-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
Copy pathtest_compute.py
3731 lines (3074 loc) · 140 KB
/
test_compute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from collections import namedtuple
import datetime
import decimal
from functools import lru_cache, partial
import inspect
import itertools
import math
import os
import pytest
import random
import sys
import textwrap
try:
import numpy as np
except ImportError:
np = None
try:
import pandas as pd
except ImportError:
pd = None
import pyarrow as pa
import pyarrow.compute as pc
from pyarrow.lib import ArrowNotImplementedError
try:
import pyarrow.substrait as pas
except ImportError:
pas = None
exported_functions = [
func for (name, func) in sorted(pc.__dict__.items())
if hasattr(func, '__arrow_compute_function__')]
exported_option_classes = [
cls for (name, cls) in sorted(pc.__dict__.items())
if (isinstance(cls, type) and
cls is not pc.FunctionOptions and
issubclass(cls, pc.FunctionOptions))]
numerical_arrow_types = [
pa.int8(),
pa.int16(),
pa.int64(),
pa.uint8(),
pa.uint16(),
pa.uint64(),
pa.float32(),
pa.float64()
]
all_array_types = [
('bool', [True, False, False, True, True]),
('uint8', range(5)),
('int8', range(5)),
('uint16', range(5)),
('int16', range(5)),
('uint32', range(5)),
('int32', range(5)),
('uint64', range(5, 10)),
('int64', range(5, 10)),
('float', [0, 0.1, 0.2, 0.3, 0.4]),
('double', [0, 0.1, 0.2, 0.3, 0.4]),
('string', ['a', 'b', None, 'ddd', 'ee']),
('binary', [b'a', b'b', b'c', b'ddd', b'ee']),
(pa.binary(3), [b'abc', b'bcd', b'cde', b'def', b'efg']),
(pa.list_(pa.int8()), [[1, 2], [3, 4], [5, 6], None, [9, 16]]),
(pa.large_list(pa.int16()), [[1], [2, 3, 4], [5, 6], None, [9, 16]]),
(pa.struct([('a', pa.int8()), ('b', pa.int8())]), [
{'a': 1, 'b': 2}, None, {'a': 3, 'b': 4}, None, {'a': 5, 'b': 6}]),
]
def test_exported_functions():
# Check that all exported concrete functions can be called with
# the right number of arguments.
# Note that unregistered functions (e.g. with a mismatching name)
# will raise KeyError.
functions = exported_functions
assert len(functions) >= 10
for func in functions:
desc = func.__arrow_compute_function__
if desc['options_required']:
# Skip this function as it will fail with a different error
# message if we don't pass an options instance.
continue
arity = desc['arity']
if arity == 0:
continue
if arity is Ellipsis:
args = [object()] * 3
else:
args = [object()] * arity
with pytest.raises(TypeError,
match="Got unexpected argument type "
"<class 'object'> for compute function"):
func(*args)
def test_hash_aggregate_not_exported():
# Ensure we are not leaking hash aggregate functions
# which are not callable by themselves.
for func in exported_functions:
arrow_f = pc.get_function(func.__arrow_compute_function__["name"])
assert arrow_f.kind != "hash_aggregate"
def test_exported_option_classes():
classes = exported_option_classes
assert len(classes) >= 10
for cls in classes:
# Option classes must have an introspectable constructor signature,
# and that signature should not have any *args or **kwargs.
sig = inspect.signature(cls)
for param in sig.parameters.values():
assert param.kind not in (param.VAR_POSITIONAL,
param.VAR_KEYWORD)
@pytest.mark.filterwarnings(
"ignore:pyarrow.CumulativeSumOptions is deprecated as of 14.0"
)
def test_option_class_equality(request):
options = [
pc.ArraySortOptions(),
pc.AssumeTimezoneOptions("UTC"),
pc.CastOptions.safe(pa.int8()),
pc.CountOptions(),
pc.DayOfWeekOptions(count_from_zero=False, week_start=0),
pc.DictionaryEncodeOptions(),
pc.RunEndEncodeOptions(),
pc.ElementWiseAggregateOptions(skip_nulls=True),
pc.ExtractRegexOptions("pattern"),
pc.FilterOptions(),
pc.IndexOptions(pa.scalar(1)),
pc.JoinOptions(),
pc.ListSliceOptions(0, -1, 1, True),
pc.ListFlattenOptions(recursive=False),
pc.MakeStructOptions(["field", "names"],
field_nullability=[True, True],
field_metadata=[pa.KeyValueMetadata({"a": "1"}),
pa.KeyValueMetadata({"b": "2"})]),
pc.MapLookupOptions(pa.scalar(1), "first"),
pc.MatchSubstringOptions("pattern"),
pc.ModeOptions(),
pc.NullOptions(),
pc.PadOptions(5),
pc.PairwiseOptions(period=1),
pc.PartitionNthOptions(1, null_placement="at_start"),
pc.CumulativeOptions(start=None, skip_nulls=False),
