_common::{internal_err, DataFusionError, Result}; use datafusion_execution::TaskContext; @@ -59,9 +60,7 @@ impl PlaceholderRowExec { fn data(&self) -> Result> { Ok({ let n_field = self.schema.fields.len(); - // hack for https://github.com/apache/arrow-datafusion/pull/3242 - let n_field = if n_field == 0 { 1 } else { n_field }; - vec![RecordBatch::try_new( + vec![RecordBatch::try_new_with_options( Arc::new(Schema::new( (0..n_field) .map(|i| { @@ -75,6 +74,8 @@ impl PlaceholderRowExec { ret }) .collect(), + // Even if column number is empty we can generate single row. + &RecordBatchOptions::new().with_row_count(Some(1)), )?] }) } diff --git a/datafusion/physical-plan/src/repartition/mod.rs b/datafusion/physical-plan/src/repartition/mod.rs index 24f227d8a535..769dc5e0e197 100644 --- a/datafusion/physical-plan/src/repartition/mod.rs +++ b/datafusion/physical-plan/src/repartition/mod.rs @@ -370,11 +370,7 @@ impl RepartitionExec { /// Get name used to display this Exec pub fn name(&self) -> &str { - if self.preserve_order { - "SortPreservingRepartitionExec" - } else { - "RepartitionExec" - } + "RepartitionExec" } } @@ -394,6 +390,10 @@ impl DisplayAs for RepartitionExec { self.input.output_partitioning().partition_count() )?; + if self.preserve_order { + write!(f, ", preserve_order=true")?; + } + if let Some(sort_exprs) = self.sort_exprs() { write!( f, @@ -1491,7 +1491,7 @@ mod test { // Repartition should preserve order let expected_plan = [ - "SortPreservingRepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=2, sort_exprs=c0@0 ASC", + "RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=2, preserve_order=true, sort_exprs=c0@0 ASC", " UnionExec", " MemoryExec: partitions=1, partition_sizes=[0], output_ordering=c0@0 ASC", " MemoryExec: partitions=1, partition_sizes=[0], output_ordering=c0@0 ASC", diff --git a/datafusion/physical-plan/src/unnest.rs b/datafusion/physical-plan/src/unnest.rs index af4a81626cd7..b9e732c317af 100644 --- a/datafusion/physical-plan/src/unnest.rs +++ b/datafusion/physical-plan/src/unnest.rs @@ -17,8 +17,6 @@ //! Defines the unnest column plan for unnesting values in a column that contains a list //! type, conceptually is like joining each row with all the values in the list column. - -use std::time::Instant; use std::{any::Any, sync::Arc}; use super::DisplayAs; @@ -44,6 +42,8 @@ use async_trait::async_trait; use futures::{Stream, StreamExt}; use log::trace; +use super::metrics::{self, ExecutionPlanMetricsSet, MetricBuilder, MetricsSet}; + /// Unnest the given column by joining the row with each value in the /// nested type. /// @@ -58,6 +58,8 @@ pub struct UnnestExec { column: Column, /// Options options: UnnestOptions, + /// Execution metrics + metrics: ExecutionPlanMetricsSet, } impl UnnestExec { @@ -73,6 +75,7 @@ impl UnnestExec { schema, column, options, + metrics: Default::default(), } } } @@ -141,19 +144,58 @@ impl ExecutionPlan for UnnestExec { context: Arc, ) -> Result { let input = self.input.execute(partition, context)?; + let metrics = UnnestMetrics::new(partition, &self.metrics); Ok(Box::pin(UnnestStream { input, schema: self.schema.clone(), column: self.column.clone(), options: self.options.clone(), - num_input_batches: 0, - num_input_rows: 0, - num_output_batches: 0, - num_output_rows: 0, - unnest_time: 0, + metrics, })) } + + fn metrics(&self) -> Option { + Some(self.metrics.clone_inner()) + } +} + +#[derive(Clone, Debug)] +struct UnnestMetrics { + /// total time for column unnesting + elapsed_compute: metrics::Time, + /// Number of batches consumed + input_batches: metrics::Count, + /// Number of rows consumed + input_rows: metrics::Count, + /// Number of batches produced + output_batches: metrics::Count, + /// Number of rows produced by this operator + output_rows: metrics::Count, +} + +impl UnnestMetrics { + fn new(partition: usize, metrics: &ExecutionPlanMetricsSet) -> Self { + let elapsed_compute = MetricBuilder::new(metrics).elapsed_compute(partition); + + let input_batches = + MetricBuilder::new(metrics).counter("input_batches", partition); + + let input_rows = MetricBuilder::new(metrics).counter("input_rows", partition); + + let output_batches = + MetricBuilder::new(metrics).counter("output_batches", partition); + + let output_rows = MetricBuilder::new(metrics).output_rows(partition); + + Self { + input_batches, + input_rows, + output_batches, + output_rows, + elapsed_compute, + } + } } /// A stream that issues [RecordBatch]es with unnested column data. @@ -166,16 +208,8 @@ struct UnnestStream { column: Column, /// Options options: UnnestOptions, - /// number of input batches - num_input_batches: usize, - /// number of input rows - num_input_rows: usize, - /// number of batches produced - num_output_batches: usize, - /// number of rows produced - num_output_rows: usize, - /// total time for column unnesting, in ms - unnest_time: usize, + /// Metrics + metrics: UnnestMetrics, } impl RecordBatchStream for UnnestStream { @@ -207,15 +241,15 @@ impl UnnestStream { .poll_next_unpin(cx) .map(|maybe_batch| match maybe_batch { Some(Ok(batch)) => { - let start = Instant::now(); + let timer = self.metrics.elapsed_compute.timer(); let result = build_batch(&batch, &self.schema, &self.column, &self.options); - self.num_input_batches += 1; - self.num_input_rows += batch.num_rows(); + self.metrics.input_batches.add(1); + self.metrics.input_rows.add(batch.num_rows()); if let Ok(ref batch) = result { - self.unnest_time += start.elapsed().as_millis() as usize; - self.num_output_batches += 1; - self.num_output_rows += batch.num_rows(); + timer.done(); + self.metrics.output_batches.add(1); + self.metrics.output_rows.add(batch.num_rows()); } Some(result) @@ -223,12 +257,12 @@ impl UnnestStream { other => { trace!( "Processed {} probe-side input batches containing {} rows and \ - produced {} output batches containing {} rows in {} ms", - self.num_input_batches, - self.num_input_rows, - self.num_output_batches, - self.num_output_rows, - self.unnest_time, + produced {} output batches containing {} rows in {}", + self.metrics.input_batches, + self.metrics.input_rows, + self.metrics.output_batches, + self.metrics.output_rows, + self.metrics.elapsed_compute, ); other } diff --git a/datafusion/proto/Cargo.toml b/datafusion/proto/Cargo.toml index 4dda689fff4c..f9f24b28db81 100644 --- a/datafusion/proto/Cargo.toml +++ b/datafusion/proto/Cargo.toml @@ -43,11 +43,11 @@ parquet = ["datafusion/parquet", "datafusion-common/parquet"] [dependencies] arrow = { workspace = true } chrono = { workspace = true } -datafusion = { path = "../core", version = "33.0.0" } +datafusion = { path = "../core", version = "34.0.0" } datafusion-common = { workspace = true } datafusion-expr = { workspace = true } object_store = { workspace = true } -pbjson = { version = "0.5", optional = true } +pbjson = { version = "0.6.0", optional = true } prost = "0.12.0" serde = { version = "1.0", optional = true } serde_json = { workspace = true, optional = true } diff --git a/datafusion/proto/proto/datafusion.proto b/datafusion/proto/proto/datafusion.proto index f391592dfe76..bd8053c817e7 100644 --- a/datafusion/proto/proto/datafusion.proto +++ b/datafusion/proto/proto/datafusion.proto @@ -1553,7 +1553,6 @@ message AggregateExecNode { repeated PhysicalExprNode null_expr = 8; repeated bool groups = 9; repeated MaybeFilter filter_expr = 10; - repeated MaybePhysicalSortExprs order_by_expr = 11; } message GlobalLimitExecNode { diff --git a/datafusion/proto/src/generated/pbjson.rs b/datafusion/proto/src/generated/pbjson.rs index d506b5dcce53..88310be0318a 100644 --- a/datafusion/proto/src/generated/pbjson.rs +++ b/datafusion/proto/src/generated/pbjson.rs @@ -36,9 +36,6 @@ impl serde::Serialize for AggregateExecNode { if !self.filter_expr.is_empty() { len += 1; } - if !self.order_by_expr.is_empty() { - len += 1; - } let mut struct_ser = serializer.serialize_struct("datafusion.AggregateExecNode", len)?; if !self.group_expr.is_empty() { struct_ser.serialize_field("groupExpr", &self.group_expr)?; @@ -72,9 +69,6 @@ impl serde::Serialize for AggregateExecNode { if !self.filter_expr.is_empty() { struct_ser.serialize_field("filterExpr", &self.filter_expr)?; } - if !self.order_by_expr.is_empty() { - struct_ser.serialize_field("orderByExpr", &self.order_by_expr)?; - } struct_ser.end() } } @@ -102,8 +96,6 @@ impl<'de> serde::Deserialize<'de> for AggregateExecNode { "groups", "filter_expr", "filterExpr", - "order_by_expr", - "orderByExpr", ]; #[allow(clippy::enum_variant_names)] @@ -118,7 +110,6 @@ impl<'de> serde::Deserialize<'de> for AggregateExecNode { NullExpr, Groups, FilterExpr, - OrderByExpr, } impl<'de> serde::Deserialize<'de> for GeneratedField { fn deserialize(deserializer: D) -> std::result::Result @@ -150,7 +141,6 @@ impl<'de> serde::Deserialize<'de> for AggregateExecNode { "nullExpr" | "null_expr" => Ok(GeneratedField::NullExpr), "groups" => Ok(GeneratedField::Groups), "filterExpr" | "filter_expr" => Ok(GeneratedField::FilterExpr), - "orderByExpr" | "order_by_expr" => Ok(GeneratedField::OrderByExpr), _ => Err(serde::de::Error::unknown_field(value, FIELDS)), } } @@ -180,7 +170,6 @@ impl<'de> serde::Deserialize<'de> for AggregateExecNode { let mut null_expr__ = None; let mut groups__ = None; let mut filter_expr__ = None; - let mut order_by_expr__ = None; while let Some(k) = map_.next_key()? { match k { GeneratedField::GroupExpr => { @@ -243,12 +232,6 @@ impl<'de> serde::Deserialize<'de> for AggregateExecNode { } filter_expr__ = Some(map_.next_value()?); } - GeneratedField::OrderByExpr => { - if order_by_expr__.is_some() { - return Err(serde::de::Error::duplicate_field("orderByExpr")); - } - order_by_expr__ = Some(map_.next_value()?); - } } } Ok(AggregateExecNode { @@ -262,7 +245,6 @@ impl<'de> serde::Deserialize<'de> for AggregateExecNode { null_expr: null_expr__.unwrap_or_default(), groups: groups__.unwrap_or_default(), filter_expr: filter_expr__.unwrap_or_default(), - order_by_expr: order_by_expr__.unwrap_or_default(), }) } } diff --git a/datafusion/proto/src/generated/prost.rs b/datafusion/proto/src/generated/prost.rs index 8aadc96349ca..3dfd3938615f 100644 --- a/datafusion/proto/src/generated/prost.rs +++ b/datafusion/proto/src/generated/prost.rs @@ -2193,8 +2193,6 @@ pub struct AggregateExecNode { pub groups: ::prost::alloc::vec::Vec, #[prost(message, repeated, tag = "10")] pub filter_expr: ::prost::alloc::vec::Vec, - #[prost(message, repeated, tag = "11")] - pub order_by_expr: ::prost::alloc::vec::Vec, } #[allow(clippy::derive_partial_eq_without_eq)] #[derive(Clone, PartialEq, ::prost::Message)] diff --git a/datafusion/proto/src/logical_plan/mod.rs b/datafusion/proto/src/logical_plan/mod.rs index 50bca0295def..948228d87d46 100644 --- a/datafusion/proto/src/logical_plan/mod.rs +++ b/datafusion/proto/src/logical_plan/mod.rs @@ -253,7 +253,7 @@ impl AsLogicalPlan for LogicalPlanNode { Some(a) => match a { protobuf::projection_node::OptionalAlias::Alias(alias) => { Ok(LogicalPlan::SubqueryAlias(SubqueryAlias::try_new( - new_proj, + Arc::new(new_proj), alias.clone(), )?)) } diff --git a/datafusion/proto/src/physical_plan/mod.rs b/datafusion/proto/src/physical_plan/mod.rs index 73091a6fced9..df01097cfa78 100644 --- a/datafusion/proto/src/physical_plan/mod.rs +++ b/datafusion/proto/src/physical_plan/mod.rs @@ -427,19 +427,6 @@ impl AsExecutionPlan for PhysicalPlanNode { .transpose() }) .collect::, _>>()?; - let physical_order_by_expr = hash_agg - .order_by_expr - .iter() - .map(|expr| { - expr.sort_expr - .iter() - .map(|e| { - parse_physical_sort_expr(e, registry, &physical_schema) - }) - .collect::>>() - .map(|exprs| (!exprs.is_empty()).then_some(exprs)) - }) - .collect::>>()?; let physical_aggr_expr: Vec> = hash_agg .aggr_expr @@ -498,7 +485,6 @@ impl AsExecutionPlan for PhysicalPlanNode { PhysicalGroupBy::new(group_expr, null_expr, groups), physical_aggr_expr, physical_filter_expr, - physical_order_by_expr, input, Arc::new(input_schema.try_into()?), )?)) @@ -1237,12 +1223,6 @@ impl AsExecutionPlan for PhysicalPlanNode { .map(|expr| expr.to_owned().try_into()) .collect::>>()?; - let order_by = exec - .order_by_expr() - .iter() - .map(|expr| expr.to_owned().try_into()) - .collect::>>()?; - let agg = exec .aggr_expr() .iter() @@ -1295,7 +1275,6 @@ impl AsExecutionPlan for PhysicalPlanNode { group_expr_name: group_names, aggr_expr: agg, filter_expr: filter, - order_by_expr: order_by, aggr_expr_name: agg_names, mode: agg_mode as i32, input: Some(Box::new(input)), diff --git a/datafusion/proto/tests/cases/roundtrip_physical_plan.rs b/datafusion/proto/tests/cases/roundtrip_physical_plan.rs index da76209dbb49..4a512413e73e 100644 --- a/datafusion/proto/tests/cases/roundtrip_physical_plan.rs +++ b/datafusion/proto/tests/cases/roundtrip_physical_plan.rs @@ -311,7 +311,6 @@ fn rountrip_aggregate() -> Result<()> { PhysicalGroupBy::new_single(groups.clone()), aggregates.clone(), vec![None], - vec![None], Arc::new(EmptyExec::new(schema.clone())), schema, )?)) @@ -379,7 +378,6 @@ fn roundtrip_aggregate_udaf() -> Result<()> { PhysicalGroupBy::new_single(groups.clone()), aggregates.clone(), vec![None], - vec![None], Arc::new(EmptyExec::new(schema.clone())), schema, )?), @@ -594,7 +592,6 @@ fn roundtrip_distinct_count() -> Result<()> { PhysicalGroupBy::new_single(groups), aggregates.clone(), vec![None], - vec![None], Arc::new(EmptyExec::new(schema.clone())), schema, )?)) diff --git a/datafusion/sqllogictest/Cargo.toml b/datafusion/sqllogictest/Cargo.toml index 436c6159e7a3..e333dc816f66 100644 --- a/datafusion/sqllogictest/Cargo.toml +++ b/datafusion/sqllogictest/Cargo.toml @@ -36,7 +36,7 @@ async-trait = { workspace = true } bigdecimal = { workspace = true } bytes = { version = "1.4.0", optional = true } chrono = { workspace = true, optional = true } -datafusion = { path = "../core", version = "33.0.0" } +datafusion = { path = "../core", version = "34.0.0" } datafusion-common = { workspace = true } futures = { version = "0.3.28" } half = { workspace = true } diff --git a/datafusion/sqllogictest/bin/sqllogictests.rs b/datafusion/sqllogictest/bin/sqllogictests.rs index 618e3106c629..aeb1cc4ec919 100644 --- a/datafusion/sqllogictest/bin/sqllogictests.rs +++ b/datafusion/sqllogictest/bin/sqllogictests.rs @@ -26,7 +26,7 @@ use futures::stream::StreamExt; use log::info; use sqllogictest::strict_column_validator; -use datafusion_common::{exec_err, DataFusionError, Result}; +use datafusion_common::{exec_datafusion_err, exec_err, DataFusionError, Result}; const TEST_DIRECTORY: &str = "test_files/"; const PG_COMPAT_FILE_PREFIX: &str = "pg_compat_"; @@ -84,7 +84,7 @@ async fn run_tests() -> Result<()> { // Doing so is safe because each slt file runs with its own // `SessionContext` and should not have side effects (like // modifying shared state like `/tmp/`) - let errors: Vec<_> = futures::stream::iter(read_test_files(&options)) + let errors: Vec<_> = futures::stream::iter(read_test_files(&options)?) .map(|test_file| { tokio::task::spawn(async move { println!("Running {:?}", test_file.relative_path); @@ -159,6 +159,7 @@ async fn run_test_file_with_postgres(test_file: TestFile) -> Result<()> { relative_path, } = test_file; info!("Running with Postgres runner: {}", path.display()); + setup_scratch_dir(&relative_path)?; let mut runner = sqllogictest::Runner::new(|| Postgres::connect(relative_path.clone())); runner.with_column_validator(strict_column_validator); @@ -188,6 +189,7 @@ async fn run_complete_file(test_file: TestFile) -> Result<()> { info!