From 0332eb569a5428ac385fe892ce7b5fb40d52c8c0 Mon Sep 17 00:00:00 2001 From: Ruihang Xia Date: Fri, 2 Aug 2024 20:10:41 +0800 Subject: [PATCH] refactor: move ExecutionPlan and related structs into dedicated mod (#11759) Signed-off-by: Ruihang Xia --- .../physical-plan/src/execution_plan.rs | 1018 +++++++++++++++++ datafusion/physical-plan/src/lib.rs | 995 +--------------- 2 files changed, 1030 insertions(+), 983 deletions(-) create mode 100644 datafusion/physical-plan/src/execution_plan.rs diff --git a/datafusion/physical-plan/src/execution_plan.rs b/datafusion/physical-plan/src/execution_plan.rs new file mode 100644 index 000000000000..5a3fc086c1f8 --- /dev/null +++ b/datafusion/physical-plan/src/execution_plan.rs @@ -0,0 +1,1018 @@ +// Licensed to the Apache Software Foundation (ASF) under one +// or more contributor license agreements. See the NOTICE file +// distributed with this work for additional information +// regarding copyright ownership. The ASF licenses this file +// to you under the Apache License, Version 2.0 (the +// "License"); you may not use this file except in compliance +// with the License. You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, +// software distributed under the License is distributed on an +// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +// KIND, either express or implied. See the License for the +// specific language governing permissions and limitations +// under the License. + +use std::any::Any; +use std::fmt::Debug; +use std::sync::Arc; + +use arrow::datatypes::SchemaRef; +use arrow::record_batch::RecordBatch; +use futures::stream::{StreamExt, TryStreamExt}; +use tokio::task::JoinSet; + +use datafusion_common::config::ConfigOptions; +pub use datafusion_common::hash_utils; +pub use datafusion_common::utils::project_schema; +use datafusion_common::{exec_err, Result}; +pub use datafusion_common::{internal_err, ColumnStatistics, Statistics}; +use datafusion_execution::TaskContext; +pub use datafusion_execution::{RecordBatchStream, SendableRecordBatchStream}; +pub use datafusion_expr::{Accumulator, ColumnarValue}; +pub use datafusion_physical_expr::window::WindowExpr; +pub use datafusion_physical_expr::{ + expressions, functions, udf, AggregateExpr, Distribution, Partitioning, PhysicalExpr, +}; +use datafusion_physical_expr::{ + EquivalenceProperties, LexOrdering, PhysicalSortExpr, PhysicalSortRequirement, +}; + +use crate::coalesce_partitions::CoalescePartitionsExec; +use crate::display::DisplayableExecutionPlan; +pub use crate::display::{DefaultDisplay, DisplayAs, DisplayFormatType, VerboseDisplay}; +pub use crate::metrics::Metric; +use crate::metrics::MetricsSet; +pub use crate::ordering::InputOrderMode; +use crate::repartition::RepartitionExec; +use crate::sorts::sort_preserving_merge::SortPreservingMergeExec; +pub use crate::stream::EmptyRecordBatchStream; +use crate::stream::RecordBatchStreamAdapter; + +/// Represent nodes in the DataFusion Physical Plan. +/// +/// Calling [`execute`] produces an `async` [`SendableRecordBatchStream`] of +/// [`RecordBatch`] that incrementally computes a partition of the +/// `ExecutionPlan`'s output from its input. See [`Partitioning`] for more +/// details on partitioning. +/// +/// Methods such as [`Self::schema`] and [`Self::properties`] communicate +/// properties of the output to the DataFusion optimizer, and methods such as +/// [`required_input_distribution`] and [`required_input_ordering`] express +/// requirements of the `ExecutionPlan` from its input. +/// +/// [`ExecutionPlan`] can be displayed in a simplified form using the +/// return value from [`displayable`] in addition to the (normally +/// quite verbose) `Debug` output. +/// +/// [`execute`]: ExecutionPlan::execute +/// [`required_input_distribution`]: ExecutionPlan::required_input_distribution +/// [`required_input_ordering`]: ExecutionPlan::required_input_ordering +pub trait ExecutionPlan: Debug + DisplayAs + Send + Sync { + /// Short name for the ExecutionPlan, such as 'ParquetExec'. + /// + /// Implementation note: this method can just proxy to + /// [`static_name`](ExecutionPlan::static_name) if no special action is + /// needed. It doesn't provide a default implementation like that because + /// this method doesn't require the `Sized` constrain to allow a wilder + /// range of use cases. + fn name(&self) -> &str; + + /// Short name for the ExecutionPlan, such as 'ParquetExec'. + /// Like [`name`](ExecutionPlan::name) but can be called without an instance. + fn static_name() -> &'static str + where + Self: Sized, + { + let full_name = std::any::type_name::(); + let maybe_start_idx = full_name.rfind(':'); + match maybe_start_idx { + Some(start_idx) => &full_name[start_idx + 1..], + None => "UNKNOWN", + } + } + + /// Returns the execution plan as [`Any`] so that it can be + /// downcast to a specific implementation. + fn as_any(&self) -> &dyn Any; + + /// Get the schema for this execution plan + fn schema(&self) -> SchemaRef { + Arc::clone(self.properties().schema()) + } + + /// Return properties of the output of the `ExecutionPlan`, such as output + /// ordering(s), partitioning information etc. + /// + /// This information is available via methods on [`ExecutionPlanProperties`] + /// trait, which is implemented for all `ExecutionPlan`s. + fn properties(&self) -> &PlanProperties; + + /// Specifies the data distribution requirements for all the + /// children for this `ExecutionPlan`, By default it's [[Distribution::UnspecifiedDistribution]] for each child, + fn required_input_distribution(&self) -> Vec { + vec![Distribution::UnspecifiedDistribution; self.children().len()] + } + + /// Specifies the ordering required for all of the children of this + /// `ExecutionPlan`. + /// + /// For each child, it's the local ordering requirement within + /// each partition rather than the global ordering + /// + /// NOTE that checking `!is_empty()` does **not** check for a + /// required input ordering. Instead, the correct check is that at + /// least one entry must be `Some` + fn required_input_ordering(&self) -> Vec>> { + vec![None; self.children().len()] + } + + /// Returns `false` if this `ExecutionPlan`'s implementation may reorder + /// rows within or between partitions. + /// + /// For example, Projection, Filter, and Limit maintain the order + /// of inputs -- they may transform values (Projection) or not + /// produce the same number of rows that went in (Filter and + /// Limit), but the rows that are produced go in the same way. + /// + /// DataFusion uses this metadata to apply certain optimizations + /// such as automatically repartitioning correctly. + /// + /// The default implementation returns `false` + /// + /// WARNING: if you override this default, you *MUST* ensure that + /// the `ExecutionPlan`'s maintains the ordering invariant or else + /// DataFusion may produce incorrect results. + fn maintains_input_order(&self) -> Vec { + vec![false; self.children().len()] + } + + /// Specifies whether the `ExecutionPlan` benefits from increased + /// parallelization at its input for each child. + /// + /// If returns `true`, the `ExecutionPlan` would benefit from partitioning + /// its corresponding child (and thus from more parallelism). For + /// `ExecutionPlan` that do very little work the overhead of extra + /// parallelism may outweigh any benefits + /// + /// The default implementation returns `true` unless this `ExecutionPlan` + /// has signalled it requires a single child input partition. + fn benefits_from_input_partitioning(&self) -> Vec { + // By default try to maximize parallelism with more CPUs if + // possible + self.required_input_distribution() + .into_iter() + .map(|dist| !matches!