-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtable.jl
927 lines (861 loc) · 32.7 KB
/
table.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
struct ArrowBlob
bytes::Vector{UInt8}
pos::Int
len::Int
end
ArrowBlob(bytes::Vector{UInt8}, pos::Int, len::Nothing) =
ArrowBlob(bytes, pos, length(bytes))
tobytes(bytes::Vector{UInt8}) = bytes
tobytes(io::IO) = Base.read(io)
tobytes(io::IOStream) = Mmap.mmap(io)
tobytes(file_path) = open(tobytes, file_path, "r")
struct BatchIterator
bytes::Vector{UInt8}
startpos::Int
function BatchIterator(blob::ArrowBlob)
bytes, pos, len = blob.bytes, blob.pos, blob.len
if len > 24 && _startswith(bytes, pos, FILE_FORMAT_MAGIC_BYTES)
pos += 8 # skip past magic bytes + padding
end
new(bytes, pos)
end
end
"""
Arrow.Stream(io::IO; convert::Bool=true)
Arrow.Stream(file::String; convert::Bool=true)
Arrow.Stream(bytes::Vector{UInt8}, pos=1, len=nothing; convert::Bool=true)
Arrow.Stream(inputs::Vector; convert::Bool=true)
Start reading an arrow formatted table, from:
* `io`, bytes will be read all at once via `read(io)`
* `file`, bytes will be read via `Mmap.mmap(file)`
* `bytes`, a byte vector directly, optionally allowing specifying the starting byte position `pos` and `len`
* A `Vector` of any of the above, in which each input should be an IPC or arrow file and must match schema
Reads the initial schema message from the arrow stream/file, then returns an `Arrow.Stream` object
which will iterate over record batch messages, producing an [`Arrow.Table`](@ref) on each iteration.
By iterating [`Arrow.Table`](@ref), `Arrow.Stream` satisfies the `Tables.partitions` interface, and as such can
be passed to Tables.jl-compatible sink functions.
This allows iterating over extremely large "arrow tables" in chunks represented as record batches.
Supports the `convert` keyword argument which controls whether certain arrow primitive types will be
lazily converted to more friendly Julia defaults; by default, `convert=true`.
"""
mutable struct Stream
inputs::Vector{ArrowBlob}
inputindex::Int
batchiterator::Union{Nothing,BatchIterator}
names::Vector{Symbol}
types::Vector{Type}
schema::Union{Nothing,Meta.Schema}
dictencodings::Dict{Int64,DictEncoding} # dictionary id => DictEncoding
dictencoded::Dict{Int64,Meta.Field} # dictionary id => field
convert::Bool
compression::Ref{Union{Symbol,Nothing}}
end
function Stream(inputs::Vector{ArrowBlob}; convert::Bool=true)
inputindex = 1
batchiterator = nothing
names = Symbol[]
types = Type[]
schema = nothing
dictencodings = Dict{Int64,DictEncoding}()
dictencoded = Dict{Int64,Meta.Field}()
compression = Ref{Union{Symbol,Nothing}}(nothing)
Stream(
inputs,
inputindex,
batchiterator,
names,
types,
schema,
dictencodings,
dictencoded,
convert,
compression,
)
end
function Stream(input, pos::Integer=1, len=nothing; kw...)
b = tobytes(input)
isempty(b) ? Stream(ArrowBlob[]; kw...) : Stream([ArrowBlob(b, pos, len)]; kw...)
end
function Stream(input::Vector{UInt8}, pos::Integer=1, len=nothing; kw...)
b = tobytes(input)
isempty(b) ? Stream(ArrowBlob[]; kw...) : Stream([ArrowBlob(b, pos, len)]; kw...)
end
function Stream(inputs::AbstractVector; kw...)
blobs = ArrowBlob[]
for x in inputs
b = tobytes(x)
isempty(b) && continue
push!(blobs, ArrowBlob(b, 1, nothing))
end
Stream(blobs; kw...)