("Skipping: {}", path.display()); return Ok(()); }; + setup_scratch_dir(&relative_path)?; let mut runner = sqllogictest::Runner::new(|| async { Ok(DataFusion::new( test_ctx.session_ctx().clone(), @@ -245,30 +247,45 @@ impl TestFile { } } -fn read_test_files<'a>(options: &'a Options) -> Box + 'a> { - Box::new( - read_dir_recursive(TEST_DIRECTORY) +fn read_test_files<'a>( + options: &'a Options, +) -> Result + 'a>> { + Ok(Box::new( + read_dir_recursive(TEST_DIRECTORY)? + .into_iter() .map(TestFile::new) .filter(|f| options.check_test_file(&f.relative_path)) .filter(|f| f.is_slt_file()) .filter(|f| f.check_tpch(options)) .filter(|f| options.check_pg_compat_file(f.path.as_path())), - ) + )) } -fn read_dir_recursive>(path: P) -> Box> { - Box::new( - std::fs::read_dir(path) - .expect("Readable directory") - .map(|path| path.expect("Readable entry").path()) - .flat_map(|path| { - if path.is_dir() { - read_dir_recursive(path) - } else { - Box::new(std::iter::once(path)) - } - }), - ) +fn read_dir_recursive>(path: P) -> Result> { + let mut dst = vec![]; + read_dir_recursive_impl(&mut dst, path.as_ref())?; + Ok(dst) +} + +/// Append all paths recursively to dst +fn read_dir_recursive_impl(dst: &mut Vec, path: &Path) -> Result<()> { + let entries = std::fs::read_dir(path) + .map_err(|e| exec_datafusion_err!("Error reading directory {path:?}: {e}"))?; + for entry in entries { + let path = entry + .map_err(|e| { + exec_datafusion_err!("Error reading entry in directory {path:?}: {e}") + })? + .path(); + + if path.is_dir() { + read_dir_recursive_impl(dst, &path)?; + } else { + dst.push(path); + } + } + + Ok(()) } /// Parsed command line options diff --git a/datafusion/sqllogictest/src/test_context.rs b/datafusion/sqllogictest/src/test_context.rs index f5ab8f71aaaf..91093510afec 100644 --- a/datafusion/sqllogictest/src/test_context.rs +++ b/datafusion/sqllogictest/src/test_context.rs @@ -84,6 +84,10 @@ impl TestContext { info!("Registering table with many types"); register_table_with_many_types(test_ctx.session_ctx()).await; } + "explain.slt" => { + info!("Registering table with map"); + register_table_with_map(test_ctx.session_ctx()).await; + } "avro.slt" => { #[cfg(feature = "avro")] { @@ -268,6 +272,23 @@ pub async fn register_table_with_many_types(ctx: &SessionContext) { .unwrap(); } +pub async fn register_table_with_map(ctx: &SessionContext) { + let key = Field::new("key", DataType::Int64, false); + let value = Field::new("value", DataType::Int64, true); + let map_field = + Field::new("entries", DataType::Struct(vec![key, value].into()), false); + let fields = vec![ + Field::new("int_field", DataType::Int64, true), + Field::new("map_field", DataType::Map(map_field.into(), false), true), + ]; + let schema = Schema::new(fields); + + let memory_table = MemTable::try_new(schema.into(), vec![vec![]]).unwrap(); + + ctx.register_table("table_with_map", Arc::new(memory_table)) + .unwrap(); +} + fn table_with_many_types() -> Arc { let schema = Schema::new(vec![ Field::new("int32_col", DataType::Int32, false), diff --git a/datafusion/sqllogictest/test_files/aggregate.slt b/datafusion/sqllogictest/test_files/aggregate.slt index bcda3464f49b..78575c9dffc5 100644 --- a/datafusion/sqllogictest/test_files/aggregate.slt +++ b/datafusion/sqllogictest/test_files/aggregate.slt @@ -1492,6 +1492,12 @@ SELECT count(c1, c2) FROM test ---- 3 +# count_null +query III +SELECT count(null), count(null, null), count(distinct null) FROM test +---- +0 0 0 + # count_multi_expr_group_by query I SELECT count(c1, c2) FROM test group by c1 order by c1 @@ -1501,6 +1507,15 @@ SELECT count(c1, c2) FROM test group by c1 order by c1 2 0 +# count_null_group_by +query III +SELECT count(null), count(null, null), count(distinct null) FROM test group by c1 order by c1 +---- +0 0 0 +0 0 0 +0 0 0 +0 0 0 + # aggreggte_with_alias query II select c1, sum(c2) as `Total Salary` from test group by c1 order by c1 @@ -3241,4 +3256,4 @@ select count(*) from (select count(*) from (select 1)); query I select count(*) from (select count(*) a, count(*) b from (select 1)); ---- -1 \ No newline at end of file +1 diff --git a/datafusion/sqllogictest/test_files/distinct_on.slt b/datafusion/sqllogictest/test_files/distinct_on.slt index 8a36b49b98c6..9a7117b69b99 100644 --- a/datafusion/sqllogictest/test_files/distinct_on.slt +++ b/datafusion/sqllogictest/test_files/distinct_on.slt @@ -38,9 +38,9 @@ LOCATION '../../testing/data/csv/aggregate_test_100.csv' # Basic example: distinct on the first column project the second one, and # order by the third query TI -SELECT DISTINCT ON (c1) c1, c2 FROM aggregate_test_100 ORDER BY c1, c3; +SELECT DISTINCT ON (c1) c1, c2 FROM aggregate_test_100 ORDER BY c1, c3, c9; ---- -a 5 +a 4 b 4 c 2 d 1 @@ -48,7 +48,7 @@ e 3 # Basic example + reverse order of the selected column query TI -SELECT DISTINCT ON (c1) c1, c2 FROM aggregate_test_100 ORDER BY c1, c3 DESC; +SELECT DISTINCT ON (c1) c1, c2 FROM aggregate_test_100 ORDER BY c1, c3 DESC, c9; ---- a 1 b 5 @@ -58,7 +58,7 @@ e 1 # Basic example + reverse order of the ON column query TI -SELECT DISTINCT ON (c1) c1, c2 FROM aggregate_test_100 ORDER BY c1 DESC, c3; +SELECT DISTINCT ON (c1) c1, c2 FROM aggregate_test_100 ORDER BY c1 DESC, c3, c9; ---- e 3 d 1 diff --git a/datafusion/sqllogictest/test_files/explain.slt b/datafusion/sqllogictest/test_files/explain.slt index 4583ef319b7f..a51c3aed13ec 100644 --- a/datafusion/sqllogictest/test_files/explain.slt +++ b/datafusion/sqllogictest/test_files/explain.slt @@ -379,3 +379,7 @@ Projection: List([[1, 2, 3], [4, 5, 6]]) AS make_array(make_array(Int64(1),Int64 physical_plan ProjectionExec: expr=[[[1, 2, 3], [4, 5, 6]] as make_array(make_array(Int64(1),Int64(2),Int64(3)),make_array(Int64(4),Int64(5),Int64(6)))] --PlaceholderRowExec + +# Testing explain on a table with a map filter, registered in test_context.rs. +statement ok +explain select * from table_with_map where int_field > 0 diff --git a/datafusion/sqllogictest/test_files/functions.slt b/datafusion/sqllogictest/test_files/functions.slt index 4f55ea316bb9..1903088b0748 100644 --- a/datafusion/sqllogictest/test_files/functions.slt +++ b/datafusion/sqllogictest/test_files/functions.slt @@ -995,3 +995,9 @@ query ? SELECT find_in_set(NULL, NULL) ---- NULL + +# Verify that multiple calls to volatile functions like `random()` are not combined / optimized away +query B +SELECT r FROM (SELECT r1 == r2 r, r1, r2 FROM (SELECT random() r1, random() r2) WHERE r1 > 0 AND r2 > 0) +---- +false diff --git a/datafusion/sqllogictest/test_files/groupby.slt b/datafusion/sqllogictest/test_files/groupby.slt index b7be4d78b583..44d30ba0b34c 100644 --- a/datafusion/sqllogictest/test_files/groupby.slt +++ b/datafusion/sqllogictest/test_files/groupby.slt @@ -2021,14 +2021,15 @@ SortPreservingMergeExec: [col0@0 ASC NULLS LAST] ----------RepartitionExec: partitioning=Hash([col0@0, col1@1, col2@2], 4), input_partitions=4 ------------AggregateExec: mode=Partial, gby=[col0@0 as col0, col1@1 as col1, col2@2 as col2], aggr=[LAST_VALUE(r.col1)], ordering_mode=PartiallySorted([0]) --------------SortExec: expr=[col0@3 ASC NULLS LAST] -----------------CoalesceBatchesExec: target_batch_size=8192 -------------------HashJoinExec: mode=Partitioned, join_type=Inner, on=[(col0@0, col0@0)] ---------------------CoalesceBatchesExec: target_batch_size=8192 -----------------------RepartitionExec: partitioning=Hash([col0@0], 4), input_partitions=1 -------------------------MemoryExec: partitions=1, partition_sizes=[3] ---------------------CoalesceBatchesExec: target_batch_size=8192 -----------------------RepartitionExec: partitioning=Hash([col0@0], 4), input_partitions=1 -------------------------MemoryExec: partitions=1, partition_sizes=[3] +----------------ProjectionExec: expr=[col0@2 as col0, col1@3 as col1, col2@4 as col2, col0@0 as col0, col1@1 as col1] +------------------CoalesceBatchesExec: target_batch_size=8192 +--------------------HashJoinExec: mode=Partitioned, join_type=Inner, on=[(col0@0, col0@0)] +----------------------CoalesceBatchesExec: target_batch_size=8192 +------------------------RepartitionExec: partitioning=Hash([col0@0], 4), input_partitions=1 +--------------------------MemoryExec: partitions=1, partition_sizes=[3] +----------------------CoalesceBatchesExec: target_batch_size=8192 +------------------------RepartitionExec: partitioning=Hash([col0@0], 4), input_partitions=1 +--------------------------MemoryExec: partitions=1, partition_sizes=[3] # Columns in the table are a,b,c,d. Source is CsvExec which is ordered by # a,b,c column. Column a has cardinality 2, column b has cardinality 4. @@ -2329,15 +2330,15 @@ ProjectionExec: expr=[country@0 as country, ARRAY_AGG(s.amount) ORDER BY [s.amou ----SortExec: expr=[amount@1 DESC] ------MemoryExec: partitions=1, partition_sizes=[1] -query T?R +query T?R rowsort SELECT s.country, ARRAY_AGG(s.amount ORDER BY s.amount DESC) AS amounts, SUM(s.amount) AS sum1 FROM sales_global AS s GROUP BY s.country ---- FRA [200.0, 50.0] 250 -TUR [100.0, 75.0] 175 GRC [80.0, 30.0] 110 +TUR [100.0, 75.0] 175 # test_ordering_sensitive_aggregation3 # When different aggregators have conflicting requirements, we cannot satisfy all of them in current implementation. @@ -2373,7 +2374,7 @@ ProjectionExec: expr=[country@0 as country, ARRAY_AGG(s.amount) ORDER BY [s.amou ----SortExec: expr=[country@0 ASC NULLS LAST,amount@1 DESC] ------MemoryExec: partitions=1, partition_sizes=[1] -query T?R +query T?R rowsort SELECT s.country, ARRAY_AGG(s.amount ORDER BY s.amount DESC) AS amounts, SUM(s.amount) AS sum1 FROM (SELECT * @@ -2409,7 +2410,7 @@ ProjectionExec: expr=[country@0 as country, zip_code@1 as zip_code, ARRAY_AGG(s. ----SortExec: expr=[country@1 ASC NULLS LAST,amount@2 DESC] ------MemoryExec: partitions=1, partition_sizes=[1] -query TI?R +query TI?R rowsort SELECT s.country, s.zip_code, ARRAY_AGG(s.amount ORDER BY s.amount DESC) AS amounts, SUM(s.amount) AS sum1 FROM (SELECT * @@ -2445,7 +2446,7 @@ ProjectionExec: expr=[country@0 as country, ARRAY_AGG(s.amount) ORDER BY [s.coun ----SortExec: expr=[country@0 ASC NULLS LAST] ------MemoryExec: partitions=1, partition_sizes=[1] -query T?R +query T?R rowsort SELECT s.country, ARRAY_AGG(s.amount ORDER BY s.amount DESC) AS amounts, SUM(s.amount) AS sum1 FROM (SELECT * @@ -2480,7 +2481,7 @@ ProjectionExec: expr=[country@0 as country, ARRAY_AGG(s.amount) ORDER BY [s.coun ----SortExec: expr=[country@0 ASC NULLS LAST,amount@1 DESC] ------MemoryExec: partitions=1, partition_sizes=[1] -query T?R +query T?R rowsort SELECT s.country, ARRAY_AGG(s.amount ORDER BY s.country DESC, s.amount DESC) AS amounts, SUM(s.amount) AS sum1 FROM (SELECT * @@ -2512,7 +2513,7 @@ ProjectionExec: expr=[country@0 as country, ARRAY_AGG(sales_global.amount) ORDER ----SortExec: expr=[amount@1 DESC] ------MemoryExec: partitions=1, partition_sizes=[1] -query T?RR +query T?RR rowsort SELECT country, ARRAY_AGG(amount ORDER BY amount DESC) AS amounts, FIRST_VALUE(amount ORDER BY amount ASC) AS fv1, LAST_VALUE(amount ORDER BY amount DESC) AS fv2 @@ -2520,8 +2521,8 @@ SELECT country, ARRAY_AGG(amount ORDER BY amount DESC) AS amounts, GROUP BY country ---- FRA [200.0, 50.0] 50 50 -TUR [100.0, 75.0] 75 75 GRC [80.0, 30.0] 30 30 +TUR [100.0, 75.0] 75 75 # test_reverse_aggregate_expr2 # Some of the Aggregators can be reversed, by this way we can still run aggregators without re-ordering @@ -2640,7 +2641,7 @@ ProjectionExec: expr=[country@0 as country, FIRST_VALUE(sales_global.amount) ORD ----SortExec: expr=[ts@1 ASC NULLS LAST] ------MemoryExec: partitions=1, partition_sizes=[1] -query TRRR +query TRRR rowsort SELECT country, FIRST_VALUE(amount ORDER BY ts DESC) as fv1, LAST_VALUE(amount ORDER BY ts DESC) as lv1, SUM(amount ORDER BY ts DESC) as sum1 @@ -2649,8 +2650,8 @@ SELECT country, FIRST_VALUE(amount ORDER BY ts DESC) as fv1, ORDER BY ts ASC) GROUP BY country ---- -GRC 80 30 110 FRA 200 50 250 +GRC 80 30 110 TUR 100 75 175 # If existing ordering doesn't satisfy requirement, we should do calculations @@ -2674,16 +2675,16 @@ ProjectionExec: expr=[country@0 as country, FIRST_VALUE(sales_global.amount) ORD ----SortExec: expr=[ts@1 DESC] ------MemoryExec: partitions=1, partition_sizes=[1] -query TRRR +query TRRR rowsort SELECT country, FIRST_VALUE(amount ORDER BY ts DESC) as fv1, LAST_VALUE(amount ORDER BY ts DESC) as lv1, SUM(amount ORDER BY ts DESC) as sum1 FROM sales_global GROUP BY country ---- -TUR 100 75 175 -GRC 80 30 110 FRA 200 50 250 +GRC 80 30 110 +TUR 100 75 175 query TT EXPLAIN SELECT s.zip_code, s.country, s.sn, s.ts, s.currency, LAST_VALUE(e.amount ORDER BY e.sn) AS last_rate @@ -2709,13 +2710,13 @@ SortExec: expr=[sn@2 ASC NULLS LAST] --ProjectionExec: expr=[zip_code@1 as zip_code, country@2 as country, sn@0 as sn, ts@3 as ts, currency@4 as currency, LAST_VALUE(e.amount) ORDER BY [e.sn ASC NULLS LAST]@5 as last_rate] ----AggregateExec: mode=Single, gby=[sn@2 as sn, zip_code@0 as zip_code, country@1 as country, ts@3 as ts, currency@4 as currency], aggr=[LAST_VALUE(e.amount)] ------SortExec: expr=[sn@5 ASC NULLS LAST] ---------ProjectionExec: expr=[zip_code@0 as zip_code, country@1 as country, sn@2 as sn, ts@3 as ts, currency@4 as currency, sn@5 as sn, amount@8 as amount] +--------ProjectionExec: expr=[zip_code@4 as zip_code, country@5 as country, sn@6 as sn, ts@7 as ts, currency@8 as currency, sn@0 as sn, amount@3 as amount] ----------CoalesceBatchesExec: target_batch_size=8192 -------------HashJoinExec: mode=CollectLeft, join_type=Inner, on=[(currency@4, currency@2)], filter=ts@0 >= ts@1 +------------HashJoinExec: mode=CollectLeft, join_type=Inner, on=[(currency@2, currency@4)], filter=ts@0 >= ts@1 --------------MemoryExec: partitions=1, partition_sizes=[1] --------------MemoryExec: partitions=1, partition_sizes=[1] -query ITIPTR +query ITIPTR rowsort SELECT s.zip_code, s.country, s.sn, s.ts, s.currency, LAST_VALUE(e.amount ORDER BY e.sn) AS last_rate FROM sales_global AS s JOIN sales_global AS e @@ -2725,10 +2726,10 @@ GROUP BY s.sn, s.zip_code, s.country, s.ts, s.currency ORDER BY s.sn ---- 0 GRC 0 2022-01-01T06:00:00 EUR 30 +0 GRC 4 2022-01-03T10:00:00 EUR 80 1 FRA 1 2022-01-01T08:00:00 EUR 50 -1 TUR 2 2022-01-01T11:30:00 TRY 75 1 FRA 3 2022-01-02T12:00:00 EUR 200 -0 GRC 4 2022-01-03T10:00:00 EUR 80 +1 TUR 2 2022-01-01T11:30:00 TRY 75 1 TUR 4 2022-01-03T10:00:00 TRY 100 # Run order-sensitive aggregators in multiple partitions @@ -4073,7 +4074,7 @@ GlobalLimitExec: skip=0, fetch=5 ----ProjectionExec: expr=[date_bin(Utf8("15 minutes"),unbounded_csv_with_timestamps.ts)@0 as time_chunks] ------AggregateExec: mode=FinalPartitioned, gby=[date_bin(Utf8("15 minutes"),unbounded_csv_with_timestamps.ts)@0 as date_bin(Utf8("15 minutes"),unbounded_csv_with_timestamps.ts)], aggr=[], ordering_mode=Sorted --------CoalesceBatchesExec: target_batch_size=2 -----------SortPreservingRepartitionExec: partitioning=Hash([date_bin(Utf8("15 minutes"),unbounded_csv_with_timestamps.ts)@0], 8), input_partitions=8, sort_exprs=date_bin(Utf8("15 minutes"),unbounded_csv_with_timestamps.ts)@0 DESC +----------RepartitionExec: partitioning=Hash([date_bin(Utf8("15 minutes"),unbounded_csv_with_timestamps.ts)@0], 8), input_partitions=8, preserve_order=true, sort_exprs=date_bin(Utf8("15 minutes"),unbounded_csv_with_timestamps.ts)@0 DESC ------------AggregateExec: mode=Partial, gby=[date_bin(900000000000, ts@0) as date_bin(Utf8("15 minutes"),unbounded_csv_with_timestamps.ts)], aggr=[], ordering_mode=Sorted --------------RepartitionExec: partitioning=RoundRobinBatch(8), input_partitions=1 ----------------StreamingTableExec: partition_sizes=1, projection=[ts], infinite_source=true, output_ordering=[ts@0 DESC] diff --git a/datafusion/sqllogictest/test_files/insert_to_external.slt b/datafusion/sqllogictest/test_files/insert_to_external.slt