pc.QuantileOptions(),
pc.RandomOptions(),
pc.RankOptions(sort_keys="ascending",
null_placement="at_start", tiebreaker="max"),
pc.ReplaceSliceOptions(0, 1, "a"),
pc.ReplaceSubstringOptions("a", "b"),
pc.RoundOptions(2, "towards_infinity"),
pc.RoundBinaryOptions("towards_infinity"),
pc.RoundTemporalOptions(1, "second", week_starts_monday=True),
pc.RoundToMultipleOptions(100, "towards_infinity"),
pc.ScalarAggregateOptions(),
pc.SelectKOptions(0, sort_keys=[("b", "ascending")]),
pc.SetLookupOptions(pa.array([1])),
pc.SliceOptions(0, 1, 1),
pc.SortOptions([("dummy", "descending")], null_placement="at_start"),
pc.SplitOptions(),
pc.SplitPatternOptions("pattern"),
pc.StrftimeOptions(),
pc.StrptimeOptions("%Y", "s", True),
pc.StructFieldOptions(indices=[]),
pc.TakeOptions(),
pc.TDigestOptions(),
pc.TrimOptions(" "),
pc.Utf8NormalizeOptions("NFKC"),
pc.VarianceOptions(),
pc.WeekOptions(week_starts_monday=True, count_from_zero=False,
first_week_is_fully_in_year=False),
]
# Timezone database might not be installed on Windows or Emscripten
if request.config.pyarrow.is_enabled["timezone_data"]:
options.append(pc.AssumeTimezoneOptions("Europe/Ljubljana"))
classes = {type(option) for option in options}
for cls in exported_option_classes:
# Timezone database might not be installed on Windows or Emscripten
if (
cls not in classes
and (request.config.pyarrow.is_enabled["timezone_data"])
and cls != pc.AssumeTimezoneOptions
):
try:
options.append(cls())
except TypeError:
pytest.fail(f"Options class is not tested: {cls}")
for option in options:
assert option == option
assert repr(option).startswith(option.__class__.__name__)
buf = option.serialize()
deserialized = pc.FunctionOptions.deserialize(buf)
assert option == deserialized
# TODO remove the check under the if statement and the filterwarnings
# mark when the deprecated class CumulativeSumOptions is removed.
if repr(option).startswith("CumulativeSumOptions"):
assert repr(deserialized).startswith("CumulativeOptions")
else:
assert repr(option) == repr(deserialized)
for option1, option2 in zip(options, options[1:]):
assert option1 != option2
assert repr(pc.IndexOptions(pa.scalar(1))) == "IndexOptions(value=int64:1)"
assert repr(pc.ArraySortOptions()) == \
"ArraySortOptions(order=Ascending, null_placement=AtEnd)"
def test_list_functions():
assert len(pc.list_functions()) > 10
assert "add" in pc.list_functions()
def _check_get_function(name, expected_func_cls, expected_ker_cls,
min_num_kernels=1):
func = pc.get_function(name)
assert isinstance(func, expected_func_cls)
n = func.num_kernels
assert n >= min_num_kernels
assert n == len(func.kernels)
assert all(isinstance(ker, expected_ker_cls) for ker in func.kernels)
def test_get_function_scalar():
_check_get_function("add", pc.ScalarFunction, pc.ScalarKernel, 8)
def test_get_function_vector():
_check_get_function("unique", pc.VectorFunction, pc.VectorKernel, 8)
def test_get_function_scalar_aggregate():
_check_get_function("mean", pc.ScalarAggregateFunction,
pc.ScalarAggregateKernel, 8)
def test_get_function_hash_aggregate():
_check_get_function("hash_sum", pc.HashAggregateFunction,
pc.HashAggregateKernel, 1)
@pytest.mark.numpy
def test_call_function_with_memory_pool():
arr = pa.array(["foo", "bar", "baz"])
indices = np.array([2, 2, 1])
result1 = arr.take(indices)
result2 = pc.call_function('take', [arr, indices],
memory_pool=pa.default_memory_pool())
expected = pa.array(["baz", "baz", "bar"])
assert result1.equals(expected)
assert result2.equals(expected)
result3 = pc.take(arr, indices, memory_pool=pa.default_memory_pool())
assert result3.equals(expected)
def test_pickle_functions(pickle_module):
# Pickle registered functions
for name in pc.list_functions():
func = pc.get_function(name)
reconstructed = pickle_module.loads(pickle_module.dumps(func))
assert type(reconstructed) is type(func)
assert reconstructed.name == func.name
assert reconstructed.arity == func.arity
assert reconstructed.num_kernels == func.num_kernels
def test_pickle_global_functions(pickle_module):
# Pickle global wrappers (manual or automatic) of registered functions
for name in pc.list_functions():
try:
func = getattr(pc, name)
except AttributeError:
