diff --git a/LICENSE.txt b/LICENSE.txt index 8a728a9821853..a37ca36c3f046 100644 --- a/LICENSE.txt +++ b/LICENSE.txt @@ -2223,3 +2223,11 @@ exception of some code pulled in from other repositories (such as public domain, released using the CC0 1.0 Universal dedication (*). (*) https://creativecommons.org/publicdomain/zero/1.0/legalcode + +-------------------------------------------------------------------------------- + +The files in cpp/src/arrow/vendored/fast_float/ contain code from + +https://github.com/lemire/fast_float + +which is made available under the Apache License 2.0. diff --git a/cpp/src/arrow/util/value_parsing.cc b/cpp/src/arrow/util/value_parsing.cc index cd12dbcdd7e41..adc333ecfcc4d 100644 --- a/cpp/src/arrow/util/value_parsing.cc +++ b/cpp/src/arrow/util/value_parsing.cc @@ -20,70 +20,19 @@ #include #include -#include "arrow/util/double_conversion.h" +#include "arrow/vendored/fast_float/fast_float.h" namespace arrow { namespace internal { -namespace { - -struct StringToFloatConverterImpl { - StringToFloatConverterImpl() - : main_converter_(flags_, main_junk_value_, main_junk_value_, "inf", "nan"), - fallback_converter_(flags_, fallback_junk_value_, fallback_junk_value_, "inf", - "nan") {} - - // NOTE: This is only supported in double-conversion 3.1+ - static constexpr int flags_ = - util::double_conversion::StringToDoubleConverter::ALLOW_CASE_INSENSIBILITY; - - // Two unlikely values to signal a parsing error - static constexpr double main_junk_value_ = 0.7066424364107089; - static constexpr double fallback_junk_value_ = 0.40088499148279166; - - util::double_conversion::StringToDoubleConverter main_converter_; - util::double_conversion::StringToDoubleConverter fallback_converter_; -}; - -static const StringToFloatConverterImpl g_string_to_float; - -// Older clang versions need an explicit implementation definition. -constexpr double StringToFloatConverterImpl::main_junk_value_; -constexpr double StringToFloatConverterImpl::fallback_junk_value_; - -} // namespace - bool StringToFloat(const char* s, size_t length, float* out) { - int processed_length; - float v; - v = g_string_to_float.main_converter_.StringToFloat(s, static_cast(length), - &processed_length); - if (ARROW_PREDICT_FALSE(v == static_cast(g_string_to_float.main_junk_value_))) { - v = g_string_to_float.fallback_converter_.StringToFloat(s, static_cast(length), - &processed_length); - if (ARROW_PREDICT_FALSE(v == - static_cast(g_string_to_float.fallback_junk_value_))) { - return false; - } - } - *out = v; - return true; + const auto res = ::arrow_vendored::fast_float::from_chars(s, s + length, *out); + return res.ec == std::errc() && res.ptr == s + length; } bool StringToFloat(const char* s, size_t length, double* out) { - int processed_length; - double v; - v = g_string_to_float.main_converter_.StringToDouble(s, static_cast(length), - &processed_length); - if (ARROW_PREDICT_FALSE(v == g_string_to_float.main_junk_value_)) { - v = g_string_to_float.fallback_converter_.StringToDouble(s, static_cast(length), - &processed_length); - if (ARROW_PREDICT_FALSE(v == g_string_to_float.fallback_junk_value_)) { - return false; - } - } - *out = v; - return true; + const auto res = ::arrow_vendored::fast_float::from_chars(s, s + length, *out); + return res.ec == std::errc() && res.ptr == s + length; } // ---------------------------------------------------------------------- diff --git a/cpp/src/arrow/vendored/fast_float/README.md b/cpp/src/arrow/vendored/fast_float/README.md new file mode 100644 index 0000000000000..4e0728c69ec75 --- /dev/null +++ b/cpp/src/arrow/vendored/fast_float/README.md @@ -0,0 +1,9 @@ +The files in this directory are vendored from fast_float +git changeset `dc46ad4c606dc35cb63c947496a18ef8ab1e0f44`. + +See https://github.com/lemire/fast_float + +Changes: +- fixed include paths +- disabled unused `print()` function +- enclosed in `arrow_vendored` namespace. diff --git a/cpp/src/arrow/vendored/fast_float/ascii_number.h b/cpp/src/arrow/vendored/fast_float/ascii_number.h new file mode 100644 index 0000000000000..d1f8af4087c93 --- /dev/null +++ b/cpp/src/arrow/vendored/fast_float/ascii_number.h @@ -0,0 +1,313 @@ +#ifndef FASTFLOAT_ASCII_NUMBER_H +#define FASTFLOAT_ASCII_NUMBER_H + +#include +#include +#include +#include + +#include "float_common.h" + +namespace arrow_vendored { +namespace fast_float { + +fastfloat_really_inline bool is_integer(char c) noexcept { return (c >= '0' && c <= '9'); } + + +// credit: https://johnnylee-sde.github.io/Fast-numeric-string-to-int/ +fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { + uint64_t val; + memcpy(&val, chars, sizeof(uint64_t)); + val = (val & 0x0F0F0F0F0F0F0F0F) * 2561 >> 8; + val = (val & 0x00FF00FF00FF00FF) * 6553601 >> 16; + return uint32_t((val & 0x0000FFFF0000FFFF) * 42949672960001 >> 32); +} + +fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { + uint64_t val; + memcpy(&val, chars, 8); + return (((val & 0xF0F0F0F0F0F0F0F0) | + (((val + 0x0606060606060606) & 0xF0F0F0F0F0F0F0F0) >> 4)) == + 0x3333333333333333); +} + + +fastfloat_really_inline uint32_t parse_four_digits_unrolled(const char *chars) noexcept { + uint32_t val; + memcpy(&val, chars, sizeof(uint32_t)); + val = (val & 0x0F0F0F0F) * 2561 >> 8; + return (val & 0x00FF00FF) * 6553601 >> 16; +} + +fastfloat_really_inline bool is_made_of_four_digits_fast(const char *chars) noexcept { + uint32_t val; + memcpy(&val, chars, 4); + return (((val & 0xF0F0F0F0) | + (((val + 0x06060606) & 0xF0F0F0F0) >> 4)) == + 0x33333333); +} + +struct parsed_number_string { + int64_t exponent; + uint64_t mantissa; + const char *lastmatch; + bool negative; + bool valid; + bool too_many_digits; +}; + + +// Assuming that you use no more than 17 digits, this will +// parse an ASCII string. +fastfloat_really_inline +parsed_number_string parse_number_string(const char *p, const char *pend, chars_format fmt) noexcept { + parsed_number_string answer; + answer.valid = false; + answer.negative = (*p == '-'); + if ((*p == '-') || (*p == '+')) { + ++p; + if (p == pend) { + return answer; + } + if (!is_integer(*p) && (*p != '.')) { // a sign must be followed by an integer or the dot + return answer; + } + } + const char *const start_digits = p; + + uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) + + while ((p != pend) && is_integer(*p)) { + // a multiplication by 10 is cheaper than an arbitrary integer + // multiplication + i = 10 * i + + (*p - '0'); // might overflow, we will handle the overflow later + ++p; + } + int64_t exponent = 0; + if ((p != pend) && (*p == '.')) { + ++p; + const char *first_after_period = p; + if ((p + 8 <= pend) && is_made_of_eight_digits_fast(p)) { + i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok + p += 8; + if ((p + 8 <= pend) && is_made_of_eight_digits_fast(p)) { + i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok + p += 8; + } + } + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + ++p; + i = i * 10 + digit; // in rare cases, this will overflow, but that's ok + } + exponent = first_after_period - p; + } + // we must have encountered at least one integer! + if ((start_digits == p) || ((start_digits == p - 1) && (*start_digits == '.') )) { + return answer; + } + + int32_t digit_count = + int32_t(p - start_digits - 1); // used later to guard against overflows + + if ((p != pend) && (('e' == *p) || ('E' == *p))) { + if((fmt & chars_format::fixed) && !(fmt & chars_format::scientific)) { return answer; } + int64_t exp_number = 0; // exponential part + ++p; + bool neg_exp = false; + if ((p != pend) && ('-' == *p)) { + neg_exp = true; + ++p; + } else if ((p != pend) && ('+' == *p)) { + ++p; + } + if ((p == pend) || !is_integer(*p)) { + return answer; + } + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + if (exp_number < 0x10000) { + exp_number = 10 * exp_number + digit; + } + ++p; + } + exponent += (neg_exp ? -exp_number : exp_number); + } else { + if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } + } + answer.lastmatch = p; + answer.valid = true; + + // If we frequently had to deal with long strings of digits, + // we could extend our code by using a 128-bit integer instead + // of a 64-bit integer. However, this is uncommon. + if (((digit_count >= 19))) { // this is uncommon + // It is possible that the integer had an overflow. + // We have to handle the case where we have 0.0000somenumber. + const char *start = start_digits; + while (*start == '0' || (*start == '.')) { + start++; + } + // we over-decrement by one when there is a decimal separator + digit_count -= int(start - start_digits); + if (digit_count >= 19) { + answer.mantissa = 0xFFFFFFFFFFFFFFFF; // important: we don't want the mantissa to be used in a fast path uninitialized. + answer.too_many_digits = true; + return answer; + } + } + answer.too_many_digits = false; + answer.exponent = exponent; + answer.mantissa = i; + return answer; +} + +// This should always succeed since it follows a call to parse_number_string. +// It