(dist, Distribution::SinglePartition)) + .collect() + } + + /// Get a list of children `ExecutionPlan`s that act as inputs to this plan. + /// The returned list will be empty for leaf nodes such as scans, will contain + /// a single value for unary nodes, or two values for binary nodes (such as + /// joins). + fn children(&self) -> Vec<&Arc>; + + /// Returns a new `ExecutionPlan` where all existing children were replaced + /// by the `children`, in order + fn with_new_children( + self: Arc, + children: Vec>, + ) -> Result>; + + /// If supported, attempt to increase the partitioning of this `ExecutionPlan` to + /// produce `target_partitions` partitions. + /// + /// If the `ExecutionPlan` does not support changing its partitioning, + /// returns `Ok(None)` (the default). + /// + /// It is the `ExecutionPlan` can increase its partitioning, but not to the + /// `target_partitions`, it may return an ExecutionPlan with fewer + /// partitions. This might happen, for example, if each new partition would + /// be too small to be efficiently processed individually. + /// + /// The DataFusion optimizer attempts to use as many threads as possible by + /// repartitioning its inputs to match the target number of threads + /// available (`target_partitions`). Some data sources, such as the built in + /// CSV and Parquet readers, implement this method as they are able to read + /// from their input files in parallel, regardless of how the source data is + /// split amongst files. + fn repartitioned( + &self, + _target_partitions: usize, + _config: &ConfigOptions, + ) -> Result>> { + Ok(None) + } + + /// Begin execution of `partition`, returning a [`Stream`] of + /// [`RecordBatch`]es. + /// + /// # Notes + /// + /// The `execute` method itself is not `async` but it returns an `async` + /// [`futures::stream::Stream`]. This `Stream` should incrementally compute + /// the output, `RecordBatch` by `RecordBatch` (in a streaming fashion). + /// Most `ExecutionPlan`s should not do any work before the first + /// `RecordBatch` is requested from the stream. + /// + /// [`RecordBatchStreamAdapter`] can be used to convert an `async` + /// [`Stream`] into a [`SendableRecordBatchStream`]. + /// + /// Using `async` `Streams` allows for network I/O during execution and + /// takes advantage of Rust's built in support for `async` continuations and + /// crate ecosystem. + /// + /// [`Stream`]: futures::stream::Stream + /// [`StreamExt`]: futures::stream::StreamExt + /// [`TryStreamExt`]: futures::stream::TryStreamExt + /// [`RecordBatchStreamAdapter`]: crate::stream::RecordBatchStreamAdapter + /// + /// # Cancellation / Aborting Execution + /// + /// The [`Stream`] that is returned must ensure that any allocated resources + /// are freed when the stream itself is dropped. This is particularly + /// important for [`spawn`]ed tasks or threads. Unless care is taken to + /// "abort" such tasks, they may continue to consume resources even after + /// the plan is dropped, generating intermediate results that are never + /// used. + /// Thus, [`spawn`] is disallowed, and instead use [`SpawnedTask`]. + /// + /// For more details see [`SpawnedTask`], [`JoinSet`] and [`RecordBatchReceiverStreamBuilder`] + /// for structures to help ensure all background tasks are cancelled. + /// + /// [`spawn`]: tokio::task::spawn + /// [`JoinSet`]: tokio::task::JoinSet + /// [`SpawnedTask`]: datafusion_common_runtime::SpawnedTask + /// [`RecordBatchReceiverStreamBuilder`]: crate::stream::RecordBatchReceiverStreamBuilder + /// + /// # Implementation Examples + /// + /// While `async` `Stream`s have a non trivial learning curve, the + /// [`futures`] crate provides [`StreamExt`] and [`TryStreamExt`] + /// which help simplify many common operations. + /// + /// Here are some common patterns: + /// + /// ## Return Precomputed `RecordBatch` + /// + /// We can return a precomputed `RecordBatch` as a `Stream`: + /// + /// ``` + /// # use std::sync::Arc; + /// # use arrow_array::RecordBatch; + /// # use arrow_schema::SchemaRef; + /// # use datafusion_common::Result; + /// # use datafusion_execution::{SendableRecordBatchStream, TaskContext}; + /// # use datafusion_physical_plan::memory::MemoryStream; + /// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter; + /// struct MyPlan { + /// batch: RecordBatch, + /// } + /// + /// impl MyPlan { + /// fn execute( + /// &self, + /// partition: usize, + /// context: Arc + /// ) -> Result { + /// // use functions from futures crate convert the batch into a stream + /// let fut = futures::future::ready(Ok(self.batch.clone())); + /// let stream = futures::stream::once(fut); + /// Ok(Box::pin(RecordBatchStreamAdapter::new(self.batch.schema(), stream))) + /// } + /// } + /// ``` + /// + /// ## Lazily (async) Compute `RecordBatch` + /// + /// We can also lazily compute a `RecordBatch` when the returned `Stream` is polled + /// + /// ``` + /// # use std::sync::Arc; + /// # use arrow_array::RecordBatch; + /// # use arrow_schema::SchemaRef; + /// # use datafusion_common::Result; + /// # use datafusion_execution::{SendableRecordBatchStream, TaskContext}; + /// # use datafusion_physical_plan::memory::MemoryStream; + /// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter; + /// struct MyPlan { + /// schema: SchemaRef, + /// } + /// + /// /// Returns a single batch when the returned stream is polled + /// async fn get_batch() -> Result { + /// todo!() + /// } + /// + /// impl MyPlan { + /// fn execute( + /// &self, + /// partition: usize, + /// context: Arc + /// ) -> Result { + /// let fut = get_batch(); + /// let stream = futures::stream::once(fut); + /// Ok(Box::pin(RecordBatchStreamAdapter::new(self.schema.clone(), stream))) + /// } + /// } + /// ``` + /// + /// ## Lazily (async) create a Stream + /// + /// If you need to create the return `Stream` using an `async` function, + /// you can do so by flattening the result: + /// + /// ``` + /// # use std::sync::Arc; + /// # use arrow_array::RecordBatch; + /// # use arrow_schema::SchemaRef; + /// # use futures::TryStreamExt; + /// # use datafusion_common::Result; + /// # use datafusion_execution::{SendableRecordBatchStream, TaskContext}; + /// # use datafusion_physical_plan::memory::MemoryStream; + /// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter; + /// struct MyPlan { + /// schema: SchemaRef, + /// } + /// + /// /// async function that returns a stream + /// async fn get_batch_stream() -> Result { + /// todo!() + /// } + /// + /// impl MyPlan { + /// fn execute( + /// &self, + /// partition: usize, + /// context: Arc + /// ) -> Result { + /// // A future that yields a stream + /// let fut = get_batch_stream(); + /// // Use TryStreamExt::try_flatten to flatten the stream of streams + /// let stream = futures::stream::once(fut).try_flatten(); + /// Ok(Box::pin(RecordBatchStreamAdapter::new(self.schema.clone(), stream))) + /// } + /// } + /// ``` + fn execute( + &self, + partition: usize, + context: Arc, + ) -> Result; + + /// Return a snapshot of the set of [`Metric`]s for this + /// [`ExecutionPlan`]. If no `Metric`s are available, return None. + /// + /// While the values of the metrics in the returned + /// [`MetricsSet`]s may change as execution progresses, the + /// specific metrics will not. + /// + /// Once `self.execute()` has returned (technically the future is + /// resolved) for all available partitions, the set of metrics + /// should be complete. If this function is called prior to + /// `execute()` new metrics may appear in subsequent calls. + fn metrics(&self) -> Option { + None + } + + /// Returns statistics for this `ExecutionPlan` node. If statistics are not + /// available, should return [`Statistics::new_unknown`] (the default), not + /// an error. + fn statistics(&self) -> Result { + Ok(Statistics::new_unknown(&self.schema())) + } + + /// Returns `true` if a limit can be safely pushed down through this + /// `ExecutionPlan` node. + /// + /// If this method returns `true`, and the query plan contains a limit at + /// the output of this node, DataFusion will push the limit to the input + /// of this node. + fn supports_limit_pushdown(&self) -> bool { + false + } + + /// Returns a fetching variant of this `ExecutionPlan` node, if it supports + /// fetch limits. Returns `None` otherwise. + fn with_fetch(&self, _limit: Option) -> Option> { + None + } +} + +/// Extension trait provides an easy API to fetch various properties of +/// [`ExecutionPlan`] objects based on [`ExecutionPlan::properties`]. +pub trait ExecutionPlanProperties { + /// Specifies how the output of this `ExecutionPlan` is split into + /// partitions. + fn output_partitioning(&self) -> &Partitioning; + + /// Specifies whether this plan generates an infinite stream of records. + /// If the plan does not support pipelining, but its input(s) are + /// infinite, returns [`ExecutionMode::PipelineBreaking`] to indicate this. + fn execution_mode(&self) -> ExecutionMode; + + /// If the output of this `ExecutionPlan` within each partition is sorted, + /// returns `Some(keys)` describing the ordering. A `None` return value + /// indicates no assumptions should be made on the output ordering. + /// + /// For example, `SortExec` (obviously) produces sorted output as does + /// `SortPreservingMergeStream`. Less obviously, `Projection` produces sorted + /// output if its input is sorted as it