index 85c2db7faaf6..cdaf0bb64339 100644 --- a/datafusion/sqllogictest/test_files/insert_to_external.slt +++ b/datafusion/sqllogictest/test_files/insert_to_external.slt @@ -57,7 +57,7 @@ CREATE EXTERNAL TABLE dictionary_encoded_parquet_partitioned( b varchar, ) STORED AS parquet -LOCATION 'test_files/scratch/insert_to_external/parquet_types_partitioned' +LOCATION 'test_files/scratch/insert_to_external/parquet_types_partitioned/' PARTITIONED BY (b) OPTIONS( create_local_path 'true', @@ -292,7 +292,7 @@ statement ok CREATE EXTERNAL TABLE directory_test(a bigint, b bigint) STORED AS parquet -LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q0' +LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q0/' OPTIONS( create_local_path 'true', ); @@ -312,7 +312,7 @@ statement ok CREATE EXTERNAL TABLE table_without_values(field1 BIGINT NULL, field2 BIGINT NULL) STORED AS parquet -LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q1' +LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q1/' OPTIONS (create_local_path 'true'); query TT @@ -378,7 +378,7 @@ statement ok CREATE EXTERNAL TABLE table_without_values(field1 BIGINT NULL, field2 BIGINT NULL) STORED AS parquet -LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q2' +LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q2/' OPTIONS (create_local_path 'true'); query TT @@ -423,7 +423,7 @@ statement ok CREATE EXTERNAL TABLE table_without_values(c1 varchar NULL) STORED AS parquet -LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q3' +LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q3/' OPTIONS (create_local_path 'true'); # verify that the sort order of the insert query is maintained into the @@ -462,7 +462,7 @@ statement ok CREATE EXTERNAL TABLE table_without_values(id BIGINT, name varchar) STORED AS parquet -LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q4' +LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q4/' OPTIONS (create_local_path 'true'); query IT @@ -505,7 +505,7 @@ statement ok CREATE EXTERNAL TABLE table_without_values(field1 BIGINT NOT NULL, field2 BIGINT NULL) STORED AS parquet -LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q5' +LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q5/' OPTIONS (create_local_path 'true'); query II @@ -555,7 +555,7 @@ CREATE EXTERNAL TABLE test_column_defaults( d text default lower('DEFAULT_TEXT'), e timestamp default now() ) STORED AS parquet -LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q6' +LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q6/' OPTIONS (create_local_path 'true'); # fill in all column values @@ -608,5 +608,5 @@ CREATE EXTERNAL TABLE test_column_defaults( a int, b int default a+1 ) STORED AS parquet -LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q7' +LOCATION 'test_files/scratch/insert_to_external/external_parquet_table_q7/' OPTIONS (create_local_path 'true'); diff --git a/datafusion/sqllogictest/test_files/joins.slt b/datafusion/sqllogictest/test_files/joins.slt index 0fea8da5a342..1ad17fbb8c91 100644 --- a/datafusion/sqllogictest/test_files/joins.slt +++ b/datafusion/sqllogictest/test_files/joins.slt @@ -1569,15 +1569,13 @@ Projection: join_t1.t1_id, join_t2.t2_id, join_t1.t1_name ----TableScan: join_t1 projection=[t1_id, t1_name] ----TableScan: join_t2 projection=[t2_id] physical_plan -ProjectionExec: expr=[t1_id@0 as t1_id, t2_id@3 as t2_id, t1_name@1 as t1_name] +ProjectionExec: expr=[t1_id@1 as t1_id, t2_id@0 as t2_id, t1_name@2 as t1_name] --CoalesceBatchesExec: target_batch_size=2 -----HashJoinExec: mode=CollectLeft, join_type=Inner, on=[(join_t1.t1_id + UInt32(11)@2, t2_id@0)] -------CoalescePartitionsExec ---------ProjectionExec: expr=[t1_id@0 as t1_id, t1_name@1 as t1_name, t1_id@0 + 11 as join_t1.t1_id + UInt32(11)] -----------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 -------------MemoryExec: partitions=1, partition_sizes=[1] -------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 ---------MemoryExec: partitions=1, partition_sizes=[1] +----HashJoinExec: mode=CollectLeft, join_type=Inner, on=[(t2_id@0, join_t1.t1_id + UInt32(11)@2)] +------MemoryExec: partitions=1, partition_sizes=[1] +------ProjectionExec: expr=[t1_id@0 as t1_id, t1_name@1 as t1_name, t1_id@0 + 11 as join_t1.t1_id + UInt32(11)] +--------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 +----------MemoryExec: partitions=1, partition_sizes=[1] statement ok set datafusion.optimizer.repartition_joins = true; @@ -1595,18 +1593,18 @@ Projection: join_t1.t1_id, join_t2.t2_id, join_t1.t1_name ----TableScan: join_t1 projection=[t1_id, t1_name] ----TableScan: join_t2 projection=[t2_id] physical_plan -ProjectionExec: expr=[t1_id@0 as t1_id, t2_id@3 as t2_id, t1_name@1 as t1_name] +ProjectionExec: expr=[t1_id@1 as t1_id, t2_id@0 as t2_id, t1_name@2 as t1_name] --CoalesceBatchesExec: target_batch_size=2 -----HashJoinExec: mode=Partitioned, join_type=Inner, on=[(join_t1.t1_id + UInt32(11)@2, t2_id@0)] +----HashJoinExec: mode=Partitioned, join_type=Inner, on=[(t2_id@0, join_t1.t1_id + UInt32(11)@2)] +------CoalesceBatchesExec: target_batch_size=2 +--------RepartitionExec: partitioning=Hash([t2_id@0], 2), input_partitions=2 +----------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 +------------MemoryExec: partitions=1, partition_sizes=[1] ------CoalesceBatchesExec: target_batch_size=2 --------RepartitionExec: partitioning=Hash([join_t1.t1_id + UInt32(11)@2], 2), input_partitions=2 ----------ProjectionExec: expr=[t1_id@0 as t1_id, t1_name@1 as t1_name, t1_id@0 + 11 as join_t1.t1_id + UInt32(11)] ------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 --------------MemoryExec: partitions=1, partition_sizes=[1] -------CoalesceBatchesExec: target_batch_size=2 ---------RepartitionExec: partitioning=Hash([t2_id@0], 2), input_partitions=2 -----------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 -------------MemoryExec: partitions=1, partition_sizes=[1] # Right side expr key inner join @@ -2821,13 +2819,13 @@ physical_plan SortPreservingMergeExec: [t1_id@0 ASC NULLS LAST] --SortExec: expr=[t1_id@0 ASC NULLS LAST] ----CoalesceBatchesExec: target_batch_size=2 -------HashJoinExec: mode=Partitioned, join_type=LeftSemi, on=[(t1_id@0, t2_id@0)] +------HashJoinExec: mode=Partitioned, join_type=RightSemi, on=[(t2_id@0, t1_id@0)] --------CoalesceBatchesExec: target_batch_size=2 -----------RepartitionExec: partitioning=Hash([t1_id@0], 2), input_partitions=2 +----------RepartitionExec: partitioning=Hash([t2_id@0], 2), input_partitions=2 ------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 --------------MemoryExec: partitions=1, partition_sizes=[1] --------CoalesceBatchesExec: target_batch_size=2 -----------RepartitionExec: partitioning=Hash([t2_id@0], 2), input_partitions=2 +----------RepartitionExec: partitioning=Hash([t1_id@0], 2), input_partitions=2 ------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 --------------MemoryExec: partitions=1, partition_sizes=[1] @@ -2862,13 +2860,13 @@ physical_plan SortPreservingMergeExec: [t1_id@0 ASC NULLS LAST] --SortExec: expr=[t1_id@0 ASC NULLS LAST] ----CoalesceBatchesExec: target_batch_size=2 -------HashJoinExec: mode=Partitioned, join_type=LeftSemi, on=[(t1_id@0, t2_id@0)] +------HashJoinExec: mode=Partitioned, join_type=RightSemi, on=[(t2_id@0, t1_id@0)] --------CoalesceBatchesExec: target_batch_size=2 -----------RepartitionExec: partitioning=Hash([t1_id@0], 2), input_partitions=2 +----------RepartitionExec: partitioning=Hash([t2_id@0], 2), input_partitions=2 ------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 --------------MemoryExec: partitions=1, partition_sizes=[1] --------CoalesceBatchesExec: target_batch_size=2 -----------RepartitionExec: partitioning=Hash([t2_id@0], 2), input_partitions=2 +----------RepartitionExec: partitioning=Hash([t1_id@0], 2), input_partitions=2 ------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 --------------MemoryExec: partitions=1, partition_sizes=[1] @@ -2924,7 +2922,7 @@ physical_plan SortPreservingMergeExec: [t1_id@0 ASC NULLS LAST] --SortExec: expr=[t1_id@0 ASC NULLS LAST] ----CoalesceBatchesExec: target_batch_size=2 -------HashJoinExec: mode=CollectLeft, join_type=LeftSemi, on=[(t1_id@0, t2_id@0)] +------HashJoinExec: mode=CollectLeft, join_type=RightSemi, on=[(t2_id@0, t1_id@0)] --------MemoryExec: partitions=1, partition_sizes=[1] --------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 ----------MemoryExec: partitions=1, partition_sizes=[1] @@ -2960,7 +2958,7 @@ physical_plan SortPreservingMergeExec: [t1_id@0 ASC NULLS LAST] --SortExec: expr=[t1_id@0 ASC NULLS LAST] ----CoalesceBatchesExec: target_batch_size=2 -------HashJoinExec: mode=CollectLeft, join_type=LeftSemi, on=[(t1_id@0, t2_id@0)] +------HashJoinExec: mode=CollectLeft, join_type=RightSemi, on=[(t2_id@0, t1_id@0)] --------MemoryExec: partitions=1, partition_sizes=[1] --------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 ----------MemoryExec: partitions=1, partition_sizes=[1] @@ -3464,7 +3462,7 @@ SortPreservingMergeExec: [a@0 ASC] ----------------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 ------------------------CsvExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/core/tests/data/window_2.csv]]}, projection=[a, b, c], output_ordering=[a@0 ASC, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST], has_header=true ------------------CoalesceBatchesExec: target_batch_size=2 ---------------------SortPreservingRepartitionExec: partitioning=Hash([a@0], 2), input_partitions=2, sort_exprs=a@0 ASC,b@1 ASC NULLS LAST +--------------------RepartitionExec: partitioning=Hash([a@0], 2), input_partitions=2, preserve_order=true, sort_exprs=a@0 ASC,b@1 ASC NULLS LAST ----------------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 ------------------------CsvExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/core/tests/data/window_2.csv]]}, projection=[a, b], output_ordering=[a@0 ASC, b@1 ASC NULLS LAST], has_header=true diff --git a/datafusion/sqllogictest/test_files/repartition_scan.slt b/datafusion/sqllogictest/test_files/repartition_scan.slt new file mode 100644 index 000000000000..551d6d9ed48a --- /dev/null +++ b/datafusion/sqllogictest/test_files/repartition_scan.slt @@ -0,0 +1,268 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +########## +# Tests for automatically reading files in parallel during scan +########## + +# Set 4 partitions for deterministic output plans +statement ok +set datafusion.execution.target_partitions = 4; + +# automatically partition all files over 1 byte +statement ok +set datafusion.optimizer.repartition_file_min_size = 1; + +################### +### Parquet tests +################### + +# create a single parquet file +# Note filename 2.parquet to test sorting (on local file systems it is often listed before 1.parquet) +statement ok +COPY (VALUES (1), (2), (3), (4), (5)) TO 'test_files/scratch/repartition_scan/parquet_table/2.parquet' +(FORMAT PARQUET, SINGLE_FILE_OUTPUT true); + +statement ok +CREATE EXTERNAL TABLE parquet_table(column1 int) +STORED AS PARQUET +LOCATION 'test_files/scratch/repartition_scan/parquet_table/'; + +query I +select * from parquet_table; +---- +1 +2 +3 +4 +5 + +## Expect to see the scan read the file as "4" groups with even sizes (offsets) +query TT +EXPLAIN SELECT column1 FROM parquet_table WHERE column1 <> 42; +---- +logical_plan +Filter: parquet_table.column1 != Int32(42) +--TableScan: parquet_table projection=[column1], partial_filters=[parquet_table.column1 != Int32(42)] +physical_plan +CoalesceBatchesExec: target_batch_size=8192 +--FilterExec: column1@0 != 42 +----ParquetExec: file_groups={4 groups: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/2.parquet:0..101], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/2.parquet:101..202], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/2.parquet:202..303], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/2.parquet:303..403]]}, projection=[column1], predicate=column1@0 != 42, pruning_predicate=column1_min@0 != 42 OR 42 != column1_max@1 + +# create a second parquet file +statement ok +COPY (VALUES (100), (200)) TO 'test_files/scratch/repartition_scan/parquet_table/1.parquet' +(FORMAT PARQUET, SINGLE_FILE_OUTPUT true); + +## Still expect to see the scan read the file as "4" groups with even sizes. One group should read +## parts of both files. +query TT +EXPLAIN SELECT column1 FROM parquet_table WHERE column1 <> 42 ORDER BY column1; +---- +logical_plan +Sort: parquet_table.column1 ASC NULLS LAST +--Filter: parquet_table.column1 != Int32(42) +----TableScan: parquet_table projection=[column1], partial_filters=[parquet_table.column1 != Int32(42)] +physical_plan +SortPreservingMergeExec: [column1@0 ASC NULLS LAST] +--SortExec: expr=[column1@0 ASC NULLS LAST] +----CoalesceBatchesExec: target_batch_size=8192 +------FilterExec: column1@0 != 42 +--------ParquetExec: file_groups={4 groups: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/1.parquet:0..200], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/1.parquet:200..394, WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/2.parquet:0..6], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/2.parquet:6..206], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/2.parquet:206..403]]}, projection=[column1], predicate=column1@0 != 42, pruning_predicate=column1_min@0 != 42 OR 42 != column1_max@1 + + +## Read the files as though they are ordered + +statement ok +CREATE EXTERNAL TABLE parquet_table_with_order(column1 int) +STORED AS PARQUET +LOCATION 'test_files/scratch/repartition_scan/parquet_table' +WITH ORDER (column1 ASC); + +# output should be ordered +query I +SELECT column1 FROM parquet_table_with_order WHERE column1 <> 42 ORDER BY column1; +---- +1 +2 +3 +4 +5 +100 +200 + +# explain should not have any groups with more than one file +# https://github.com/apache/arrow-datafusion/issues/8451 +query TT +EXPLAIN SELECT column1 FROM parquet_table_with_order WHERE column1 <> 42 ORDER BY column1; +---- +logical_plan +Sort: parquet_table_with_order.column1 ASC NULLS LAST +--Filter: parquet_table_with_order.column1 != Int32(42) +----TableScan: parquet_table_with_order projection=[column1], partial_filters=[parquet_table_with_order.column1 != Int32(42)] +physical_plan +SortPreservingMergeExec: [column1@0 ASC NULLS LAST] +--CoalesceBatchesExec: target_batch_size=8192 +----FilterExec: column1@0 != 42 +------ParquetExec: file_groups={4 groups: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/1.parquet:0..200], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/1.parquet:200..394, WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/2.parquet:0..6], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/2.parquet:6..206], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/parquet_table/2.parquet:206..403]]}, projection=[column1], predicate=column1@0 != 42, pruning_predicate=column1_min@0 != 42 OR 42 != column1_max@1 + +# Cleanup +statement ok +DROP TABLE parquet_table; + +statement ok +DROP TABLE parquet_table_with_order; + + +################### +### CSV tests +################### + +# Since parquet and CSV share most of the same implementation, this test checks +# that the basics are connected properly + +# create a single csv file +statement ok +COPY (VALUES (1), (2), (3), (4), (5)) TO 'test_files/scratch/repartition_scan/csv_table/1.csv' +(FORMAT csv, SINGLE_FILE_OUTPUT true, HEADER true); + +statement ok +CREATE EXTERNAL TABLE csv_table(column1 int) +STORED AS csv +WITH HEADER ROW +LOCATION 'test_files/scratch/repartition_scan/csv_table/'; + +query I +select * from csv_table; +---- +1 +2 +3 +4 +5 + +## Expect to see the scan read the file as "4" groups with even sizes (offsets) +query TT +EXPLAIN SELECT column1 FROM csv_table WHERE column1 <> 42; +---- +logical_plan +Filter: csv_table.column1 != Int32(42) +--TableScan: csv_table projection=[column1], partial_filters=[csv_table.column1 != Int32(42)] +physical_plan +CoalesceBatchesExec: target_batch_size=8192 +--FilterExec: column1@0 != 42 +----CsvExec: file_groups={4 groups: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/csv_table/1.csv:0..5], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/csv_table/1.csv:5..10], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/csv_table/1.csv:10..15], [WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/csv_table/1.csv:15..18]]}, projection=[column1], has_header=true + +# Cleanup +statement ok +DROP TABLE csv_table; + + +################### +### JSON tests +################### + +# Since parquet and json share most of the same implementation, this test checks +# that the basics are connected properly + +# create a single json file +statement ok +COPY (VALUES (1), (2), (3), (4), (5)) TO 'test_files/scratch/repartition_scan/json_table/1.json' +(FORMAT json, SINGLE_FILE_OUTPUT true); + +statement ok +CREATE EXTERNAL TABLE json_table(column1 int) +STORED AS json +LOCATION 'test_files/scratch/repartition_scan/json_table/'; + +query I +select * from json_table; +---- +1 +2 +3 +4 +5 + +## In the future it would be cool to see the file read as "4" groups with even sizes (offsets) +## but for now it is just one group +## https://github.com/apache/arrow-datafusion/issues/8502 +query TT +EXPLAIN SELECT column1 FROM json_table WHERE column1 <> 42; +---- +logical_plan +Filter: json_table.column1 != Int32(42) +--TableScan: json_table projection=[column1], partial_filters=[json_table.column1 != Int32(42)] +physical_plan +CoalesceBatchesExec: target_batch_size=8192 +--FilterExec: column1@0 != 42 +----RepartitionExec: partitioning=RoundRobinBatch(4), input_partitions=1 +------JsonExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/repartition_scan/json_table/1.json]]}, projection=[column1] + + +# Cleanup +statement ok +DROP TABLE json_table; + + +################### +### Arrow File tests +################### + +## Use pre-existing files we don't have a way to create arrow files yet +## (https://github.com/apache/arrow-datafusion/issues/8504) +statement ok +CREATE EXTERNAL TABLE arrow_table +STORED AS ARROW +LOCATION '../core/tests/data/example.arrow'; + + +# It would be great to see the file read as "4" groups with even sizes (offsets) eventually +# https://github.com/apache/arrow-datafusion/issues/8503 +query TT +EXPLAIN SELECT * FROM arrow_table +---- +logical_plan TableScan: arrow_table projection=[f0, f1, f2] +physical_plan ArrowExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/core/tests/data/example.arrow]]}, projection=[f0, f1, f2] + +# Cleanup +statement ok +DROP TABLE arrow_table; + +################### +### Avro File tests +################### + +## Use pre-existing files we don't have a way to create avro files yet + +statement ok +CREATE EXTERNAL TABLE avro_table +STORED AS AVRO +WITH HEADER ROW +LOCATION '../../testing/data/avro/simple_enum.avro' + + +# It would be great to see the file read as "4" groups with even sizes (offsets) eventually +query TT +EXPLAIN SELECT * FROM avro_table +---- +logical_plan TableScan: avro_table projection=[f1, f2, f3] +physical_plan AvroExec: file_groups={1 group: [[WORKSPACE_ROOT/testing/data/avro/simple_enum.avro]]}, projection=[f1, f2, f3] + +# Cleanup +statement ok +DROP TABLE avro_table; diff --git a/datafusion/sqllogictest/test_files/scalar.slt b/datafusion/sqllogictest/test_files/scalar.slt index b3597c664fbb..9b30699e3fa3 100644 --- a/datafusion/sqllogictest/test_files/scalar.slt +++ b/datafusion/sqllogictest/test_files/scalar.slt @@ -1943,3 +1943,13 @@ select ; ---- true true true true true true true true true true + +query I +SELECT ALL - CASE WHEN NOT - AVG ( - 41 ) IS NULL THEN 47 WHEN NULL IS NULL THEN COUNT ( * ) END + 93 + - - 44 * 91 + CASE + 44 WHEN - - 21 * 69 - 12 THEN 58 ELSE - 3 END * + + 23 * + 84 * - - 59 +---- +-337914 + +query T +SELECT CASE 3 WHEN 1+2 THEN 'first' WHEN 1+1+1 THEN 'second' END +---- +first diff --git a/datafusion/sqllogictest/test_files/schema_evolution.slt b/datafusion/sqllogictest/test_files/schema_evolution.slt new file mode 100644 index 000000000000..36d54159e24d --- /dev/null +++ b/datafusion/sqllogictest/test_files/schema_evolution.slt @@ -0,0 +1,140 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +########## +# Tests for schema evolution -- reading +# data from different files with different schemas +########## + + +statement ok +CREATE EXTERNAL TABLE parquet_table(a varchar, b int, c float) STORED AS PARQUET +LOCATION 'test_files/scratch/schema_evolution/parquet_table/'; + +# File1 has only columns a and b +statement ok +COPY ( + SELECT column1 as a, column2 as b + FROM ( VALUES ('foo', 1), ('foo', 2), ('foo', 3) ) + ) TO 'test_files/scratch/schema_evolution/parquet_table/1.parquet' +(FORMAT PARQUET, SINGLE_FILE_OUTPUT true); + + +# File2 has only b +statement ok +COPY ( + SELECT column1 as b + FROM ( VALUES (10) ) + ) TO 'test_files/scratch/schema_evolution/parquet_table/2.parquet' +(FORMAT PARQUET, SINGLE_FILE_OUTPUT true); + +# File3 has a column from 'z' which does not appear in the table +# but also values from a which do appear in the table +statement ok +COPY ( + SELECT column1 as z, column2 as a + FROM ( VALUES ('bar', 'foo'), ('blarg', 'foo') ) + ) TO 'test_files/scratch/schema_evolution/parquet_table/3.parquet' +(FORMAT PARQUET, SINGLE_FILE_OUTPUT true); + +# File4 has data for b and a (reversed) and d +statement ok +COPY ( + SELECT column1 as b, column2 as a, column3 as c + FROM ( VALUES (100, 'foo', 10.5), (200, 'foo', 12.6), (300, 'bzz', 13.7) ) + ) TO 'test_files/scratch/schema_evolution/parquet_table/4.parquet' +(FORMAT PARQUET, SINGLE_FILE_OUTPUT true); + +# The logical distribution of `a`, `b` and `c` in the files is like this: +# +## File1: +# foo 1 NULL +# foo 2 NULL +# foo 3 NULL +# +## File2: +# NULL 10 NULL +# +## File3: +# foo NULL NULL +# foo NULL NULL +# +## File4: +# foo 100 10.5 +# foo 200 12.6 +# bzz 300 13.7 + +# Show all the data +query TIR rowsort +select * from parquet_table; +---- +NULL 10 NULL +bzz 300 13.7 +foo 1 NULL +foo 100 10.5 +foo 2 NULL +foo 200 12.6 +foo 3 NULL +foo NULL NULL +foo NULL NULL + +# Should see all 7 rows that have 'a=foo' +query TIR rowsort +select * from parquet_table where a = 'foo'; +---- +foo 1 NULL +foo 100 10.5 +foo 2 NULL +foo 200 12.6 +foo 3 NULL +foo NULL NULL +foo NULL NULL + +query TIR rowsort +select * from parquet_table where a != 'foo'; +---- +bzz 300 13.7 + +# this should produce at least one row +query TIR rowsort +select * from parquet_table where a is NULL; +---- +NULL 10 NULL + +query TIR rowsort +select * from parquet_table where b > 5; +---- +NULL 10 NULL +bzz 300 13.7 +foo 100 10.5 +foo 200 12.6 + + +query TIR rowsort +select * from parquet_table where b < 150; +---- +NULL 10 NULL +foo 1 NULL +foo 100 10.5 +foo 2 NULL +foo 3 NULL + +query TIR rowsort +select * from parquet_table where c > 11.0; +---- +bzz 300 13.7 +foo 200 12.6 diff --git a/datafusion/sqllogictest/test_files/window.slt b/datafusion/sqllogictest/test_files/window.slt index f3de5b54fc8b..6198209aaac5 100644 --- a/datafusion/sqllogictest/test_files/window.slt +++ b/datafusion/sqllogictest/test_files/window.slt @@ -3245,17 +3245,17 @@ physical_plan ProjectionExec: expr=[SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.a, annotated_data_infinite2.b] ORDER BY [annotated_data_infinite2.c ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@2 as sum1, SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.b, annotated_data_infinite2.a] ORDER BY [annotated_data_infinite2.c ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@4 as sum2, SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.a, annotated_data_infinite2.d] ORDER BY [annotated_data_infinite2.b ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@3 as sum3, SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.d] ORDER BY [annotated_data_infinite2.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@5 as sum4] --BoundedWindowAggExec: wdw=[SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.d] ORDER BY [annotated_data_infinite2.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW: Ok(Field { name: "SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.d] ORDER BY [annotated_data_infinite2.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: CurrentRow }], mode=[Linear] ----CoalesceBatchesExec: target_batch_size=4096 -------SortPreservingRepartitionExec: partitioning=Hash([d@1], 2), input_partitions=2, sort_exprs=a@0 ASC NULLS LAST +------RepartitionExec: partitioning=Hash([d@1], 2), input_partitions=2, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST --------ProjectionExec: expr=[a@0 as a, d@3 as d, SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.a, annotated_data_infinite2.b] ORDER BY [annotated_data_infinite2.c ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@4 as SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.a, annotated_data_infinite2.b] ORDER BY [annotated_data_infinite2.c ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.a, annotated_data_infinite2.d] ORDER BY [annotated_data_infinite2.b ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@5 as SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.a, annotated_data_infinite2.d] ORDER BY [annotated_data_infinite2.b ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.b, annotated_data_infinite2.a] ORDER BY [annotated_data_infinite2.c ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@6 as SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.b, annotated_data_infinite2.a] ORDER BY [annotated_data_infinite2.c ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW] ----------BoundedWindowAggExec: wdw=[SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.b, annotated_data_infinite2.a] ORDER BY [annotated_data_infinite2.c ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW: Ok(Field { name: "SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.b, annotated_data_infinite2.a] ORDER BY [annotated_data_infinite2.c ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: CurrentRow }], mode=[Sorted] ------------CoalesceBatchesExec: target_batch_size=4096 ---------------SortPreservingRepartitionExec: partitioning=Hash([b@1, a@0], 2), input_partitions=2, sort_exprs=a@0 ASC NULLS LAST,b@1 ASC NULLS LAST,c@2 ASC NULLS LAST +--------------RepartitionExec: partitioning=Hash([b@1, a@0], 2), input_partitions=2, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST,b@1 ASC NULLS LAST,c@2 ASC NULLS LAST ----------------BoundedWindowAggExec: wdw=[SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.a, annotated_data_infinite2.d] ORDER BY [annotated_data_infinite2.b ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW: Ok(Field { name: "SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.a, annotated_data_infinite2.d] ORDER BY [annotated_data_infinite2.b ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: CurrentRow }], mode=[PartiallySorted([0])] ------------------CoalesceBatchesExec: target_batch_size=4096 ---------------------SortPreservingRepartitionExec: partitioning=Hash([a@0, d@3], 2), input_partitions=2, sort_exprs=a@0 ASC NULLS LAST,b@1 ASC NULLS LAST,c@2 ASC NULLS LAST +--------------------RepartitionExec: partitioning=Hash([a@0, d@3], 2), input_partitions=2, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST,b@1 ASC NULLS LAST,c@2 ASC NULLS LAST ----------------------BoundedWindowAggExec: wdw=[SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.a, annotated_data_infinite2.b] ORDER BY [annotated_data_infinite2.c ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW: Ok(Field { name: "SUM(annotated_data_infinite2.a) PARTITION BY [annotated_data_infinite2.a, annotated_data_infinite2.b] ORDER BY [annotated_data_infinite2.c ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: CurrentRow }], mode=[Sorted] ------------------------CoalesceBatchesExec: target_batch_size=4096 ---------------------------SortPreservingRepartitionExec: partitioning=Hash([a@0, b@1], 2), input_partitions=2, sort_exprs=a@0 ASC NULLS LAST,b@1 ASC NULLS LAST,c@2 ASC NULLS LAST +--------------------------RepartitionExec: partitioning=Hash([a@0, b@1], 2), input_partitions=2, preserve_order=true, sort_exprs=a@0 ASC NULLS LAST,b@1 ASC NULLS LAST,c@2 ASC NULLS LAST ----------------------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 ------------------------------StreamingTableExec: partition_sizes=1, projection=[a, b, c, d], infinite_source=true, output_ordering=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST] @@ -3571,7 +3571,7 @@ SortPreservingMergeExec: [c@3 ASC NULLS LAST] --ProjectionExec: expr=[a0@0 as a0, a@1 as a, b@2 as b, c@3 as c, d@4 as d, AVG(multiple_ordered_table_inf.d) PARTITION BY [multiple_ordered_table_inf.d] ORDER BY [multiple_ordered_table_inf.a ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND CURRENT ROW@5 as avg_d] ----BoundedWindowAggExec: wdw=[AVG(multiple_ordered_table_inf.d) PARTITION BY [multiple_ordered_table_inf.d] ORDER BY [multiple_ordered_table_inf.a ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND CURRENT ROW: Ok(Field { name: "AVG(multiple_ordered_table_inf.d) PARTITION BY [multiple_ordered_table_inf.d] ORDER BY [multiple_ordered_table_inf.a ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND CURRENT ROW", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(10)), end_bound: CurrentRow }], mode=[Linear] ------CoalesceBatchesExec: target_batch_size=4096 ---------SortPreservingRepartitionExec: partitioning=Hash([d@4], 2), input_partitions=2, sort_exprs=a@1 ASC NULLS LAST,b@2 ASC NULLS LAST +--------RepartitionExec: partitioning=Hash([d@4], 2), input_partitions=2, preserve_order=true, sort_exprs=a@1 ASC NULLS LAST,b@2 ASC NULLS LAST ----------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 ------------StreamingTableExec: partition_sizes=1, projection=[a0, a, b, c, d], infinite_source=true, output_ordering=[a@1 ASC NULLS LAST, b@2 ASC NULLS LAST] @@ -3793,3 +3793,9 @@ select a, ---- 1 1 2 1 + +query I +select rank() over (order by 1) rnk from (select 1 a union all select 2 a) x +---- +1 +1 diff --git a/datafusion/substrait/src/logical_plan/consumer.rs b/datafusion/substrait/src/logical_plan/consumer.rs index ffc9d094ab91..f64dc764a7ed 100644 --- a/datafusion/substrait/src/logical_plan/consumer.rs +++ b/datafusion/substrait/src/logical_plan/consumer.rs @@ -17,7 +17,9 @@ use async_recursion::async_recursion; use datafusion::arrow::datatypes::{DataType, Field, TimeUnit}; -use datafusion::common::{not_impl_err, DFField, DFSchema, DFSchemaRef}; +use datafusion::common::{ + not_impl_err, substrait_datafusion_err, substrait_err, DFField, DFSchema, DFSchemaRef, +}; use datafusion::execution::FunctionRegistry; use datafusion::logical_expr::{ @@ -73,16 +75,7 @@ use crate::variation_const::{ enum ScalarFunctionType { Builtin(BuiltinScalarFunction), Op(Operator), - /// [Expr::Not] - Not, - /// [Expr::Like] Used for filtering rows based on the given wildcard pattern. Case sensitive - Like, - /// [Expr::Like] Case insensitive operator counterpart of `Like` - ILike, - /// [Expr::IsNull] - IsNull, - /// [Expr::IsNotNull] - IsNotNull, + Expr(BuiltinExprBuilder), } pub fn name_to_op(name: &str) -> Result { @@ -127,14 +120,11 @@ fn scalar_function_type_from_str(name: &str) -> Result { return Ok(ScalarFunctionType::Builtin(fun)); } - match name { - "not" => Ok(ScalarFunctionType::Not), - "like" => Ok(ScalarFunctionType::Like), - "ilike" => Ok(ScalarFunctionType::ILike), - "is_null" => Ok(ScalarFunctionType::IsNull), - "is_not_null" => Ok(ScalarFunctionType::IsNotNull), - others => not_impl_err!