end
function initialize!(x::Stream)
isempty(getfield(x, :names)) || return
# Initialize member fields using iteration and reset state
lastinputindex = x.inputindex
lastbatchiterator = x.batchiterator
iterate(x)
x.inputindex = lastinputindex
x.batchiterator = lastbatchiterator
nothing
end
Tables.partitions(x::Stream) = x
function Tables.columnnames(x::Stream)
initialize!(x)
getfield(x, :names)
end
function Tables.schema(x::Stream)
initialize!(x)
Tables.Schema(Tables.columnnames(x), getfield(x, :types))
end
Base.IteratorSize(::Type{Stream}) = Base.SizeUnknown()
Base.eltype(::Type{Stream}) = Table
Base.isdone(x::Stream) = x.inputindex > length(x.inputs)
function Base.iterate(x::Stream, (pos, id)=(1, 0))
if Base.isdone(x)
x.inputindex = 1
x.batchiterator = nothing
return nothing
end
if isnothing(x.batchiterator)
blob = x.inputs[x.inputindex]
x.batchiterator = BatchIterator(blob)
pos = x.batchiterator.startpos
end
columns = AbstractVector[]
compression = nothing
while true
state = iterate(x.batchiterator, (pos, id))
# check for additional inputs
while state === nothing
x.inputindex += 1
if Base.isdone(x)
x.inputindex = 1
x.batchiterator = nothing
return nothing
end
blob = x.inputs[x.inputindex]
x.batchiterator = BatchIterator(blob)
pos = x.batchiterator.startpos
state = iterate(x.batchiterator, (pos, id))
end
batch, (pos, id) = state
header = batch.msg.header
if isnothing(x.schema) && !isa(header, Meta.Schema)
throw(ArgumentError("first arrow ipc message MUST be a schema message"))
end
if header isa Meta.Schema
if isnothing(x.schema)
x.schema = header
# assert endianness?
# store custom_metadata?
for (i, field) in enumerate(x.schema.fields)
push!(x.names, Symbol(field.name))
push!(
x.types,
juliaeltype(field, buildmetadata(field.custom_metadata), x.convert),
)
# recursively find any dictionaries for any fields
getdictionaries!(x.dictencoded, field)
@debugv 1 "parsed column from schema: field = $field"
end
elseif header != x.schema
throw(
ArgumentError(
"mismatched schemas between different arrow batches: $(x.schema) != $header",
),
)
end
elseif header isa Meta.DictionaryBatch
id = header.id
recordbatch = header.data
@debugv 1 "parsing dictionary batch message: id = $id, compression = $(recordbatch.compression)"
if recordbatch.compression !== nothing
compression = recordbatch.compression
end
if haskey(x.dictencodings, id) && header.isDelta
# delta
field = x.dictencoded[id]
values, _, _ = build(
field,
field.type,
batch,
recordbatch,
x.dictencodings,
Int64(1),
Int64(1),
x.convert,
)
dictencoding = x.dictencodings[id]
append!(dictencoding.data, values)
continue
end
# new dictencoding or replace
field = x.dictencoded[id]
values, _, _ = build(
field,
field.type,
batch,
recordbatch,
x.dictencodings,
Int64(1),
Int64(1),
x.convert,
)
A = ChainedVector([values])
S =
field.dictionary.indexType === nothing ? Int32 :
juliaeltype(field, field.dictionary.indexType, false)
x.dictencodings[id] = DictEncoding{eltype(A),S,typeof(A)}(
id,
A,
field.dictionary.isOrdered,
values.metadata,
)
@debugv 1 "parsed dictionary batch message: id=$id, data=$values\n"
elseif header isa Meta.RecordBatch
@debugv 1 "parsing record batch message: compression = $(header.compression)"
if header.compression !== nothing
compression = header.compression
end
for vec in VectorIterator(x.schema, batch, x.dictencodings, x.convert)
push!(columns, vec)
end
break