does not reorder the input rows. + fn output_ordering(&self) -> Option<&[PhysicalSortExpr]>; + + /// Get the [`EquivalenceProperties`] within the plan. + /// + /// Equivalence properties tell DataFusion what columns are known to be + /// equal, during various optimization passes. By default, this returns "no + /// known equivalences" which is always correct, but may cause DataFusion to + /// unnecessarily resort data. + /// + /// If this ExecutionPlan makes no changes to the schema of the rows flowing + /// through it or how columns within each row relate to each other, it + /// should return the equivalence properties of its input. For + /// example, since `FilterExec` may remove rows from its input, but does not + /// otherwise modify them, it preserves its input equivalence properties. + /// However, since `ProjectionExec` may calculate derived expressions, it + /// needs special handling. + /// + /// See also [`ExecutionPlan::maintains_input_order`] and [`Self::output_ordering`] + /// for related concepts. + fn equivalence_properties(&self) -> &EquivalenceProperties; +} + +impl ExecutionPlanProperties for Arc { + fn output_partitioning(&self) -> &Partitioning { + self.properties().output_partitioning() + } + + fn execution_mode(&self) -> ExecutionMode { + self.properties().execution_mode() + } + + fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> { + self.properties().output_ordering() + } + + fn equivalence_properties(&self) -> &EquivalenceProperties { + self.properties().equivalence_properties() + } +} + +impl ExecutionPlanProperties for &dyn ExecutionPlan { + fn output_partitioning(&self) -> &Partitioning { + self.properties().output_partitioning() + } + + fn execution_mode(&self) -> ExecutionMode { + self.properties().execution_mode() + } + + fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> { + self.properties().output_ordering() + } + + fn equivalence_properties(&self) -> &EquivalenceProperties { + self.properties().equivalence_properties() + } +} + +/// Describes the execution mode of an operator's resulting stream with respect +/// to its size and behavior. There are three possible execution modes: `Bounded`, +/// `Unbounded` and `PipelineBreaking`. +#[derive(Clone, Copy, PartialEq, Debug)] +pub enum ExecutionMode { + /// Represents the mode where generated stream is bounded, e.g. finite. + Bounded, + /// Represents the mode where generated stream is unbounded, e.g. infinite. + /// Even though the operator generates an unbounded stream of results, it + /// works with bounded memory and execution can still continue successfully. + /// + /// The stream that results from calling `execute` on an `ExecutionPlan` that is `Unbounded` + /// will never be done (return `None`), except in case of error. + Unbounded, + /// Represents the mode where some of the operator's input stream(s) are + /// unbounded; however, the operator cannot generate streaming results from + /// these streaming inputs. In this case, the execution mode will be pipeline + /// breaking, e.g. the operator requires unbounded memory to generate results. + PipelineBreaking, +} + +impl ExecutionMode { + /// Check whether the execution mode is unbounded or not. + pub fn is_unbounded(&self) -> bool { + matches!(self, ExecutionMode::Unbounded) + } + + /// Check whether the execution is pipeline friendly. If so, operator can + /// execute safely. + pub fn pipeline_friendly(&self) -> bool { + matches!(self, ExecutionMode::Bounded | ExecutionMode::Unbounded) + } +} + +/// Conservatively "combines" execution modes of a given collection of operators. +pub(crate) fn execution_mode_from_children<'a>( + children: impl IntoIterator>, +) -> ExecutionMode { + let mut result = ExecutionMode::Bounded; + for mode in children.into_iter().map(|child| child.execution_mode()) { + match (mode, result) { + (ExecutionMode::PipelineBreaking, _) + | (_, ExecutionMode::PipelineBreaking) => { + // If any of the modes is `PipelineBreaking`, so is the result: + return ExecutionMode::PipelineBreaking; + } + (ExecutionMode::Unbounded, _) | (_, ExecutionMode::Unbounded) => { + // Unbounded mode eats up bounded mode: + result = ExecutionMode::Unbounded; + } + (ExecutionMode::Bounded, ExecutionMode::Bounded) => { + // When both modes are bounded, so is the result: + result = ExecutionMode::Bounded; + } + } + } + result +} + +/// Stores certain, often expensive to compute, plan properties used in query +/// optimization. +/// +/// These properties are stored a single structure to permit this information to +/// be computed once and then those cached results used multiple times without +/// recomputation (aka a cache) +#[derive(Debug, Clone)] +pub struct PlanProperties { + /// See [ExecutionPlanProperties::equivalence_properties] + pub eq_properties: EquivalenceProperties, + /// See [ExecutionPlanProperties::output_partitioning] + pub partitioning: Partitioning, + /// See [ExecutionPlanProperties::execution_mode] + pub execution_mode: ExecutionMode, + /// See [ExecutionPlanProperties::output_ordering] + output_ordering: Option, +} + +impl PlanProperties { + /// Construct a new `PlanPropertiesCache` from the + pub fn new( + eq_properties: EquivalenceProperties, + partitioning: Partitioning, + execution_mode: ExecutionMode, + ) -> Self { + // Output ordering can be derived from `eq_properties`. + let output_ordering = eq_properties.output_ordering(); + Self { + eq_properties, + partitioning, + execution_mode, + output_ordering, + } + } + + /// Overwrite output partitioning with its new value. + pub fn with_partitioning(mut self, partitioning: Partitioning) -> Self { + self.partitioning = partitioning; + self + } + + /// Overwrite the execution Mode with its new value. + pub fn with_execution_mode(mut self, execution_mode: ExecutionMode) -> Self { + self.execution_mode = execution_mode; + self + } + + /// Overwrite equivalence properties with its new value. + pub fn with_eq_properties(mut self, eq_properties: EquivalenceProperties) -> Self { + // Changing equivalence properties also changes output ordering, so + // make sure to overwrite it: + self.output_ordering = eq_properties.output_ordering(); + self.eq_properties = eq_properties; + self + } + + pub fn equivalence_properties(&self) -> &EquivalenceProperties { + &self.eq_properties + } + + pub fn output_partitioning(&self) -> &Partitioning { + &self.partitioning + } + + pub fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> { + self.output_ordering.as_deref() + } + + pub fn execution_mode(&self) -> ExecutionMode { + self.execution_mode + } + + /// Get schema of the node. + fn schema(&self) -> &SchemaRef { + self.eq_properties.schema() + } +} + +/// Indicate whether a data exchange is needed for the input of `plan`, which will be very helpful +/// especially for the distributed engine to judge whether need to deal with shuffling. +/// Currently there are 3 kinds of execution plan which needs data exchange +/// 1. RepartitionExec for changing the partition number between two `ExecutionPlan`s +/// 2. CoalescePartitionsExec for collapsing all of the partitions into one without ordering guarantee +/// 3. SortPreservingMergeExec for collapsing all of the sorted partitions into one with ordering guarantee +pub fn need_data_exchange(plan: Arc) -> bool { + if let Some(repartition) = plan.as_any().downcast_ref::() { + !matches!( + repartition.properties().output_partitioning(), + Partitioning::RoundRobinBatch(_) + ) + } else if let Some(coalesce) = plan.as_any().downcast_ref::() + { + coalesce.input().output_partitioning().partition_count() > 1 + } else if let Some(sort_preserving_merge) = + plan.as_any().downcast_ref::() + { + sort_preserving_merge + .input() + .output_partitioning() + .partition_count() + > 1 + } else { + false + } +} + +/// Returns a copy of this plan if we change any child according to the pointer comparison. +/// The size of `children` must be equal to the size of `ExecutionPlan::children()`. +pub fn with_new_children_if_necessary( + plan: Arc, + children: Vec>, +) -> Result> { + let old_children = plan.children(); + if children.len() != old_children.len() { + internal_err!