assumes that there are more than 19 mantissa digits to parse. +parsed_number_string parse_truncated_decimal(const char *&p, const char *pend) noexcept { + parsed_number_string answer; + answer.valid = true; + answer.negative = (*p == '-'); + if ((*p == '-') || (*p == '+')) { + ++p; + } + size_t number_of_digits{0}; + + + uint64_t i = 0; + + while ((p != pend) && is_integer(*p)) { + // a multiplication by 10 is cheaper than an arbitrary integer + // multiplication + if(number_of_digits < 19) { + + uint8_t digit = uint8_t(*p - '0'); + i = 10 * i + digit; + number_of_digits ++; + } + ++p; + } + int64_t exponent = 0; + if ((p != pend) && (*p == '.')) { + ++p; + const char *first_after_period = p; + + while ((p != pend) && is_integer(*p)) { + if(number_of_digits < 19) { + uint8_t digit = uint8_t(*p - '0'); + i = i * 10 + digit; + number_of_digits ++; + } else if (exponent == 0) { + exponent = first_after_period - p; + } + ++p; + } + } + + if ((p != pend) && (('e' == *p) || ('E' == *p))) { + int64_t exp_number = 0; // exponential part + ++p; + bool neg_exp = false; + if ((p != pend) && ('-' == *p)) { + neg_exp = true; + ++p; + } else if ((p != pend) && ('+' == *p)) { + ++p; + } + if ((p == pend) || !is_integer(*p)) { + return answer; + } + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + if (exp_number < 0x10000) { + exp_number = 10 * exp_number + digit; + } + ++p; + } + exponent += (neg_exp ? -exp_number : exp_number); + } + answer.lastmatch = p; + answer.valid = true; + answer.too_many_digits = true; // assumed + answer.exponent = exponent; + answer.mantissa = i; + return answer; +} + + +// This should always succeed since it follows a call to parse_number_string. +decimal parse_decimal(const char *&p, const char *pend) noexcept { + decimal answer; + answer.num_digits = 0; + answer.decimal_point = 0; + answer.negative = false; + answer.truncated = false; + // skip leading whitespace + while (fast_float::is_space(*p)) { + p++; + } + answer.negative = (*p == '-'); + if ((*p == '-') || (*p == '+')) { + ++p; + } + + while ((p != pend) && (*p == '0')) { + ++p; + } + while ((p != pend) && is_integer(*p)) { + if (answer.num_digits + 1 < max_digits) { + answer.digits[answer.num_digits++] = uint8_t(*p - '0'); + } else { + answer.truncated = true; + } + ++p; + } + const char *first_after_period{}; + if ((p != pend) && (*p == '.')) { + ++p; + first_after_period = p; + // if we have not yet encountered a zero, we have to skip it as well + if(answer.num_digits == 0) { + // skip zeros + while ((p != pend) && (*p == '0')) { + ++p; + } + } + while ((p != pend) && is_integer(*p)) { + if (answer.num_digits + 1 < max_digits) { + answer.digits[answer.num_digits++] = uint8_t(*p - '0'); + } else { + answer.truncated = true; + } + ++p; + } + answer.decimal_point = int32_t(first_after_period - p); + } + + if ((p != pend) && (('e' == *p) || ('E' == *p))) { + ++p; + bool neg_exp = false; + if ((p != pend) && ('-' == *p)) { + neg_exp = true; + ++p; + } else if ((p != pend) && ('+' == *p)) { + ++p; + } + int32_t exp_number = 0; // exponential part + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + if (exp_number < 0x10000) { + exp_number = 10 * exp_number + digit; + } + ++p; + } + answer.decimal_point += (neg_exp ? -exp_number : exp_number); + } + answer.decimal_point += answer.num_digits; + return answer; +} +} // namespace fast_float +} // namespace arrow_vendored + +#endif diff --git a/cpp/src/arrow/vendored/fast_float/decimal_to_binary.h b/cpp/src/arrow/vendored/fast_float/decimal_to_binary.h new file mode 100644 index 0000000000000..a64a7aaca1752 --- /dev/null +++ b/cpp/src/arrow/vendored/fast_float/decimal_to_binary.h @@ -0,0 +1,167 @@ +#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H +#define FASTFLOAT_DECIMAL_TO_BINARY_H + +#include "float_common.h" +#include "fast_table.h" +#include +#include +#include +#include +#include +#include +#include +#include + +namespace arrow_vendored { +namespace fast_float { + + + + +// This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating +// the result, with the "high" part corresponding to the most significant bits and the +// low part corresponding to the least significant bits. +// +template +fastfloat_really_inline +value128 compute_product_approximation(int64_t q, uint64_t w) { + const int index = 2 * int(q - smallest_power_of_five); + // For small values of q, e.g., q in [0,27], the answer is always exact because + // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]); + // gives the exact answer. + value128 firstproduct = full_multiplication(w, power_of_five_128[index]); + static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]"); + constexpr uint64_t precision_mask = (bit_precision < 64) ? + (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) + : uint64_t(0xFFFFFFFFFFFFFFFF); + if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower) + // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed. + value128 secondproduct = full_multiplication(w, power_of_five_128[index + 1]); + firstproduct.low += secondproduct.high; + if(secondproduct.high > firstproduct.low) { + firstproduct.high++; + } + } + return firstproduct; +} + +namespace { +/** + * For q in (-400,350), we have that + * f = (((152170 + 65536) * q ) >> 16); + * is equal to + * floor(p) + q + * where + * p = log(5**q)/log(2) = q * log(5)/log(2) + * + */ + fastfloat_really_inline unsigned int power(int q) noexcept { + return (((152170 + 65536) * q) >> 16) + 63; + } +} // namespace + +// w * 10 ** q +// The returned value should be a valid ieee64 number that simply need to be packed. +// However, in some very rare cases, the computation will fail. In such cases, we +// return an adjusted_mantissa with a negative power of 2: the caller should recompute +// in such cases. +template +fastfloat_really_inline +adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept { + adjusted_mantissa answer; + if ((w == 0) || (q < smallest_power_of_five) ){ + answer.power2 = 0; + answer.mantissa = 0; + // result should be zero + return answer; + } + if (q > largest_power_of_five) { + // we want to get infinity: + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + // At this point in time q is in [smallest_power_of_five, largest_power_of_five]. + + // We want the most significant bit of i to be 1. Shift if needed. + int lz = leading_zeroes(w); + w <<= lz; + + // The required precision is binary::mantissa_explicit_bits() + 3 because + // 1. We need the implicit bit + // 2. We need an extra bit for rounding purposes + // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift) + value128 product = compute_product_approximation(q, w); + if(product.low == 0xFFFFFFFFFFFFFFFF) { // could guard it further + // In some very rare cases, this could happen, in which case we might need a more accurate + // computation that what we can provide cheaply. This is very, very unlikely. + answer.power2 = -1; + return answer; + } + // The "compute_product_approximation" function can be slightly slower than a branchless approach: + // value128 product = compute_product(q, w); + // but in practice, we can win big with the compute_product_approximation if its additional branch + // is easily predicted. Which is best is data specific. + uint64_t upperbit = product.high >> 63; + + answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); + lz += int(1 ^ upperbit); + answer.power2 = power(int(q)) - lz - binary::minimum_exponent() + 1; + + if (answer.power2 <= 0) { // we have a subnormal? + // Here have that answer.power2 <= 0 so -answer.power2 >= 0 + if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure. + answer.power2 = 0; + answer.mantissa = 0; + // result should be zero + return answer; + } + // next line is safe because -answer.power2 + 1 < 0 + answer.mantissa >>= -answer.power2 + 1; + // Thankfully, we can't have both "round-to-even" and subnormals because + // "round-to-even" only occurs for powers close to 0. + answer.mantissa += (answer.mantissa & 1); // round up + answer.mantissa >>= 1; + // There is a weird scenario where we don't have a subnormal but just. + // Suppose we start with 2.2250738585072013e-308, we end up + // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal + // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round + // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer + // subnormal, but we can only know this after rounding. + // So we only declare a subnormal if we are smaller than the threshold. + answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1; + return answer; + } + + // usually, we round *up*, but if we fall right in between and and we have an + // even basis, we need to round down + // We are only concerned with the cases where 5**q fits in single 64-bit word. + if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) && + ((answer.mantissa & 3) == 1) ) { // we may fall between two floats! + // To be in-between two floats we need that in doing + // answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); + // ... we dropped out only zeroes. But if this happened, then we can go back!!! + if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) { + answer.mantissa &= ~1; // flip it so that we do not round up + } + } + + answer.mantissa += (answer.mantissa & 1); // round up + answer.mantissa >>= 1; + if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { + answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); + answer.power2++; // undo previous addition + } + + answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); + if (answer.power2 >= binary::infinite_power()) { // infinity + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + } + return answer; +} + +} // namespace fast_float +} // namespace arrow_vendored + +#endif diff --git a/cpp/src/arrow/vendored/fast_float/fast_float.h b/cpp/src/arrow/vendored/fast_float/fast_float.h new file mode 100644 index 0000000000000..0e7acf5f84d7e --- /dev/null +++ b/cpp/src/arrow/vendored/fast_float/fast_float.h @@ -0,0 +1,47 @@ +#ifndef FASTFLOAT_FAST_FLOAT_H +#define FASTFLOAT_FAST_FLOAT_H + +#include + +namespace arrow_vendored { +namespace fast_float { +enum chars_format { + scientific = 1<<0, + fixed = 1<<2, + hex = 1<<3, + general = fixed | scientific +}; + + +struct from_chars_result { + const char *ptr; + std::errc ec; +}; + +/** + * This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting + * a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale. + * The resulting floating-point value is the closest floating-point values (using either float or double), + * using the "round to even" convention for values that would otherwise fall right in-between two values. + * That is, we provide exact parsing according to the IEEE standard. + * + * Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the + * parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned + * `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. + * + * The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). + * + * Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of + * the type `fast_float::chars_format`. It is a bitset value: we check whether + * `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set + * to determine whether we allowe the fixed point and scientific notation respectively. + * The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`. + */ +template +from_chars_result from_chars(const char *first, const char *last, + T &value, chars_format fmt = chars_format::general) noexcept; + +} +} // namespace arrow_vendored +#include "parse_number.h" +#endif // FASTFLOAT_FAST_FLOAT_H diff --git a/cpp/src/arrow/vendored/fast_float/fast_table.h b/cpp/src/arrow/vendored/fast_float/fast_table.h new file mode 100644 index 0000000000000..ac34fe7cefc39 --- /dev/null +++ b/cpp/src/arrow/vendored/fast_float/fast_table.h @@ -0,0 +1,691 @@ +#ifndef FASTFLOAT_FAST_TABLE_H +#define FASTFLOAT_FAST_TABLE_H +#include + +namespace arrow_vendored { +namespace fast_float { + +/** + * When mapping numbers from decimal to binary, + * we go from w * 10^q to m * 2^p but we have + * 10^q = 5^q * 2^q, so effectively + * we are trying to match + * w * 2^q * 5^q to m * 2^p. Thus the powers of two + * are not a concern since they can be represented + * exactly using the binary notation, only the powers of five + * affect the binary significand. + */ + +/** + * The smallest non-zero float (binary64) is 2^−1074. + * We take as input numbers of the form w x 10^q where w < 2^64. + * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. + * However, we have that + * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^−1074. + * Thus it is possible for a number of the form w * 10^-342 where + * w is a 64-bit value to be a non-zero floating-point number. + ********* + * Any number of form w * 10^309 where w>= 1 is going to be + * infinite in binary64 so we never need to worry about powers + * of 5 greater than 308. + */ +constexpr int smallest_power_of_five = -342; +constexpr int largest_power_of_five = 308; +// truncated powers of five from 5^-344 all the way to 5^308 +const uint64_t power_of_five_128[]= { + 0xeef453d6923bd65a,0x113faa2906a13b3f, + 0x9558b4661b6565f8,0x4ac7ca59a424c507, + 0xbaaee17fa23ebf76,0x5d79bcf00d2df649, + 0xe95a99df8ace6f53,0xf4d82c2c107973dc, + 0x91d8a02bb6c10594,0x79071b9b8a4be869, + 0xb64ec836a47146f9,0x9748e2826cdee284, + 0xe3e27a444d8d98b7,0xfd1b1b2308169b25, + 0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7, + 0xb208ef855c969f4f,0xbdbd2d335e51a935, + 0xde8b2b66b3bc4723,0xad2c788035e61382, + 0x8b16fb203055ac76,0x4c3bcb5021afcc31, + 0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d, + 0xd953e8624b85dd78,0xd71d6dad34a2af0d, + 0x87d4713d6f33aa6b,0x8672648c40e5ad68, + 0xa9c98d8ccb009506,0x680efdaf511f18c2, + 0xd43bf0effdc0ba48,0x212bd1b2566def2, + 0x84a57695fe98746d,0x14bb630f7604b57, + 0xa5ced43b7e3e9188,0x419ea3bd35385e2d, + 0xcf42894a5dce35ea,0x52064cac828675b9, + 0x818995ce7aa0e1b2,0x7343efebd1940993, + 0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8, + 0xca66fa129f9b60a6,0xd41a26e077774ef6, + 0xfd00b897478238d0,0x8920b098955522b4, + 0x9e20735e8cb16382,0x55b46e5f5d5535b0, + 0xc5a890362fddbc62,0xeb2189f734aa831d, + 0xf712b443bbd52b7b,0xa5e9ec7501d523e4, + 0x9a6bb0aa55653b2d,0x47b233c92125366e, + 0xc1069cd4eabe89f8,0x999ec0bb696e840a, + 0xf148440a256e2c76,0xc00670ea43ca250d, + 0x96cd2a865764dbca,0x380406926a5e5728, + 0xbc807527ed3e12bc,0xc605083704f5ecf2, + 0xeba09271e88d976b,0xf7864a44c633682e, + 0x93445b8731587ea3,0x7ab3ee6afbe0211d, + 0xb8157268fdae9e4c,0x5960ea05bad82964, + 0xe61acf033d1a45df,0x6fb92487298e33bd, + 0x8fd0c16206306bab,0xa5d3b6d479f8e056, + 0xb3c4f1ba87bc8696,0x8f48a4899877186c, + 0xe0b62e2929aba83c,0x331acdabfe94de87, + 0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14, + 0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9, + 0xdb71e91432b1a24a,0xc9e82cd9f69d6150, + 0x892731ac9faf056e,0xbe311c083a225cd2, + 0xab70fe17c79ac6ca,0x6dbd630a48aaf406, + 0xd64d3d9db981787d,0x92cbbccdad5b108, + 0x85f0468293f0eb4e,0x25bbf56008c58ea5, + 0xa76c582338ed2621,0xaf2af2b80af6f24e, + 0xd1476e2c07286faa,0x1af5af660db4aee1, + 0x82cca4db847945ca,0x50d98d9fc890ed4d, + 0xa37fce126597973c,0xe50ff107bab528a0, + 0xcc5fc196fefd7d0c,0x1e53ed49a96272c8, + 0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a, + 0x9faacf3df73609b1,0x77b191618c54e9ac, + 0xc795830d75038c1d,0xd59df5b9ef6a2417, + 0xf97ae3d0d2446f25,0x4b0573286b44ad1d, + 0x9becce62836ac577,0x4ee367f9430aec32, + 0xc2e801fb244576d5,0x229c41f793cda73f, + 0xf3a20279ed56d48a,0x6b43527578c1110f, + 0x9845418c345644d6,0x830a13896b78aaa9, + 0xbe5691ef416bd60c,0x23cc986bc656d553, + 0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8, + 0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9, + 0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53, + 0xe858ad248f5c22c9,0xd1b3400f8f9cff68, + 0x91376c36d99995be,0x23100809b9c21fa1, + 0xb58547448ffffb2d,0xabd40a0c2832a78a, + 0xe2e69915b3fff9f9,0x16c90c8f323f516c, + 0x8dd01fad907ffc3b,0xae3da7d97f6792e3, + 0xb1442798f49ffb4a,0x99cd11cfdf41779c, + 0xdd95317f31c7fa1d,0x40405643d711d583, + 0x8a7d3eef7f1cfc52,0x482835ea666b2572, + 0xad1c8eab5ee43b66,0xda3243650005eecf, + 0xd863b256369d4a40,0x90bed43e40076a82, + 0x873e4f75e2224e68,0x5a7744a6e804a291, + 0xa90de3535aaae202,0x711515d0a205cb36, + 0xd3515c2831559a83,0xd5a5b44ca873e03, + 0x8412d9991ed58091,0xe858790afe9486c2, + 0xa5178fff668ae0b6,0x626e974dbe39a872, + 0xce5d73ff402d98e3,0xfb0a3d212dc8128f, + 0x80fa687f881c7f8e,0x7ce66634bc9d0b99, + 0xa139029f6a239f72,0x1c1fffc1ebc44e80, + 0xc987434744ac874e,0xa327ffb266b56220, + 0xfbe9141915d7a922,0x4bf1ff9f0062baa8, + 0x9d71ac8fada6c9b5,0x6f773fc3603db4a9, + 0xc4ce17b399107c22,0xcb550fb4384d21d3, + 0xf6019da07f549b2b,0x7e2a53a146606a48, + 0x99c102844f94e0fb,0x2eda7444cbfc426d, + 0xc0314325637a1939,0xfa911155fefb5308, + 0xf03d93eebc589f88,0x793555ab7eba27ca, + 0x96267c7535b763b5,0x4bc1558b2f3458de, + 0xbbb01b9283253ca2,0x9eb1aaedfb016f16, + 0xea9c227723ee8bcb,0x465e15a979c1cadc, + 0x92a1958a7675175f,0xbfacd89ec191ec9, + 0xb749faed14125d36,0xcef980ec671f667b, + 0xe51c79a85916f484,0x82b7e12780e7401a, + 0x8f31cc0937ae58d2,0xd1b2ecb8b0908810, + 0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15, + 0xdfbdcece67006ac9,0x67a791e093e1d49a, + 0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0, + 0xaecc49914078536d,0x58fae9f773886e18, + 0xda7f5bf590966848,0xaf39a475506a899e, + 0x888f99797a5e012d,0x6d8406c952429603, + 0xaab37fd7d8f58178,0xc8e5087ba6d33b83, + 0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64, + 0x855c3be0a17fcd26,0x5cf2eea09a55067f, + 0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e, + 0xd0601d8efc57b08b,0xf13b94daf124da26, + 0x823c12795db6ce57,0x76c53d08d6b70858, + 0xa2cb1717b52481ed,0x54768c4b0c64ca6e, + 0xcb7ddcdda26da268,0xa9942f5dcf7dfd09, + 0xfe5d54150b090b02,0xd3f93b35435d7c4c, + 0x9efa548d26e5a6e1,0xc47bc5014a1a6daf, + 0xc6b8e9b0709f109a,0x359ab6419ca1091b, + 0xf867241c8cc6d4c0,0xc30163d203c94b62, + 