("Unsupported function name: {others:?}"), + if let Some(builder) = BuiltinExprBuilder::try_from_name(name) { + return Ok(ScalarFunctionType::Expr(builder)); } + + not_impl_err!("Unsupported function name: {name:?}") } fn split_eq_and_noneq_join_predicate_with_nulls_equality( @@ -519,9 +509,7 @@ pub async fn from_substrait_rel( }, Some(RelType::ExtensionLeaf(extension)) => { let Some(ext_detail) = &extension.detail else { - return Err(DataFusionError::Substrait( - "Unexpected empty detail in ExtensionLeafRel".to_string(), - )); + return substrait_err!("Unexpected empty detail in ExtensionLeafRel"); }; let plan = ctx .state() @@ -531,18 +519,16 @@ pub async fn from_substrait_rel( } Some(RelType::ExtensionSingle(extension)) => { let Some(ext_detail) = &extension.detail else { - return Err(DataFusionError::Substrait( - "Unexpected empty detail in ExtensionSingleRel".to_string(), - )); + return substrait_err!("Unexpected empty detail in ExtensionSingleRel"); }; let plan = ctx .state() .serializer_registry() .deserialize_logical_plan(&ext_detail.type_url, &ext_detail.value)?; let Some(input_rel) = &extension.input else { - return Err(DataFusionError::Substrait( - "ExtensionSingleRel doesn't contains input rel. Try use ExtensionLeafRel instead".to_string() - )); + return substrait_err!( + "ExtensionSingleRel doesn't contains input rel. Try use ExtensionLeafRel instead" + ); }; let input_plan = from_substrait_rel(ctx, input_rel, extensions).await?; let plan = plan.from_template(&plan.expressions(), &[input_plan]); @@ -550,9 +536,7 @@ pub async fn from_substrait_rel( } Some(RelType::ExtensionMulti(extension)) => { let Some(ext_detail) = &extension.detail else { - return Err(DataFusionError::Substrait( - "Unexpected empty detail in ExtensionSingleRel".to_string(), - )); + return substrait_err!("Unexpected empty detail in ExtensionSingleRel"); }; let plan = ctx .state() @@ -881,64 +865,8 @@ pub async fn from_substrait_rex( ), } } - ScalarFunctionType::Not => { - let arg = f.arguments.first().ok_or_else(|| { - DataFusionError::Substrait( - "expect one argument for `NOT` expr".to_string(), - ) - })?; - match &arg.arg_type { - Some(ArgType::Value(e)) => { - let expr = from_substrait_rex(e, input_schema, extensions) - .await? - .as_ref() - .clone(); - Ok(Arc::new(Expr::Not(Box::new(expr)))) - } - _ => not_impl_err!("Invalid arguments for Not expression"), - } - } - ScalarFunctionType::Like => { - make_datafusion_like(false, f, input_schema, extensions).await - } - ScalarFunctionType::ILike => { - make_datafusion_like(true, f, input_schema, extensions).await - } - ScalarFunctionType::IsNull => { - let arg = f.arguments.first().ok_or_else(|| { - DataFusionError::Substrait( - "expect one argument for `IS NULL` expr".to_string(), - ) - })?; - match &arg.arg_type { - Some(ArgType::Value(e)) => { - let expr = from_substrait_rex(e, input_schema, extensions) - .await? - .as_ref() - .clone(); - Ok(Arc::new(Expr::IsNull(Box::new(expr)))) - } - _ => not_impl_err!("Invalid arguments for IS NULL expression"), - } - } - ScalarFunctionType::IsNotNull => { - let arg = f.arguments.first().ok_or_else(|| { - DataFusionError::Substrait( - "expect one argument for `IS NOT NULL` expr".to_string(), - ) - })?; - match &arg.arg_type { - Some(ArgType::Value(e)) => { - let expr = from_substrait_rex(e, input_schema, extensions) - .await? - .as_ref() - .clone(); - Ok(Arc::new(Expr::IsNotNull(Box::new(expr)))) - } - _ => { - not_impl_err!("Invalid arguments for IS NOT NULL expression") - } - } + ScalarFunctionType::Expr(builder) => { + builder.build(f, input_schema, extensions).await } } } @@ -960,9 +888,7 @@ pub async fn from_substrait_rex( ), from_substrait_type(output_type)?, )))), - None => Err(DataFusionError::Substrait( - "Cast experssion without output type is not allowed".to_string(), - )), + None => substrait_err!("Cast experssion without output type is not allowed"), }, Some(RexType::WindowFunction(window)) => { let fun = match extensions.get(&window.function_reference) { @@ -1087,9 +1013,7 @@ fn from_substrait_type(dt: &substrait::proto::Type) -> Result { r#type::Kind::List(list) => { let inner_type = from_substrait_type(list.r#type.as_ref().ok_or_else(|| { - DataFusionError::Substrait( - "List type must have inner type".to_string(), - ) + substrait_datafusion_err!("List type must have inner type") })?)?; let field = Arc::new(Field::new("list_item", inner_type, true)); match list.type_variation_reference { @@ -1141,9 +1065,7 @@ fn from_substrait_bound( } } }, - None => Err(DataFusionError::Substrait( - "WindowFunction missing Substrait Bound kind".to_string(), - )), + None => substrait_err!("WindowFunction missing Substrait Bound kind"), }, None => { if is_lower { @@ -1162,36 +1084,28 @@ pub(crate) fn from_substrait_literal(lit: &Literal) -> Result { DEFAULT_TYPE_REF => ScalarValue::Int8(Some(*n as i8)), UNSIGNED_INTEGER_TYPE_REF => ScalarValue::UInt8(Some(*n as u8)), others => { - return Err(DataFusionError::Substrait(format!( - "Unknown type variation reference {others}", - ))); + return substrait_err!("Unknown type variation reference {others}"); } }, Some(LiteralType::I16(n)) => match lit.type_variation_reference { DEFAULT_TYPE_REF => ScalarValue::Int16(Some(*n as i16)), UNSIGNED_INTEGER_TYPE_REF => ScalarValue::UInt16(Some(*n as u16)), others => { - return Err(DataFusionError::Substrait(format!( - "Unknown type variation reference {others}", - ))); + return substrait_err!("Unknown type variation reference {others}"); } }, Some(LiteralType::I32(n)) => match lit.type_variation_reference { DEFAULT_TYPE_REF => ScalarValue::Int32(Some(*n)), UNSIGNED_INTEGER_TYPE_REF => ScalarValue::UInt32(Some(*n as u32)), others => { - return Err(DataFusionError::Substrait(format!( - "Unknown type variation reference {others}", - ))); + return substrait_err!("Unknown type variation reference {others}"); } }, Some(LiteralType::I64(n)) => match lit.type_variation_reference { DEFAULT_TYPE_REF => ScalarValue::Int64(Some(*n)), UNSIGNED_INTEGER_TYPE_REF => ScalarValue::UInt64(Some(*n as u64)), others => { - return Err(DataFusionError::Substrait(format!( - "Unknown type variation reference {others}", - ))); + return substrait_err!("Unknown type variation reference {others}"); } }, Some(LiteralType::Fp32(f)) => ScalarValue::Float32(Some(*f)), @@ -1202,9 +1116,7 @@ pub(crate) fn from_substrait_literal(lit: &Literal) -> Result { TIMESTAMP_MICRO_TYPE_REF => ScalarValue::TimestampMicrosecond(Some(*t), None), TIMESTAMP_NANO_TYPE_REF => ScalarValue::TimestampNanosecond(Some(*t), None), others => { - return Err(DataFusionError::Substrait(format!( - "Unknown type variation reference {others}", - ))); + return substrait_err!("Unknown type variation reference {others}"); } }, Some(LiteralType::Date(d)) => ScalarValue::Date32(Some(*d)), @@ -1212,38 +1124,30 @@ pub(crate) fn from_substrait_literal(lit: &Literal) -> Result { DEFAULT_CONTAINER_TYPE_REF => ScalarValue::Utf8(Some(s.clone())), LARGE_CONTAINER_TYPE_REF => ScalarValue::LargeUtf8(Some(s.clone())), others => { - return Err(DataFusionError::Substrait(format!( - "Unknown type variation reference {others}", - ))); + return substrait_err!("Unknown type variation reference {others}"); } }, Some(LiteralType::Binary(b)) => match lit.type_variation_reference { DEFAULT_CONTAINER_TYPE_REF => ScalarValue::Binary(Some(b.clone())), LARGE_CONTAINER_TYPE_REF => ScalarValue::LargeBinary(Some(b.clone())), others => { - return Err(DataFusionError::Substrait(format!( - "Unknown type variation reference {others}", - ))); + return substrait_err!("Unknown type variation reference {others}"); } }, Some(LiteralType::FixedBinary(b)) => { ScalarValue::FixedSizeBinary(b.len() as _, Some(b.clone())) } Some(LiteralType::Decimal(d)) => { - let value: [u8; 16] = - d.value - .clone() - .try_into() - .or(Err(DataFusionError::Substrait( - "Failed to parse decimal value".to_string(), - )))?; + let value: [u8; 16] = d + .value + .clone() + .try_into() + .or(substrait_err!("Failed to parse decimal value"))?; let p = d.precision.try_into().map_err(|e| { - DataFusionError::Substrait(format!( - "Failed to parse decimal precision: {e}" - )) + substrait_datafusion_err!("Failed to parse decimal precision: {e}") })?; let s = d.scale.try_into().map_err(|e| { - DataFusionError::Substrait(format!("Failed to parse decimal scale: {e}")) + substrait_datafusion_err!("Failed to parse decimal scale: {e}") })?; ScalarValue::Decimal128( Some(std::primitive::i128::from_le_bytes(value)), @@ -1341,50 +1245,122 @@ fn from_substrait_null(null_type: &Type) -> Result { } } -async fn make_datafusion_like( - case_insensitive: bool, - f: &ScalarFunction, - input_schema: &DFSchema, - extensions: &HashMap, -) -> Result> { - let fn_name = if case_insensitive { "ILIKE" } else { "LIKE" }; - if f.arguments.len() != 3 { - return not_impl_err!("Expect three arguments for `{fn_name}` expr"); +/// Build [`Expr`] from its name and required inputs. +struct BuiltinExprBuilder { + expr_name: String, +} + +impl BuiltinExprBuilder { + pub fn try_from_name(name: &str) -> Option { + match name { + "not" | "like" | "ilike" | "is_null" | "is_not_null" | "is_true" + | "is_false" | "is_not_true" | "is_not_false" | "is_unknown" + | "is_not_unknown" | "negative" => Some(Self { + expr_name: name.to_string(), + }), + _ => None, + } } - let Some(ArgType::Value(expr_substrait)) = &f.arguments[0].arg_type else { - return not_impl_err!("Invalid arguments type for `{fn_name}` expr"); - }; - let expr = from_substrait_rex(expr_substrait, input_schema, extensions) - .await? - .as_ref() - .clone(); - let Some(ArgType::Value(pattern_substrait)) = &f.arguments[1].arg_type else { - return not_impl_err!("Invalid arguments type for `{fn_name}` expr"); - }; - let pattern = from_substrait_rex(pattern_substrait, input_schema, extensions) - .await? - .as_ref() - .clone(); - let Some(ArgType::Value(escape_char_substrait)) = &f.arguments[2].arg_type else { - return not_impl_err!("Invalid arguments type for `{fn_name}` expr"); - }; - let escape_char_expr = - from_substrait_rex(escape_char_substrait, input_schema, extensions) + pub async fn build( + self, + f: &ScalarFunction, + input_schema: &DFSchema, + extensions: &HashMap, + ) -> Result> { + match self.expr_name.as_str() { + "like" => Self::build_like_expr(false, f, input_schema, extensions).await, + "ilike" => Self::build_like_expr(true, f, input_schema, extensions).await, + "not" | "negative" | "is_null" | "is_not_null" | "is_true" | "is_false" + | "is_not_true" | "is_not_false" | "is_unknown" | "is_not_unknown" => { + Self::build_unary_expr(&self.expr_name, f, input_schema, extensions).await + } + _ => { + not_impl_err!("Unsupported builtin expression: {}", self.expr_name) + } + } + } + + async fn build_unary_expr( + fn_name: &str, + f: &ScalarFunction, + input_schema: &DFSchema, + extensions: &HashMap, + ) -> Result> { + if f.arguments.len() != 1 { + return substrait_err!("Expect one argument for {fn_name} expr"); + } + let Some(ArgType::Value(expr_substrait)) = &f.arguments[0].arg_type else { + return substrait_err!("Invalid arguments type for {fn_name} expr"); + }; + let arg = from_substrait_rex(expr_substrait, input_schema, extensions) .await? .as_ref() .clone(); - let Expr::Literal(ScalarValue::Utf8(escape_char)) = escape_char_expr else { - return Err(DataFusionError::Substrait(format!( - "Expect Utf8 literal for escape char, but found {escape_char_expr:?}", - ))); - }; + let arg = Box::new(arg); + + let expr = match fn_name { + "not" => Expr::Not(arg), + "negative" => Expr::Negative(arg), + "is_null" => Expr::IsNull(arg), + "is_not_null" => Expr::IsNotNull(arg), + "is_true" => Expr::IsTrue(arg), + "is_false" => Expr::IsFalse(arg), + "is_not_true" => Expr::IsNotTrue(arg), + "is_not_false" => Expr::IsNotFalse(arg), + "is_unknown" => Expr::IsUnknown(arg), + "is_not_unknown" => Expr::IsNotUnknown(arg), + _ => return not_impl_err!("Unsupported builtin expression: {}", fn_name), + }; - Ok(Arc::new(Expr::Like(Like { - negated: false, - expr: Box::new(expr), - pattern: Box::new(pattern), - escape_char: escape_char.map(|c| c.chars().next().unwrap()), - case_insensitive, - }))) + Ok(Arc::new(expr)) + } + + async fn build_like_expr( + case_insensitive: bool, + f: &ScalarFunction, + input_schema: &DFSchema, + extensions: &HashMap, + ) -> Result> { + let fn_name = if case_insensitive { "ILIKE" } else { "LIKE" }; + if f.arguments.len() != 3 { + return substrait_err!("Expect three arguments for `{fn_name}` expr"); + } + + let Some(ArgType::Value(expr_substrait)) = &f.arguments[0].arg_type else { + return substrait_err!("Invalid arguments type for `{fn_name}` expr"); + }; + let expr = from_substrait_rex(expr_substrait, input_schema, extensions) + .await? + .as_ref() + .clone(); + let Some(ArgType::Value(pattern_substrait)) = &f.arguments[1].arg_type else { + return substrait_err!("Invalid arguments type for `{fn_name}` expr"); + }; + let pattern = from_substrait_rex(pattern_substrait, input_schema, extensions) + .await? + .as_ref() + .clone(); + let Some(ArgType::Value(escape_char_substrait)) = &f.arguments[2].arg_type else { + return substrait_err!("Invalid arguments type for `{fn_name}` expr"); + }; + let escape_char_expr = + from_substrait_rex(escape_char_substrait, input_schema, extensions) + .await? + .as_ref() + .clone(); + let Expr::Literal(ScalarValue::Utf8(escape_char)) = escape_char_expr else { + return substrait_err!( + "Expect Utf8 literal for escape char, but found {escape_char_expr:?}" + ); + }; + + Ok(Arc::new(Expr::Like(Like { + negated: false, + expr: Box::new(expr), + pattern: Box::new(pattern), + escape_char: escape_char.map(|c| c.chars().next().unwrap()), + case_insensitive, + }))) + } } diff --git a/datafusion/substrait/src/logical_plan/producer.rs b/datafusion/substrait/src/logical_plan/producer.rs index c5f1278be6e0..81498964eb61 100644 --- a/datafusion/substrait/src/logical_plan/producer.rs +++ b/datafusion/substrait/src/logical_plan/producer.rs @@ -1083,50 +1083,76 @@ pub fn to_substrait_rex( col_ref_offset, extension_info, ), - Expr::IsNull(arg) => { - let arguments: Vec = vec![FunctionArgument { - arg_type: Some(ArgType::Value(to_substrait_rex( - arg, - schema, - col_ref_offset, - extension_info, - )?)), - }]; - - let function_name = "is_null".to_string(); - let function_anchor = _register_function(function_name, extension_info); - Ok(Expression { - rex_type: Some(RexType::ScalarFunction(ScalarFunction { - function_reference: function_anchor, - arguments, - output_type: None, - args: vec![], - options: vec![], - })), - }) - } - Expr::IsNotNull(arg) => { - let arguments: Vec = vec![FunctionArgument { - arg_type: Some(ArgType::Value(to_substrait_rex( - arg, - schema, - col_ref_offset, - extension_info, - )?)), - }]; - - let function_name = "is_not_null".to_string(); - let function_anchor = _register_function(function_name, extension_info); - Ok(Expression { - rex_type: Some(RexType::ScalarFunction(ScalarFunction { - function_reference: function_anchor, - arguments, - output_type: None, - args: vec![], - options: vec![], - })), - }) - } + Expr::Not(arg) => to_substrait_unary_scalar_fn( + "not", + arg, + schema, + col_ref_offset, + extension_info, + ), + Expr::IsNull(arg) => to_substrait_unary_scalar_fn( + "is_null", + arg, + schema, + col_ref_offset, + extension_info, + ), + Expr::IsNotNull(arg) => to_substrait_unary_scalar_fn( + "is_not_null", + arg, + schema, + col_ref_offset, + extension_info, + ), + Expr::IsTrue(arg) => to_substrait_unary_scalar_fn( + "is_true", + arg, + schema, + col_ref_offset, + extension_info, + ), + Expr::IsFalse(arg) => to_substrait_unary_scalar_fn( + "is_false", + arg, + schema, + col_ref_offset, + extension_info, + ), + Expr::IsUnknown(arg) => to_substrait_unary_scalar_fn( + "is_unknown", + arg, + schema, + col_ref_offset, + extension_info, + ), + Expr::IsNotTrue(arg) => to_substrait_unary_scalar_fn( + "is_not_true", + arg, + schema, + col_ref_offset, + extension_info, + ), + Expr::IsNotFalse(arg) => to_substrait_unary_scalar_fn( + "is_not_false", + arg, + schema, + col_ref_offset, + extension_info, + ), + Expr::IsNotUnknown(arg) => to_substrait_unary_scalar_fn( + "is_not_unknown", + arg, + schema, + col_ref_offset, + extension_info, + ), + Expr::Negative(arg) => to_substrait_unary_scalar_fn( + "negative", + arg, + schema, + col_ref_offset, + extension_info, + ), _ => { not_impl_err!