# hash_aggregate functions are not exported as callables.
continue
reconstructed = pickle_module.loads(pickle_module.dumps(func))
assert reconstructed is func
def test_function_attributes():
# Sanity check attributes of registered functions
for name in pc.list_functions():
func = pc.get_function(name)
assert isinstance(func, pc.Function)
assert func.name == name
kernels = func.kernels
assert func.num_kernels == len(kernels)
assert all(isinstance(ker, pc.Kernel) for ker in kernels)
repr(func)
for ker in kernels:
repr(ker)
def test_input_type_conversion():
# Automatic array conversion from Python
arr = pc.add([1, 2], [4, None])
assert arr.to_pylist() == [5, None]
# Automatic scalar conversion from Python
arr = pc.add([1, 2], 4)
assert arr.to_pylist() == [5, 6]
# Other scalar type
assert pc.equal(["foo", "bar", None],
"foo").to_pylist() == [True, False, None]
@pytest.mark.parametrize('arrow_type', numerical_arrow_types)
def test_sum_array(arrow_type):
arr = pa.array([1, 2, 3, 4], type=arrow_type)
assert arr.sum().as_py() == 10
assert pc.sum(arr).as_py() == 10
arr = pa.array([1, 2, 3, 4, None], type=arrow_type)
assert arr.sum().as_py() == 10
assert pc.sum(arr).as_py() == 10
arr = pa.array([None], type=arrow_type)
assert arr.sum().as_py() is None # noqa: E711
assert pc.sum(arr).as_py() is None # noqa: E711
assert arr.sum(min_count=0).as_py() == 0
assert pc.sum(arr, min_count=0).as_py() == 0
arr = pa.array([], type=arrow_type)
assert arr.sum().as_py() is None # noqa: E711
assert arr.sum(min_count=0).as_py() == 0
assert pc.sum(arr, min_count=0).as_py() == 0
@pytest.mark.parametrize('arrow_type', numerical_arrow_types)
def test_sum_chunked_array(arrow_type):
arr = pa.chunked_array([pa.array([1, 2, 3, 4], type=arrow_type)])
assert pc.sum(arr).as_py() == 10
arr = pa.chunked_array([
pa.array([1, 2], type=arrow_type), pa.array([3, 4], type=arrow_type)
])
assert pc.sum(arr).as_py() == 10
arr = pa.chunked_array([
pa.array([1, 2], type=arrow_type),
pa.array([], type=arrow_type),
pa.array([3, 4], type=arrow_type)
])
assert pc.sum(arr).as_py() == 10
arr = pa.chunked_array((), type=arrow_type)
assert arr.num_chunks == 0
assert pc.sum(arr).as_py() is None # noqa: E711
assert pc.sum(arr, min_count=0).as_py() == 0
def test_mode_array():
# ARROW-9917
arr = pa.array([1, 1, 3, 4, 3, 5], type='int64')
mode = pc.mode(arr)
assert len(mode) == 1
assert mode[0].as_py() == {"mode": 1, "count": 2}
mode = pc.mode(arr, n=2)
assert len(mode) == 2
assert mode[0].as_py() == {"mode": 1, "count": 2}
assert mode[1].as_py() == {"mode": 3, "count": 2}
arr = pa.array([], type='int64')
assert len(pc.mode(arr)) == 0
arr = pa.array([1, 1, 3, 4, 3, None], type='int64')
mode = pc.mode(arr, skip_nulls=False)
assert len(mode) == 0
mode = pc.mode(arr, min_count=6)
assert len(mode) == 0
mode = pc.mode(arr, skip_nulls=False, min_count=5)
assert len(mode) == 0
arr = pa.array([True, False])
mode = pc.mode(arr, n=2)
assert len(mode) == 2
assert mode[0].as_py() == {"mode": False, "count": 1}
assert mode[1].as_py() == {"mode": True, "count": 1}
def test_mode_chunked_array():
# ARROW-9917
arr = pa.chunked_array([pa.array([1, 1, 3, 4, 3, 5], type='int64')])
mode = pc.mode(arr)
assert len(mode) == 1
assert mode[0].as_py() == {"mode": 1, "count": 2}
mode = pc.mode(arr, n=2)
assert len(mode) == 2
assert mode[0].as_py() == {"mode": 1, "count": 2}
assert mode[1].as_py() == {"mode": 3, "count": 2}
arr = pa.chunked_array((), type='int64')
assert arr.num_chunks == 0
assert len(pc.mode(arr)) == 0
def test_empty_chunked_array():
msg = "cannot construct ChunkedArray from empty vector and omitted type"
with pytest.raises(pa.ArrowInvalid, match=msg):
pa.chunked_array([])
pa.chunked_array([], type=pa.int8())
def test_variance():
data = [1, 2, 3, 4, 5, 6, 7, 8]
assert pc.variance(data).as_py() == 5.25
assert pc.variance(data, ddof=0).as_py() == 5.25
assert pc.variance(data, ddof=1).as_py() == 6.0
def test_count_substring():
for (ty, offset) in [(pa.string(), pa.int32()),
(pa.large_string(), pa.int64())]:
arr = pa.array(["ab", "cab", "abcab", "ba", "AB", None], type=ty)