0x9b407691d7fc44f8,0x79e0de63425dcf1d, + 0xc21094364dfb5636,0x985915fc12f542e4, + 0xf294b943e17a2bc4,0x3e6f5b7b17b2939d, + 0x979cf3ca6cec5b5a,0xa705992ceecf9c42, + 0xbd8430bd08277231,0x50c6ff782a838353, + 0xece53cec4a314ebd,0xa4f8bf5635246428, + 0x940f4613ae5ed136,0x871b7795e136be99, + 0xb913179899f68584,0x28e2557b59846e3f, + 0xe757dd7ec07426e5,0x331aeada2fe589cf, + 0x9096ea6f3848984f,0x3ff0d2c85def7621, + 0xb4bca50b065abe63,0xfed077a756b53a9, + 0xe1ebce4dc7f16dfb,0xd3e8495912c62894, + 0x8d3360f09cf6e4bd,0x64712dd7abbbd95c, + 0xb080392cc4349dec,0xbd8d794d96aacfb3, + 0xdca04777f541c567,0xecf0d7a0fc5583a0, + 0x89e42caaf9491b60,0xf41686c49db57244, + 0xac5d37d5b79b6239,0x311c2875c522ced5, + 0xd77485cb25823ac7,0x7d633293366b828b, + 0x86a8d39ef77164bc,0xae5dff9c02033197, + 0xa8530886b54dbdeb,0xd9f57f830283fdfc, + 0xd267caa862a12d66,0xd072df63c324fd7b, + 0x8380dea93da4bc60,0x4247cb9e59f71e6d, + 0xa46116538d0deb78,0x52d9be85f074e608, + 0xcd795be870516656,0x67902e276c921f8b, + 0x806bd9714632dff6,0xba1cd8a3db53b6, + 0xa086cfcd97bf97f3,0x80e8a40eccd228a4, + 0xc8a883c0fdaf7df0,0x6122cd128006b2cd, + 0xfad2a4b13d1b5d6c,0x796b805720085f81, + 0x9cc3a6eec6311a63,0xcbe3303674053bb0, + 0xc3f490aa77bd60fc,0xbedbfc4411068a9c, + 0xf4f1b4d515acb93b,0xee92fb5515482d44, + 0x991711052d8bf3c5,0x751bdd152d4d1c4a, + 0xbf5cd54678eef0b6,0xd262d45a78a0635d, + 0xef340a98172aace4,0x86fb897116c87c34, + 0x9580869f0e7aac0e,0xd45d35e6ae3d4da0, + 0xbae0a846d2195712,0x8974836059cca109, + 0xe998d258869facd7,0x2bd1a438703fc94b, + 0x91ff83775423cc06,0x7b6306a34627ddcf, + 0xb67f6455292cbf08,0x1a3bc84c17b1d542, + 0xe41f3d6a7377eeca,0x20caba5f1d9e4a93, + 0x8e938662882af53e,0x547eb47b7282ee9c, + 0xb23867fb2a35b28d,0xe99e619a4f23aa43, + 0xdec681f9f4c31f31,0x6405fa00e2ec94d4, + 0x8b3c113c38f9f37e,0xde83bc408dd3dd04, + 0xae0b158b4738705e,0x9624ab50b148d445, + 0xd98ddaee19068c76,0x3badd624dd9b0957, + 0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6, + 0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c, + 0xd47487cc8470652b,0x7647c3200069671f, + 0x84c8d4dfd2c63f3b,0x29ecd9f40041e073, + 0xa5fb0a17c777cf09,0xf468107100525890, + 0xcf79cc9db955c2cc,0x7182148d4066eeb4, + 0x81ac1fe293d599bf,0xc6f14cd848405530, + 0xa21727db38cb002f,0xb8ada00e5a506a7c, + 0xca9cf1d206fdc03b,0xa6d90811f0e4851c, + 0xfd442e4688bd304a,0x908f4a166d1da663, + 0x9e4a9cec15763e2e,0x9a598e4e043287fe, + 0xc5dd44271ad3cdba,0x40eff1e1853f29fd, + 0xf7549530e188c128,0xd12bee59e68ef47c, + 0x9a94dd3e8cf578b9,0x82bb74f8301958ce, + 0xc13a148e3032d6e7,0xe36a52363c1faf01, + 0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1, + 0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9, + 0xbcb2b812db11a5de,0x7415d448f6b6f0e7, + 0xebdf661791d60f56,0x111b495b3464ad21, + 0x936b9fcebb25c995,0xcab10dd900beec34, + 0xb84687c269ef3bfb,0x3d5d514f40eea742, + 0xe65829b3046b0afa,0xcb4a5a3112a5112, + 0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab, + 0xb3f4e093db73a093,0x59ed216765690f56, + 0xe0f218b8d25088b8,0x306869c13ec3532c, + 0x8c974f7383725573,0x1e414218c73a13fb, + 0xafbd2350644eeacf,0xe5d1929ef90898fa, + 0xdbac6c247d62a583,0xdf45f746b74abf39, + 0x894bc396ce5da772,0x6b8bba8c328eb783, + 0xab9eb47c81f5114f,0x66ea92f3f326564, + 0xd686619ba27255a2,0xc80a537b0efefebd, + 0x8613fd0145877585,0xbd06742ce95f5f36, + 0xa798fc4196e952e7,0x2c48113823b73704, + 0xd17f3b51fca3a7a0,0xf75a15862ca504c5, + 0x82ef85133de648c4,0x9a984d73dbe722fb, + 0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba, + 0xcc963fee10b7d1b3,0x318df905079926a8, + 0xffbbcfe994e5c61f,0xfdf17746497f7052, + 0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633, + 0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0, + 0xf9bd690a1b68637b,0x3dfdce7aa3c673b0, + 0x9c1661a651213e2d,0x6bea10ca65c084e, + 0xc31bfa0fe5698db8,0x486e494fcff30a62, + 0xf3e2f893dec3f126,0x5a89dba3c3efccfa, + 0x986ddb5c6b3a76b7,0xf89629465a75e01c, + 0xbe89523386091465,0xf6bbb397f1135823, + 0xee2ba6c0678b597f,0x746aa07ded582e2c, + 0x94db483840b717ef,0xa8c2a44eb4571cdc, + 0xba121a4650e4ddeb,0x92f34d62616ce413, + 0xe896a0d7e51e1566,0x77b020baf9c81d17, + 0x915e2486ef32cd60,0xace1474dc1d122e, + 0xb5b5ada8aaff80b8,0xd819992132456ba, + 0xe3231912d5bf60e6,0x10e1fff697ed6c69, + 0x8df5efabc5979c8f,0xca8d3ffa1ef463c1, + 0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2, + 0xddd0467c64bce4a0,0xac7cb3f6d05ddbde, + 0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b, + 0xad4ab7112eb3929d,0x86c16c98d2c953c6, + 0xd89d64d57a607744,0xe871c7bf077ba8b7, + 0x87625f056c7c4a8b,0x11471cd764ad4972, + 0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf, + 0xd389b47879823479,0x4aff1d108d4ec2c3, + 0x843610cb4bf160cb,0xcedf722a585139ba, + 0xa54394fe1eedb8fe,0xc2974eb4ee658828, + 0xce947a3da6a9273e,0x733d226229feea32, + 0x811ccc668829b887,0x806357d5a3f525f, + 0xa163ff802a3426a8,0xca07c2dcb0cf26f7, + 0xc9bcff6034c13052,0xfc89b393dd02f0b5, + 0xfc2c3f3841f17c67,0xbbac2078d443ace2, + 0x9d9ba7832936edc0,0xd54b944b84aa4c0d, + 0xc5029163f384a931,0xa9e795e65d4df11, + 0xf64335bcf065d37d,0x4d4617b5ff4a16d5, + 0x99ea0196163fa42e,0x504bced1bf8e4e45, + 0xc06481fb9bcf8d39,0xe45ec2862f71e1d6, + 0xf07da27a82c37088,0x5d767327bb4e5a4c, + 0x964e858c91ba2655,0x3a6a07f8d510f86f, + 0xbbe226efb628afea,0x890489f70a55368b, + 0xeadab0aba3b2dbe5,0x2b45ac74ccea842e, + 0x92c8ae6b464fc96f,0x3b0b8bc90012929d, + 0xb77ada0617e3bbcb,0x9ce6ebb40173744, + 0xe55990879ddcaabd,0xcc420a6a101d0515, + 0x8f57fa54c2a9eab6,0x9fa946824a12232d, + 0xb32df8e9f3546564,0x47939822dc96abf9, + 0xdff9772470297ebd,0x59787e2b93bc56f7, + 0x8bfbea76c619ef36,0x57eb4edb3c55b65a, + 0xaefae51477a06b03,0xede622920b6b23f1, + 0xdab99e59958885c4,0xe95fab368e45eced, + 0x88b402f7fd75539b,0x11dbcb0218ebb414, + 0xaae103b5fcd2a881,0xd652bdc29f26a119, + 0xd59944a37c0752a2,0x4be76d3346f0495f, + 0x857fcae62d8493a5,0x6f70a4400c562ddb, + 0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952, + 0xd097ad07a71f26b2,0x7e2000a41346a7a7, + 0x825ecc24c873782f,0x8ed400668c0c28c8, + 0xa2f67f2dfa90563b,0x728900802f0f32fa, + 0xcbb41ef979346bca,0x4f2b40a03ad2ffb9, + 0xfea126b7d78186bc,0xe2f610c84987bfa8, + 0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9, + 0xc6ede63fa05d3143,0x91503d1c79720dbb, + 0xf8a95fcf88747d94,0x75a44c6397ce912a, + 0x9b69dbe1b548ce7c,0xc986afbe3ee11aba, + 0xc24452da229b021b,0xfbe85badce996168, + 0xf2d56790ab41c2a2,0xfae27299423fb9c3, + 0x97c560ba6b0919a5,0xdccd879fc967d41a, + 0xbdb6b8e905cb600f,0x5400e987bbc1c920, + 0xed246723473e3813,0x290123e9aab23b68, + 0x9436c0760c86e30b,0xf9a0b6720aaf6521, + 0xb94470938fa89bce,0xf808e40e8d5b3e69, + 0xe7958cb87392c2c2,0xb60b1d1230b20e04, + 0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2, + 0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3, + 0xe2280b6c20dd5232,0x25c6da63c38de1b0, + 0x8d590723948a535f,0x579c487e5a38ad0e, + 0xb0af48ec79ace837,0x2d835a9df0c6d851, + 0xdcdb1b2798182244,0xf8e431456cf88e65, + 0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff, + 0xac8b2d36eed2dac5,0xe272467e3d222f3f, + 0xd7adf884aa879177,0x5b0ed81dcc6abb0f, + 0x86ccbb52ea94baea,0x98e947129fc2b4e9, + 0xa87fea27a539e9a5,0x3f2398d747b36224, + 0xd29fe4b18e88640e,0x8eec7f0d19a03aad, + 0x83a3eeeef9153e89,0x1953cf68300424ac, + 0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7, + 0xcdb02555653131b6,0x3792f412cb06794d, + 0x808e17555f3ebf11,0xe2bbd88bbee40bd0, + 0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4, + 0xc8de047564d20a8b,0xf245825a5a445275, + 0xfb158592be068d2e,0xeed6e2f0f0d56712, + 0x9ced737bb6c4183d,0x55464dd69685606b, + 0xc428d05aa4751e4c,0xaa97e14c3c26b886, + 0xf53304714d9265df,0xd53dd99f4b3066a8, + 0x993fe2c6d07b7fab,0xe546a8038efe4029, + 0xbf8fdb78849a5f96,0xde98520472bdd033, + 0xef73d256a5c0f77c,0x963e66858f6d4440, + 0x95a8637627989aad,0xdde7001379a44aa8, + 0xbb127c53b17ec159,0x5560c018580d5d52, + 0xe9d71b689dde71af,0xaab8f01e6e10b4a6, + 0x9226712162ab070d,0xcab3961304ca70e8, + 0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22, + 0xe45c10c42a2b3b05,0x8cb89a7db77c506a, + 0x8eb98a7a9a5b04e3,0x77f3608e92adb242, + 0xb267ed1940f1c61c,0x55f038b237591ed3, + 0xdf01e85f912e37a3,0x6b6c46dec52f6688, + 0x8b61313bbabce2c6,0x2323ac4b3b3da015, + 0xae397d8aa96c1b77,0xabec975e0a0d081a, + 0xd9c7dced53c72255,0x96e7bd358c904a21, + 0x881cea14545c7575,0x7e50d64177da2e54, + 0xaa242499697392d2,0xdde50bd1d5d0b9e9, + 0xd4ad2dbfc3d07787,0x955e4ec64b44e864, + 0x84ec3c97da624ab4,0xbd5af13bef0b113e, + 0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e, + 0xcfb11ead453994ba,0x67de18eda5814af2, + 0x81ceb32c4b43fcf4,0x80eacf948770ced7, + 0xa2425ff75e14fc31,0xa1258379a94d028d, + 0xcad2f7f5359a3b3e,0x96ee45813a04330, + 0xfd87b5f28300ca0d,0x8bca9d6e188853fc, + 0x9e74d1b791e07e48,0x775ea264cf55347e, + 0xc612062576589dda,0x95364afe032a81a0, + 0xf79687aed3eec551,0x3a83ddbd83f52210, + 0x9abe14cd44753b52,0xc4926a9672793580, + 0xc16d9a0095928a27,0x75b7053c0f178400, + 0xf1c90080baf72cb1,0x5324c68b12dd6800, + 0x971da05074da7bee,0xd3f6fc16ebca8000, + 0xbce5086492111aea,0x88f4bb1ca6bd0000, + 