-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
pandas_compat.py
1267 lines (1054 loc) · 42.7 KB
/
pandas_compat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import ast
from collections.abc import Sequence
from concurrent import futures
# import threading submodule upfront to avoid partially initialized
# module bug (ARROW-11983)
import concurrent.futures.thread # noqa
from copy import deepcopy
from itertools import zip_longest
import json
import operator
import re
import warnings
import numpy as np
import pyarrow as pa
from pyarrow.lib import _pandas_api, builtin_pickle, frombytes # noqa
_logical_type_map = {}
def get_logical_type_map():
global _logical_type_map
if not _logical_type_map:
_logical_type_map.update({
pa.lib.Type_NA: 'empty',
pa.lib.Type_BOOL: 'bool',
pa.lib.Type_INT8: 'int8',
pa.lib.Type_INT16: 'int16',
pa.lib.Type_INT32: 'int32',
pa.lib.Type_INT64: 'int64',
pa.lib.Type_UINT8: 'uint8',
pa.lib.Type_UINT16: 'uint16',
pa.lib.Type_UINT32: 'uint32',
pa.lib.Type_UINT64: 'uint64',
pa.lib.Type_HALF_FLOAT: 'float16',
pa.lib.Type_FLOAT: 'float32',
pa.lib.Type_DOUBLE: 'float64',
pa.lib.Type_DATE32: 'date',
pa.lib.Type_DATE64: 'date',
pa.lib.Type_TIME32: 'time',
pa.lib.Type_TIME64: 'time',
pa.lib.Type_BINARY: 'bytes',
pa.lib.Type_FIXED_SIZE_BINARY: 'bytes',
pa.lib.Type_STRING: 'unicode',
})
return _logical_type_map
def get_logical_type(arrow_type):
logical_type_map = get_logical_type_map()
try:
return logical_type_map[arrow_type.id]
except KeyError:
if isinstance(arrow_type, pa.lib.DictionaryType):
return 'categorical'
elif isinstance(arrow_type, pa.lib.ListType):
return 'list[{}]'.format(get_logical_type(arrow_type.value_type))
elif isinstance(arrow_type, pa.lib.TimestampType):
return 'datetimetz' if arrow_type.tz is not None else 'datetime'
elif isinstance(arrow_type, pa.lib.Decimal128Type):
return 'decimal'
return 'object'
_numpy_logical_type_map = {
np.bool_: 'bool',
np.int8: 'int8',
np.int16: 'int16',
np.int32: 'int32',
np.int64: 'int64',
np.uint8: 'uint8',
np.uint16: 'uint16',
np.uint32: 'uint32',
np.uint64: 'uint64',
np.float32: 'float32',
np.float64: 'float64',
'datetime64[D]': 'date',
np.unicode_: 'string',
np.bytes_: 'bytes',
}
def get_logical_type_from_numpy(pandas_collection):
try:
return _numpy_logical_type_map[pandas_collection.dtype.type]
except KeyError:
if hasattr(pandas_collection.dtype, 'tz'):
return 'datetimetz'
# See https://github.com/pandas-dev/pandas/issues/24739
if str(pandas_collection.dtype) == 'datetime64[ns]':
return 'datetime64[ns]'
result = _pandas_api.infer_dtype(pandas_collection)
if result == 'string':
return 'unicode'
return result
def get_extension_dtype_info(column):
dtype = column.dtype
if str(dtype) == 'category':
cats = getattr(column, 'cat', column)
assert cats is not None
metadata = {
'num_categories': len(cats.categories),
'ordered': cats.ordered,
}
physical_dtype = str(cats.codes.dtype)
elif hasattr(dtype, 'tz'):
metadata = {'timezone': pa.lib.tzinfo_to_string(dtype.tz)}
physical_dtype = 'datetime64[ns]'
else:
metadata = None
physical_dtype = str(dtype)
return physical_dtype, metadata
def get_column_metadata(column, name, arrow_type, field_name):
"""Construct the metadata for a given column
Parameters
----------
column : pandas.Series or pandas.Index
name : str
arrow_type : pyarrow.DataType
field_name : str
Equivalent to `name` when `column` is a `Series`, otherwise if `column`
is a pandas Index then `field_name` will not be the same as `name`.
