-
Notifications
You must be signed in to change notification settings - Fork 842
/
Copy pathmod.rs
391 lines (336 loc) · 13.5 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Contains async writer which writes arrow data into parquet data.
//!
//! Provides `async` API for writing [`RecordBatch`]es as parquet files. The API is
//! similar to the [`sync` API](crate::arrow::arrow_writer::ArrowWriter), so please
//! read the documentation there before using this API.
//!
//! Here is an example for using [`AsyncArrowWriter`]:
//! ```
//! # #[tokio::main(flavor="current_thread")]
//! # async fn main() {
//! #
//! # use std::sync::Arc;
//! # use arrow_array::{ArrayRef, Int64Array, RecordBatch, RecordBatchReader};
//! # use bytes::Bytes;
//! # use parquet::arrow::{AsyncArrowWriter, arrow_reader::ParquetRecordBatchReaderBuilder};
//! #
//! let col = Arc::new(Int64Array::from_iter_values([1, 2, 3])) as ArrayRef;
//! let to_write = RecordBatch::try_from_iter([("col", col)]).unwrap();
//!
//! let mut buffer = Vec::new();
//! let mut writer = AsyncArrowWriter::try_new(&mut buffer, to_write.schema(), None).unwrap();
//! writer.write(&to_write).await.unwrap();
//! writer.close().await.unwrap();
//!
//! let buffer = Bytes::from(buffer);
//! let mut reader = ParquetRecordBatchReaderBuilder::try_new(buffer.clone())
//! .unwrap()
//! .build()
//! .unwrap();
//! let read = reader.next().unwrap().unwrap();
//!
//! assert_eq!(to_write, read);
//! # }
//! ```
use crate::{
arrow::arrow_writer::ArrowWriterOptions,
arrow::ArrowWriter,
errors::{ParquetError, Result},
file::{metadata::RowGroupMetaDataPtr, properties::WriterProperties},
format::{FileMetaData, KeyValue},
};
use arrow_array::RecordBatch;
use arrow_schema::SchemaRef;
use tokio::io::{AsyncWrite, AsyncWriteExt};
/// Encodes [`RecordBatch`] to parquet, outputting to an [`AsyncWrite`]
///
/// ## Memory Usage
///
/// This writer eagerly writes data as soon as possible to the underlying [`AsyncWrite`],
/// permitting fine-grained control over buffering and I/O scheduling. However, the columnar
/// nature of parquet forces data for an entire row group to be buffered in memory, before
/// it can be flushed. Depending on the data and the configured row group size, this buffering
/// may be substantial.
///
/// Memory usage can be limited by calling [`Self::flush`] to flush the in progress row group,
/// although this will likely increase overall file size and reduce query performance.
/// See [ArrowWriter] for more information.
///
/// ```no_run
/// # use tokio::fs::File;
/// # use arrow_array::RecordBatch;
/// # use parquet::arrow::AsyncArrowWriter;
/// # async fn test() {
/// let mut writer: AsyncArrowWriter<File> = todo!();
/// let batch: RecordBatch = todo!();
/// writer.write(&batch).await.unwrap();
/// // Trigger an early flush if buffered size exceeds 1_000_000
/// if writer.in_progress_size() > 1_000_000 {
/// writer.flush().await.unwrap()
/// }
/// # }
/// ```
pub struct AsyncArrowWriter<W> {
/// Underlying sync writer
sync_writer: ArrowWriter<Vec<u8>>,
/// Async writer provided by caller
async_writer: W,
}
impl<W: AsyncWrite + Unpin + Send> AsyncArrowWriter<W> {
/// Try to create a new Async Arrow Writer
pub fn try_new(
writer: W,
arrow_schema: SchemaRef,
props: Option<WriterProperties>,
) -> Result<Self> {
let options = ArrowWriterOptions::new().with_properties(props.unwrap_or_default());
Self::try_new_with_options(writer, arrow_schema, options)
}
/// Try to create a new Async Arrow Writer with [`ArrowWriterOptions`]
pub fn try_new_with_options(
writer: W,
arrow_schema: SchemaRef,
options: ArrowWriterOptions,
) -> Result<Self> {
let sync_writer = ArrowWriter::try_new_with_options(Vec::new(), arrow_schema, options)?;