("Wrong number of children") + } else if children.is_empty() + || children + .iter() + .zip(old_children.iter()) + .any(|(c1, c2)| !Arc::ptr_eq(c1, c2)) + { + plan.with_new_children(children) + } else { + Ok(plan) + } +} + +/// Return a [wrapper](DisplayableExecutionPlan) around an +/// [`ExecutionPlan`] which can be displayed in various easier to +/// understand ways. +pub fn displayable(plan: &dyn ExecutionPlan) -> DisplayableExecutionPlan<'_> { + DisplayableExecutionPlan::new(plan) +} + +/// Execute the [ExecutionPlan] and collect the results in memory +pub async fn collect( + plan: Arc, + context: Arc, +) -> Result> { + let stream = execute_stream(plan, context)?; + crate::common::collect(stream).await +} + +/// Execute the [ExecutionPlan] and return a single stream of `RecordBatch`es. +/// +/// See [collect] to buffer the `RecordBatch`es in memory. +/// +/// # Aborting Execution +/// +/// Dropping the stream will abort the execution of the query, and free up +/// any allocated resources +pub fn execute_stream( + plan: Arc, + context: Arc, +) -> Result { + match plan.output_partitioning().partition_count() { + 0 => Ok(Box::pin(EmptyRecordBatchStream::new(plan.schema()))), + 1 => plan.execute(0, context), + _ => { + // merge into a single partition + let plan = CoalescePartitionsExec::new(Arc::clone(&plan)); + // CoalescePartitionsExec must produce a single partition + assert_eq!(1, plan.properties().output_partitioning().partition_count()); + plan.execute(0, context) + } + } +} + +/// Execute the [ExecutionPlan] and collect the results in memory +pub async fn collect_partitioned( + plan: Arc, + context: Arc, +) -> Result>> { + let streams = execute_stream_partitioned(plan, context)?; + + let mut join_set = JoinSet::new(); + // Execute the plan and collect the results into batches. + streams.into_iter().enumerate().for_each(|(idx, stream)| { + join_set.spawn(async move { + let result: Result> = stream.try_collect().await; + (idx, result) + }); + }); + + let mut batches = vec![]; + // Note that currently this doesn't identify the thread that panicked + // + // TODO: Replace with [join_next_with_id](https://docs.rs/tokio/latest/tokio/task/struct.JoinSet.html#method.join_next_with_id + // once it is stable + while let Some(result) = join_set.join_next().await { + match result { + Ok((idx, res)) => batches.push((idx, res?)), + Err(e) => { + if e.is_panic() { + std::panic::resume_unwind(e.into_panic()); + } else { + unreachable!(); + } + } + } + } + + batches.sort_by_key(|(idx, _)| *idx); + let batches = batches.into_iter().map(|(_, batch)| batch).collect(); + + Ok(batches) +} + +/// Execute the [ExecutionPlan] and return a vec with one stream per output +/// partition +/// +/// # Aborting Execution +/// +/// Dropping the stream will abort the execution of the query, and free up +/// any allocated resources +pub fn execute_stream_partitioned( + plan: Arc, + context: Arc, +) -> Result> { + let num_partitions = plan.output_partitioning().partition_count(); + let mut streams = Vec::with_capacity(num_partitions); + for i in 0..num_partitions { + streams.push(plan.execute(i, Arc::clone(&context))?); + } + Ok(streams) +} + +/// Executes an input stream and ensures that the resulting stream adheres to +/// the `not null` constraints specified in the `sink_schema`. +/// +/// # Arguments +/// +/// * `input` - An execution plan +/// * `sink_schema` - The schema to be applied to the output stream +/// * `partition` - The partition index to be executed +/// * `context` - The task context +/// +/// # Returns +/// +/// * `Result` - A stream of `RecordBatch`es if successful +/// +/// This function first executes the given input plan for the specified partition +/// and context. It then checks if there are any columns in the input that might +/// violate the `not null` constraints specified in the `sink_schema`. If there are +/// such columns, it wraps the resulting stream to enforce the `not null` constraints +/// by invoking the `check_not_null_contraits` function on each batch of the stream. +pub fn execute_input_stream( + input: Arc, + sink_schema: SchemaRef, + partition: usize, + context: Arc, +) -> Result { + let input_stream = input.execute(partition, context)?; + + debug_assert_eq!(sink_schema.fields().len(), input.schema().fields().len()); + + // Find input columns that may violate the not null constraint. + let risky_columns: Vec<_> = sink_schema + .fields() + .iter() + .zip(input.schema().fields().iter()) + .enumerate() + .filter_map(|(idx, (sink_field, input_field))| { + (!sink_field.is_nullable() && input_field.is_nullable()).then_some(idx) + }) + .collect(); + + if risky_columns.is_empty() { + Ok(input_stream) + } else { + // Check not null constraint on the input stream + Ok(Box::pin(RecordBatchStreamAdapter::new( + sink_schema, + input_stream + .map(move |batch| check_not_null_contraits(batch?, &risky_columns)), + ))) + } +} + +/// Checks a `RecordBatch` for `not null` constraints on specified columns. +/// +/// # Arguments +/// +/// * `batch` - The `RecordBatch` to be checked +/// * `column_indices` - A vector of column indices that should be checked for +/// `not null` constraints. +/// +/// # Returns +/// +/// * `Result` - The original `RecordBatch` if all constraints are met +/// +/// This function iterates over the specified column indices and ensures that none +/// of the columns contain null values. If any column contains null values, an error +/// is returned. +pub fn check_not_null_contraits( + batch: RecordBatch, + column_indices: &Vec, +) -> Result { + for &index in column_indices { + if batch.num_columns() <= index { + return exec_err!( + "Invalid batch column count {} expected > {}", + batch.num_columns(), + index + ); + } + + if batch.column(index).null_count() > 0 { + return exec_err!( + "Invalid batch column at '{}' has null but schema specifies non-nullable", + index + ); + } + } + + Ok(batch) +} + +/// Utility function yielding a string representation of the given [`ExecutionPlan`]. +pub fn get_plan_string(plan: &Arc) -> Vec { + let formatted = displayable(plan.as_ref()).indent(true).to_string(); + let actual: Vec<&str> = formatted.trim().lines().collect(); + actual.iter().map(|elem| elem.to_string()).collect() +} + +#[cfg(test)] +mod tests { + use super::*; + use std::any::Any; + use std::sync::Arc; + + use arrow_schema::{Schema, SchemaRef}; + + use datafusion_common::{Result, Statistics}; + use datafusion_execution::{SendableRecordBatchStream, TaskContext}; + + use crate::{DisplayAs, DisplayFormatType, ExecutionPlan}; + + #[derive(Debug)] + pub struct EmptyExec; + + impl EmptyExec { + pub fn new(_schema: SchemaRef) -> Self { + Self + } + } + + impl DisplayAs for EmptyExec { + fn fmt_as( + &self, + _t: DisplayFormatType, + _f: &mut std::fmt::Formatter, + ) -> std::fmt::Result { + unimplemented!() + } + } + + impl ExecutionPlan for EmptyExec { + fn name(&self) -> &'static str { + Self::static_name() + } + + fn as_any(&self) -> &dyn Any { + self + } + + fn properties(&self) -> &PlanProperties { + unimplemented!() + } + + fn children(&self) -> Vec<&Arc> { + vec![] + } + + fn with_new_children( + self: Arc, + _: Vec>, + ) -> Result> { + unimplemented!() + } + + fn execute( + &self, + _partition: usize, + _context: Arc, + ) -> Result { + unimplemented!() + } + + fn statistics(&self) -> Result { + unimplemented!() + } + } + + #[derive(Debug)] + pub struct RenamedEmptyExec; + + impl RenamedEmptyExec { + pub fn new(_schema: SchemaRef) -> Self { + Self + } + } + + impl DisplayAs for RenamedEmptyExec { + fn fmt_as( + &self, + _t: DisplayFormatType, + _f: &mut std::fmt::Formatter, + ) -> std::fmt::Result { + unimplemented!() + } + } + + impl ExecutionPlan for RenamedEmptyExec { + fn name(&self) -> &'static str { + Self::static_name() + } + + fn static_name() -> &'static str + where + Self: Sized, + { + "MyRenamedEmptyExec" + } + + fn as_any(&self) -> &dyn Any { + self + } + + fn properties(&self) -> &PlanProperties { + unimplemented!() + } + + fn children(&self) -> Vec<&Arc> { + vec![] + } + + fn with_new_children( + self: Arc, + _: Vec>, + ) -> Result> { + unimplemented!() + } + + fn execute( + &self, + _partition: usize, + _context: Arc, + ) -> Result { + unimplemented!() + } + + fn statistics(&self) -> Result { + unimplemented!() + } + } + + #[test] + fn test_execution_plan_name() { + let schema1 = Arc::new(Schema::empty()); + let default_name_exec = EmptyExec::new(schema1); + assert_eq!(default_name_exec.name(), "EmptyExec"); + + let schema2 = Arc::new(Schema::empty()); + let renamed_exec = RenamedEmptyExec::new(schema2); + assert_eq!(renamed_exec.name(), "MyRenamedEmptyExec"); + assert_eq!