This is the name of the field in the arrow Table's schema.
Returns
-------
dict
"""
logical_type = get_logical_type(arrow_type)
string_dtype, extra_metadata = get_extension_dtype_info(column)
if logical_type == 'decimal':
extra_metadata = {
'precision': arrow_type.precision,
'scale': arrow_type.scale,
}
string_dtype = 'object'
if name is not None and not isinstance(name, str):
raise TypeError(
'Column name must be a string. Got column {} of type {}'.format(
name, type(name).__name__
)
)
assert field_name is None or isinstance(field_name, str), \
str(type(field_name))
return {
'name': name,
'field_name': 'None' if field_name is None else field_name,
'pandas_type': logical_type,
'numpy_type': string_dtype,
'metadata': extra_metadata,
}
def construct_metadata(columns_to_convert, df, column_names, index_levels,
index_descriptors, preserve_index, types):
"""Returns a dictionary containing enough metadata to reconstruct a pandas
DataFrame as an Arrow Table, including index columns.
Parameters
----------
columns_to_convert : list[pd.Series]
df : pandas.DataFrame
index_levels : List[pd.Index]
index_descriptors : List[Dict]
preserve_index : bool
types : List[pyarrow.DataType]
Returns
-------
dict
"""
num_serialized_index_levels = len([descr for descr in index_descriptors
if not isinstance(descr, dict)])
# Use ntypes instead of Python shorthand notation [:-len(x)] as [:-0]
# behaves differently to what we want.
ntypes = len(types)
df_types = types[:ntypes - num_serialized_index_levels]
index_types = types[ntypes - num_serialized_index_levels:]
column_metadata = []
for col, sanitized_name, arrow_type in zip(columns_to_convert,
column_names, df_types):
metadata = get_column_metadata(col, name=sanitized_name,
arrow_type=arrow_type,
field_name=sanitized_name)
column_metadata.append(metadata)
index_column_metadata = []
if preserve_index is not False:
non_str_index_names = []
for level, arrow_type, descriptor in zip(index_levels, index_types,
index_descriptors):
if isinstance(descriptor, dict):
# The index is represented in a non-serialized fashion,
# e.g. RangeIndex
continue
if level.name is not None and not isinstance(level.name, str):
non_str_index_names.append(level.name)
metadata = get_column_metadata(
level,
name=_column_name_to_strings(level.name),
arrow_type=arrow_type,
field_name=descriptor,
)
index_column_metadata.append(metadata)
if len(non_str_index_names) > 0:
warnings.warn(
f"The DataFrame has non-str index name `{non_str_index_names}`"
" which will be converted to string"
" and not roundtrip correctly.",
UserWarning, stacklevel=4)
column_indexes = []
levels = getattr(df.columns, 'levels', [df.columns])
names = getattr(df.columns, 'names', [df.columns.name])
for level, name in zip(levels, names):
metadata = _get_simple_index_descriptor(level, name)
column_indexes.append(metadata)
else:
index_descriptors = index_column_metadata = column_indexes = []
return {
b'pandas': json.dumps({
'index_columns': index_descriptors,
'column_indexes': column_indexes,
'columns': column_metadata + index_column_metadata,
'creator': {
'library': 'pyarrow',
'version': pa.__version__
},
'pandas_version': _pandas_api.version
}).encode('utf8')
}
def _get_simple_index_descriptor(level, name):
string_dtype, extra_metadata = get_extension_dtype_info(level)
pandas_type = get_logical_type_from_numpy(level)
if 'mixed' in pandas_type:
warnings.warn(
"The DataFrame has column names of mixed type. They will be "
"converted to strings and not roundtrip correctly.",
UserWarning, stacklevel=4)
if pandas_type == 'unicode':
assert not extra_metadata
extra_metadata = {'encoding': 'UTF-8'}
return {
'name': name,
'field_name': name,
'pandas_type': pandas_type,
'numpy_type': string_dtype,
'metadata': extra_metadata,
}
def _column_name_to_strings(name):
"""Convert a column name (or level) to either a string or a recursive
collection of strings.