result = pc.count_substring(arr, "ab")
expected = pa.array([1, 1, 2, 0, 0, None], type=offset)
assert expected == result
result = pc.count_substring(arr, "ab", ignore_case=True)
expected = pa.array([1, 1, 2, 0, 1, None], type=offset)
assert expected == result
def test_count_substring_regex():
for (ty, offset) in [(pa.string(), pa.int32()),
(pa.large_string(), pa.int64())]:
arr = pa.array(["ab", "cab", "baAacaa", "ba", "AB", None], type=ty)
result = pc.count_substring_regex(arr, "a+")
expected = pa.array([1, 1, 3, 1, 0, None], type=offset)
assert expected.equals(result)
result = pc.count_substring_regex(arr, "a+", ignore_case=True)
expected = pa.array([1, 1, 2, 1, 1, None], type=offset)
assert expected.equals(result)
def test_find_substring():
for ty in [pa.string(), pa.binary(), pa.large_string(), pa.large_binary()]:
arr = pa.array(["ab", "cab", "ba", None], type=ty)
result = pc.find_substring(arr, "ab")
assert result.to_pylist() == [0, 1, -1, None]
result = pc.find_substring_regex(arr, "a?b")
assert result.to_pylist() == [0, 1, 0, None]
arr = pa.array(["ab*", "cAB*", "ba", "aB?"], type=ty)
result = pc.find_substring(arr, "aB*", ignore_case=True)
assert result.to_pylist() == [0, 1, -1, -1]
result = pc.find_substring_regex(arr, "a?b", ignore_case=True)
assert result.to_pylist() == [0, 1, 0, 0]
def test_match_like():
arr = pa.array(["ab", "ba%", "ba", "ca%d", None])
result = pc.match_like(arr, r"_a\%%")
expected = pa.array([False, True, False, True, None])
assert expected.equals(result)
arr = pa.array(["aB", "bA%", "ba", "ca%d", None])
result = pc.match_like(arr, r"_a\%%", ignore_case=True)
expected = pa.array([False, True, False, True, None])
assert expected.equals(result)
result = pc.match_like(arr, r"_a\%%", ignore_case=False)
expected = pa.array([False, False, False, True, None])
assert expected.equals(result)
def test_match_substring():
arr = pa.array(["ab", "abc", "ba", None])
result = pc.match_substring(arr, "ab")
expected = pa.array([True, True, False, None])
assert expected.equals(result)
arr = pa.array(["áB", "Ábc", "ba", None])
result = pc.match_substring(arr, "áb", ignore_case=True)
expected = pa.array([True, True, False, None])
assert expected.equals(result)
result = pc.match_substring(arr, "áb", ignore_case=False)
expected = pa.array([False, False, False, None])
assert expected.equals(result)
def test_match_substring_regex():
arr = pa.array(["ab", "abc", "ba", "c", None])
result = pc.match_substring_regex(arr, "^a?b")
expected = pa.array([True, True, True, False, None])
assert expected.equals(result)
arr = pa.array(["aB", "Abc", "BA", "c", None])
result = pc.match_substring_regex(arr, "^a?b", ignore_case=True)
expected = pa.array([True, True, True, False, None])
assert expected.equals(result)
result = pc.match_substring_regex(arr, "^a?b", ignore_case=False)
expected = pa.array([False, False, False, False, None])
assert expected.equals(result)
def test_trim():
# \u3000 is unicode whitespace
arr = pa.array([" foo", None, " \u3000foo bar \t"])
result = pc.utf8_trim_whitespace(arr)
expected = pa.array(["foo", None, "foo bar"])
assert expected.equals(result)
arr = pa.array([" foo", None, " \u3000foo bar \t"])
result = pc.ascii_trim_whitespace(arr)
expected = pa.array(["foo", None, "\u3000foo bar"])
assert expected.equals(result)
arr = pa.array([" foo", None, " \u3000foo bar \t"])
result = pc.utf8_trim(arr, characters=' f\u3000')
expected = pa.array(["oo", None, "oo bar \t"])
assert expected.equals(result)
# Positional option
result = pc.utf8_trim(arr, ' f\u3000')
expected = pa.array(["oo", None, "oo bar \t"])
assert expected.equals(result)
def test_slice_compatibility():
arr = pa.array(["", "𝑓", "𝑓ö", "𝑓öõ", "𝑓öõḍ", "𝑓öõḍš"])
for start in range(-6, 6):
for stop in itertools.chain(range(-6, 6), [None]):
for step in [-3, -2, -1, 1, 2, 3]:
expected = pa.array([k.as_py()[start:stop:step]
for k in arr])
result = pc.utf8_slice_codeunits(
arr, start=start, stop=stop, step=step)
assert expected.equals(result)
# Positional options
assert pc.utf8_slice_codeunits(arr,
start, stop, step) == result
def test_binary_slice_compatibility():