("Unsupported expression: {expr:?}") } @@ -1591,6 +1617,33 @@ fn to_substrait_literal(value: &ScalarValue) -> Result { }) } +/// Util to generate substrait [RexType::ScalarFunction] with one argument +fn to_substrait_unary_scalar_fn( + fn_name: &str, + arg: &Expr, + schema: &DFSchemaRef, + col_ref_offset: usize, + extension_info: &mut ( + Vec, + HashMap, + ), +) -> Result { + let function_anchor = _register_function(fn_name.to_string(), extension_info); + let substrait_expr = to_substrait_rex(arg, schema, col_ref_offset, extension_info)?; + + Ok(Expression { + rex_type: Some(RexType::ScalarFunction(ScalarFunction { + function_reference: function_anchor, + arguments: vec![FunctionArgument { + arg_type: Some(ArgType::Value(substrait_expr)), + }], + output_type: None, + options: vec![], + ..Default::default() + })), + }) +} + fn try_to_substrait_null(v: &ScalarValue) -> Result { let default_nullability = r#type::Nullability::Nullable as i32; match v { diff --git a/datafusion/substrait/tests/cases/roundtrip_logical_plan.rs b/datafusion/substrait/tests/cases/roundtrip_logical_plan.rs index 691fba864449..91d5a9469627 100644 --- a/datafusion/substrait/tests/cases/roundtrip_logical_plan.rs +++ b/datafusion/substrait/tests/cases/roundtrip_logical_plan.rs @@ -483,6 +483,46 @@ async fn roundtrip_ilike() -> Result<()> { roundtrip("SELECT f FROM data WHERE f ILIKE 'a%b'").await } +#[tokio::test] +async fn roundtrip_not() -> Result<()> { + roundtrip("SELECT * FROM data WHERE NOT d").await +} + +#[tokio::test] +async fn roundtrip_negative() -> Result<()> { + roundtrip("SELECT * FROM data WHERE -a = 1").await +} + +#[tokio::test] +async fn roundtrip_is_true() -> Result<()> { + roundtrip("SELECT * FROM data WHERE d IS TRUE").await +} + +#[tokio::test] +async fn roundtrip_is_false() -> Result<()> { + roundtrip("SELECT * FROM data WHERE d IS FALSE").await +} + +#[tokio::test] +async fn roundtrip_is_not_true() -> Result<()> { + roundtrip("SELECT * FROM data WHERE d IS NOT TRUE").await +} + +#[tokio::test] +async fn roundtrip_is_not_false() -> Result<()> { + roundtrip("SELECT * FROM data WHERE d IS NOT FALSE").await +} + +#[tokio::test] +async fn roundtrip_is_unknown() -> Result<()> { + roundtrip("SELECT * FROM data WHERE d IS UNKNOWN").await +} + +#[tokio::test] +async fn roundtrip_is_not_unknown() -> Result<()> { + roundtrip("SELECT * FROM data WHERE d IS NOT UNKNOWN").await +} + #[tokio::test] async fn roundtrip_union() -> Result<()> { roundtrip("SELECT a, e FROM data UNION SELECT a, e FROM data").await diff --git a/dev/changelog/34.0.0.md b/dev/changelog/34.0.0.md new file mode 100644 index 000000000000..c5526f60531c --- /dev/null +++ b/dev/changelog/34.0.0.md @@ -0,0 +1,273 @@ + + +## [34.0.0](https://github.com/apache/arrow-datafusion/tree/34.0.0) (2023-12-11) + +[Full Changelog](https://github.com/apache/arrow-datafusion/compare/33.0.0...34.0.0) + +**Breaking changes:** + +- Implement `DISTINCT ON` from Postgres [#7981](https://github.com/apache/arrow-datafusion/pull/7981) (gruuya) +- Encapsulate `EquivalenceClass` into a struct [#8034](https://github.com/apache/arrow-datafusion/pull/8034) (alamb) +- Make fields of `ScalarUDF` , `AggregateUDF` and `WindowUDF` non `pub` [#8079](https://github.com/apache/arrow-datafusion/pull/8079) (alamb) +- Implement StreamTable and StreamTableProvider (#7994) [#8021](https://github.com/apache/arrow-datafusion/pull/8021) (tustvold) +- feat: make FixedSizeList scalar also an ArrayRef [#8221](https://github.com/apache/arrow-datafusion/pull/8221) (wjones127) +- Remove FileWriterMode and ListingTableInsertMode (#7994) [#8017](https://github.com/apache/arrow-datafusion/pull/8017) (tustvold) +- Refactor: Unify `Expr::ScalarFunction` and `Expr::ScalarUDF`, introduce unresolved functions by name [#8258](https://github.com/apache/arrow-datafusion/pull/8258) (2010YOUY01) +- Refactor aggregate function handling [#8358](https://github.com/apache/arrow-datafusion/pull/8358) (Weijun-H) +- Move `PartitionSearchMode` into datafusion_physical_plan, rename to `InputOrderMode` [#8364](https://github.com/apache/arrow-datafusion/pull/8364) (alamb) +- Split `EmptyExec` into `PlaceholderRowExec` [#8446](https://github.com/apache/arrow-datafusion/pull/8446) (razeghi71) + +**Implemented enhancements:** + +- feat: show statistics in explain verbose [#8113](https://github.com/apache/arrow-datafusion/pull/8113) (NGA-TRAN) +- feat:implement postgres style 'overlay' string function [#8117](https://github.com/apache/arrow-datafusion/pull/8117) (Syleechan) +- feat: fill missing values with NULLs while inserting [#8146](https://github.com/apache/arrow-datafusion/pull/8146) (jonahgao) +- feat: to_array_of_size for ScalarValue::FixedSizeList [#8225](https://github.com/apache/arrow-datafusion/pull/8225) (wjones127) +- feat:implement calcite style 'levenshtein' string function [#8168](https://github.com/apache/arrow-datafusion/pull/8168) (Syleechan) +- feat: roundtrip FixedSizeList Scalar to protobuf [#8239](https://github.com/apache/arrow-datafusion/pull/8239) (wjones127) +- feat: impl the basic `string_agg` function [#8148](https://github.com/apache/arrow-datafusion/pull/8148) (haohuaijin) +- feat: support simplifying BinaryExpr with arbitrary guarantees in GuaranteeRewriter [#8256](https://github.com/apache/arrow-datafusion/pull/8256) (wjones127) +- feat: support customizing column default values for inserting [#8283](https://github.com/apache/arrow-datafusion/pull/8283) (jonahgao) +- feat:implement sql style 'substr_index' string function [#8272](https://github.com/apache/arrow-datafusion/pull/8272) (Syleechan) +- feat:implement sql style 'find_in_set' string function [#8328](https://github.com/apache/arrow-datafusion/pull/8328) (Syleechan) +- feat: support `LargeList` in `array_empty` [#8321](https://github.com/apache/arrow-datafusion/pull/8321) (Weijun-H) +- feat: support `LargeList` in `make_array` and `array_length` [#8121](https://github.com/apache/arrow-datafusion/pull/8121) (Weijun-H) +- feat: ScalarValue from String [#8411](https://github.com/apache/arrow-datafusion/pull/8411) (QuenKar) +- feat: support `LargeList` for `array_has`, `array_has_all` and `array_has_any` [#8322](https://github.com/apache/arrow-datafusion/pull/8322) (Weijun-H) +- feat: customize column default values for external tables [#8415](https://github.com/apache/arrow-datafusion/pull/8415) (jonahgao) +- feat: Support `array_sort`(`list_sort`) [#8279](https://github.com/apache/arrow-datafusion/pull/8279) (Asura7969) +- feat: support `InterleaveExecNode` in the proto [#8460](https://github.com/apache/arrow-datafusion/pull/8460) (liukun4515) +- feat: improve string statistics display in datafusion-cli `parquet_metadata` function [#8535](https://github.com/apache/arrow-datafusion/pull/8535) (asimsedhain) + +**Fixed bugs:** + +- fix: Timestamp with timezone not considered `join on` [#8150](https://github.com/apache/arrow-datafusion/pull/8150) (ACking-you) +- fix: wrong result of range function [#8313](https://github.com/apache/arrow-datafusion/pull/8313) (smallzhongfeng) +- fix: make `ntile` work in some corner cases [#8371](https://github.com/apache/arrow-datafusion/pull/8371) (haohuaijin) +- fix: Changed labeler.yml to latest format [#8431](https://github.com/apache/arrow-datafusion/pull/8431) (viirya) +- fix: Literal in `ORDER BY` window definition should not be an ordinal referring to relation column [#8419](https://github.com/apache/arrow-datafusion/pull/8419) (viirya) +- fix: ORDER BY window definition should work on null literal [#8444](https://github.com/apache/arrow-datafusion/pull/8444) (viirya) +- fix: RANGE frame for corner cases with empty ORDER BY clause should be treated as constant sort [#8445](https://github.com/apache/arrow-datafusion/pull/8445) (viirya) +- fix: don't unifies projection if expr is non-trival [#8454](https://github.com/apache/arrow-datafusion/pull/8454) (haohuaijin) +- fix: support uppercase when parsing `Interval` [#8478](https://github.com/apache/arrow-datafusion/pull/8478) (QuenKar) +- fix: incorrect set preserve_partitioning in SortExec [#8485](https://github.com/apache/arrow-datafusion/pull/8485) (haohuaijin) +- fix: Pull stats in `IdentVisitor`/`GraphvizVisitor` only when requested [#8514](https://github.com/apache/arrow-datafusion/pull/8514) (vrongmeal) +- fix: volatile expressions should not be target of common subexpt elimination [#8520](https://github.com/apache/arrow-datafusion/pull/8520) (viirya) + +**Documentation updates:** + +- Library Guide: Add Using the DataFrame API [#8319](https://github.com/apache/arrow-datafusion/pull/8319) (Veeupup) +- Minor: Add installation link to README.md [#8389](https://github.com/apache/arrow-datafusion/pull/8389) (Weijun-H) +- Prepare version 34.0.0 [#8508](https://github.com/apache/arrow-datafusion/pull/8508) (andygrove) + +**Merged pull requests:** + +- Fix typo in partitioning.rs [#8134](https://github.com/apache/arrow-datafusion/pull/8134) (lewiszlw) +- Implement `DISTINCT ON` from Postgres [#7981](https://github.com/apache/arrow-datafusion/pull/7981) (gruuya) +- Prepare 33.0.0-rc2 [#8144](https://github.com/apache/arrow-datafusion/pull/8144) (andygrove) +- Avoid concat in `array_append` [#8137](https://github.com/apache/arrow-datafusion/pull/8137) (jayzhan211) +- Replace macro with function for array_remove [#8106](https://github.com/apache/arrow-datafusion/pull/8106) (jayzhan211) +- Implement `array_union` [#7897](https://github.com/apache/arrow-datafusion/pull/7897) (edmondop) +- Minor: Document `ExecutionPlan::equivalence_properties` more thoroughly [#8128](https://github.com/apache/arrow-datafusion/pull/8128) (alamb) +- feat: show statistics in explain verbose [#8113](https://github.com/apache/arrow-datafusion/pull/8113) (NGA-TRAN) +- feat:implement postgres style 'overlay' string function [#8117](https://github.com/apache/arrow-datafusion/pull/8117) (Syleechan) +- Minor: Encapsulate `LeftJoinData` into a struct (rather than anonymous enum) and add comments [#8153](https://github.com/apache/arrow-datafusion/pull/8153) (alamb) +- Update sqllogictest requirement from 0.18.0 to 0.19.0 [#8163](https://github.com/apache/arrow-datafusion/pull/8163) (dependabot[bot]) +- feat: fill missing values with NULLs while inserting [#8146](https://github.com/apache/arrow-datafusion/pull/8146) (jonahgao) +- Introduce return type for aggregate sum [#8141](https://github.com/apache/arrow-datafusion/pull/8141) (jayzhan211) +- implement range/generate_series func [#8140](https://github.com/apache/arrow-datafusion/pull/8140) (Veeupup) +- Encapsulate `EquivalenceClass` into a struct [#8034](https://github.com/apache/arrow-datafusion/pull/8034) (alamb) +- Revert "Minor: remove unnecessary projection in `single_distinct_to_g… [#8176](https://github.com/apache/arrow-datafusion/pull/8176) (NGA-TRAN) +- Preserve all of the valid orderings during merging. [#8169](https://github.com/apache/arrow-datafusion/pull/8169) (mustafasrepo) +- Make fields of `ScalarUDF` , `AggregateUDF` and `WindowUDF` non `pub` [#8079](https://github.com/apache/arrow-datafusion/pull/8079) (alamb) +- Fix logical conflicts [#8187](https://github.com/apache/arrow-datafusion/pull/8187) (tustvold) +- Minor: Update JoinHashMap comment example to make it clearer [#8154](https://github.com/apache/arrow-datafusion/pull/8154) (alamb) +- Implement StreamTable and StreamTableProvider (#7994) [#8021](https://github.com/apache/arrow-datafusion/pull/8021) (tustvold) +- [MINOR]: Remove unused Results [#8189](https://github.com/apache/arrow-datafusion/pull/8189) (mustafasrepo) +- Minor: clean up the code based on clippy [#8179](https://github.com/apache/arrow-datafusion/pull/8179) (Weijun-H) +- Minor: simplify filter statistics code [#8174](https://github.com/apache/arrow-datafusion/pull/8174) (alamb) +- Replace macro with function for `array_position` and `array_positions` [#8170](https://github.com/apache/arrow-datafusion/pull/8170) (jayzhan211) +- Add Library Guide for User Defined Functions: Window/Aggregate [#8171](https://github.com/apache/arrow-datafusion/pull/8171) (Veeupup) +- Add more stream docs [#8192](https://github.com/apache/arrow-datafusion/pull/8192) (tustvold) +- Implement func `array_pop_front` [#8142](https://github.com/apache/arrow-datafusion/pull/8142) (Veeupup) +- Moving arrow_files SQL tests to sqllogictest [#8217](https://github.com/apache/arrow-datafusion/pull/8217) (edmondop) +- fix regression in the use of name in ProjectionPushdown [#8219](https://github.com/apache/arrow-datafusion/pull/8219) (alamb) +- [MINOR]: Fix column indices in the planning tests [#8191](https://github.com/apache/arrow-datafusion/pull/8191) (mustafasrepo) +- Remove unnecessary reassignment [#8232](https://github.com/apache/arrow-datafusion/pull/8232) (qrilka) +- Update itertools requirement from 0.11 to 0.12 [#8233](https://github.com/apache/arrow-datafusion/pull/8233) (crepererum) +- Port tests in subqueries.rs to sqllogictest [#8231](https://github.com/apache/arrow-datafusion/pull/8231) (PsiACE) +- feat: make FixedSizeList scalar also an ArrayRef [#8221](https://github.com/apache/arrow-datafusion/pull/8221) (wjones127) +- Add versions to datafusion dependencies [#8238](https://github.com/apache/arrow-datafusion/pull/8238) (andygrove) +- feat: to_array_of_size for ScalarValue::FixedSizeList [#8225](https://github.com/apache/arrow-datafusion/pull/8225) (wjones127) +- feat:implement calcite style 'levenshtein' string function [#8168](https://github.com/apache/arrow-datafusion/pull/8168) (Syleechan) +- feat: roundtrip FixedSizeList Scalar to protobuf [#8239](https://github.com/apache/arrow-datafusion/pull/8239) (wjones127) +- Update prost-build requirement from =0.12.1 to =0.12.2 [#8244](https://github.com/apache/arrow-datafusion/pull/8244) (dependabot[bot]) +- Minor: Port tests in `displayable.rs` to sqllogictest [#8246](https://github.com/apache/arrow-datafusion/pull/8246) (Weijun-H) +- Minor: add `with_estimated_selectivity ` to Precision [#8177](https://github.com/apache/arrow-datafusion/pull/8177) (alamb) +- fix: Timestamp with timezone not considered `join on` [#8150](https://github.com/apache/arrow-datafusion/pull/8150) (ACking-you) +- Replace macro in array_array to remove duplicate codes [#8252](https://github.com/apache/arrow-datafusion/pull/8252) (Veeupup) +- Port tests in projection.rs to sqllogictest [#8240](https://github.com/apache/arrow-datafusion/pull/8240) (PsiACE) +- Introduce `array_except` function [#8135](https://github.com/apache/arrow-datafusion/pull/8135) (jayzhan211) +- Port tests in `describe.rs` to sqllogictest [#8242](https://github.com/apache/arrow-datafusion/pull/8242) (Asura7969) +- Remove FileWriterMode and ListingTableInsertMode (#7994) [#8017](https://github.com/apache/arrow-datafusion/pull/8017) (tustvold) +- Minor: clean up the code based on Clippy [#8257](https://github.com/apache/arrow-datafusion/pull/8257) (Weijun-H) +- Update arrow 49.0.0 and object_store 0.8.0 [#8029](https://github.com/apache/arrow-datafusion/pull/8029) (tustvold) +- feat: impl the basic `string_agg` function [#8148](https://github.com/apache/arrow-datafusion/pull/8148) (haohuaijin) +- Minor: Make schema of grouping set columns nullable [#8248](https://github.com/apache/arrow-datafusion/pull/8248) (markusa380) +- feat: support simplifying BinaryExpr with arbitrary guarantees in GuaranteeRewriter [#8256](https://github.com/apache/arrow-datafusion/pull/8256) (wjones127) +- Making stream joins extensible: A new Trait implementation for SHJ [#8234](https://github.com/apache/arrow-datafusion/pull/8234) (metesynnada) +- Don't Canonicalize Filesystem Paths in ListingTableUrl / support new external tables for files that do not (yet) exist [#8014](https://github.com/apache/arrow-datafusion/pull/8014) (tustvold) +- Minor: Add sql level test for inserting into non-existent directory [#8278](https://github.com/apache/arrow-datafusion/pull/8278) (alamb) +- Replace `array_has/array_has_all/array_has_any` macro to remove duplicate code [#8263](https://github.com/apache/arrow-datafusion/pull/8263) (Veeupup) +- Fix bug in field level metadata matching code [#8286](https://github.com/apache/arrow-datafusion/pull/8286) (alamb) +- Refactor Interval Arithmetic Updates [#8276](https://github.com/apache/arrow-datafusion/pull/8276) (berkaysynnada) +- [MINOR]: Remove unecessary orderings from the final plan [#8289](https://github.com/apache/arrow-datafusion/pull/8289) (mustafasrepo) +- consistent logical & physical `NTILE` return types [#8270](https://github.com/apache/arrow-datafusion/pull/8270) (korowa) +- make `array_union`/`array_except`/`array_intersect` handle empty/null arrays rightly [#8269](https://github.com/apache/arrow-datafusion/pull/8269) (Veeupup) +- improve file path validation when reading parquet [#8267](https://github.com/apache/arrow-datafusion/pull/8267) (Weijun-H) +- [Benchmarks] Make `partitions` default to number of cores instead of 2 [#8292](https://github.com/apache/arrow-datafusion/pull/8292) (andygrove) +- Update prost-build requirement from =0.12.2 to =0.12.3 [#8298](https://github.com/apache/arrow-datafusion/pull/8298) (dependabot[bot]) +- Fix Display for List [#8261](https://github.com/apache/arrow-datafusion/pull/8261) (jayzhan211) +- feat: support customizing column default values for inserting [#8283](https://github.com/apache/arrow-datafusion/pull/8283) (jonahgao) +- support `LargeList` for `arrow_cast`, support `ScalarValue::LargeList` [#8290](https://github.com/apache/arrow-datafusion/pull/8290) (Weijun-H) +- Minor: remove useless clone based on Clippy [#8300](https://github.com/apache/arrow-datafusion/pull/8300) (Weijun-H) +- Calculate ordering equivalence for expressions (rather than just columns) [#8281](https://github.com/apache/arrow-datafusion/pull/8281) (mustafasrepo) +- Fix sqllogictests link in contributor-guide/index.md [#8314](https://github.com/apache/arrow-datafusion/pull/8314) (qrilka) +- Refactor: Unify `Expr::ScalarFunction` and `Expr::ScalarUDF`, introduce unresolved functions by name [#8258](https://github.com/apache/arrow-datafusion/pull/8258) (2010YOUY01) +- Support no distinct aggregate sum/min/max in `single_distinct_to_group_by` rule [#8266](https://github.com/apache/arrow-datafusion/pull/8266) (haohuaijin) +- feat:implement sql style 'substr_index' string function [#8272](https://github.com/apache/arrow-datafusion/pull/8272) (Syleechan) +- Fixing issues with for timestamp literals [#8193](https://github.com/apache/arrow-datafusion/pull/8193) (comphead) +- Projection Pushdown over StreamingTableExec [#8299](https://github.com/apache/arrow-datafusion/pull/8299) (berkaysynnada) +- minor: fix documentation [#8323](https://github.com/apache/arrow-datafusion/pull/8323) (comphead) +- fix: wrong result of range function [#8313](https://github.com/apache/arrow-datafusion/pull/8313) (smallzhongfeng) +- Minor: rename parquet.rs to parquet/mod.rs [#8301](https://github.com/apache/arrow-datafusion/pull/8301) (alamb) +- refactor: output ordering [#8304](https://github.com/apache/arrow-datafusion/pull/8304) (QuenKar) +- Update substrait requirement from 0.19.0 to 0.20.0 [#8339](https://github.com/apache/arrow-datafusion/pull/8339) (dependabot[bot]) +- Port tests in `aggregates.rs` to sqllogictest [#8316](https://github.com/apache/arrow-datafusion/pull/8316) (edmondop) +- Library Guide: Add Using the DataFrame API [#8319](https://github.com/apache/arrow-datafusion/pull/8319) (Veeupup) +- Port tests in limit.rs to sqllogictest [#8315](https://github.com/apache/arrow-datafusion/pull/8315) (zhangxffff) +- move array function unit_tests to sqllogictest [#8332](https://github.com/apache/arrow-datafusion/pull/8332) (Veeupup) +- NTH_VALUE reverse support [#8327](https://github.com/apache/arrow-datafusion/pull/8327) (mustafasrepo) +- Optimize Projections during Logical Plan [#8340](https://github.com/apache/arrow-datafusion/pull/8340) (mustafasrepo) +- [MINOR]: Move merge projections tests to under optimize projections [#8352](https://github.com/apache/arrow-datafusion/pull/8352) (mustafasrepo) +- Add `quote` and `escape` attributes to create csv external table [#8351](https://github.com/apache/arrow-datafusion/pull/8351) (Asura7969) +- Minor: Add DataFrame test [#8341](https://github.com/apache/arrow-datafusion/pull/8341) (alamb) +- Minor: clean up the code based on Clippy [#8359](https://github.com/apache/arrow-datafusion/pull/8359) (Weijun-H) +- Minor: Make it easier to work with Expr::ScalarFunction [#8350](https://github.com/apache/arrow-datafusion/pull/8350) (alamb) +- Minor: Move some datafusion-optimizer::utils down to datafusion-expr::utils [#8354](https://github.com/apache/arrow-datafusion/pull/8354) (Jesse-Bakker) +- Minor: Make `BuiltInScalarFunction::alias` a method [#8349](https://github.com/apache/arrow-datafusion/pull/8349) (alamb) +- Extract parquet statistics to its own module, add tests [#8294](https://github.com/apache/arrow-datafusion/pull/8294) (alamb) +- feat:implement sql style 'find_in_set' string function [#8328](https://github.com/apache/arrow-datafusion/pull/8328) (Syleechan) +- Support LargeUtf8 to Temporal Coercion [#8357](https://github.com/apache/arrow-datafusion/pull/8357) (jayzhan211) +- Refactor aggregate function handling [#8358](https://github.com/apache/arrow-datafusion/pull/8358) (Weijun-H) +- Implement Aliases for ScalarUDF [#8360](https://github.com/apache/arrow-datafusion/pull/8360) (Veeupup) +- Minor: Remove unnecessary name field in `ScalarFunctionDefintion` [#8365](https://github.com/apache/arrow-datafusion/pull/8365) (alamb) +- feat: support `LargeList` in `array_empty` [#8321](https://github.com/apache/arrow-datafusion/pull/8321) (Weijun-H) +- Double type argument for to_timestamp function [#8159](https://github.com/apache/arrow-datafusion/pull/8159) (spaydar) +- Support User Defined Table Function [#8306](https://github.com/apache/arrow-datafusion/pull/8306) (Veeupup) +- Document timestamp input limits [#8369](https://github.com/apache/arrow-datafusion/pull/8369) (comphead) +- fix: make `ntile` work in some corner cases [#8371](https://github.com/apache/arrow-datafusion/pull/8371) (haohuaijin) +- Minor: Refactor array_union function to use a generic union_arrays function [#8381](https://github.com/apache/arrow-datafusion/pull/8381) (Weijun-H) +- Minor: Refactor function argument handling in `ScalarFunctionDefinition` [#8387](https://github.com/apache/arrow-datafusion/pull/8387) (Weijun-H) +- Materialize dictionaries in group keys [#8291](https://github.com/apache/arrow-datafusion/pull/8291) (qrilka) +- Rewrite `array_ndims` to fix List(Null) handling [#8320](https://github.com/apache/arrow-datafusion/pull/8320) (jayzhan211) +- Docs: Improve the documentation on `ScalarValue` [#8378](https://github.com/apache/arrow-datafusion/pull/8378) (alamb) +- Avoid concat for `array_replace` [#8337](https://github.com/apache/arrow-datafusion/pull/8337) (jayzhan211) +- add a summary table to benchmark compare output [#8399](https://github.com/apache/arrow-datafusion/pull/8399) (razeghi71) +- Refactors on TreeNode Implementations [#8395](https://github.com/apache/arrow-datafusion/pull/8395) (berkaysynnada) +- feat: support `LargeList` in `make_array` and `array_length` [#8121](https://github.com/apache/arrow-datafusion/pull/8121) (Weijun-H) +- remove `unalias` TableScan filters when create Physical Filter [#8404](https://github.com/apache/arrow-datafusion/pull/8404) (jackwener) +- Update custom-table-providers.md [#8409](https://github.com/apache/arrow-datafusion/pull/8409) (nickpoorman) +- fix transforming `LogicalPlan::Explain` use `TreeNode::transform` fails [#8400](https://github.com/apache/arrow-datafusion/pull/8400) (haohuaijin) +- Docs: Fix `array_except` documentation example error [#8407](https://github.com/apache/arrow-datafusion/pull/8407) (Asura7969) +- Support named query parameters [#8384](https://github.com/apache/arrow-datafusion/pull/8384) (Asura7969) +- Minor: Add installation link to README.md [#8389](https://github.com/apache/arrow-datafusion/pull/8389) (Weijun-H) +- Update code comment for the cases of regularized RANGE frame and add tests for ORDER BY cases with RANGE frame [#8410](https://github.com/apache/arrow-datafusion/pull/8410) (viirya) +- Minor: Add example with parameters to LogicalPlan [#8418](https://github.com/apache/arrow-datafusion/pull/8418) (alamb) +- Minor: Improve `PruningPredicate` documentation [#8394](https://github.com/apache/arrow-datafusion/pull/8394) (alamb) +- feat: ScalarValue from String [#8411](https://github.com/apache/arrow-datafusion/pull/8411) (QuenKar) +- Bump actions/labeler from 4.3.0 to 5.0.0 [#8422](https://github.com/apache/arrow-datafusion/pull/8422) (dependabot[bot]) +- Update sqlparser requirement from 0.39.0 to 0.40.0 [#8338](https://github.com/apache/arrow-datafusion/pull/8338) (dependabot[bot]) +- feat: support `LargeList` for `array_has`, `array_has_all` and `array_has_any` [#8322](https://github.com/apache/arrow-datafusion/pull/8322) (Weijun-H) +- Union `schema` can't be a subset of the child schema [#8408](https://github.com/apache/arrow-datafusion/pull/8408) (jackwener) +- Move `PartitionSearchMode` into datafusion_physical_plan, rename to `InputOrderMode` [#8364](https://github.com/apache/arrow-datafusion/pull/8364) (alamb) +- Make filter selectivity for statistics configurable [#8243](https://github.com/apache/arrow-datafusion/pull/8243) (edmondop) +- fix: Changed labeler.yml to latest format [#8431](https://github.com/apache/arrow-datafusion/pull/8431) (viirya) +- Minor: Use `ScalarValue::from` impl for strings [#8429](https://github.com/apache/arrow-datafusion/pull/8429) (alamb) +- Support crossjoin in substrait. [#8427](https://github.com/apache/arrow-datafusion/pull/8427) (my-vegetable-has-exploded) +- Fix ambiguous reference when aliasing in combination with `ORDER BY` [#8425](https://github.com/apache/arrow-datafusion/pull/8425) (Asura7969) +- Minor: convert marcro `list-slice` and `slice` to function [#8424](https://github.com/apache/arrow-datafusion/pull/8424) (Weijun-H) +- Remove macro in iter_to_array for List [#8414](https://github.com/apache/arrow-datafusion/pull/8414) (jayzhan211) +- fix: Literal in `ORDER BY` window definition should not be an ordinal referring to relation column [#8419](https://github.com/apache/arrow-datafusion/pull/8419) (viirya) +- feat: customize column default values for external tables [#8415](https://github.com/apache/arrow-datafusion/pull/8415) (jonahgao) +- feat: Support `array_sort`(`list_sort`) [#8279](https://github.com/apache/arrow-datafusion/pull/8279) (Asura7969) +- Bugfix: Remove df-cli specific SQL statment options before executing with DataFusion [#8426](https://github.com/apache/arrow-datafusion/pull/8426) (devinjdangelo) +- Detect when filters on unique constraints make subqueries scalar [#8312](https://github.com/apache/arrow-datafusion/pull/8312) (Jesse-Bakker) +- Add alias check to optimize projections merge [#8438](https://github.com/apache/arrow-datafusion/pull/8438) (mustafasrepo) +- Fix PartialOrd for ScalarValue::List/FixSizeList/LargeList [#8253](https://github.com/apache/arrow-datafusion/pull/8253) (jayzhan211) +- Support parquet_metadata for datafusion-cli [#8413](https://github.com/apache/arrow-datafusion/pull/8413) (Veeupup) +- Fix bug in optimizing a nested count [#8459](https://github.com/apache/arrow-datafusion/pull/8459) (Dandandan) +- Bump actions/setup-python from 4 to 5 [#8449](https://github.com/apache/arrow-datafusion/pull/8449) (dependabot[bot]) +- fix: ORDER BY window definition should work on null literal [#8444](https://github.com/apache/arrow-datafusion/pull/8444) (viirya) +- flx clippy warnings [#8455](https://github.com/apache/arrow-datafusion/pull/8455) (waynexia) +- fix: RANGE frame for corner cases with empty ORDER BY clause should be treated as constant sort [#8445](https://github.com/apache/arrow-datafusion/pull/8445) (viirya) +- Preserve `dict_id` on `Field` during serde roundtrip [#8457](https://github.com/apache/arrow-datafusion/pull/8457) (avantgardnerio) +- feat: support `InterleaveExecNode` in the proto [#8460](https://github.com/apache/arrow-datafusion/pull/8460) (liukun4515) +- [BUG FIX]: Proper Empty Batch handling in window execution [#8466](https://github.com/apache/arrow-datafusion/pull/8466) (mustafasrepo) +- Minor: update `cast` [#8458](https://github.com/apache/arrow-datafusion/pull/8458) (Weijun-H) +- fix: don't unifies projection if expr is non-trival [#8454](https://github.com/apache/arrow-datafusion/pull/8454) (haohuaijin) +- Minor: Add new bloom filter predicate tests [#8433](https://github.com/apache/arrow-datafusion/pull/8433) (alamb) +- Add PRIMARY KEY Aggregate support to dataframe API [#8356](https://github.com/apache/arrow-datafusion/pull/8356) (mustafasrepo) +- Minor: refactor `data_trunc` to reduce duplicated code [#8430](https://github.com/apache/arrow-datafusion/pull/8430) (Weijun-H) +- Support array_distinct function. [#8268](https://github.com/apache/arrow-datafusion/pull/8268) (my-vegetable-has-exploded) +- Add primary key support to stream table [#8467](https://github.com/apache/arrow-datafusion/pull/8467) (mustafasrepo) +- Add `evaluate_demo` and `range_analysis_demo` to Expr examples [#8377](https://github.com/apache/arrow-datafusion/pull/8377) (alamb) +- Minor: fix function name typo [#8473](https://github.com/apache/arrow-datafusion/pull/8473) (Weijun-H) +- Minor: Fix comment typo in table.rs: s/indentical/identical/ [#8469](https://github.com/apache/arrow-datafusion/pull/8469) (KeunwooLee-at) +- Remove `define_array_slice` and reuse `array_slice` for `array_pop_front/back` [#8401](https://github.com/apache/arrow-datafusion/pull/8401) (jayzhan211) +- Minor: refactor `trim` to clean up duplicated code [#8434](https://github.com/apache/arrow-datafusion/pull/8434) (Weijun-H) +- Split `EmptyExec` into `PlaceholderRowExec` [#8446](https://github.com/apache/arrow-datafusion/pull/8446) (razeghi71) +- Enable non-uniform field type for structs created in DataFusion [#8463](https://github.com/apache/arrow-datafusion/pull/8463) (dlovell) +- Minor: Add multi ordering test for array agg order [#8439](https://github.com/apache/arrow-datafusion/pull/8439) (jayzhan211) +- Sort