Parameters
----------
name : str or tuple
Returns
-------
value : str or tuple
Examples
--------
>>> name = 'foo'
>>> _column_name_to_strings(name)
'foo'
>>> name = ('foo', 'bar')
>>> _column_name_to_strings(name)
"('foo', 'bar')"
>>> import pandas as pd
>>> name = (1, pd.Timestamp('2017-02-01 00:00:00'))
>>> _column_name_to_strings(name)
"('1', '2017-02-01 00:00:00')"
"""
if isinstance(name, str):
return name
elif isinstance(name, bytes):
# XXX: should we assume that bytes in Python 3 are UTF-8?
return name.decode('utf8')
elif isinstance(name, tuple):
return str(tuple(map(_column_name_to_strings, name)))
elif isinstance(name, Sequence):
raise TypeError("Unsupported type for MultiIndex level")
elif name is None:
return None
return str(name)
def _index_level_name(index, i, column_names):
"""Return the name of an index level or a default name if `index.name` is
None or is already a column name.
Parameters
----------
index : pandas.Index
i : int
Returns
-------
name : str
"""
if index.name is not None and index.name not in column_names:
return _column_name_to_strings(index.name)
else:
return '__index_level_{:d}__'.format(i)
def _get_columns_to_convert(df, schema, preserve_index, columns):
columns = _resolve_columns_of_interest(df, schema, columns)
if not df.columns.is_unique:
raise ValueError(
'Duplicate column names found: {}'.format(list(df.columns))
)
if schema is not None:
return _get_columns_to_convert_given_schema(df, schema, preserve_index)
column_names = []
index_levels = (
_get_index_level_values(df.index) if preserve_index is not False
else []
)
columns_to_convert = []
convert_fields = []
for name in columns:
col = df[name]
name = _column_name_to_strings(name)
if _pandas_api.is_sparse(col):
raise TypeError(
"Sparse pandas data (column {}) not supported.".format(name))
columns_to_convert.append(col)
convert_fields.append(None)
column_names.append(name)
index_descriptors = []
index_column_names = []
for i, index_level in enumerate(index_levels):
name = _index_level_name(index_level, i, column_names)
if (isinstance(index_level, _pandas_api.pd.RangeIndex) and
preserve_index is None):
descr = _get_range_index_descriptor(index_level)
else:
columns_to_convert.append(index_level)
convert_fields.append(None)
descr = name
index_column_names.append(name)
index_descriptors.append(descr)
all_names = column_names + index_column_names
# all_names : all of the columns in the resulting table including the data
# columns and serialized index columns
# column_names : the names of the data columns
# index_column_names : the names of the serialized index columns
# index_descriptors : descriptions of each index to be used for
# reconstruction
# index_levels : the extracted index level values
# columns_to_convert : assembled raw data (both data columns and indexes)
# to be converted to Arrow format
# columns_fields : specified column to use for coercion / casting
# during serialization, if a Schema was provided
return (all_names, column_names, index_column_names, index_descriptors,
index_levels, columns_to_convert, convert_fields)
def _get_columns_to_convert_given_schema(df, schema, preserve_index):
"""
Specialized version of _get_columns_to_convert in case a Schema is
specified.
In that case, the Schema is used as the single point of truth for the
table structure (types, which columns are included, order of columns, ...).
"""
column_names = []
columns_to_convert = []
convert_fields = []
index_descriptors = []
index_column_names = []
index_levels = []
for name in schema.names:
try:
col = df[name]
is_index = False
except KeyError:
try:
col = _get_index_level(df, name)
except (KeyError, IndexError):
# name not found as index level
raise KeyError(
"name '{}' present in the specified schema is not found "
"in the columns or index".format(name))
if preserve_index is False:
raise ValueError(
"name '{}' present in the specified schema corresponds "
"to the index, but 'preserve_index=False' was "
"specified".format(name))
elif (preserve_index is None and
isinstance(col, _pandas_api.pd.RangeIndex)):
raise ValueError(
"name '{}' is present in the schema, but it is a "
"RangeIndex which will not be converted as a column "
"in the Table, but saved as metadata-only not in "
"columns. Specify 'preserve_index=True' to force it "
"being added as a column, or remove it from the "
"specified schema".format(name))
is_index = True
name = _column_name_to_strings(name)
if _pandas_api.is_sparse(col):
raise TypeError(
"Sparse pandas data (column {}) not supported.".format(name))
field = schema.field(name)
columns_to_convert.append(col)
convert_fields.append(field)
column_names.append(name)
if is_index:
index_column_names.append(name)
index_descriptors.append(name)
index_levels.append(col)
all_names = column_names + index_column_names
return (all_names, column_names, index_column_names, index_descriptors,
index_levels, columns_to_convert, convert_fields)
def _get_index_level(df, name):
"""
Get the index level of a DataFrame given 'name' (column name in an arrow
Schema).