data = [b"", b"a", b"a\xff", b"ab\x00", b"abc\xfb", b"ab\xf2de"]
arr = pa.array(data)
for start, stop, step in itertools.product(range(-6, 6),
range(-6, 6),
range(-3, 4)):
if step == 0:
continue
expected = pa.array([k.as_py()[start:stop:step]
for k in arr])
result = pc.binary_slice(
arr, start=start, stop=stop, step=step)
assert expected.equals(result)
# Positional options
assert pc.binary_slice(arr, start, stop, step) == result
# Fixed size binary input / output
for item in data:
fsb_scalar = pa.scalar(item, type=pa.binary(len(item)))
expected = item[start:stop:step]
actual = pc.binary_slice(fsb_scalar, start, stop, step)
assert actual.type == pa.binary(len(expected))
assert actual.as_py() == expected
def test_split_pattern():
arr = pa.array(["-foo---bar--", "---foo---b"])
result = pc.split_pattern(arr, pattern="---")
expected = pa.array([["-foo", "bar--"], ["", "foo", "b"]])
assert expected.equals(result)
result = pc.split_pattern(arr, "---", max_splits=1)
expected = pa.array([["-foo", "bar--"], ["", "foo---b"]])
assert expected.equals(result)
result = pc.split_pattern(arr, "---", max_splits=1, reverse=True)
expected = pa.array([["-foo", "bar--"], ["---foo", "b"]])
assert expected.equals(result)
def test_split_whitespace_utf8():
arr = pa.array(["foo bar", " foo \u3000\tb"])
result = pc.utf8_split_whitespace(arr)
expected = pa.array([["foo", "bar"], ["", "foo", "b"]])
assert expected.equals(result)
result = pc.utf8_split_whitespace(arr, max_splits=1)
expected = pa.array([["foo", "bar"], ["", "foo \u3000\tb"]])
assert expected.equals(result)
result = pc.utf8_split_whitespace(arr, max_splits=1, reverse=True)
expected = pa.array([["foo", "bar"], [" foo", "b"]])
assert expected.equals(result)
def test_split_whitespace_ascii():
arr = pa.array(["foo bar", " foo \u3000\tb"])
result = pc.ascii_split_whitespace(arr)
expected = pa.array([["foo", "bar"], ["", "foo", "\u3000", "b"]])
assert expected.equals(result)
result = pc.ascii_split_whitespace(arr, max_splits=1)
expected = pa.array([["foo", "bar"], ["", "foo \u3000\tb"]])
assert expected.equals(result)
result = pc.ascii_split_whitespace(arr, max_splits=1, reverse=True)
expected = pa.array([["foo", "bar"], [" foo \u3000", "b"]])
assert expected.equals(result)
def test_split_pattern_regex():
arr = pa.array(["-foo---bar--", "---foo---b"])
result = pc.split_pattern_regex(arr, pattern="-+")
expected = pa.array([["", "foo", "bar", ""], ["", "foo", "b"]])
assert expected.equals(result)
result = pc.split_pattern_regex(arr, "-+", max_splits=1)
expected = pa.array([["", "foo---bar--"], ["", "foo---b"]])
assert expected.equals(result)
with pytest.raises(NotImplementedError,
match="Cannot split in reverse with regex"):
result = pc.split_pattern_regex(
arr, pattern="---", max_splits=1, reverse=True)
def test_min_max():
# An example generated function wrapper with possible options
data = [4, 5, 6, None, 1]
s = pc.min_max(data)
assert s.as_py() == {'min': 1, 'max': 6}
s = pc.min_max(data, options=pc.ScalarAggregateOptions())
assert s.as_py() == {'min': 1, 'max': 6}
s = pc.min_max(data, options=pc.ScalarAggregateOptions(skip_nulls=True))
assert s.as_py() == {'min': 1, 'max': 6}
s = pc.min_max(data, options=pc.ScalarAggregateOptions(skip_nulls=False))
assert s.as_py() == {'min': None, 'max': None}
# Options as dict of kwargs
s = pc.min_max(data, options={'skip_nulls': False})
assert s.as_py() == {'min': None, 'max': None}
# Options as named functions arguments
s = pc.min_max(data, skip_nulls=False)
assert s.as_py() == {'min': None, 'max': None}
# Both options and named arguments
with pytest.raises(TypeError):
s = pc.min_max(
data, options=pc.ScalarAggregateOptions(), skip_nulls=False)
# Wrong options type
options = pc.TakeOptions()
with pytest.raises(TypeError):
s = pc.min_max(data, options=options)
# Missing argument
with pytest.raises(TypeError, match="min_max takes 1 positional"):
s = pc.min_max()
def test_any():
# ARROW-1846
options = pc.ScalarAggregateOptions(skip_nulls=False, min_count=0)
a = pa.array([], type='bool')
assert pc.any(a).as_py() is None
assert pc.any(a, min_count=0).as_py() is False