(RenamedEmptyExec::static_name(), "MyRenamedEmptyExec"); + } + + /// A compilation test to ensure that the `ExecutionPlan::name()` method can + /// be called from a trait object. + /// Related ticket: https://github.com/apache/datafusion/pull/11047 + #[allow(dead_code)] + fn use_execution_plan_as_trait_object(plan: &dyn ExecutionPlan) { + let _ = plan.name(); + } +} + +// pub mod test; diff --git a/datafusion/physical-plan/src/lib.rs b/datafusion/physical-plan/src/lib.rs index 19554d07f7a0..eeecc017c2af 100644 --- a/datafusion/physical-plan/src/lib.rs +++ b/datafusion/physical-plan/src/lib.rs @@ -14,46 +14,36 @@ // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. + // Make cheap clones clear: https://github.com/apache/datafusion/issues/11143 + #![deny(clippy::clone_on_ref_ptr)] //! Traits for physical query plan, supporting parallel execution for partitioned relations. +//! +//! Entrypoint of this crate is trait [ExecutionPlan]. -use std::any::Any; -use std::fmt::Debug; -use std::sync::Arc; - -use arrow::datatypes::SchemaRef; -use arrow::record_batch::RecordBatch; -use futures::stream::{StreamExt, TryStreamExt}; -use tokio::task::JoinSet; - -use datafusion_common::config::ConfigOptions; pub use datafusion_common::hash_utils; pub use datafusion_common::utils::project_schema; -use datafusion_common::{exec_err, Result}; pub use datafusion_common::{internal_err, ColumnStatistics, Statistics}; -use datafusion_execution::TaskContext; pub use datafusion_execution::{RecordBatchStream, SendableRecordBatchStream}; pub use datafusion_expr::{Accumulator, ColumnarValue}; pub use datafusion_physical_expr::window::WindowExpr; +use datafusion_physical_expr::PhysicalSortExpr; pub use datafusion_physical_expr::{ expressions, functions, udf, AggregateExpr, Distribution, Partitioning, PhysicalExpr, }; -use datafusion_physical_expr::{ - EquivalenceProperties, LexOrdering, PhysicalSortExpr, PhysicalSortRequirement, -}; -use crate::coalesce_partitions::CoalescePartitionsExec; -use crate::display::DisplayableExecutionPlan; pub use crate::display::{DefaultDisplay, DisplayAs, DisplayFormatType, VerboseDisplay}; +pub(crate) use crate::execution_plan::execution_mode_from_children; +pub use crate::execution_plan::{ + collect, collect_partitioned, displayable, execute_input_stream, execute_stream, + execute_stream_partitioned, get_plan_string, with_new_children_if_necessary, + ExecutionMode, ExecutionPlan, ExecutionPlanProperties, PlanProperties, +}; pub use crate::metrics::Metric; -use crate::metrics::MetricsSet; pub use crate::ordering::InputOrderMode; -use crate::repartition::RepartitionExec; -use crate::sorts::sort_preserving_merge::SortPreservingMergeExec; pub use crate::stream::EmptyRecordBatchStream; -use crate::stream::RecordBatchStreamAdapter; pub use crate::topk::TopK; pub use crate::visitor::{accept, visit_execution_plan, ExecutionPlanVisitor}; @@ -68,6 +58,7 @@ pub mod coalesce_partitions; pub mod common; pub mod display; pub mod empty; +pub mod execution_plan; pub mod explain; pub mod filter; pub mod insert; @@ -96,967 +87,5 @@ pub mod udaf { }; } -/// Represent nodes in the DataFusion Physical Plan. -/// -/// Calling [`execute`] produces an `async` [`SendableRecordBatchStream`] of -/// [`RecordBatch`] that incrementally computes a partition of the -/// `ExecutionPlan`'s output from its input. See [`Partitioning`] for more -/// details on partitioning. -/// -/// Methods such as [`Self::schema`] and [`Self::properties`] communicate -/// properties of the output to the DataFusion optimizer, and methods such as -/// [`required_input_distribution`] and [`required_input_ordering`] express -/// requirements of the `ExecutionPlan` from its input. -/// -/// [`ExecutionPlan`] can be displayed in a simplified form using the -/// return value from [`displayable`] in addition to the (normally -/// quite verbose) `Debug` output. -/// -/// [`execute`]: ExecutionPlan::execute -/// [`required_input_distribution`]: ExecutionPlan::required_input_distribution -/// [`required_input_ordering`]: ExecutionPlan::required_input_ordering -pub trait ExecutionPlan: Debug + DisplayAs + Send + Sync { - /// Short name for the ExecutionPlan, such as 'ParquetExec'. - /// - /// Implementation note: this method can just proxy to - /// [`static_name`](ExecutionPlan::static_name) if no special action is - /// needed. It doesn't provide a default implementation like that because - /// this method doesn't require the `Sized` constrain to allow a wilder - /// range of use cases. - fn name(&self) -> &str; - - /// Short name for the ExecutionPlan, such as 'ParquetExec'. - /// Like [`name`](ExecutionPlan::name) but can be called without an instance. - fn static_name() -> &'static str - where - Self: Sized, - { - let full_name = std::any::type_name::(); - let maybe_start_idx = full_name.rfind(':'); - match maybe_start_idx { - Some(start_idx) => &full_name[start_idx + 1..], - None => "UNKNOWN", - } - } - - /// Returns the execution plan as [`Any`] so that it can be - /// downcast to a specific implementation. - fn as_any(&self) -> &dyn Any; - - /// Get the schema for this execution plan - fn schema(&self) -> SchemaRef { - Arc::clone(self.properties().schema()) - } - - /// Return properties of the output of the `ExecutionPlan`, such as output - /// ordering(s), partitioning information etc. - /// - /// This information is available via methods on [`ExecutionPlanProperties`] - /// trait, which is implemented for all `ExecutionPlan`s. - fn properties(&self) -> &PlanProperties; - - /// Specifies the data distribution requirements for all the - /// children for this `ExecutionPlan`, By default it's [[Distribution::UnspecifiedDistribution]] for each child, - fn required_input_distribution(&self) -> Vec { - vec![Distribution::UnspecifiedDistribution; self.children().len()] - } - - /// Specifies the ordering required for all of the children of this - /// `ExecutionPlan`. - /// - /// For each child, it's the local ordering requirement within - /// each partition rather than the global ordering - /// - /// NOTE that checking `!is_empty()` does **not** check for a - /// required input ordering. Instead, the correct check is that at - /// least one entry must be `Some` - fn required_input_ordering(&self) -> Vec>> { - vec![None; self.children().len()] - } - - /// Returns `false` if this `ExecutionPlan`'s implementation may reorder - /// rows within or between partitions. - /// - /// For example, Projection, Filter, and Limit maintain the order - /// of inputs -- they may transform values (Projection) or not - /// produce the same number of rows that went in (Filter and - /// Limit), but the rows that are produced go in the same way. - /// - /// DataFusion uses this metadata to apply certain optimizations - /// such as automatically repartitioning correctly. - /// - /// The default implementation returns `false` - /// - /// WARNING: if you override this default, you *MUST* ensure that - /// the `ExecutionPlan`'s maintains the ordering invariant or else - /// DataFusion may produce incorrect results. - fn maintains_input_order(&self) -> Vec { - vec![false; self.children().len()] - } - - /// Specifies whether the `ExecutionPlan` benefits from increased - /// parallelization at its input for each child. - /// - /// If returns `true`, the `ExecutionPlan` would benefit from partitioning - /// its corresponding child (and thus from more parallelism). For - /// `ExecutionPlan` that do very little work the overhead of extra - /// parallelism may outweigh any benefits - /// - /// The default implementation returns `true` unless this `ExecutionPlan` - /// has signalled it requires a single child input partition. - fn benefits_from_input_partitioning(&self) -> Vec { - // By default try to maximize parallelism with more CPUs if - // possible - self.required_input_distribution() - .into_iter() - .map(|dist| !matches!