"""
key = name
if name not in df.index.names and _is_generated_index_name(name):
# we know we have an autogenerated name => extract number and get
# the index level positionally
key = int(name[len("__index_level_"):-2])
return df.index.get_level_values(key)
def _level_name(name):
# preserve type when default serializable, otherwise str it
try:
json.dumps(name)
return name
except TypeError:
return str(name)
def _get_range_index_descriptor(level):
# public start/stop/step attributes added in pandas 0.25.0
return {
'kind': 'range',
'name': _level_name(level.name),
'start': _pandas_api.get_rangeindex_attribute(level, 'start'),
'stop': _pandas_api.get_rangeindex_attribute(level, 'stop'),
'step': _pandas_api.get_rangeindex_attribute(level, 'step')
}
def _get_index_level_values(index):
n = len(getattr(index, 'levels', [index]))
return [index.get_level_values(i) for i in range(n)]
def _resolve_columns_of_interest(df, schema, columns):
if schema is not None and columns is not None:
raise ValueError('Schema and columns arguments are mutually '
'exclusive, pass only one of them')
elif schema is not None:
columns = schema.names
elif columns is not None:
columns = [c for c in columns if c in df.columns]
else:
columns = df.columns
return columns
def dataframe_to_types(df, preserve_index, columns=None):
(all_names,
column_names,
_,
index_descriptors,
index_columns,
columns_to_convert,
_) = _get_columns_to_convert(df, None, preserve_index, columns)
types = []
# If pandas knows type, skip conversion
for c in columns_to_convert:
values = c.values
if _pandas_api.is_categorical(values):
type_ = pa.array(c, from_pandas=True).type
elif _pandas_api.is_extension_array_dtype(values):
empty = c.head(0) if isinstance(
c, _pandas_api.pd.Series) else c[:0]
type_ = pa.array(empty, from_pandas=True).type
else:
values, type_ = get_datetimetz_type(values, c.dtype, None)
type_ = pa.lib._ndarray_to_arrow_type(values, type_)
if type_ is None:
type_ = pa.array(c, from_pandas=True).type
types.append(type_)
metadata = construct_metadata(
columns_to_convert, df, column_names, index_columns,
index_descriptors, preserve_index, types
)
return all_names, types, metadata
def dataframe_to_arrays(df, schema, preserve_index, nthreads=1, columns=None,
safe=True):
(all_names,
column_names,
index_column_names,
index_descriptors,
index_columns,
columns_to_convert,
convert_fields) = _get_columns_to_convert(df, schema, preserve_index,
columns)