assert pc.any(a, options=options).as_py() is False
a = pa.array([False, None, True])
assert pc.any(a).as_py() is True
assert pc.any(a, options=options).as_py() is True
a = pa.array([False, None, False])
assert pc.any(a).as_py() is False
assert pc.any(a, options=options).as_py() is None
def test_all():
# ARROW-10301
options = pc.ScalarAggregateOptions(skip_nulls=False, min_count=0)
a = pa.array([], type='bool')
assert pc.all(a).as_py() is None
assert pc.all(a, min_count=0).as_py() is True
assert pc.all(a, options=options).as_py() is True
a = pa.array([False, True])
assert pc.all(a).as_py() is False
assert pc.all(a, options=options).as_py() is False
a = pa.array([True, None])
assert pc.all(a).as_py() is True
assert pc.all(a, options=options).as_py() is None
a = pa.chunked_array([[True], [True, None]])
assert pc.all(a).as_py() is True
assert pc.all(a, options=options).as_py() is None
a = pa.chunked_array([[True], [False]])
assert pc.all(a).as_py() is False
assert pc.all(a, options=options).as_py() is False
def test_is_valid():
# An example generated function wrapper without options
data = [4, 5, None]
assert pc.is_valid(data).to_pylist() == [True, True, False]
with pytest.raises(TypeError):
pc.is_valid(data, options=None)
def test_generated_docstrings():
# With options
assert pc.min_max.__doc__ == textwrap.dedent("""\
Compute the minimum and maximum values of a numeric array.
Null values are ignored by default.
This can be changed through ScalarAggregateOptions.
Parameters
----------
array : Array-like
Argument to compute function.
skip_nulls : bool, default True
Whether to skip (ignore) nulls in the input.
If False, any null in the input forces the output to null.
min_count : int, default 1
Minimum number of non-null values in the input. If the number
of non-null values is below `min_count`, the output is null.
options : pyarrow.compute.ScalarAggregateOptions, optional
Alternative way of passing options.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
""")
# Without options
assert pc.add.__doc__ == textwrap.dedent("""\
Add the arguments element-wise.
Results will wrap around on integer overflow.
Use function "add_checked" if you want overflow
to return an error.
Parameters
----------
x : Array-like or scalar-like
Argument to compute function.
y : Array-like or scalar-like
Argument to compute function.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
""")
# Varargs with options
assert pc.min_element_wise.__doc__ == textwrap.dedent("""\
Find the element-wise minimum value.
Nulls are ignored (by default) or propagated.
NaN is preferred over null, but not over any valid value.
Parameters
----------
*args : Array-like or scalar-like
Argument to compute function.
skip_nulls : bool, default True
Whether to skip (ignore) nulls in the input.
If False, any null in the input forces the output to null.
options : pyarrow.compute.ElementWiseAggregateOptions, optional
Alternative way of passing options.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
""")
assert pc.filter.__doc__ == textwrap.dedent("""\
Filter with a boolean selection filter.
The output is populated with values from the input at positions
where the selection filter is non-zero. Nulls in the selection filter
are handled based on FilterOptions.
Parameters
----------
input : Array-like or scalar-like
Argument to compute function.
selection_filter : Array-like or scalar-like
Argument to compute function.
null_selection_behavior : str, default "drop"
How to handle nulls in the selection filter.
Accepted values are "drop", "emit_null".
options : pyarrow.compute.FilterOptions, optional
Alternative way of passing options.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
Examples
--------
>>> import pyarrow as pa
>>> arr = pa.array(["a", "b", "c", None, "e"])
>>> mask = pa.array([True, False, None, False, True])
>>> arr.filter(mask)
<pyarrow.lib.StringArray object at ...>
[
"a",
"e"
]
>>> arr.filter(mask, null_selection_behavior='emit_null')
<pyarrow.lib.StringArray object at ...>
[
"a",
null,
"e"
]
""")
def test_generated_signatures():