else
throw(ArgumentError("unsupported arrow message type: $(typeof(header))"))
end
end
if compression !== nothing
if compression.codec == Flatbuf.CompressionType.ZSTD
x.compression[] = :zstd
elseif compression.codec == Flatbuf.CompressionType.LZ4_FRAME
x.compression[] = :lz4
else
throw(ArgumentError("unsupported compression codec: $(compression.codec)"))
end
end
lookup = Dict{Symbol,AbstractVector}()
types = Type[]
for (nm, col) in zip(x.names, columns)
lookup[nm] = col
push!(types, eltype(col))
end
return Table(x.names, types, columns, lookup, Ref(x.schema)), (pos, id)
end
"""
Arrow.Table(io::IO; convert::Bool=true)
Arrow.Table(file::String; convert::Bool=true)
Arrow.Table(bytes::Vector{UInt8}, pos=1, len=nothing; convert::Bool=true)
Arrow.Table(inputs::Vector; convert::Bool=true)
Read an arrow formatted table, from:
* `io`, bytes will be read all at once via `read(io)`
* `file`, bytes will be read via `Mmap.mmap(file)`
* `bytes`, a byte vector directly, optionally allowing specifying the starting byte position `pos` and `len`
* A `Vector` of any of the above, in which each input should be an IPC or arrow file and must match schema
Returns a `Arrow.Table` object that allows column access via `table.col1`, `table[:col1]`, or `table[1]`.
NOTE: the columns in an `Arrow.Table` are views into the original arrow memory, and hence are not easily
modifiable (with e.g. `push!`, `append!`, etc.). To mutate arrow columns, call `copy(x)` to materialize
the arrow data as a normal Julia array.
`Arrow.Table` also satisfies the [Tables.jl](https://github.com/JuliaData/Tables.jl) interface, and so can easily be materialied via any supporting
sink function: e.g. `DataFrame(Arrow.Table(file))`, `SQLite.load!(db, "table", Arrow.Table(file))`, etc.
Supports the `convert` keyword argument which controls whether certain arrow primitive types will be
lazily converted to more friendly Julia defaults; by default, `convert=true`.
"""
struct Table <: Tables.AbstractColumns
names::Vector{Symbol}
types::Vector{Type}
columns::Vector{AbstractVector}
lookup::Dict{Symbol,AbstractVector}
schema::Ref{Meta.Schema}
metadata::Ref{Union{Nothing,Base.ImmutableDict{String,String}}}
end
Table() = Table(
Symbol[],
Type[],
AbstractVector[],
Dict{Symbol,AbstractVector}(),
Ref{Meta.Schema}(),
Ref{Union{Nothing,Base.ImmutableDict{String,String}}}(nothing),
)
function Table(names, types, columns, lookup, schema)
m = isassigned(schema) ? buildmetadata(schema[]) : nothing
return Table(
names,
types,
columns,
lookup,
schema,
Ref{Union{Nothing,Base.ImmutableDict{String,String}}}(m),
)
end
names(t::Table) = getfield(t, :names)
types(t::Table) = getfield(t, :types)
columns(t::Table) = getfield(t, :columns)
lookup(t::Table) = getfield(t, :lookup)
schema(t::Table) = getfield(t, :schema)
metadata(t::Table) = getfield(t, :metadata)
"""
Arrow.getmetadata(x)
If `x isa Arrow.Table` return a `Base.ImmutableDict{String,String}` representation of `x`'s
`Schema` `custom_metadata`, or `nothing` if no such metadata exists.
If `x isa Arrow.ArrowVector`, return a `Base.ImmutableDict{String,String}` representation of `x`'s
`Field` `custom_metadata`, or `nothing` if no such metadata exists.
Otherwise, return `nothing`.
See [the official Arrow documentation for more details on custom application metadata](https://arrow.apache.org/docs/format/Columnar.html#custom-application-metadata).