# NOTE(wesm): If nthreads=None, then we use a heuristic to decide whether
# using a thread pool is worth it. Currently the heuristic is whether the
# nrows > 100 * ncols and ncols > 1.
if nthreads is None:
nrows, ncols = len(df), len(df.columns)
if nrows > ncols * 100 and ncols > 1:
nthreads = pa.cpu_count()
else:
nthreads = 1
def convert_column(col, field):
if field is None:
field_nullable = True
type_ = None
else:
field_nullable = field.nullable
type_ = field.type
try:
result = pa.array(col, type=type_, from_pandas=True, safe=safe)
except (pa.ArrowInvalid,
pa.ArrowNotImplementedError,
pa.ArrowTypeError) as e:
e.args += ("Conversion failed for column {!s} with type {!s}"
.format(col.name, col.dtype),)
raise e
if not field_nullable and result.null_count > 0:
raise ValueError("Field {} was non-nullable but pandas column "
"had {} null values".format(str(field),
result.null_count))
return result
def _can_definitely_zero_copy(arr):
return (isinstance(arr, np.ndarray) and
arr.flags.contiguous and
issubclass(arr.dtype.type, np.integer))
if nthreads == 1:
arrays = [convert_column(c, f)
for c, f in zip(columns_to_convert, convert_fields)]
else:
arrays = []
with futures.ThreadPoolExecutor(nthreads) as executor:
for c, f in zip(columns_to_convert, convert_fields):
if _can_definitely_zero_copy(c.values):
arrays.append(convert_column(c, f))
else:
arrays.append(executor.submit(convert_column, c, f))
for i, maybe_fut in enumerate(arrays):
if isinstance(maybe_fut, futures.Future):
arrays[i] = maybe_fut.result()
types = [x.type for x in arrays]
if schema is None:
fields = []
for name, type_ in zip(all_names, types):
name = name if name is not None else 'None'
fields.append(pa.field(name, type_))
schema = pa.schema(fields)
pandas_metadata = construct_metadata(
columns_to_convert, df, column_names, index_columns,
index_descriptors, preserve_index, types
)
metadata = deepcopy(schema.metadata) if schema.metadata else dict()
metadata.update(pandas_metadata)
schema = schema.with_metadata(metadata)
# If dataframe is empty but with RangeIndex ->
# remember the length of the indexes
n_rows = None
if len(arrays) == 0:
try:
kind = index_descriptors[0]["kind"]
if kind == "range":
start = index_descriptors[0]["start"]
stop = index_descriptors[0]["stop"]
step = index_descriptors[0]["step"]
n_rows = len(range(start, stop, step))
except IndexError:
pass
return arrays, schema, n_rows
def get_datetimetz_type(values, dtype, type_):
if values.dtype.type != np.datetime64:
return values, type_
if _pandas_api.is_datetimetz(dtype) and type_ is None:
# If no user type passed, construct a tz-aware timestamp type
tz = dtype.tz
unit = dtype.unit
type_ = pa.timestamp(unit, tz)
elif type_ is None:
# Trust the NumPy dtype
type_ = pa.from_numpy_dtype(values.dtype)
return values, type_
# ----------------------------------------------------------------------
# Converting pandas.DataFrame to a dict containing only NumPy arrays or other
# objects friendly to pyarrow.serialize
def dataframe_to_serialized_dict(frame):
block_manager = frame._data
blocks = []
axes = [ax for ax in block_manager.axes]
for block in block_manager.blocks:
values = block.values
block_data = {}
if _pandas_api.is_datetimetz(values.dtype):
block_data['timezone'] = pa.lib.tzinfo_to_string(values.tz)
if hasattr(values, 'values'):
values = values.values
elif _pandas_api.is_categorical(values):
block_data.update(dictionary=values.categories,
ordered=values.ordered)
values = values.codes
block_data.update(
placement=block.mgr_locs.as_array,
block=values
)
# If we are dealing with an object array, pickle it instead.
if values.dtype == np.dtype(object):
block_data['object'] = None
block_data['block'] = builtin_pickle.dumps(
values, protocol=builtin_pickle.HIGHEST_PROTOCOL)
blocks.append(block_data)
return {
'blocks': blocks,
'axes': axes
}
def serialized_dict_to_dataframe(data):
import pandas.core.internals as _int
reconstructed_blocks = [_reconstruct_block(block)
for block in data['blocks']]
block_mgr = _int.BlockManager(reconstructed_blocks, data['axes'])
return _pandas_api.data_frame(block_mgr)
def _reconstruct_block(item, columns=None, extension_columns=None):
"""
Construct a pandas Block from the `item` dictionary coming from pyarrow's
serialization or returned by arrow::python::ConvertTableToPandas.
This function takes care of converting dictionary types to pandas
categorical, Timestamp-with-timezones to the proper pandas Block, and
conversion to pandas ExtensionBlock
Parameters
----------
item : dict
For basic types, this is a dictionary in the form of
{'block': np.ndarray of values, 'placement': pandas block placement}.