# The self-documentation provided by signatures should show acceptable
# options and their default values.
# Without options
sig = inspect.signature(pc.add)
assert str(sig) == "(x, y, /, *, memory_pool=None)"
# With options
sig = inspect.signature(pc.min_max)
assert str(sig) == ("(array, /, *, skip_nulls=True, min_count=1, "
"options=None, memory_pool=None)")
# With positional options
sig = inspect.signature(pc.quantile)
assert str(sig) == ("(array, /, q=0.5, *, interpolation='linear', "
"skip_nulls=True, min_count=0, "
"options=None, memory_pool=None)")
# Varargs with options
sig = inspect.signature(pc.binary_join_element_wise)
assert str(sig) == ("(*strings, null_handling='emit_null', "
"null_replacement='', options=None, "
"memory_pool=None)")
# Varargs without options
sig = inspect.signature(pc.choose)
assert str(sig) == "(indices, /, *values, memory_pool=None)"
# Nullary with options
sig = inspect.signature(pc.random)
assert str(sig) == ("(n, *, initializer='system', "
"options=None, memory_pool=None)")
# We use isprintable to find about codepoints that Python doesn't know, but
# utf8proc does (or in a future version of Python the other way around).
# These codepoints cannot be compared between Arrow and the Python
# implementation.
@lru_cache()
def find_new_unicode_codepoints():
new = set()
characters = [chr(c) for c in range(0x80, 0x11000)
if not (0xD800 <= c < 0xE000)]
is_printable = pc.utf8_is_printable(pa.array(characters)).to_pylist()
for i, c in enumerate(characters):
if is_printable[i] != c.isprintable():
new.add(ord(c))
return new
# Python claims there are not alpha, not sure why, they are in
# gc='Other Letter': https://graphemica.com/%E1%B3%B2
unknown_issue_is_alpha = {0x1cf2, 0x1cf3}
# utf8proc does not know if codepoints are lower case
utf8proc_issue_is_lower = {
0xaa, 0xba, 0x2b0, 0x2b1, 0x2b2, 0x2b3, 0x2b4,
0x2b5, 0x2b6, 0x2b7, 0x2b8, 0x2c0, 0x2c1, 0x2e0,
0x2e1, 0x2e2, 0x2e3, 0x2e4, 0x37a, 0x1d2c, 0x1d2d,
0x1d2e, 0x1d2f, 0x1d30, 0x1d31, 0x1d32, 0x1d33,
0x1d34, 0x1d35, 0x1d36, 0x1d37, 0x1d38, 0x1d39,
0x1d3a, 0x1d3b, 0x1d3c, 0x1d3d, 0x1d3e, 0x1d3f,
0x1d40, 0x1d41, 0x1d42, 0x1d43, 0x1d44, 0x1d45,
0x1d46, 0x1d47, 0x1d48, 0x1d49, 0x1d4a, 0x1d4b,
0x1d4c, 0x1d4d, 0x1d4e, 0x1d4f, 0x1d50, 0x1d51,
0x1d52, 0x1d53, 0x1d54, 0x1d55, 0x1d56, 0x1d57,
0x1d58, 0x1d59, 0x1d5a, 0x1d5b, 0x1d5c, 0x1d5d,
0x1d5e, 0x1d5f, 0x1d60, 0x1d61, 0x1d62, 0x1d63,
0x1d64, 0x1d65, 0x1d66, 0x1d67, 0x1d68, 0x1d69,
0x1d6a, 0x1d78, 0x1d9b, 0x1d9c, 0x1d9d, 0x1d9e,
0x1d9f, 0x1da0, 0x1da1, 0x1da2, 0x1da3, 0x1da4,
0x1da5, 0x1da6, 0x1da7, 0x1da8, 0x1da9, 0x1daa,
0x1dab, 0x1dac, 0x1dad, 0x1dae, 0x1daf, 0x1db0,
0x1db1, 0x1db2, 0x1db3, 0x1db4, 0x1db5, 0x1db6,
0x1db7, 0x1db8, 0x1db9, 0x1dba, 0x1dbb, 0x1dbc,
0x1dbd, 0x1dbe, 0x1dbf, 0x2071, 0x207f, 0x2090,
0x2091, 0x2092, 0x2093, 0x2094, 0x2095, 0x2096,
0x2097, 0x2098, 0x2099, 0x209a, 0x209b, 0x209c,
0x2c7c, 0x2c7d, 0xa69c, 0xa69d, 0xa770, 0xa7f8,
0xa7f9, 0xab5c, 0xab5d, 0xab5e, 0xab5f, }
# utf8proc does not store if a codepoint is numeric
numeric_info_missing = {
0x3405, 0x3483, 0x382a, 0x3b4d, 0x4e00, 0x4e03,
0x4e07, 0x4e09, 0x4e5d, 0x4e8c, 0x4e94, 0x4e96,
0x4ebf, 0x4ec0, 0x4edf, 0x4ee8, 0x4f0d, 0x4f70,