filenames when reading parquet to ensure consistent schema [#6629](https://github.com/apache/arrow-datafusion/pull/6629) (thomas-k-cameron) +- Minor: Improve comments in EnforceDistribution tests [#8474](https://github.com/apache/arrow-datafusion/pull/8474) (alamb) +- fix: support uppercase when parsing `Interval` [#8478](https://github.com/apache/arrow-datafusion/pull/8478) (QuenKar) +- Better Equivalence (ordering and exact equivalence) Propagation through ProjectionExec [#8484](https://github.com/apache/arrow-datafusion/pull/8484) (mustafasrepo) +- Add `today` alias for `current_date` [#8423](https://github.com/apache/arrow-datafusion/pull/8423) (smallzhongfeng) +- Minor: remove useless clone in `array_expression` [#8495](https://github.com/apache/arrow-datafusion/pull/8495) (Weijun-H) +- fix: incorrect set preserve_partitioning in SortExec [#8485](https://github.com/apache/arrow-datafusion/pull/8485) (haohuaijin) +- Explicitly mark parquet for tests in datafusion-common [#8497](https://github.com/apache/arrow-datafusion/pull/8497) (Dennis40816) +- Minor/Doc: Clarify DataFrame::write_table Documentation [#8519](https://github.com/apache/arrow-datafusion/pull/8519) (devinjdangelo) +- fix: Pull stats in `IdentVisitor`/`GraphvizVisitor` only when requested [#8514](https://github.com/apache/arrow-datafusion/pull/8514) (vrongmeal) +- Change display of RepartitionExec from SortPreservingRepartitionExec to RepartitionExec preserve_order=true [#8521](https://github.com/apache/arrow-datafusion/pull/8521) (JacobOgle) +- Fix `DataFrame::cache` errors with `Plan("Mismatch between schema and batches")` [#8510](https://github.com/apache/arrow-datafusion/pull/8510) (Asura7969) +- Minor: update pbjson_dependency [#8470](https://github.com/apache/arrow-datafusion/pull/8470) (alamb) +- Minor: Update prost-derive dependency [#8471](https://github.com/apache/arrow-datafusion/pull/8471) (alamb) +- Minor/Doc: Add DataFrame::write_table to DataFrame user guide [#8527](https://github.com/apache/arrow-datafusion/pull/8527) (devinjdangelo) +- Minor: Add repartition_file.slt end to end test for repartitioning files, and supporting tweaks [#8505](https://github.com/apache/arrow-datafusion/pull/8505) (alamb) +- Prepare version 34.0.0 [#8508](https://github.com/apache/arrow-datafusion/pull/8508) (andygrove) +- refactor: use ExprBuilder to consume substrait expr and use macro to generate error [#8515](https://github.com/apache/arrow-datafusion/pull/8515) (waynexia) +- [MINOR]: Make some slt tests deterministic [#8525](https://github.com/apache/arrow-datafusion/pull/8525) (mustafasrepo) +- fix: volatile expressions should not be target of common subexpt elimination [#8520](https://github.com/apache/arrow-datafusion/pull/8520) (viirya) +- Minor: Add LakeSoul to the list of Known Users [#8536](https://github.com/apache/arrow-datafusion/pull/8536) (xuchen-plus) +- Fix regression with Incorrect results when reading parquet files with different schemas and statistics [#8533](https://github.com/apache/arrow-datafusion/pull/8533) (alamb) +- feat: improve string statistics display in datafusion-cli `parquet_metadata` function [#8535](https://github.com/apache/arrow-datafusion/pull/8535) (asimsedhain) +- Defer file creation to write [#8539](https://github.com/apache/arrow-datafusion/pull/8539) (tustvold) +- Minor: Improve error handling in sqllogictest runner [#8544](https://github.com/apache/arrow-datafusion/pull/8544) (alamb) diff --git a/docs/Cargo.toml b/docs/Cargo.toml index 4d01466924f9..813335e30f77 100644 --- a/docs/Cargo.toml +++ b/docs/Cargo.toml @@ -29,4 +29,4 @@ authors = { workspace = true } rust-version = "1.70" [dependencies] -datafusion = { path = "../datafusion/core", version = "33.0.0", default-features = false } +datafusion = { path = "../datafusion/core", version = "34.0.0", default-features = false } diff --git a/docs/source/library-user-guide/adding-udfs.md b/docs/source/library-user-guide/adding-udfs.md index 1e710bc321a2..11cf52eb3fcf 100644 --- a/docs/source/library-user-guide/adding-udfs.md +++ b/docs/source/library-user-guide/adding-udfs.md @@ -17,17 +17,18 @@ under the License. --> -# Adding User Defined Functions: Scalar/Window/Aggregate +# Adding User Defined Functions: Scalar/Window/Aggregate/Table Functions User Defined Functions (UDFs) are functions that can be used in the context of DataFusion execution. This page covers how to add UDFs to DataFusion. In particular, it covers how to add Scalar, Window, and Aggregate UDFs. -| UDF Type | Description | Example | -| --------- | ---------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------ | -| Scalar | A function that takes a row of data and returns a single value. | [simple_udf.rs](https://github.com/apache/arrow-datafusion/blob/main/datafusion-examples/examples/simple_udf.rs) | -| Window | A function that takes a row of data and returns a single value, but also has access to the rows around it. | [simple_udwf.rs](https://github.com/apache/arrow-datafusion/blob/main/datafusion-examples/examples/simple_udwf.rs) | -| Aggregate | A function that takes a group of rows and returns a single value. | [simple_udaf.rs](https://github.com/apache/arrow-datafusion/blob/main/datafusion-examples/examples/simple_udaf.rs) | +| UDF Type | Description | Example | +| --------- | ---------------------------------------------------------------------------------------------------------- | ------------------- | +| Scalar | A function that takes a row of data and returns a single value. | [simple_udf.rs][1] | +| Window | A function that takes a row of data and returns a single value, but also has access to the rows around it. | [simple_udwf.rs][2] | +| Aggregate | A function that takes a group of rows and returns a single value. | [simple_udaf.rs][3] | +| Table | A function that takes parameters and returns a `TableProvider` to be used in an query plan. | [simple_udtf.rs][4] | First we'll talk about adding an Scalar UDF end-to-end, then we'll talk about the differences between the different types of UDFs. @@ -432,3 +433,100 @@ Then, we can query like below: ```rust let df = ctx.sql("SELECT geo_mean(a) FROM t").await?; ``` + +## Adding a User-Defined Table Function + +A User-Defined Table Function (UDTF) is a function that takes parameters and returns a `TableProvider`. + +Because we're returning a `TableProvider`, in this example we'll use the `MemTable` data source to represent a table. This is a simple struct that holds a set of RecordBatches in memory and treats them as a table. In your case, this would be replaced with your own struct that implements `TableProvider`. + +While this is a simple example for illustrative purposes, UDTFs have a lot of potential use cases. And can be particularly useful for reading data from external sources and interactive analysis. For example, see the [example][4] for a working example that reads from a CSV file. As another example, you could use the built-in UDTF `parquet_metadata` in the CLI to read the metadata from a Parquet file. + +```console +❯ select filename, row_group_id, row_group_num_rows, row_group_bytes, stats_min, stats_max from parquet_metadata('./benchmarks/data/hits.parquet') where column_id = 17 limit 10; ++--------------------------------+--------------+--------------------+-----------------+-----------+-----------+ +| filename | row_group_id | row_group_num_rows | row_group_bytes | stats_min | stats_max | ++--------------------------------+--------------+--------------------+-----------------+-----------+-----------+ +| ./benchmarks/data/hits.parquet | 0 | 450560 | 188921521 | 0 | 73256 | +| ./benchmarks/data/hits.parquet | 1 | 612174 | 210338885 | 0 | 109827 | +| ./benchmarks/data/hits.parquet | 2 | 344064 | 161242466 | 0 | 122484 | +| ./benchmarks/data/hits.parquet | 3 | 606208 | 235549898 | 0 | 121073 | +| ./benchmarks/data/hits.parquet | 4 | 335872 | 137103898 | 0 | 108996 | +| ./benchmarks/data/hits.parquet | 5 | 311296 | 145453612 | 0 | 108996 | +| ./benchmarks/data/hits.parquet | 6 | 303104 | 138833963 | 0 | 108996 | +| ./benchmarks/data/hits.parquet | 7 | 303104 | 191140113 | 0 | 73256 | +| ./benchmarks/data/hits.parquet | 8 | 573440 | 208038598 | 0 | 95823 | +| ./benchmarks/data/hits.parquet | 9 | 344064 | 147838157 | 0 | 73256 | ++--------------------------------+--------------+--------------------+-----------------+-----------+-----------+ +``` + +### Writing the UDTF + +The simple UDTF used here takes a single `Int64` argument and returns a table with a single column with the value of the argument. To create a function in DataFusion, you need to implement the `TableFunctionImpl` trait. This trait has a single method, `call`, that takes a slice of `Expr`s and returns a `Result>`. + +In the `call` method, you parse the input `Expr`s and return a `TableProvider`. You might also want to do some validation of the input `Expr`s, e.g. checking that the number of arguments is correct. + +```rust +use datafusion::common::plan_err; +use datafusion::datasource::function::TableFunctionImpl; +// Other imports here + +/// A table function that returns a table provider with the value as a single column +#[derive(Default)] +pub struct EchoFunction {} + +impl TableFunctionImpl for EchoFunction { + fn call(&self, exprs: &[Expr]) -> Result> { + let Some(Expr::Literal(ScalarValue::Int64(Some(value)))) = exprs.get(0) else { + return plan_err!("First argument must be an integer"); + }; + + // Create the schema for the table + let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Int64, false)])); + + // Create a single RecordBatch with the value as a single column + let batch = RecordBatch::try_new( + schema.clone(), + vec![Arc::new(Int64Array::from(vec![*value]))], + )?; + + // Create a MemTable plan that returns the RecordBatch + let provider = MemTable::try_new(schema, vec![vec![batch]])?; + + Ok(Arc::new(provider)) + } +} +``` + +### Registering and Using the UDTF + +With the UDTF implemented, you can register it with the `SessionContext`: + +```rust +use datafusion::execution::context::SessionContext; + +let ctx = SessionContext::new(); + +ctx.register_udtf("echo", Arc::new(EchoFunction::default())); +``` + +And if all goes well, you can use it in your query: + +```rust +use datafusion::arrow::util::pretty; + +let df = ctx.sql("SELECT * FROM echo(1)").await?; + +let results = df.collect().await?; +pretty::print_batches(&results)?; +// +---+ +// | a | +// +---+ +// | 1 | +// +---+ +``` + +[1]: https://github.com/apache/arrow-datafusion/blob/main/datafusion-examples/examples/simple_udf.rs +[2]: https://github.com/apache/arrow-datafusion/blob/main/datafusion-examples/examples/simple_udwf.rs +[3]: https://github.com/apache/arrow-datafusion/blob/main/datafusion-examples/examples/simple_udaf.rs +[4]: https://github.com/apache/arrow-datafusion/blob/main/datafusion-examples/examples/simple_udtf.rs diff --git a/docs/source/user-guide/configs.md b/docs/source/user-guide/configs.md index d5a43e429e09..6fb5cc4ca870 100644 --- a/docs/source/user-guide/configs.md +++ b/docs/source/user-guide/configs.md @@ -64,7 +64,7 @@ Environment variables are read during `SessionConfig` initialisation so they mus | datafusion.execution.parquet.statistics_enabled | NULL | Sets if statistics are enabled for any column Valid values are: "none", "chunk", and "page" These values are not case sensitive. If NULL, uses default parquet writer setting | | datafusion.execution.parquet.max_statistics_size | NULL | Sets max statistics size for any column. If NULL, uses default parquet writer setting | | datafusion.execution.parquet.max_row_group_size | 1048576 | Sets maximum number of rows in a row group | -| datafusion.execution.parquet.created_by | datafusion version 33.0.0 | Sets "created by" property | +| datafusion.execution.parquet.created_by | datafusion version 34.0.0 | Sets "created by" property | | datafusion.execution.parquet.column_index_truncate_length | NULL | Sets column index truncate length | | datafusion.execution.parquet.data_page_row_count_limit | 18446744073709551615 | Sets best effort maximum number of rows in data page | | datafusion.execution.parquet.encoding | NULL | Sets default encoding for any column Valid values are: plain, plain_dictionary, rle, bit_packed, delta_binary_packed, delta_length_byte_array, delta_byte_array, rle_dictionary, and byte_stream_split. These values are not case sensitive. If NULL, uses default parquet writer setting | diff --git a/docs/source/user-guide/dataframe.md b/docs/source/user-guide/dataframe.md index 4484b2c51019..c0210200a246 100644 --- a/docs/source/user-guide/dataframe.md +++ b/docs/source/user-guide/dataframe.md @@ -95,6 +95,7 @@ These methods execute the logical plan represented by the DataFrame and either c | write_csv | Execute this DataFrame and write the results to disk in CSV format. | | write_json | Execute this DataFrame and write the results to disk in JSON format. | | write_parquet | Execute this DataFrame and write the results to disk in Parquet format. | +| write_table | Execute this DataFrame and write the results via the insert_into method of the registered TableProvider | ## Other DataFrame Methods diff --git a/docs/source/user-guide/introduction.md b/docs/source/user-guide/introduction.md index da250fbb1f9c..6c1e54c2b701 100644 --- a/docs/source/user-guide/introduction.md +++ b/docs/source/user-guide/introduction.md @@ -106,6 +106,7 @@ Here are some active projects using DataFusion: - [GlareDB](https://github.com/GlareDB/glaredb) Fast SQL database for querying and analyzing distributed data. - [InfluxDB IOx](https://github.com/influxdata/influxdb_iox) Time Series Database - [Kamu](https://github.com/kamu-data/kamu-cli/) Planet-scale streaming data pipeline +- [LakeSoul](https://github.com/lakesoul-io/LakeSoul) Open source LakeHouse framework with native IO in Rust. - [Lance](https://github.com/lancedb/lance) Modern columnar data format for ML - [Parseable](https://github.com/parseablehq/parseable) Log storage and observability platform - [qv](https://github.com/timvw/qv) Quickly view your data diff --git a/docs/source/user-guide/sql/write_options.md b/docs/source/user-guide/sql/write_options.md index 941484e84efd..94adee960996 100644 --- a/docs/source/user-guide/sql/write_options.md +++ b/docs/source/user-guide/sql/write_options.md @@ -78,11 +78,9 @@ The following special options are specific to the `COPY` command. The following special options are specific to creating an external table. -| Option | Description | Default Value | -| ----------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------- | -| SINGLE_FILE | If true, indicates that this external table is backed by a single file. INSERT INTO queries will append to this file. | false | -| CREATE_LOCAL_PATH | If true, the folder or file backing this table will be created on the local file system if it does not already exist when running INSERT INTO queries. | false | -| INSERT_MODE | Determines if INSERT INTO queries should append to existing files or append new files to an existing directory. Valid values are append_to_file, append_new_files, and error. Note that "error" will block inserting data into this table. | CSV and JSON default to append_to_file. Parquet defaults to append_new_files | +| Option | Description | Default Value | +| ----------- | --------------------------------------------------------------------------------------------------------------------- | ------------- | +| SINGLE_FILE | If true, indicates that this external table is backed by a single file. INSERT INTO queries will append to this file. | false | ### JSON Format Specific Options