(dist, Distribution::SinglePartition)) - .collect() - } - - /// Get a list of children `ExecutionPlan`s that act as inputs to this plan. - /// The returned list will be empty for leaf nodes such as scans, will contain - /// a single value for unary nodes, or two values for binary nodes (such as - /// joins). - fn children(&self) -> Vec<&Arc>; - - /// Returns a new `ExecutionPlan` where all existing children were replaced - /// by the `children`, in order - fn with_new_children( - self: Arc, - children: Vec>, - ) -> Result>; - - /// If supported, attempt to increase the partitioning of this `ExecutionPlan` to - /// produce `target_partitions` partitions. - /// - /// If the `ExecutionPlan` does not support changing its partitioning, - /// returns `Ok(None)` (the default). - /// - /// It is the `ExecutionPlan` can increase its partitioning, but not to the - /// `target_partitions`, it may return an ExecutionPlan with fewer - /// partitions. This might happen, for example, if each new partition would - /// be too small to be efficiently processed individually. - /// - /// The DataFusion optimizer attempts to use as many threads as possible by - /// repartitioning its inputs to match the target number of threads - /// available (`target_partitions`). Some data sources, such as the built in - /// CSV and Parquet readers, implement this method as they are able to read - /// from their input files in parallel, regardless of how the source data is - /// split amongst files. - fn repartitioned( - &self, - _target_partitions: usize, - _config: &ConfigOptions, - ) -> Result>> { - Ok(None) - } - - /// Begin execution of `partition`, returning a [`Stream`] of - /// [`RecordBatch`]es. - /// - /// # Notes - /// - /// The `execute` method itself is not `async` but it returns an `async` - /// [`futures::stream::Stream`]. This `Stream` should incrementally compute - /// the output, `RecordBatch` by `RecordBatch` (in a streaming fashion). - /// Most `ExecutionPlan`s should not do any work before the first - /// `RecordBatch` is requested from the stream. - /// - /// [`RecordBatchStreamAdapter`] can be used to convert an `async` - /// [`Stream`] into a [`SendableRecordBatchStream`]. - /// - /// Using `async` `Streams` allows for network I/O during execution and - /// takes advantage of Rust's built in support for `async` continuations and - /// crate ecosystem. - /// - /// [`Stream`]: futures::stream::Stream - /// [`StreamExt`]: futures::stream::StreamExt - /// [`TryStreamExt`]: futures::stream::TryStreamExt - /// [`RecordBatchStreamAdapter`]: crate::stream::RecordBatchStreamAdapter - /// - /// # Cancellation / Aborting Execution - /// - /// The [`Stream`] that is returned must ensure that any allocated resources - /// are freed when the stream itself is dropped. This is particularly - /// important for [`spawn`]ed tasks or threads. Unless care is taken to - /// "abort" such tasks, they may continue to consume resources even after - /// the plan is dropped, generating intermediate results that are never - /// used. - /// Thus, [`spawn`] is disallowed, and instead use [`SpawnedTask`]. - /// - /// For more details see [`SpawnedTask`], [`JoinSet`] and [`RecordBatchReceiverStreamBuilder`] - /// for structures to help ensure all background tasks are cancelled. - /// - /// [`spawn`]: tokio::task::spawn - /// [`JoinSet`]: tokio::task::JoinSet - /// [`SpawnedTask`]: datafusion_common_runtime::SpawnedTask - /// [`RecordBatchReceiverStreamBuilder`]: crate::stream::RecordBatchReceiverStreamBuilder - /// - /// # Implementation Examples - /// - /// While `async` `Stream`s have a non trivial learning curve, the - /// [`futures`] crate provides [`StreamExt`] and [`TryStreamExt`] - /// which help simplify many common operations. - /// - /// Here are some common patterns: - /// - /// ## Return Precomputed `RecordBatch` - /// - /// We can return a precomputed `RecordBatch` as a `Stream`: - /// - /// ``` - /// # use std::sync::Arc; - /// # use arrow_array::RecordBatch; - /// # use arrow_schema::SchemaRef; - /// # use datafusion_common::Result; - /// # use datafusion_execution::{SendableRecordBatchStream, TaskContext}; - /// # use datafusion_physical_plan::memory::MemoryStream; - /// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter; - /// struct MyPlan { - /// batch: RecordBatch, - /// } - /// - /// impl MyPlan { - /// fn execute( - /// &self, - /// partition: usize, - /// context: Arc - /// ) -> Result { - /// // use functions from futures crate convert the batch into a stream - /// let fut = futures::future::ready(Ok(self.batch.clone())); - /// let stream = futures::stream::once(fut); - /// Ok(Box::pin(RecordBatchStreamAdapter::new(self.batch.schema(), stream))) - /// } - /// } - /// ``` - /// - /// ## Lazily (async) Compute `RecordBatch` - /// - /// We can also lazily compute a `RecordBatch` when the returned `Stream` is polled - /// - /// ``` - /// # use std::sync::Arc; - /// # use arrow_array::RecordBatch; - /// # use arrow_schema::SchemaRef; - /// # use datafusion_common::Result; - /// # use datafusion_execution::{SendableRecordBatchStream, TaskContext}; - /// # use datafusion_physical_plan::memory::MemoryStream; - /// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter; - /// struct MyPlan { - /// schema: SchemaRef, - /// } - /// - /// /// Returns a single batch when the returned stream is polled - /// async fn get_batch() -> Result { - /// todo!() - /// } - /// - /// impl MyPlan { - /// fn execute( - /// &self, - /// partition: usize, - /// context: Arc - /// ) -> Result { - /// let fut = get_batch(); - /// let stream = futures::stream::once(fut); - /// Ok(Box::pin(RecordBatchStreamAdapter::new(self.schema.clone(), stream))) - /// } - /// } - /// ``` - /// - /// ## Lazily (async) create a Stream - /// - /// If you need to create the return `Stream` using an `async` function, - /// you can do so by flattening the result: - /// - /// ``` - /// # use std::sync::Arc; - /// # use arrow_array::RecordBatch; - /// # use arrow_schema::SchemaRef; - /// # use futures::TryStreamExt; - /// # use datafusion_common::Result; - /// # use datafusion_execution::{SendableRecordBatchStream, TaskContext}; - /// # use datafusion_physical_plan::memory::MemoryStream; - /// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter; - /// struct MyPlan { - /// schema: SchemaRef, - /// } - /// - /// /// async function that returns a stream - /// async fn get_batch_stream() -> Result { - /// todo!() - /// } - /// - /// impl MyPlan { - /// fn execute( - /// &self, - /// partition: usize, - /// context: Arc - /// ) -> Result { - /// // A future that yields a stream - /// let fut = get_batch_stream(); - /// // Use TryStreamExt::try_flatten to flatten the stream of streams - /// let stream = futures::stream::once(fut).try_flatten(); - /// Ok(Box::pin(RecordBatchStreamAdapter::new(self.schema.clone(), stream))) - /// } - /// } - /// ``` - fn execute( - &self, - partition: usize, - context: Arc, - ) -> Result; - - /// Return a snapshot of the set of [`Metric`]s for this - /// [`ExecutionPlan`]. If no `Metric`s are available, return None. - /// - /// While the values of the metrics in the returned - /// [`MetricsSet`]s may change as execution progresses, the - /// specific metrics will not. - /// - /// Once `self.execute()` has returned (technically the future is - /// resolved) for all available partitions, the set of metrics - /// should be complete. If this function is called prior to - /// `execute()` new metrics may appear in subsequent calls. - fn metrics(&self) -> Option { - None - } - - /// Returns statistics for this `ExecutionPlan` node. If statistics are not - /// available, should return [`Statistics::new_unknown`] (the default), not - /// an error. - fn statistics(&self) -> Result { - Ok(Statistics::new_unknown(&self.schema())) - } - - /// Returns `true` if a limit can be safely pushed down through this - /// `ExecutionPlan` node. - /// - /// If this method returns `true`, and the query plan contains a limit at - /// the output of this node, DataFusion will push the limit to the input - /// of this node. - fn supports_limit_pushdown(&self) -> bool { - false - } - - /// Returns a fetching variant of this `ExecutionPlan` node, if it supports - /// fetch limits. Returns `None` otherwise. - fn with_fetch(&self, _limit: Option) -> Option> { - None - } -} - -/// Extension trait provides an easy API to fetch various properties of -/// [`ExecutionPlan`] objects based on [`ExecutionPlan::properties`]. -pub trait ExecutionPlanProperties { - /// Specifies how the output of this `ExecutionPlan` is split into - /// partitions. - fn output_partitioning(&self) -> &Partitioning; - - /// Specifies whether this plan generates an infinite stream of records. - /// If the plan does not support pipelining, but its input(s) are - /// infinite, returns [`ExecutionMode::PipelineBreaking`] to indicate this. - fn execution_mode(&self) -> ExecutionMode; - - /// If the output of this `ExecutionPlan` within each partition is sorted, - /// returns `Some(keys)` describing the ordering. A `None` return value - /// indicates no assumptions should be made on the output ordering. - /// - /// For example, `SortExec` (obviously) produces sorted output as does - /// `SortPreservingMergeStream`. Less obviously, `Projection` produces sorted - /// output if its input is sorted as it does not reorder the input rows. - fn output_ordering(&self) -> Option<&[PhysicalSortExpr]>; - - /// Get