"""
getmetadata(t::Table) = getfield(t, :metadata)[]
getmetadata(::Any) = nothing
Tables.istable(::Table) = true
Tables.columnaccess(::Table) = true
Tables.columns(t::Table) = Tables.CopiedColumns(t)
Tables.schema(t::Table) = Tables.Schema(names(t), types(t))
Tables.columnnames(t::Table) = names(t)
Tables.getcolumn(t::Table, i::Int) = columns(t)[i]
Tables.getcolumn(t::Table, nm::Symbol) = lookup(t)[nm]
struct TablePartitions
table::Table
npartitions::Int
end
function TablePartitions(table::Table)
cols = columns(table)
npartitions = if length(cols) == 0
0
elseif cols[1] isa ChainedVector
length(cols[1].arrays)
else
1
end
return TablePartitions(table, npartitions)
end
function Base.iterate(tp::TablePartitions, i=1)
i > tp.npartitions && return nothing
tp.npartitions == 1 && return tp.table, i + 1
cols = columns(tp.table)
newcols = AbstractVector[cols[j].arrays[i] for j = 1:length(cols)]
nms = names(tp.table)
tbl = Table(
nms,
types(tp.table),
newcols,
Dict{Symbol,AbstractVector}(nms[i] => newcols[i] for i = 1:length(nms)),
schema(tp.table),
)
return tbl, i + 1
end
Tables.partitions(t::Table) = TablePartitions(t)
# high-level user API functions
Table(input, pos::Integer=1, len=nothing; kw...) =
Table([ArrowBlob(tobytes(input), pos, len)]; kw...)
Table(input::Vector{UInt8}, pos::Integer=1, len=nothing; kw...) =
Table([ArrowBlob(tobytes(input), pos, len)]; kw...)
Table(inputs::Vector; kw...) =
Table([ArrowBlob(tobytes(x), 1, nothing) for x in inputs]; kw...)
# will detect whether we're reading a Table from a file or stream
function Table(blobs::Vector{ArrowBlob}; convert::Bool=true)
t = Table()
sch = nothing
dictencodings = Dict{Int64,DictEncoding}() # dictionary id => DictEncoding
dictencoded = Dict{Int64,Meta.Field}() # dictionary id => field
sync = OrderedSynchronizer()
tsks = Channel{Any}(Inf)
tsk = @wkspawn begin
i = 1
for cols in tsks
if i == 1
foreach(x -> push!(columns(t), x), cols)
elseif i == 2
foreach(1:length(cols)) do i
columns(t)[i] = ChainedVector([columns(t)[i], cols[i]])
end
else
foreach(1:length(cols)) do i
append!(columns(t)[i], cols[i])
end
end
i += 1
end
end
anyrecordbatches = false
rbi = 1
@sync for blob in blobs
for batch in BatchIterator(blob)
# store custom_metadata of batch.msg?
header = batch.msg.header
if header isa Meta.Schema
@debugv 1 "parsing schema message"