Additional keys are present for other types (dictionary, timezone,
object).
columns :
Column names of the table being constructed, used for extension types
extension_columns : dict
Dictionary of {column_name: pandas_dtype} that includes all columns
and corresponding dtypes that will be converted to a pandas
ExtensionBlock.
Returns
-------
pandas Block
"""
import pandas.core.internals as _int
block_arr = item.get('block', None)
placement = item['placement']
if 'dictionary' in item:
cat = _pandas_api.categorical_type.from_codes(
block_arr, categories=item['dictionary'],
ordered=item['ordered'])
block = _int.make_block(cat, placement=placement)
elif 'timezone' in item:
dtype = make_datetimetz(item['timezone'])
block = _int.make_block(block_arr, placement=placement,
klass=_int.DatetimeTZBlock,
dtype=dtype)
elif 'object' in item:
block = _int.make_block(builtin_pickle.loads(block_arr),
placement=placement)
elif 'py_array' in item:
# create ExtensionBlock
arr = item['py_array']
assert len(placement) == 1
name = columns[placement[0]]
pandas_dtype = extension_columns[name]
if not hasattr(pandas_dtype, '__from_arrow__'):
raise ValueError("This column does not support to be converted "
"to a pandas ExtensionArray")
pd_ext_arr = pandas_dtype.__from_arrow__(arr)
block = _int.make_block(pd_ext_arr, placement=placement)
else:
block = _int.make_block(block_arr, placement=placement)
return block
def make_datetimetz(tz):
tz = pa.lib.string_to_tzinfo(tz)
return _pandas_api.datetimetz_type('ns', tz=tz)
# ----------------------------------------------------------------------
# Converting pyarrow.Table efficiently to pandas.DataFrame
def table_to_blockmanager(options, table, categories=None,
ignore_metadata=False, types_mapper=None):
from pandas.core.internals import BlockManager
all_columns = []
column_indexes = []
pandas_metadata = table.schema.pandas_metadata
if not ignore_metadata and pandas_metadata is not None:
all_columns = pandas_metadata['columns']
column_indexes = pandas_metadata.get('column_indexes', [])
index_descriptors = pandas_metadata['index_columns']
table = _add_any_metadata(table, pandas_metadata)
table, index = _reconstruct_index(table, index_descriptors,
all_columns)
ext_columns_dtypes = _get_extension_dtypes(
table, all_columns, types_mapper)
else:
index = _pandas_api.pd.RangeIndex(table.num_rows)
ext_columns_dtypes = _get_extension_dtypes(table, [], types_mapper)
_check_data_column_metadata_consistency(all_columns)
columns = _deserialize_column_index(table, all_columns, column_indexes)
blocks = _table_to_blocks(options, table, categories, ext_columns_dtypes)
axes = [columns, index]
return BlockManager(blocks, axes)
# Set of the string repr of all numpy dtypes that can be stored in a pandas
# dataframe (complex not included since not supported by Arrow)
_pandas_supported_numpy_types = {
str(np.dtype(typ))
for typ in (np.sctypes['int'] + np.sctypes['uint'] + np.sctypes['float'] +
['object', 'bool'])
}
def _get_extension_dtypes(table, columns_metadata, types_mapper=None):
"""
Based on the stored column pandas metadata and the extension types
in the arrow schema, infer which columns should be converted to a
pandas extension dtype.
The 'numpy_type' field in the column metadata stores the string
representation of the original pandas dtype (and, despite its name,
not the 'pandas_type' field).
Based on this string representation, a pandas/numpy dtype is constructed
and then we can check if this dtype supports conversion from arrow.