the [`EquivalenceProperties`] within the plan. - /// - /// Equivalence properties tell DataFusion what columns are known to be - /// equal, during various optimization passes. By default, this returns "no - /// known equivalences" which is always correct, but may cause DataFusion to - /// unnecessarily resort data. - /// - /// If this ExecutionPlan makes no changes to the schema of the rows flowing - /// through it or how columns within each row relate to each other, it - /// should return the equivalence properties of its input. For - /// example, since `FilterExec` may remove rows from its input, but does not - /// otherwise modify them, it preserves its input equivalence properties. - /// However, since `ProjectionExec` may calculate derived expressions, it - /// needs special handling. - /// - /// See also [`ExecutionPlan::maintains_input_order`] and [`Self::output_ordering`] - /// for related concepts. - fn equivalence_properties(&self) -> &EquivalenceProperties; -} - -impl ExecutionPlanProperties for Arc { - fn output_partitioning(&self) -> &Partitioning { - self.properties().output_partitioning() - } - - fn execution_mode(&self) -> ExecutionMode { - self.properties().execution_mode() - } - - fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> { - self.properties().output_ordering() - } - - fn equivalence_properties(&self) -> &EquivalenceProperties { - self.properties().equivalence_properties() - } -} - -impl ExecutionPlanProperties for &dyn ExecutionPlan { - fn output_partitioning(&self) -> &Partitioning { - self.properties().output_partitioning() - } - - fn execution_mode(&self) -> ExecutionMode { - self.properties().execution_mode() - } - - fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> { - self.properties().output_ordering() - } - - fn equivalence_properties(&self) -> &EquivalenceProperties { - self.properties().equivalence_properties() - } -} - -/// Describes the execution mode of an operator's resulting stream with respect -/// to its size and behavior. There are three possible execution modes: `Bounded`, -/// `Unbounded` and `PipelineBreaking`. -#[derive(Clone, Copy, PartialEq, Debug)] -pub enum ExecutionMode { - /// Represents the mode where generated stream is bounded, e.g. finite. - Bounded, - /// Represents the mode where generated stream is unbounded, e.g. infinite. - /// Even though the operator generates an unbounded stream of results, it - /// works with bounded memory and execution can still continue successfully. - /// - /// The stream that results from calling `execute` on an `ExecutionPlan` that is `Unbounded` - /// will never be done (return `None`), except in case of error. - Unbounded, - /// Represents the mode where some of the operator's input stream(s) are - /// unbounded; however, the operator cannot generate streaming results from - /// these streaming inputs. In this case, the execution mode will be pipeline - /// breaking, e.g. the operator requires unbounded memory to generate results. - PipelineBreaking, -} - -impl ExecutionMode { - /// Check whether the execution mode is unbounded or not. - pub fn is_unbounded(&self) -> bool { - matches!(self, ExecutionMode::Unbounded) - } - - /// Check whether the execution is pipeline friendly. If so, operator can - /// execute safely. - pub fn pipeline_friendly(&self) -> bool { - matches!(self, ExecutionMode::Bounded | ExecutionMode::Unbounded) - } -} - -/// Conservatively "combines" execution modes of a given collection of operators. -fn execution_mode_from_children<'a>( - children: impl IntoIterator>, -) -> ExecutionMode { - let mut result = ExecutionMode::Bounded; - for mode in children.into_iter().map(|child| child.execution_mode()) { - match (mode, result) { - (ExecutionMode::PipelineBreaking, _) - | (_, ExecutionMode::PipelineBreaking) => { - // If any of the modes is `PipelineBreaking`, so is the result: - return ExecutionMode::PipelineBreaking; - } - (ExecutionMode::Unbounded, _) | (_, ExecutionMode::Unbounded) => { - // Unbounded mode eats up bounded mode: - result = ExecutionMode::Unbounded; - } - (ExecutionMode::Bounded, ExecutionMode::Bounded) => { - // When both modes are bounded, so is the result: - result = ExecutionMode::Bounded; - } - } - } - result -} - -/// Stores certain, often expensive to compute, plan properties used in query -/// optimization. -/// -/// These properties are stored a single structure to permit this information to -/// be computed once and then those cached results used multiple times without -/// recomputation (aka a cache) -#[derive(Debug, Clone)] -pub struct PlanProperties { - /// See [ExecutionPlanProperties::equivalence_properties] - pub eq_properties: EquivalenceProperties, - /// See [ExecutionPlanProperties::output_partitioning] - pub partitioning: Partitioning, - /// See [ExecutionPlanProperties::execution_mode] - pub execution_mode: ExecutionMode, - /// See [ExecutionPlanProperties::output_ordering] - output_ordering: Option, -} - -impl PlanProperties { - /// Construct a new `PlanPropertiesCache` from the - pub fn new( - eq_properties: EquivalenceProperties, - partitioning: Partitioning, - execution_mode: ExecutionMode, - ) -> Self { - // Output ordering can be derived from `eq_properties`. - let output_ordering = eq_properties.output_ordering(); - Self { - eq_properties, - partitioning, - execution_mode, - output_ordering, - } - } - - /// Overwrite output partitioning with its new value. - pub fn with_partitioning(mut self, partitioning: Partitioning) -> Self { - self.partitioning = partitioning; - self - } - - /// Overwrite the execution Mode with its new value. - pub fn with_execution_mode(mut self, execution_mode: ExecutionMode) -> Self { - self.execution_mode = execution_mode; - self - } - - /// Overwrite equivalence properties with its new value. - pub fn with_eq_properties(mut self, eq_properties: EquivalenceProperties) -> Self { - // Changing equivalence properties also changes output ordering, so - // make sure to overwrite it: - self.output_ordering = eq_properties.output_ordering(); - self.eq_properties = eq_properties; - self - } - - pub fn equivalence_properties(&self) -> &EquivalenceProperties { - &self.eq_properties - } - - pub fn output_partitioning(&self) -> &Partitioning { - &self.partitioning - } - - pub fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> { - self.output_ordering.as_deref() - } - - pub fn execution_mode(&self) -> ExecutionMode { - self.execution_mode - } - - /// Get schema of the node. - fn schema(&self) -> &SchemaRef { - self.eq_properties.schema() - } -} - -/// Indicate whether a data exchange is needed for the input of `plan`, which will be very helpful -/// especially for the distributed engine to judge whether need to deal with shuffling. -/// Currently there are 3 kinds of execution plan which needs data exchange -/// 1. RepartitionExec for changing the partition number between two `ExecutionPlan`s -/// 2. CoalescePartitionsExec for collapsing all of the partitions into one without ordering guarantee -/// 3. SortPreservingMergeExec for collapsing all of the sorted partitions into one with ordering guarantee -pub fn need_data_exchange(plan: Arc) -> bool { - if let Some(repartition) = plan.as_any().downcast_ref::() { - !matches!( - repartition.properties().output_partitioning(), - Partitioning::RoundRobinBatch(_) - ) - } else if let Some(coalesce) = plan.as_any().downcast_ref::() - { - coalesce.input().output_partitioning().partition_count() > 1 - } else if let Some(sort_preserving_merge) = - plan.as_any().downcast_ref::() - { - sort_preserving_merge - .input() - .output_partitioning() - .partition_count() - > 1 - } else { - false - } -} - -/// Returns a copy of this plan if we change any child according to the pointer comparison. -/// The size of `children` must be equal to the size of `ExecutionPlan::children()`. -pub fn with_new_children_if_necessary( - plan: Arc, - children: Vec>, -) -> Result> { - let old_children = plan.children(); - if children.len() != old_children.len() { - internal_err!