0xec1e4a7db69561a5,0x2b31e9e3d0700000, + 0x9392ee8e921d5d07,0x3aff322e62600000, + 0xb877aa3236a4b449,0x9befeb9fad487c3, + 0xe69594bec44de15b,0x4c2ebe687989a9b4, + 0x901d7cf73ab0acd9,0xf9d37014bf60a11, + 0xb424dc35095cd80f,0x538484c19ef38c95, + 0xe12e13424bb40e13,0x2865a5f206b06fba, + 0x8cbccc096f5088cb,0xf93f87b7442e45d4, + 0xafebff0bcb24aafe,0xf78f69a51539d749, + 0xdbe6fecebdedd5be,0xb573440e5a884d1c, + 0x89705f4136b4a597,0x31680a88f8953031, + 0xabcc77118461cefc,0xfdc20d2b36ba7c3e, + 0xd6bf94d5e57a42bc,0x3d32907604691b4d, + 0x8637bd05af6c69b5,0xa63f9a49c2c1b110, + 0xa7c5ac471b478423,0xfcf80dc33721d54, + 0xd1b71758e219652b,0xd3c36113404ea4a9, + 0x83126e978d4fdf3b,0x645a1cac083126ea, + 0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4, + 0xcccccccccccccccc,0xcccccccccccccccd, + 0x8000000000000000,0x0, + 0xa000000000000000,0x0, + 0xc800000000000000,0x0, + 0xfa00000000000000,0x0, + 0x9c40000000000000,0x0, + 0xc350000000000000,0x0, + 0xf424000000000000,0x0, + 0x9896800000000000,0x0, + 0xbebc200000000000,0x0, + 0xee6b280000000000,0x0, + 0x9502f90000000000,0x0, + 0xba43b74000000000,0x0, + 0xe8d4a51000000000,0x0, + 0x9184e72a00000000,0x0, + 0xb5e620f480000000,0x0, + 0xe35fa931a0000000,0x0, + 0x8e1bc9bf04000000,0x0, + 0xb1a2bc2ec5000000,0x0, + 0xde0b6b3a76400000,0x0, + 0x8ac7230489e80000,0x0, + 0xad78ebc5ac620000,0x0, + 0xd8d726b7177a8000,0x0, + 0x878678326eac9000,0x0, + 0xa968163f0a57b400,0x0, + 0xd3c21bcecceda100,0x0, + 0x84595161401484a0,0x0, + 0xa56fa5b99019a5c8,0x0, + 0xcecb8f27f4200f3a,0x0, + 0x813f3978f8940984,0x4000000000000000, + 0xa18f07d736b90be5,0x5000000000000000, + 0xc9f2c9cd04674ede,0xa400000000000000, + 0xfc6f7c4045812296,0x4d00000000000000, + 0x9dc5ada82b70b59d,0xf020000000000000, + 0xc5371912364ce305,0x6c28000000000000, + 0xf684df56c3e01bc6,0xc732000000000000, + 0x9a130b963a6c115c,0x3c7f400000000000, + 0xc097ce7bc90715b3,0x4b9f100000000000, + 0xf0bdc21abb48db20,0x1e86d40000000000, + 0x96769950b50d88f4,0x1314448000000000, + 0xbc143fa4e250eb31,0x17d955a000000000, + 0xeb194f8e1ae525fd,0x5dcfab0800000000, + 0x92efd1b8d0cf37be,0x5aa1cae500000000, + 0xb7abc627050305ad,0xf14a3d9e40000000, + 0xe596b7b0c643c719,0x6d9ccd05d0000000, + 0x8f7e32ce7bea5c6f,0xe4820023a2000000, + 0xb35dbf821ae4f38b,0xdda2802c8a800000, + 0xe0352f62a19e306e,0xd50b2037ad200000, + 0x8c213d9da502de45,0x4526f422cc340000, + 0xaf298d050e4395d6,0x9670b12b7f410000, + 0xdaf3f04651d47b4c,0x3c0cdd765f114000, + 0x88d8762bf324cd0f,0xa5880a69fb6ac800, + 0xab0e93b6efee0053,0x8eea0d047a457a00, + 0xd5d238a4abe98068,0x72a4904598d6d880, + 0x85a36366eb71f041,0x47a6da2b7f864750, + 0xa70c3c40a64e6c51,0x999090b65f67d924, + 0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d, + 0x82818f1281ed449f,0xbff8f10e7a8921a4, + 0xa321f2d7226895c7,0xaff72d52192b6a0d, + 0xcbea6f8ceb02bb39,0x9bf4f8a69f764490, + 0xfee50b7025c36a08,0x2f236d04753d5b4, + 0x9f4f2726179a2245,0x1d762422c946590, + 0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5, + 0xf8ebad2b84e0d58b,0xd2e0898765a7deb2, + 0x9b934c3b330c8577,0x63cc55f49f88eb2f, + 0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb, + 0xf316271c7fc3908a,0x8bef464e3945ef7a, + 0x97edd871cfda3a56,0x97758bf0e3cbb5ac, + 0xbde94e8e43d0c8ec,0x3d52eeed1cbea317, + 0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd, + 0x945e455f24fb1cf8,0x8fe8caa93e74ef6a, + 0xb975d6b6ee39e436,0xb3e2fd538e122b44, + 0xe7d34c64a9c85d44,0x60dbbca87196b616, + 0x90e40fbeea1d3a4a,0xbc8955e946fe31cd, + 0xb51d13aea4a488dd,0x6babab6398bdbe41, + 0xe264589a4dcdab14,0xc696963c7eed2dd1, + 0x8d7eb76070a08aec,0xfc1e1de5cf543ca2, + 0xb0de65388cc8ada8,0x3b25a55f43294bcb, + 0xdd15fe86affad912,0x49ef0eb713f39ebe, + 0x8a2dbf142dfcc7ab,0x6e3569326c784337, + 0xacb92ed9397bf996,0x49c2c37f07965404, + 0xd7e77a8f87daf7fb,0xdc33745ec97be906, + 0x86f0ac99b4e8dafd,0x69a028bb3ded71a3, + 0xa8acd7c0222311bc,0xc40832ea0d68ce0c, + 0xd2d80db02aabd62b,0xf50a3fa490c30190, + 0x83c7088e1aab65db,0x792667c6da79e0fa, + 0xa4b8cab1a1563f52,0x577001b891185938, + 0xcde6fd5e09abcf26,0xed4c0226b55e6f86, + 0x80b05e5ac60b6178,0x544f8158315b05b4, + 0xa0dc75f1778e39d6,0x696361ae3db1c721, + 0xc913936dd571c84c,0x3bc3a19cd1e38e9, + 0xfb5878494ace3a5f,0x4ab48a04065c723, + 0x9d174b2dcec0e47b,0x62eb0d64283f9c76, + 0xc45d1df942711d9a,0x3ba5d0bd324f8394, + 0xf5746577930d6500,0xca8f44ec7ee36479, + 0x9968bf6abbe85f20,0x7e998b13cf4e1ecb, + 0xbfc2ef456ae276e8,0x9e3fedd8c321a67e, + 0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e, + 0x95d04aee3b80ece5,0xbba1f1d158724a12, + 0xbb445da9ca61281f,0x2a8a6e45ae8edc97, + 0xea1575143cf97226,0xf52d09d71a3293bd, + 0x924d692ca61be758,0x593c2626705f9c56, + 0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c, + 0xe498f455c38b997a,0xb6dfb9c0f956447, + 0x8edf98b59a373fec,0x4724bd4189bd5eac, + 0xb2977ee300c50fe7,0x58edec91ec2cb657, + 0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed, + 0x8b865b215899f46c,0xbd79e0d20082ee74, + 0xae67f1e9aec07187,0xecd8590680a3aa11, + 0xda01ee641a708de9,0xe80e6f4820cc9495, + 0x884134fe908658b2,0x3109058d147fdcdd, + 0xaa51823e34a7eede,0xbd4b46f0599fd415, + 0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a, + 0x850fadc09923329e,0x3e2cf6bc604ddb0, + 0xa6539930bf6bff45,0x84db8346b786151c, + 0xcfe87f7cef46ff16,0xe612641865679a63, + 0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e, + 0xa26da3999aef7749,0xe3be5e330f38f09d, + 0xcb090c8001ab551c,0x5cadf5bfd3072cc5, + 0xfdcb4fa002162a63,0x73d9732fc7c8f7f6, + 0x9e9f11c4014dda7e,0x2867e7fddcdd9afa, + 0xc646d63501a1511d,0xb281e1fd541501b8, + 0xf7d88bc24209a565,0x1f225a7ca91a4226, + 0x9ae757596946075f,0x3375788de9b06958, + 0xc1a12d2fc3978937,0x52d6b1641c83ae, + 0xf209787bb47d6b84,0xc0678c5dbd23a49a, + 0x9745eb4d50ce6332,0xf840b7ba963646e0, + 0xbd176620a501fbff,0xb650e5a93bc3d898, + 0xec5d3fa8ce427aff,0xa3e51f138ab4cebe, + 0x93ba47c980e98cdf,0xc66f336c36b10137, + 0xb8a8d9bbe123f017,0xb80b0047445d4184, + 0xe6d3102ad96cec1d,0xa60dc059157491e5, + 0x9043ea1ac7e41392,0x87c89837ad68db2f, + 0xb454e4a179dd1877,0x29babe4598c311fb, + 0xe16a1dc9d8545e94,0xf4296dd6fef3d67a, + 0x8ce2529e2734bb1d,0x1899e4a65f58660c, + 0xb01ae745b101e9e4,0x5ec05dcff72e7f8f, + 0xdc21a1171d42645d,0x76707543f4fa1f73, + 0x899504ae72497eba,0x6a06494a791c53a8, + 0xabfa45da0edbde69,0x487db9d17636892, + 0xd6f8d7509292d603,0x45a9d2845d3c42b6, + 0x865b86925b9bc5c2,0xb8a2392ba45a9b2, + 0xa7f26836f282b732,0x8e6cac7768d7141e, + 0xd1ef0244af2364ff,0x3207d795430cd926, + 0x8335616aed761f1f,0x7f44e6bd49e807b8, + 0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6, + 0xcd036837130890a1,0x36dba887c37a8c0f, + 0x802221226be55a64,0xc2494954da2c9789, + 0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c, + 0xc83553c5c8965d3d,0x6f92829494e5acc7, + 0xfa42a8b73abbf48c,0xcb772339ba1f17f9, + 0x9c69a97284b578d7,0xff2a760414536efb, + 0xc38413cf25e2d70d,0xfef5138519684aba, + 0xf46518c2ef5b8cd1,0x7eb258665fc25d69, + 0x98bf2f79d5993802,0xef2f773ffbd97a61, + 0xbeeefb584aff8603,0xaafb550ffacfd8fa, + 0xeeaaba2e5dbf6784,0x95ba2a53f983cf38, + 0x952ab45cfa97a0b2,0xdd945a747bf26183, + 0xba756174393d88df,0x94f971119aeef9e4, + 0xe912b9d1478ceb17,0x7a37cd5601aab85d, + 0x91abb422ccb812ee,0xac62e055c10ab33a, + 0xb616a12b7fe617aa,0x577b986b314d6009, + 0xe39c49765fdf9d94,0xed5a7e85fda0b80b, + 0x8e41ade9fbebc27d,0x14588f13be847307, + 0xb1d219647ae6b31c,0x596eb2d8ae258fc8, + 0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb, + 0x8aec23d680043bee,0x25de7bb9480d5854, + 0xada72ccc20054ae9,0xaf561aa79a10ae6a, + 0xd910f7ff28069da4,0x1b2ba1518094da04, + 0x87aa9aff79042286,0x90fb44d2f05d0842, + 0xa99541bf57452b28,0x353a1607ac744a53, + 0xd3fa922f2d1675f2,0x42889b8997915ce8, + 0x847c9b5d7c2e09b7,0x69956135febada11, + 0xa59bc234db398c25,0x43fab9837e699095, + 0xcf02b2c21207ef2e,0x94f967e45e03f4bb, + 0x8161afb94b44f57d,0x1d1be0eebac278f5, + 0xa1ba1ba79e1632dc,0x6462d92a69731732, + 0xca28a291859bbf93,0x7d7b8f7503cfdcfe, + 0xfcb2cb35e702af78,0x5cda735244c3d43e, + 0x9defbf01b061adab,0x3a0888136afa64a7, + 0xc56baec21c7a1916,0x88aaa1845b8fdd0, + 0xf6c69a72a3989f5b,0x8aad549e57273d45, + 0x9a3c2087a63f6399,0x36ac54e2f678864b, + 0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd, + 0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5, + 0x969eb7c47859e743,0x9f644ae5a4b1b325, + 0xbc4665b596706114,0x873d5d9f0dde1fee, + 0xeb57ff22fc0c7959,0xa90cb506d155a7ea, + 0x9316ff75dd87cbd8,0x9a7f12442d588f2, + 0xb7dcbf5354e9bece,0xc11ed6d538aeb2f, + 0xe5d3ef282a242e81,0x8f1668c8a86da5fa, + 0x8fa475791a569d10,0xf96e017d694487bc, + 0xb38d92d760ec4455,0x37c981dcc395a9ac, + 0xe070f78d3927556a,0x85bbe253f47b1417, + 0x8c469ab843b89562,0x93956d7478ccec8e, + 0xaf58416654a6babb,0x387ac8d1970027b2, + 0xdb2e51bfe9d0696a,0x6997b05fcc0319e, + 0x88fcf317f22241e2,0x441fece3bdf81f03, + 0xab3c2fddeeaad25a,0xd527e81cad7626c3, + 0xd60b3bd56a5586f1,0x8a71e223d8d3b074, + 0x85c7056562757456,0xf6872d5667844e49, + 0xa738c6bebb12d16c,0xb428f8ac016561db, + 0xd106f86e69d785c7,0xe13336d701beba52, + 0x82a45b450226b39c,0xecc0024661173473, + 0xa34d721642b06084,0x27f002d7f95d0190, + 0xcc20ce9bd35c78a5,0x31ec038df7b441f4, + 