-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
test_dlpack.py
142 lines (112 loc) · 4.6 KB
/
test_dlpack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import ctypes
from functools import wraps
import pytest
import numpy as np
import pyarrow as pa
from pyarrow.vendored.version import Version
def PyCapsule_IsValid(capsule, name):
return ctypes.pythonapi.PyCapsule_IsValid(ctypes.py_object(capsule), name) == 1
def check_dlpack_export(arr, expected_arr):
DLTensor = arr.__dlpack__()
assert PyCapsule_IsValid(DLTensor, b"dltensor") is True
result = np.from_dlpack(arr)
np.testing.assert_array_equal(result, expected_arr, strict=True)
assert arr.__dlpack_device__() == (1, 0)
def check_bytes_allocated(f):
@wraps(f)
def wrapper(*args, **kwargs):
allocated_bytes = pa.total_allocated_bytes()
try:
return f(*args, **kwargs)
finally:
assert pa.total_allocated_bytes() == allocated_bytes
return wrapper
@check_bytes_allocated
@pytest.mark.parametrize(
('value_type', 'np_type'),
[
(pa.uint8(), np.uint8),
(pa.uint16(), np.uint16),
(pa.uint32(), np.uint32),
(pa.uint64(), np.uint64),
(pa.int8(), np.int8),
(pa.int16(), np.int16),
(pa.int32(), np.int32),
(pa.int64(), np.int64),
(pa.float16(), np.float16),
(pa.float32(), np.float32),
(pa.float64(), np.float64),
]
)
def test_dlpack(value_type, np_type):
if Version(np.__version__) < Version("1.24.0"):
pytest.skip("No dlpack support in numpy versions older than 1.22.0, "
"strict keyword in assert_array_equal added in numpy version "
"1.24.0")
expected = np.array([1, 2, 3], dtype=np_type)
arr = pa.array(expected, type=value_type)
check_dlpack_export(arr, expected)
arr_sliced = arr.slice(1, 1)
expected = np.array([2], dtype=np_type)
check_dlpack_export(arr_sliced, expected)
arr_sliced = arr.slice(0, 1)
expected = np.array([1], dtype=np_type)
check_dlpack_export(arr_sliced, expected)
arr_sliced = arr.slice(1)
expected = np.array([2, 3], dtype=np_type)
check_dlpack_export(arr_sliced, expected)
arr_zero = pa.array([], type=value_type)
expected = np.array([], dtype=np_type)
check_dlpack_export(arr_zero, expected)
def test_dlpack_not_supported():
if Version(np.__version__) < Version("1.22.0"):
pytest.skip("No dlpack support in numpy versions older than 1.22.0.")
arr = pa.array([1, None, 3])
with pytest.raises(TypeError, match="Can only use DLPack "
"on arrays with no nulls."):
np.from_dlpack(arr)
arr = pa.array(
[[0, 1], [3, 4]],
type=pa.list_(pa.int32())
)
with pytest.raises(TypeError, match="DataType is not compatible with DLPack spec"):
np.from_dlpack(arr)
arr = pa.array([])
with pytest.raises(TypeError, match="DataType is not compatible with DLPack spec"):
np.from_dlpack(arr)
# DLPack doesn't support bit-packed boolean values
arr = pa.array([True, False, True])
with pytest.raises(TypeError, match="Bit-packed boolean data type "
"not supported by DLPack."):
np.from_dlpack(arr)
def test_dlpack_cuda_not_supported():
cuda = pytest.importorskip("pyarrow.cuda")
schema = pa.schema([pa.field('f0', pa.int16())])
a0 = pa.array([1, 2, 3], type=pa.int16())
batch = pa.record_batch([a0], schema=schema)
cbuf = cuda.serialize_record_batch(batch, cuda.Context(0))
cbatch = cuda.read_record_batch(cbuf, batch.schema)
carr = cbatch["f0"]
# CudaBuffers not yet supported
with pytest.raises(NotImplementedError, match="DLPack support is implemented "
"only for buffers on CPU device."):
np.from_dlpack(carr)
with pytest.raises(NotImplementedError, match="DLPack support is implemented "
"only for buffers on CPU device."):
carr.__dlpack_device__()