"""
ext_columns = {}
# older pandas version that does not yet support extension dtypes
if _pandas_api.extension_dtype is None:
return ext_columns
# infer the extension columns from the pandas metadata
for col_meta in columns_metadata:
try:
name = col_meta['field_name']
except KeyError:
name = col_meta['name']
dtype = col_meta['numpy_type']
if dtype not in _pandas_supported_numpy_types:
# pandas_dtype is expensive, so avoid doing this for types
# that are certainly numpy dtypes
pandas_dtype = _pandas_api.pandas_dtype(dtype)
if isinstance(pandas_dtype, _pandas_api.extension_dtype):
if hasattr(pandas_dtype, "__from_arrow__"):
ext_columns[name] = pandas_dtype
# infer from extension type in the schema
for field in table.schema:
typ = field.type
if isinstance(typ, pa.BaseExtensionType):
try:
pandas_dtype = typ.to_pandas_dtype()
except NotImplementedError:
pass
else:
ext_columns[field.name] = pandas_dtype
# use the specified mapping of built-in arrow types to pandas dtypes
if types_mapper:
for field in table.schema:
typ = field.type
pandas_dtype = types_mapper(typ)
if pandas_dtype is not None:
ext_columns[field.name] = pandas_dtype
return ext_columns
def _check_data_column_metadata_consistency(all_columns):
# It can never be the case in a released version of pyarrow that
# c['name'] is None *and* 'field_name' is not a key in the column metadata,
# because the change to allow c['name'] to be None and the change to add
# 'field_name' are in the same release (0.8.0)
assert all(
(c['name'] is None and 'field_name' in c) or c['name'] is not None
for c in all_columns
)
def _deserialize_column_index(block_table, all_columns, column_indexes):
column_strings = [frombytes(x) if isinstance(x, bytes) else x
for x in block_table.column_names]
if all_columns:
columns_name_dict = {
c.get('field_name', _column_name_to_strings(c['name'])): c['name']
for c in all_columns
}
columns_values = [
columns_name_dict.get(name, name) for name in column_strings
]
else:
columns_values = column_strings
# If we're passed multiple column indexes then evaluate with
# ast.literal_eval, since the column index values show up as a list of
# tuples
to_pair = ast.literal_eval if len(column_indexes) > 1 else lambda x: (x,)
# Create the column index
# Construct the base index
if not columns_values:
columns = _pandas_api.pd.Index(columns_values)
else:
columns = _pandas_api.pd.MultiIndex.from_tuples(
list(map(to_pair, columns_values)),
names=[col_index['name'] for col_index in column_indexes] or None,
)
# if we're reconstructing the index
if len(column_indexes) > 0:
columns = _reconstruct_columns_from_metadata(columns, column_indexes)
# ARROW-1751: flatten a single level column MultiIndex for pandas 0.21.0
columns = _flatten_single_level_multiindex(columns)
return columns
def _reconstruct_index(table, index_descriptors, all_columns):
# 0. 'field_name' is the name of the column in the arrow Table
# 1. 'name' is the user-facing name of the column, that is, it came from
# pandas
# 2. 'field_name' and 'name' differ for index columns
# 3. We fall back on c['name'] for backwards compatibility
field_name_to_metadata = {
c.get('field_name', c['name']): c
for c in all_columns
}
# Build up a list of index columns and names while removing those columns
# from the original table
index_arrays = []
index_names = []
result_table = table
for descr in index_descriptors:
if isinstance(descr, str):
result_table, index_level, index_name = _extract_index_level(
table, result_table, descr, field_name_to_metadata)
if index_level is None:
# ARROW-1883: the serialized index column was not found
continue
elif descr['kind'] == 'range':
index_name = descr['name']
index_level = _pandas_api.pd.RangeIndex(descr['start'],
descr['stop'],
step=descr['step'],
name=index_name)
if len(index_level) != len(table):
# Possibly the result of munged metadata
continue
else:
raise ValueError("Unrecognized index kind: {}"
.format(descr['kind']))
index_arrays.append(index_level)
index_names.append(index_name)
pd = _pandas_api.pd
# Reconstruct the row index
if len(index_arrays) > 1:
index = pd.MultiIndex.from_arrays(index_arrays, names=index_names)
elif len(index_arrays) == 1:
index = index_arrays[0]
if not isinstance(index, pd.Index):
# Box anything that wasn't boxed above
index = pd.Index(index, name=index_names[0])
else:
index = pd.RangeIndex(table.num_rows)
return result_table, index
def _extract_index_level(table, result_table, field_name,
field_name_to_metadata):
logical_name = field_name_to_metadata[field_name]['name']
index_name = _backwards_compatible_index_name(field_name, logical_name)