0x5104, 0x5146, 0x5169, 0x516b, 0x516d, 0x5341,
0x5343, 0x5344, 0x5345, 0x534c, 0x53c1, 0x53c2,
0x53c3, 0x53c4, 0x56db, 0x58f1, 0x58f9, 0x5e7a,
0x5efe, 0x5eff, 0x5f0c, 0x5f0d, 0x5f0e, 0x5f10,
0x62fe, 0x634c, 0x67d2, 0x6f06, 0x7396, 0x767e,
0x8086, 0x842c, 0x8cae, 0x8cb3, 0x8d30, 0x9621,
0x9646, 0x964c, 0x9678, 0x96f6, 0xf96b, 0xf973,
0xf978, 0xf9b2, 0xf9d1, 0xf9d3, 0xf9fd, 0x10fc5,
0x10fc6, 0x10fc7, 0x10fc8, 0x10fc9, 0x10fca,
0x10fcb, }
# utf8proc has no no digit/numeric information
digit_info_missing = {
0xb2, 0xb3, 0xb9, 0x1369, 0x136a, 0x136b, 0x136c,
0x136d, 0x136e, 0x136f, 0x1370, 0x1371, 0x19da, 0x2070,
0x2074, 0x2075, 0x2076, 0x2077, 0x2078, 0x2079, 0x2080,
0x2081, 0x2082, 0x2083, 0x2084, 0x2085, 0x2086, 0x2087,
0x2088, 0x2089, 0x2460, 0x2461, 0x2462, 0x2463, 0x2464,
0x2465, 0x2466, 0x2467, 0x2468, 0x2474, 0x2475, 0x2476,
0x2477, 0x2478, 0x2479, 0x247a, 0x247b, 0x247c, 0x2488,
0x2489, 0x248a, 0x248b, 0x248c, 0x248d, 0x248e, 0x248f,
0x2490, 0x24ea, 0x24f5, 0x24f6, 0x24f7, 0x24f8, 0x24f9,
0x24fa, 0x24fb, 0x24fc, 0x24fd, 0x24ff, 0x2776, 0x2777,
0x2778, 0x2779, 0x277a, 0x277b, 0x277c, 0x277d, 0x277e,
0x2780, 0x2781, 0x2782, 0x2783, 0x2784, 0x2785, 0x2786,
0x2787, 0x2788, 0x278a, 0x278b, 0x278c, 0x278d, 0x278e,
0x278f, 0x2790, 0x2791, 0x2792, 0x10a40, 0x10a41,
0x10a42, 0x10a43, 0x10e60, 0x10e61, 0x10e62, 0x10e63,
0x10e64, 0x10e65, 0x10e66, 0x10e67, 0x10e68, }
numeric_info_missing = {
0x3405, 0x3483, 0x382a, 0x3b4d, 0x4e00, 0x4e03,
0x4e07, 0x4e09, 0x4e5d, 0x4e8c, 0x4e94, 0x4e96,
0x4ebf, 0x4ec0, 0x4edf, 0x4ee8, 0x4f0d, 0x4f70,
0x5104, 0x5146, 0x5169, 0x516b, 0x516d, 0x5341,
0x5343, 0x5344, 0x5345, 0x534c, 0x53c1, 0x53c2,
0x53c3, 0x53c4, 0x56db, 0x58f1, 0x58f9, 0x5e7a,
0x5efe, 0x5eff, 0x5f0c, 0x5f0d, 0x5f0e, 0x5f10,
0x62fe, 0x634c, 0x67d2, 0x6f06, 0x7396, 0x767e,
0x8086, 0x842c, 0x8cae, 0x8cb3, 0x8d30, 0x9621,
0x9646, 0x964c, 0x9678, 0x96f6, 0xf96b, 0xf973,
0xf978, 0xf9b2, 0xf9d1, 0xf9d3, 0xf9fd, }
codepoints_ignore = {
'is_alnum': numeric_info_missing | digit_info_missing |
unknown_issue_is_alpha,
'is_alpha': unknown_issue_is_alpha,
'is_digit': digit_info_missing,
'is_numeric': numeric_info_missing,
'is_lower': utf8proc_issue_is_lower
}
@pytest.mark.parametrize('function_name', ['is_alnum', 'is_alpha',
'is_ascii', 'is_decimal',
'is_digit', 'is_lower',
'is_numeric', 'is_printable',
'is_space', 'is_upper', ])
@pytest.mark.parametrize('variant', ['ascii', 'utf8'])
def test_string_py_compat_boolean(function_name, variant):
arrow_name = variant + "_" + function_name
py_name = function_name.replace('_', '')
ignore = codepoints_ignore.get(function_name, set()) | \
find_new_unicode_codepoints()
for i in range(128 if ascii else 0x11000):
if i in range(0xD800, 0xE000):
continue # bug? pyarrow doesn't allow utf16 surrogates
# the issues we know of, we skip
if i in ignore:
continue
# Compare results with the equivalent Python predicate
# (except "is_space" where functions are known to be incompatible)
c = chr(i)
if hasattr(pc, arrow_name) and function_name != 'is_space':
ar = pa.array([c])
arrow_func = getattr(pc, arrow_name)
assert arrow_func(ar)[0].as_py() == getattr(c, py_name)()
def test_pad():