0xff290242c83396ce,0x7e67047175a15271, + 0x9f79a169bd203e41,0xf0062c6e984d386, + 0xc75809c42c684dd1,0x52c07b78a3e60868, + 0xf92e0c3537826145,0xa7709a56ccdf8a82, + 0x9bbcc7a142b17ccb,0x88a66076400bb691, + 0xc2abf989935ddbfe,0x6acff893d00ea435, + 0xf356f7ebf83552fe,0x583f6b8c4124d43, + 0x98165af37b2153de,0xc3727a337a8b704a, + 0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c, + 0xeda2ee1c7064130c,0x1162def06f79df73, + 0x9485d4d1c63e8be7,0x8addcb5645ac2ba8, + 0xb9a74a0637ce2ee1,0x6d953e2bd7173692, + 0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437, + 0x910ab1d4db9914a0,0x1d9c9892400a22a2, + 0xb54d5e4a127f59c8,0x2503beb6d00cab4b, + 0xe2a0b5dc971f303a,0x2e44ae64840fd61d, + 0x8da471a9de737e24,0x5ceaecfed289e5d2, + 0xb10d8e1456105dad,0x7425a83e872c5f47, + 0xdd50f1996b947518,0xd12f124e28f77719, + 0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f, + 0xace73cbfdc0bfb7b,0x636cc64d1001550b, + 0xd8210befd30efa5a,0x3c47f7e05401aa4e, + 0x8714a775e3e95c78,0x65acfaec34810a71, + 0xa8d9d1535ce3b396,0x7f1839a741a14d0d, + 0xd31045a8341ca07c,0x1ede48111209a050, + 0x83ea2b892091e44d,0x934aed0aab460432, + 0xa4e4b66b68b65d60,0xf81da84d5617853f, + 0xce1de40642e3f4b9,0x36251260ab9d668e, + 0x80d2ae83e9ce78f3,0xc1d72b7c6b426019, + 0xa1075a24e4421730,0xb24cf65b8612f81f, + 0xc94930ae1d529cfc,0xdee033f26797b627, + 0xfb9b7cd9a4a7443c,0x169840ef017da3b1, + 0x9d412e0806e88aa5,0x8e1f289560ee864e, + 0xc491798a08a2ad4e,0xf1a6f2bab92a27e2, + 0xf5b5d7ec8acb58a2,0xae10af696774b1db, + 0x9991a6f3d6bf1765,0xacca6da1e0a8ef29, + 0xbff610b0cc6edd3f,0x17fd090a58d32af3, + 0xeff394dcff8a948e,0xddfc4b4cef07f5b0, + 0x95f83d0a1fb69cd9,0x4abdaf101564f98e, + 0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1, + 0xea53df5fd18d5513,0x84c86189216dc5ed, + 0x92746b9be2f8552c,0x32fd3cf5b4e49bb4, + 0xb7118682dbb66a77,0x3fbc8c33221dc2a1, + 0xe4d5e82392a40515,0xfabaf3feaa5334a, + 0x8f05b1163ba6832d,0x29cb4d87f2a7400e, + 0xb2c71d5bca9023f8,0x743e20e9ef511012, + 0xdf78e4b2bd342cf6,0x914da9246b255416, + 0x8bab8eefb6409c1a,0x1ad089b6c2f7548e, + 0xae9672aba3d0c320,0xa184ac2473b529b1, + 0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e, + 0x8865899617fb1871,0x7e2fa67c7a658892, + 0xaa7eebfb9df9de8d,0xddbb901b98feeab7, + 0xd51ea6fa85785631,0x552a74227f3ea565, + 0x8533285c936b35de,0xd53a88958f87275f, + 0xa67ff273b8460356,0x8a892abaf368f137, + 0xd01fef10a657842c,0x2d2b7569b0432d85, + 0x8213f56a67f6b29b,0x9c3b29620e29fc73, + 0xa298f2c501f45f42,0x8349f3ba91b47b8f, + 0xcb3f2f7642717713,0x241c70a936219a73, + 0xfe0efb53d30dd4d7,0xed238cd383aa0110, + 0x9ec95d1463e8a506,0xf4363804324a40aa, + 0xc67bb4597ce2ce48,0xb143c6053edcd0d5, + 0xf81aa16fdc1b81da,0xdd94b7868e94050a, + 0x9b10a4e5e9913128,0xca7cf2b4191c8326, + 0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0, + 0xf24a01a73cf2dccf,0xbc633b39673c8cec, + 0x976e41088617ca01,0xd5be0503e085d813, + 0xbd49d14aa79dbc82,0x4b2d8644d8a74e18, + 0xec9c459d51852ba2,0xddf8e7d60ed1219e, + 0x93e1ab8252f33b45,0xcabb90e5c942b503, + 0xb8da1662e7b00a17,0x3d6a751f3b936243, + 0xe7109bfba19c0c9d,0xcc512670a783ad4, + 0x906a617d450187e2,0x27fb2b80668b24c5, + 0xb484f9dc9641e9da,0xb1f9f660802dedf6, + 0xe1a63853bbd26451,0x5e7873f8a0396973, + 0x8d07e33455637eb2,0xdb0b487b6423e1e8, + 0xb049dc016abc5e5f,0x91ce1a9a3d2cda62, + 0xdc5c5301c56b75f7,0x7641a140cc7810fb, + 0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d, + 0xac2820d9623bf429,0x546345fa9fbdcd44, + 0xd732290fbacaf133,0xa97c177947ad4095, + 0x867f59a9d4bed6c0,0x49ed8eabcccc485d, + 0xa81f301449ee8c70,0x5c68f256bfff5a74, + 0xd226fc195c6a2f8c,0x73832eec6fff3111, + 0x83585d8fd9c25db7,0xc831fd53c5ff7eab, + 0xa42e74f3d032f525,0xba3e7ca8b77f5e55, + 0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb, + 0x80444b5e7aa7cf85,0x7980d163cf5b81b3, + 0xa0555e361951c366,0xd7e105bcc332621f, + 0xc86ab5c39fa63440,0x8dd9472bf3fefaa7, + 0xfa856334878fc150,0xb14f98f6f0feb951, + 0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3, + 0xc3b8358109e84f07,0xa862f80ec4700c8, + 0xf4a642e14c6262c8,0xcd27bb612758c0fa, + 0x98e7e9cccfbd7dbd,0x8038d51cb897789c, + 0xbf21e44003acdd2c,0xe0470a63e6bd56c3, + 0xeeea5d5004981478,0x1858ccfce06cac74, + 0x95527a5202df0ccb,0xf37801e0c43ebc8, + 0xbaa718e68396cffd,0xd30560258f54e6ba, + 0xe950df20247c83fd,0x47c6b82ef32a2069, + 0x91d28b7416cdd27e,0x4cdc331d57fa5441, + 0xb6472e511c81471d,0xe0133fe4adf8e952, + 0xe3d8f9e563a198e5,0x58180fddd97723a6, + 0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,}; + +} +} // namespace arrow_vendored + +#endif diff --git a/cpp/src/arrow/vendored/fast_float/float_common.h b/cpp/src/arrow/vendored/fast_float/float_common.h new file mode 100644 index 0000000000000..4d82e8769c215 --- /dev/null +++ b/cpp/src/arrow/vendored/fast_float/float_common.h @@ -0,0 +1,263 @@ +#ifndef FASTFLOAT_FLOAT_COMMON_H +#define FASTFLOAT_FLOAT_COMMON_H + +#include +#include +#ifndef _WIN32 +// strcasecmp, strncasecmp +#include +#endif + +#ifdef _MSC_VER +#define fastfloat_really_inline __forceinline +#else +#define fastfloat_really_inline inline __attribute__((always_inline)) +#endif + +#ifdef _WIN32 +#define fastfloat_strcasecmp _stricmp +#define fastfloat_strncasecmp _strnicmp +#else +#define fastfloat_strcasecmp strcasecmp +#define fastfloat_strncasecmp strncasecmp +#endif +namespace arrow_vendored { +namespace fast_float { +#ifndef FLT_EVAL_METHOD +#error "FLT_EVAL_METHOD should be defined, please include cfloat." +#endif + + + + + + +bool is_space(uint8_t c) { + static const bool table[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; + return table[c]; +} + +namespace { +constexpr uint32_t max_digits = 768; + +constexpr int32_t decimal_point_range = 2047; +} // namespace + + +struct value128 { + uint64_t low; + uint64_t high; + value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} + value128() : low(0), high(0) {} +}; + + +/* result might be undefined when input_num is zero */ +fastfloat_really_inline +int leading_zeroes(uint64_t input_num) { +#ifdef _MSC_VER + unsigned long leading_zero = 0; + // Search the mask data from most significant bit (MSB) + // to least significant bit (LSB) for a set bit (1). + if (_BitScanReverse64(&leading_zero, input_num)) + return (int)(63 - leading_zero); + else + return 64; +#else + return __builtin_clzll(input_num); +#endif +} + + +#if defined(_WIN32) && !defined(__clang__) +// Note MinGW falls here too +#include + +#if !defined(_M_X64) && !defined(_M_ARM64)// _umul128 for x86, arm +// this is a slow emulation routine for 32-bit Windows +// +fastfloat_really_inline uint64_t __emulu(uint32_t x, uint32_t y) { + return x * (uint64_t)y; +} +fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) { + uint64_t ad = __emulu((uint32_t)(ab >> 32), (uint32_t)cd); + uint64_t bd = __emulu((uint32_t)ab, (uint32_t)cd); + uint64_t adbc = ad + __emulu((uint32_t)ab, (uint32_t)(cd >> 32)); + uint64_t adbc_carry = !!(adbc < ad); + uint64_t lo = bd + (adbc << 32); + *hi = __emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + + (adbc_carry << 32) + !!(lo < bd); + return lo; +} +#endif + +fastfloat_really_inline value128 full_multiplication(uint64_t value1, uint64_t value2) { + value128 answer; +#ifdef _M_ARM64 + // ARM64 has native support for 64-bit multiplications, no need to emultate + answer.high = __umulh(value1, value2); + answer.low = value1 * value2; +#else + answer.low = _umul128(value1, value2, &answer.high); // _umul128 not available on ARM64 +#endif // _M_ARM64 + return answer; +} + +#else + +// compute value1 * value2 +fastfloat_really_inline +value128 full_multiplication(uint64_t value1, uint64_t value2) { + value128 answer; + __uint128_t r = ((__uint128_t)value1) * value2; + answer.low = uint64_t(r); + answer.high = uint64_t(r >> 64); + return answer; +} + +#endif + +struct adjusted_mantissa { + uint64_t mantissa; + int power2; + adjusted_mantissa() : mantissa(0), power2(0) {} +}; + +struct decimal { + uint32_t num_digits; + int32_t decimal_point; + bool negative; + bool truncated; + uint8_t digits[max_digits]; +}; + +constexpr static double powers_of_ten_double[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, + 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; +constexpr static float powers_of_ten_float[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}; + +template +struct binary_format { + static constexpr int mantissa_explicit_bits(); + static constexpr int minimum_exponent(); + static constexpr int infinite_power(); + static constexpr int sign_index(); + static constexpr int min_exponent_fast_path(); + static constexpr int max_exponent_fast_path(); + static constexpr int max_exponent_round_to_even(); + static constexpr int min_exponent_round_to_even(); + static constexpr uint64_t max_mantissa_fast_path(); + static constexpr T exact_power_of_ten(int64_t power); +}; + +template <> +constexpr int binary_format::mantissa_explicit_bits() { + return 52; +} +template <> +constexpr int binary_format::mantissa_explicit_bits() { + return 23; +} + +template <> +constexpr