Ok(Self {
sync_writer,
async_writer: writer,
})
}
/// Returns metadata for any flushed row groups
pub fn flushed_row_groups(&self) -> &[RowGroupMetaDataPtr] {
self.sync_writer.flushed_row_groups()
}
/// Returns the estimated length in bytes of the current in progress row group
pub fn in_progress_size(&self) -> usize {
self.sync_writer.in_progress_size()
}
/// Returns the number of rows buffered in the in progress row group
pub fn in_progress_rows(&self) -> usize {
self.sync_writer.in_progress_rows()
}
/// Returns the number of bytes written by this instance
pub fn bytes_written(&self) -> usize {
self.sync_writer.bytes_written()
}
/// Enqueues the provided `RecordBatch` to be written
///
/// After every sync write by the inner [ArrowWriter], the inner buffer will be
/// checked and flush if at least half full
pub async fn write(&mut self, batch: &RecordBatch) -> Result<()> {
let before = self.sync_writer.flushed_row_groups().len();
self.sync_writer.write(batch)?;
if before != self.sync_writer.flushed_row_groups().len() {
self.do_write().await?;
}
Ok(())
}
/// Flushes all buffered rows into a new row group
pub async fn flush(&mut self) -> Result<()> {
self.sync_writer.flush()?;
self.do_write().await?;
Ok(())
}
/// Append [`KeyValue`] metadata in addition to those in [`WriterProperties`]
///
/// This method allows to append metadata after [`RecordBatch`]es are written.
pub fn append_key_value_metadata(&mut self, kv_metadata: KeyValue) {
self.sync_writer.append_key_value_metadata(kv_metadata);
}
/// Close and finalize the writer.
///
/// All the data in the inner buffer will be force flushed.
pub async fn close(mut self) -> Result<FileMetaData> {
let metadata = self.sync_writer.finish()?;
// Force to flush the remaining data.
self.do_write().await?;
self.async_writer.shutdown().await?;
Ok(metadata)
}
/// Flush the data written by `sync_writer` into the `async_writer`
async fn do_write(&mut self) -> Result<()> {
let buffer = self.sync_writer.inner_mut();
self.async_writer
.write_all(buffer.as_slice())
.await
.map_err(|e| ParquetError::External(Box::new(e)))?;
self.async_writer
.flush()
.await
.map_err(|e| ParquetError::External(Box::new(e)))?;
// reuse the buffer.
buffer.clear();
Ok(())
}
}
#[cfg(test)]
mod tests {
use arrow::datatypes::{DataType, Field, Schema};
use arrow_array::{ArrayRef, BinaryArray, Int32Array, Int64Array, RecordBatchReader};
use bytes::Bytes;
use std::sync::Arc;
use tokio::pin;
use crate::arrow::arrow_reader::{ParquetRecordBatchReader, ParquetRecordBatchReaderBuilder};
use super::*;
fn get_test_reader() -> ParquetRecordBatchReader {
let testdata = arrow::util::test_util::parquet_test_data();
// This test file is large enough to generate multiple row groups.
let path = format!("{}/alltypes_tiny_pages_plain.parquet", testdata);
let original_data = Bytes::from(std::fs::read(path).unwrap());
ParquetRecordBatchReaderBuilder::try_new(original_data)
.unwrap()
.build()
.unwrap()
}
#[tokio::test]
async fn test_async_writer() {
let col = Arc::new(Int64Array::from_iter_values([1, 2, 3])) as ArrayRef;
let to_write = RecordBatch::try_from_iter([("col", col)]).unwrap();
let mut buffer = Vec::new();
let mut writer = AsyncArrowWriter::try_new(&mut buffer, to_write.schema(), None).unwrap();
writer.write(&to_write).await.unwrap();
writer.close().await.unwrap();
let buffer = Bytes::from(buffer);
let mut reader = ParquetRecordBatchReaderBuilder::try_new(buffer)
.unwrap()
.build()
.unwrap();
let read = reader.next().unwrap().unwrap();
assert_eq!(to_write, read);
}
// Read the data from the test file and write it by the async writer and sync writer.
// And then compares the results of the two writers.