("Wrong number of children") - } else if children.is_empty() - || children - .iter() - .zip(old_children.iter()) - .any(|(c1, c2)| !Arc::ptr_eq(c1, c2)) - { - plan.with_new_children(children) - } else { - Ok(plan) - } -} - -/// Return a [wrapper](DisplayableExecutionPlan) around an -/// [`ExecutionPlan`] which can be displayed in various easier to -/// understand ways. -pub fn displayable(plan: &dyn ExecutionPlan) -> DisplayableExecutionPlan<'_> { - DisplayableExecutionPlan::new(plan) -} - -/// Execute the [ExecutionPlan] and collect the results in memory -pub async fn collect( - plan: Arc, - context: Arc, -) -> Result> { - let stream = execute_stream(plan, context)?; - common::collect(stream).await -} - -/// Execute the [ExecutionPlan] and return a single stream of `RecordBatch`es. -/// -/// See [collect] to buffer the `RecordBatch`es in memory. -/// -/// # Aborting Execution -/// -/// Dropping the stream will abort the execution of the query, and free up -/// any allocated resources -pub fn execute_stream( - plan: Arc, - context: Arc, -) -> Result { - match plan.output_partitioning().partition_count() { - 0 => Ok(Box::pin(EmptyRecordBatchStream::new(plan.schema()))), - 1 => plan.execute(0, context), - _ => { - // merge into a single partition - let plan = CoalescePartitionsExec::new(Arc::clone(&plan)); - // CoalescePartitionsExec must produce a single partition - assert_eq!(1, plan.properties().output_partitioning().partition_count()); - plan.execute(0, context) - } - } -} - -/// Execute the [ExecutionPlan] and collect the results in memory -pub async fn collect_partitioned( - plan: Arc, - context: Arc, -) -> Result>> { - let streams = execute_stream_partitioned(plan, context)?; - - let mut join_set = JoinSet::new(); - // Execute the plan and collect the results into batches. - streams.into_iter().enumerate().for_each(|(idx, stream)| { - join_set.spawn(async move { - let result: Result> = stream.try_collect().await; - (idx, result) - }); - }); - - let mut batches = vec![]; - // Note that currently this doesn't identify the thread that panicked - // - // TODO: Replace with [join_next_with_id](https://docs.rs/tokio/latest/tokio/task/struct.JoinSet.html#method.join_next_with_id - // once it is stable - while let Some(result) = join_set.join_next().await { - match result { - Ok((idx, res)) => batches.push((idx, res?)), - Err(e) => { - if e.is_panic() { - std::panic::resume_unwind(e.into_panic()); - } else { - unreachable!(); - } - } - } - } - - batches.sort_by_key(|(idx, _)| *idx); - let batches = batches.into_iter().map(|(_, batch)| batch).collect(); - - Ok(batches) -} - -/// Execute the [ExecutionPlan] and return a vec with one stream per output -/// partition -/// -/// # Aborting Execution -/// -/// Dropping the stream will abort the execution of the query, and free up -/// any allocated resources -pub fn execute_stream_partitioned( - plan: Arc, - context: Arc, -) -> Result> { - let num_partitions = plan.output_partitioning().partition_count(); - let mut streams = Vec::with_capacity(num_partitions); - for i in 0..num_partitions { - streams.push(plan.execute(i, Arc::clone(&context))?); - } - Ok(streams) -} - -/// Executes an input stream and ensures that the resulting stream adheres to -/// the `not null` constraints specified in the `sink_schema`. -/// -/// # Arguments -/// -/// * `input` - An execution plan -/// * `sink_schema` - The schema to be applied to the output stream -/// * `partition` - The partition index to be executed -/// * `context` - The task context -/// -/// # Returns -/// -/// * `Result` - A stream of `RecordBatch`es if successful -/// -/// This function first executes the given input plan for the specified partition -/// and context. It then checks if there are any columns in the input that might -/// violate the `not null` constraints specified in the `sink_schema`. If there are -/// such columns, it wraps the resulting stream to enforce the `not null` constraints -/// by invoking the `check_not_null_contraits` function on each batch of the stream. -pub fn execute_input_stream( - input: Arc, - sink_schema: SchemaRef, - partition: usize, - context: Arc, -) -> Result { - let input_stream = input.execute(partition, context)?; - - debug_assert_eq!(sink_schema.fields().len(), input.schema().fields().len()); - - // Find input columns that may violate the not null constraint. - let risky_columns: Vec<_> = sink_schema - .fields() - .iter() - .zip(input.schema().fields().iter()) - .enumerate() - .filter_map(|(idx, (sink_field, input_field))| { - (!sink_field.is_nullable() && input_field.is_nullable()).then_some(idx) - }) - .collect(); - - if risky_columns.is_empty() { - Ok(input_stream) - } else { - // Check not null constraint on the input stream - Ok(Box::pin(RecordBatchStreamAdapter::new( - sink_schema, - input_stream - .map(move |batch| check_not_null_contraits(batch?, &risky_columns)), - ))) - } -} - -/// Checks a `RecordBatch` for `not null` constraints on specified columns. -/// -/// # Arguments -/// -/// * `batch` - The `RecordBatch` to be checked -/// * `column_indices` - A vector of column indices that should be checked for -/// `not null` constraints. -/// -/// # Returns -/// -/// * `Result` - The original `RecordBatch` if all constraints are met -/// -/// This function iterates over the specified column indices and ensures that none -/// of the columns contain null values. If any column contains null values, an error -/// is returned. -pub fn check_not_null_contraits( - batch: RecordBatch, - column_indices: &Vec, -) -> Result { - for &index in column_indices { - if batch.num_columns() <= index { - return exec_err!( - "Invalid batch column count {} expected > {}", - batch.num_columns(), - index - ); - } - - if batch.column(index).null_count() > 0 { - return exec_err!( - "Invalid batch column at '{}' has null but schema specifies non-nullable", - index - ); - } - } - - Ok(batch) -} - -/// Utility function yielding a string representation of the given [`ExecutionPlan`]. -pub fn get_plan_string(plan: &Arc) -> Vec { - let formatted = displayable(plan.as_ref()).indent(true).to_string(); - let actual: Vec<&str> = formatted.trim().lines().collect(); - actual.iter().map(|elem| elem.to_string()).collect() -} - #[cfg(test)] -mod tests { - use std::any::Any; - use std::sync::Arc; - - use arrow_schema::{Schema, SchemaRef}; - - use datafusion_common::{Result, Statistics}; - use datafusion_execution::{SendableRecordBatchStream, TaskContext}; - - use crate::{DisplayAs, DisplayFormatType, ExecutionPlan, PlanProperties}; - - #[derive(Debug)] - pub struct EmptyExec; - - impl EmptyExec { - pub fn new(_schema: SchemaRef) -> Self { - Self - } - } - - impl DisplayAs for EmptyExec { - fn fmt_as( - &self, - _t: DisplayFormatType, - _f: &mut std::fmt::Formatter, - ) -> std::fmt::Result { - unimplemented!() - } - } - - impl ExecutionPlan for EmptyExec { - fn name(&self) -> &'static str { - Self::static_name() - } - - fn as_any(&self) -> &dyn Any { - self - } - - fn properties(&self) -> &PlanProperties { - unimplemented!() - } - - fn children(&self) -> Vec<&Arc> { - vec![] - } - - fn with_new_children( - self: Arc, - _: Vec>, - ) -> Result> { - unimplemented!() - } - - fn execute( - &self, - _partition: usize, - _context: Arc, - ) -> Result { - unimplemented!() - } - - fn statistics(&self) -> Result { - unimplemented!() - } - } - - #[derive(Debug)] - pub struct RenamedEmptyExec; - - impl RenamedEmptyExec { - pub fn new(_schema: SchemaRef) -> Self { - Self - } - } - - impl DisplayAs for RenamedEmptyExec { - fn fmt_as( - &self, - _t: DisplayFormatType, - _f: &mut std::fmt::Formatter, - ) -> std::fmt::Result { - unimplemented!() - } - } - - impl ExecutionPlan for RenamedEmptyExec { - fn name(&self) -> &'static str { - Self::static_name() - } - - fn static_name() -> &'static str - where - Self: Sized, - { - "MyRenamedEmptyExec" - } - - fn as_any(&self) -> &dyn Any { - self - } - - fn properties(&self) -> &PlanProperties { - unimplemented!() - } - - fn children(&self) -> Vec<&Arc> { - vec![] - } - - fn with_new_children( - self: Arc, - _: Vec>, - ) -> Result> { - unimplemented!() - } - - fn execute( - &self, - _partition: usize, - _context: Arc, - ) -> Result { - unimplemented!() - } - - fn statistics(&self) -> Result { - unimplemented!() - } - } - - #[test] - fn test_execution_plan_name() { - let schema1 = Arc::new(Schema::empty()); - let default_name_exec = EmptyExec::new(schema1); - assert_eq!(default_name_exec.name(), "EmptyExec"); - - let schema2 = Arc::new(Schema::empty()); - let renamed_exec = RenamedEmptyExec::new(schema2); - assert_eq!(renamed_exec.name(), "MyRenamedEmptyExec"); - assert_eq!(RenamedEmptyExec::static_name(), "MyRenamedEmptyExec"); - } - - /// A compilation test to ensure that the `ExecutionPlan::name()` method can - /// be called from a trait object. - /// Related ticket: https://github.com/apache/datafusion/pull/11047 - #[allow(dead_code)] - fn use_execution_plan_as_trait_object(plan: &dyn ExecutionPlan) { - let _ = plan.name(); - } -} - pub mod test;