int binary_format::max_exponent_round_to_even() { + return 23; +} + +template <> +constexpr int binary_format::max_exponent_round_to_even() { + return 10; +} + + +template <> +constexpr int binary_format::min_exponent_round_to_even() { + return -4; +} + +template <> +constexpr int binary_format::min_exponent_round_to_even() { + return -17; +} + +template <> +constexpr int binary_format::minimum_exponent() { + return -1023; +} +template <> +constexpr int binary_format::minimum_exponent() { + return -127; +} + +template <> +constexpr int binary_format::infinite_power() { + return 0x7FF; +} +template <> +constexpr int binary_format::infinite_power() { + return 0xFF; +} + +template <> +constexpr int binary_format::sign_index() { + return 63; +} +template <> +constexpr int binary_format::sign_index() { + return 31; +} + +template <> +constexpr int binary_format::min_exponent_fast_path() { +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return 0; +#else + return -22; +#endif +} +template <> +constexpr int binary_format::min_exponent_fast_path() { +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return 0; +#else + return -10; +#endif +} + + +template <> +constexpr int binary_format::max_exponent_fast_path() { + return 22; +} +template <> +constexpr int binary_format::max_exponent_fast_path() { + return 10; +} + + +template <> +constexpr uint64_t binary_format::max_mantissa_fast_path() { + return uint64_t(2) << mantissa_explicit_bits(); +} +template <> +constexpr uint64_t binary_format::max_mantissa_fast_path() { + return uint64_t(2) << mantissa_explicit_bits(); +} + +template <> +constexpr double binary_format::exact_power_of_ten(int64_t power) { + return powers_of_ten_double[power]; +} +template <> +constexpr float binary_format::exact_power_of_ten(int64_t power) { + + return powers_of_ten_float[power]; +} + + + +} // namespace fast_float +} // namespace arrow_vendored + +#endif diff --git a/cpp/src/arrow/vendored/fast_float/parse_number.h b/cpp/src/arrow/vendored/fast_float/parse_number.h new file mode 100644 index 0000000000000..f27a6d82f91cb --- /dev/null +++ b/cpp/src/arrow/vendored/fast_float/parse_number.h @@ -0,0 +1,118 @@ +#ifndef FASTFLOAT_PARSE_NUMBER_H +#define FASTFLOAT_PARSE_NUMBER_H +#include "ascii_number.h" +#include "decimal_to_binary.h" +#include "thompson_tao.h" + +#include +#include +#include +#include +#include + +namespace arrow_vendored { +namespace fast_float { + + +namespace { +/** + * Special case +inf, -inf, nan, infinity, -infinity. + * The case comparisons could be made much faster given that we know that the + * strings a null-free and fixed. + **/ +template +from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept { + from_chars_result answer; + answer.ec = std::errc(); // be optimistic + if (last - first >= 3) { + if (fastfloat_strncasecmp(first, "nan", 3) == 0) { + answer.ptr = first + 3; + value = std::numeric_limits::quiet_NaN(); + return answer; + } + if (fastfloat_strncasecmp(first, "inf", 3) == 0) { + + if ((last - first >= 8) && (fastfloat_strncasecmp(first, "infinity", 8) == 0)) { + answer.ptr = first + 8; + } else { + answer.ptr = first + 3; + } + value = std::numeric_limits::infinity(); + return answer; + } + if (last - first >= 4) { + if ((fastfloat_strncasecmp(first, "+nan", 4) == 0) || (fastfloat_strncasecmp(first, "-nan", 4) == 0)) { + answer.ptr = first + 4; + value = std::numeric_limits::quiet_NaN(); + if (first[0] == '-') { + value = -value; + } + return answer; + } + + if ((fastfloat_strncasecmp(first, "+inf", 4) == 0) || (fastfloat_strncasecmp(first, "-inf", 4) == 0)) { + if ((last - first >= 8) && (fastfloat_strncasecmp(first + 1, "infinity", 8) == 0)) { + answer.ptr = first + 9; + } else { + answer.ptr = first + 4; + } + value = std::numeric_limits::infinity(); + if (first[0] == '-') { + value = -value; + } + return answer; + } + } + } + answer.ec = std::errc::invalid_argument; + return answer; +} +} // namespace + + + +template +from_chars_result from_chars(const char *first, const char *last, + T &value, chars_format fmt /*= chars_format::general*/) noexcept { + static_assert (std::is_same::value || std::is_same::value, "only float and double are supported"); + + + from_chars_result answer; + while ((first != last) && fast_float::is_space(*first)) { + first++; + } + if (first == last) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } + parsed_number_string pns = parse_number_string(first, last, fmt); + if (!pns.valid) { + return parse_infnan(first, last, value); + } + answer.ec = std::errc(); // be optimistic + answer.ptr = pns.lastmatch; + + if (binary_format::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format::max_exponent_fast_path() && pns.mantissa <=binary_format::max_mantissa_fast_path()) { + value = T(pns.mantissa); + if (pns.exponent < 0) { value = value / binary_format::exact_power_of_ten(-pns.exponent); } + else { value = value * binary_format::exact_power_of_ten(pns.exponent); } + if (pns.negative) { value = -value; } + return answer; + } + adjusted_mantissa am = pns.too_many_digits ? parse_long_mantissa>(first,last) : compute_float>(pns.exponent, pns.mantissa); + if(am.power2 < 0) { + am = parse_long_mantissa>(first,last); + } + uint64_t word = am.mantissa; + word |= uint64_t(am.power2) << binary_format::mantissa_explicit_bits(); + word = pns.negative + ? word | (uint64_t(1) << binary_format::sign_index()) : word; + memcpy(&value, &word, sizeof(T)); + return answer; +} + +} // namespace fast_float +} // namespace arrow_vendored + +#endif diff --git a/cpp/src/arrow/vendored/fast_float/thompson_tao.h b/cpp/src/arrow/vendored/fast_float/thompson_tao.h new file mode 100644 index 0000000000000..c9ec1870c9913 --- /dev/null +++ b/cpp/src/arrow/vendored/fast_float/thompson_tao.h @@ -0,0 +1,375 @@ +#ifndef FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H +#define FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H + +/** + * This code is meant to handle the case where we have more than 19 digits. + * + * Based on work by Nigel Tao (at https://github.com/google/wuffs/) + * who credits Ken Thompson for the design (via a reference to the Go source + * code). See + * https://github.com/google/wuffs/blob/aa46859ea40c72516deffa1b146121952d6dfd3b/internal/cgen/base/floatconv-submodule-data.c + * https://github.com/google/wuffs/blob/46cd8105f47ca07ae2ba8e6a7818ef9c0df6c152/internal/cgen/base/floatconv-submodule-code.c + * It is probably not very fast but it is a fallback that should almost never + * be used in reallife. + **/ +#include "ascii_number.h" +#include "decimal_to_binary.h" +#include + +namespace arrow_vendored { +namespace fast_float { + +namespace { + +// remove all final zeroes +inline void trim(decimal &h) { + while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) { + h.num_digits--; + } +} + +#if 0 +/** If you ever want to see what is going on, the following function might prove handy: + * **/ +void print(const decimal d, int32_t exp2 = 0) { + printf("0."); + for(size_t i = 0; i < d.num_digits; i++) { + printf("%d", int(d.digits[i])); + } + printf(" * 10 **%d ", d.decimal_point); + printf(" * 2 **%d ", exp2); +} +#endif + + + +uint32_t number_of_digits_decimal_left_shift(decimal &h, uint32_t shift) { + shift &= 63; + const static uint16_t number_of_digits_decimal_left_shift_table[65] = { + 0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, + 0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, + 0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, + 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0, + 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA, + 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, + 0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, + 0x051C, 0x051C, + }; + uint32_t x_a = number_of_digits_decimal_left_shift_table[shift]; + uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1]; + uint32_t num_new_digits = x_a >> 11; + uint32_t pow5_a = 0x7FF & x_a; + uint32_t pow5_b = 0x7FF & x_b; + const static uint8_t + number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = { + 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, + 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, + 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, + 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, + 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, + 9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, + 3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, + 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, + 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, + 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, + 4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, + 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, + 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, + 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, + 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2, + 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, + 