#[tokio::test]
async fn test_async_writer_with_sync_writer() {
let reader = get_test_reader();
let write_props = WriterProperties::builder()
.set_max_row_group_size(64)
.build();
let mut async_buffer = Vec::new();
let mut async_writer = AsyncArrowWriter::try_new(
&mut async_buffer,
reader.schema(),
Some(write_props.clone()),
)
.unwrap();
let mut sync_buffer = Vec::new();
let mut sync_writer =
ArrowWriter::try_new(&mut sync_buffer, reader.schema(), Some(write_props)).unwrap();
for record_batch in reader {
let record_batch = record_batch.unwrap();
async_writer.write(&record_batch).await.unwrap();
sync_writer.write(&record_batch).unwrap();
}
sync_writer.close().unwrap();
async_writer.close().await.unwrap();
assert_eq!(sync_buffer, async_buffer);
}
struct TestAsyncSink {
sink: Vec<u8>,
min_accept_bytes: usize,
expect_total_bytes: usize,
}
impl AsyncWrite for TestAsyncSink {
fn poll_write(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &[u8],
) -> std::task::Poll<std::result::Result<usize, std::io::Error>> {
let written_bytes = self.sink.len();
if written_bytes + buf.len() < self.expect_total_bytes {
assert!(buf.len() >= self.min_accept_bytes);
} else {
assert_eq!(written_bytes + buf.len(), self.expect_total_bytes);
}
let sink = &mut self.get_mut().sink;
pin!(sink);
sink.poll_write(cx, buf)
}
fn poll_flush(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<std::result::Result<(), std::io::Error>> {
let sink = &mut self.get_mut().sink;
pin!(sink);
sink.poll_flush(cx)
}
fn poll_shutdown(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<std::result::Result<(), std::io::Error>> {
let sink = &mut self.get_mut().sink;
pin!(sink);
sink.poll_shutdown(cx)
}
}
#[tokio::test]
async fn test_async_writer_file() {
let col = Arc::new(Int64Array::from_iter_values([1, 2, 3])) as ArrayRef;
let col2 = Arc::new(BinaryArray::from_iter_values(vec![
vec![0; 500000],
vec![0; 500000],
vec![0; 500000],
])) as ArrayRef;
let to_write = RecordBatch::try_from_iter([("col", col), ("col2", col2)]).unwrap();
let temp = tempfile::tempfile().unwrap();
let file = tokio::fs::File::from_std(temp.try_clone().unwrap());
let mut writer = AsyncArrowWriter::try_new(file, to_write.schema(), None).unwrap();
writer.write(&to_write).await.unwrap();
writer.close().await.unwrap();
let mut reader = ParquetRecordBatchReaderBuilder::try_new(temp)
.unwrap()
.build()
.unwrap();
let read = reader.next().unwrap().unwrap();
assert_eq!(to_write, read);
}
#[tokio::test]
async fn in_progress_accounting() {
// define schema
let schema = Schema::new(vec![Field::new("a", DataType::Int32, false)]);
// create some data
let a = Int32Array::from_value(0_i32, 512);
// build a record batch
let batch = RecordBatch::try_new(Arc::new(schema), vec![Arc::new(a)]).unwrap();
let temp = tempfile::tempfile().unwrap();
let file = tokio::fs::File::from_std(temp.try_clone().unwrap());
let mut writer = AsyncArrowWriter::try_new(file, batch.schema(), None).unwrap();
// starts empty
assert_eq!(writer.in_progress_size(), 0);
assert_eq!(writer.in_progress_rows(), 0);
assert_eq!(writer.bytes_written(), 4); // Initial Parquet header
writer.write(&batch).await.unwrap();
// updated on write
let initial_size = writer.in_progress_size();
assert!(initial_size > 0);
assert_eq!(writer.in_progress_rows(), batch.num_rows());
// updated on second write
writer.write(&batch).await.unwrap();
assert!(writer.in_progress_size() > initial_size);
assert_eq!(writer.in_progress_rows(), batch.num_rows() * 2);
// in progress tracking is cleared, but the overall data written is updated
let pre_flush_bytes_written = writer.bytes_written();
writer.flush().await.unwrap();
assert_eq!(writer.in_progress_size(), 0);
assert_eq!(writer.in_progress_rows(), 0);
assert!(writer.bytes_written() > pre_flush_bytes_written);
writer.close().await.unwrap();
}
}