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, + 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, + 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2, + 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0, + 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, + 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, + 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, + 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, 2, + 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5, + 0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, + 3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, + 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, + 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, + 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, + 9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, + 5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, + 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, + 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, + 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, + 9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, + 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, + 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, + 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, + 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4, + 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, + 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, + 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, + 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5, + 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1, + 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, + 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9, + 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0, + 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6, 2, + 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1, + 8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, + 1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, + 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, + 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, + 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5, + }; + const uint8_t *pow5 = + &number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a]; + uint32_t i = 0; + uint32_t n = pow5_b - pow5_a; + for (; i < n; i++) { + if (i >= h.num_digits) { + return num_new_digits - 1; + } else if (h.digits[i] == pow5[i]) { + continue; + } else if (h.digits[i] < pow5[i]) { + return num_new_digits - 1; + } else { + return num_new_digits; + } + } + return num_new_digits; +} + +} // end of anonymous namespace + +uint64_t round(decimal &h) { + if ((h.num_digits == 0) || (h.decimal_point < 0)) { + return 0; + } else if (h.decimal_point > 18) { + return UINT64_MAX; + } + // at this point, we know that h.decimal_point >= 0 + uint32_t dp = uint32_t(h.decimal_point); + uint64_t n = 0; + for (uint32_t i = 0; i < dp; i++) { + n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0); + } + bool round_up = false; + if (dp < h.num_digits) { + round_up = h.digits[dp] >= 5; // normally, we round up + // but we may need to round to even! + if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) { + round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1])); + } + } + if (round_up) { + n++; + } + return n; +} + +// computes h * 2^-shift +void decimal_left_shift(decimal &h, uint32_t shift) { + if (h.num_digits == 0) { + return; + } + uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift); + int32_t read_index = int32_t(h.num_digits - 1); + uint32_t write_index = h.num_digits - 1 + num_new_digits; + uint64_t n = 0; + + while (read_index >= 0) { + n += uint64_t(h.digits[read_index]) << shift; + uint64_t quotient = n / 10; + uint64_t remainder = n - (10 * quotient); + if (write_index < max_digits) { + h.digits[write_index] = uint8_t(remainder); + } else if (remainder > 0) { + h.truncated = true; + } + n = quotient; + write_index--; + read_index--; + } + while (n > 0) { + uint64_t quotient = n / 10; + uint64_t remainder = n - (10 * quotient); + if (write_index < max_digits) { + h.digits[write_index] = uint8_t(remainder); + } else if (remainder > 0) { + h.truncated = true; + } + n = quotient; + write_index--; + } + h.num_digits += num_new_digits; + if (h.num_digits > max_digits) { + h.num_digits = max_digits; + } + h.decimal_point += int32_t(num_new_digits); + trim(h); +} + +// computes h * 2^shift +void decimal_right_shift(decimal &h, uint32_t shift) { + uint32_t read_index = 0; + uint32_t write_index = 0; + + uint64_t n = 0; + + while ((n >> shift) == 0) { + if (read_index < h.num_digits) { + n = (10 * n) + h.digits[read_index++]; + } else if (n == 0) { + return; + } else { + while ((n >> shift) == 0) { + n = 10 * n; + read_index++; + } + break; + } + } + h.decimal_point -= int32_t(read_index - 1); + if (h.decimal_point < -decimal_point_range) { // it is zero + h.num_digits = 0; + h.decimal_point = 0; + h.negative = false; + h.truncated = false; + return; + } + uint64_t mask = (uint64_t(1) << shift) - 1; + while (read_index < h.num_digits) { + uint8_t new_digit = uint8_t(n >> shift); + n = (10 * (n & mask)) + h.digits[read_index++]; + h.digits[write_index++] = new_digit; + } + while (n > 0) { + uint8_t new_digit = uint8_t(n >> shift); + n = 10 * (n & mask); + if (write_index < max_digits) { + h.digits[write_index++] = new_digit; + } else if (new_digit > 0) { + h.truncated = true; + } + } + h.num_digits = write_index; + trim(h); +} + + +template +adjusted_mantissa compute_float(decimal &d) { + adjusted_mantissa answer; + if (d.num_digits == 0) { + // should be zero + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } + // At this point, going further, we can assume that d.num_digits > 0. + // + // We want to guard against excessive decimal point values because + // they can result in long running times. Indeed, we do + // shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22 + // which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not + // fine (runs for a long time). + // + if(d.decimal_point < -324) { + // We have something smaller than 1e-324 which is always zero + // in binary64 and binary32. + // It should be zero. + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } else if(d.decimal_point >= 310) { + // We have something at least as large as 0.1e310 which is + // always infinite. + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + static const uint32_t max_shift = 60; + static const uint32_t num_powers = 19; + static const uint8_t powers[19] = { + 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, // + 33, 36, 39, 43, 46, 49, 53, 56, 59, // + }; + int32_t exp2 = 0; + while (d.decimal_point > 0) { + uint32_t n = uint32_t(d.decimal_point); + uint32_t shift = (n < num_powers) ? powers[n] : max_shift; + decimal_right_shift(d, shift); + if (d.decimal_point < -decimal_point_range) { + // should be zero + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } + exp2 += int32_t(shift); + } + // We shift left toward [1/2 ... 1]. + while (d.decimal_point <= 0) { + uint32_t shift; + if (d.decimal_point == 0) { + if (d.digits[0] >= 5) { + break; + } + shift = (d.digits[0] < 2) ? 2 : 1; + } else { + uint32_t n = uint32_t(-d.decimal_point); + shift = (n < num_powers) ? powers[n] : max_shift; + } + decimal_left_shift(d, shift); + if (d.decimal_point > decimal_point_range) { + // we want to get infinity: + answer.power2 = 0xFF; + answer.mantissa = 0; + return answer; + } + exp2 -= int32_t(shift); + } + // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2]. + exp2--; + constexpr int32_t minimum_exponent = binary::minimum_exponent(); + while ((minimum_exponent + 1) > exp2) { + uint32_t n = uint32_t((minimum_exponent + 1) - exp2); + if (n > max_shift) { + n = max_shift; + } + decimal_right_shift(d, n); + exp2 += int32_t(n); + } + if ((exp2 - minimum_exponent) >= binary::infinite_power()) { + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + + const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1; + decimal_left_shift(d, mantissa_size_in_bits); + + uint64_t mantissa = round(d); + // It is possible that we have an overflow, in which case we need + // to shift back. + if(mantissa >= (uint64_t(1) << mantissa_size_in_bits)) { + decimal_right_shift(d, 1); + exp2 += 1; + mantissa = round(d); + if ((exp2 - minimum_exponent) >= binary::infinite_power()) { + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + } + answer.power2 = exp2 - binary::minimum_exponent(); + if(mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) { answer.power2--; } + answer.mantissa = mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1); + return answer; +} + +template +adjusted_mantissa parse_long_mantissa(const char *first, const char* last) { + decimal d = parse_decimal(first, last); + return compute_float(d); +} + +} // namespace fast_float +} // namespace arrow_vendored +#endif