# assert endianness?
# store custom_metadata?
if sch === nothing
for (i, field) in enumerate(header.fields)
push!(names(t), Symbol(field.name))
# recursively find any dictionaries for any fields
getdictionaries!(dictencoded, field)
@debugv 1 "parsed column from schema: field = $field"
end
sch = header
schema(t)[] = sch
elseif sch != header
throw(
ArgumentError(
"mismatched schemas between different arrow batches: $sch != $header",
),
)
end
elseif header isa Meta.DictionaryBatch
id = header.id
recordbatch = header.data
@debugv 1 "parsing dictionary batch message: id = $id, compression = $(recordbatch.compression)"
if haskey(dictencodings, id) && header.isDelta
# delta
field = dictencoded[id]
values, _, _ = build(
field,
field.type,
batch,
recordbatch,
dictencodings,
Int64(1),
Int64(1),
convert,
)
dictencoding = dictencodings[id]
if typeof(dictencoding.data) <: ChainedVector
append!(dictencoding.data, values)
else
A = ChainedVector([dictencoding.data, values])
S =
field.dictionary.indexType === nothing ? Int32 :
juliaeltype(field, field.dictionary.indexType, false)
dictencodings[id] = DictEncoding{eltype(A),S,typeof(A)}(
id,
A,
field.dictionary.isOrdered,
values.metadata,
)
end
continue
end
# new dictencoding or replace
field = dictencoded[id]
values, _, _ = build(
field,
field.type,
batch,
recordbatch,
dictencodings,
Int64(1),
Int64(1),
convert,
)
A = values
S =
field.dictionary.indexType === nothing ? Int32 :
juliaeltype(field, field.dictionary.indexType, false)
dictencodings[id] = DictEncoding{eltype(A),S,typeof(A)}(
id,
A,
field.dictionary.isOrdered,
values.metadata,
)
@debugv 1 "parsed dictionary batch message: id=$id, data=$values\n"
elseif header isa Meta.RecordBatch
anyrecordbatches = true
@debugv 1 "parsing record batch message: compression = $(header.compression)"
@wkspawn begin
cols = collect(VectorIterator(sch, $batch, dictencodings, convert))
put!(() -> put!(tsks, cols), sync, $(rbi))
end
rbi += 1
else
throw(ArgumentError("unsupported arrow message type: $(typeof(header))"))
end
end
end
close(tsks)
wait(tsk)
lu = lookup(t)
ty = types(t)
# 158; some implementations may send 0 record batches
if !anyrecordbatches && !isnothing(sch)
for field in sch.fields
T = juliaeltype(field, buildmetadata(field), convert)
push!(columns(t), T[])
end
end
for (nm, col) in zip(names(t), columns(t))
lu[nm] = col
push!(ty, eltype(col))
end
getfield(t, :metadata)[] = buildmetadata(sch)
return t
end
function getdictionaries!(dictencoded, field)
d = field.dictionary
if d !== nothing
dictencoded[d.id] = field
end
if field.children !== nothing
for child in field.children
getdictionaries!(dictencoded, child)
end
end
return
end
struct Batch
msg::Meta.Message
bytes::Vector{UInt8}
pos::Int
id::Int
end
function Base.iterate(x::BatchIterator, (pos, id)=(x.startpos, 0))
@debugv 1 "checking for next arrow message: pos = $pos"
if pos + 3 > length(x.bytes)
@debugv 1 "not enough bytes left for another batch message"
return nothing
end
if readbuffer(x.bytes, pos, UInt32) != CONTINUATION_INDICATOR_BYTES
@debugv 1 "didn't find continuation byte to keep parsing messages: $(readbuffer(x.bytes, pos, UInt32))"
return nothing
end
pos += 4
if pos + 3 > length(x.bytes)
@debugv 1 "not enough bytes left to read length of another batch message"
return nothing
end
msglen = readbuffer(x.bytes, pos, Int32)
if msglen == 0
@debugv 1 "message has 0 length; terminating message parsing"
return nothing
end
pos += 4
if pos + msglen - 1 > length(x.bytes)
@debugv 1 "not enough bytes left to read Meta.Message"
return nothing
end
msg = FlatBuffers.getrootas(Meta.Message, x.bytes, pos - 1)
pos += msglen
# pos now points to message body
@debugv 1 "parsing message: pos = $pos, msglen = $msglen, bodyLength = $(msg.bodyLength)"
if pos + msg.bodyLength - 1 > length(x.bytes)
@debugv 1 "not enough bytes left to read message body"
return nothing
end
return Batch(msg, x.bytes, pos, id), (pos + msg.bodyLength, id + 1)
end
struct VectorIterator
schema::Meta.Schema
batch::Batch # batch.msg.header MUST BE RecordBatch
dictencodings::Dict{Int64,DictEncoding}
convert::Bool
end
buildmetadata(f::Union{Meta.Field,Meta.Schema}) = buildmetadata(f.custom_metadata)
buildmetadata(meta) = toidict(String(kv.key) => String(kv.value) for kv in meta)
buildmetadata(::Nothing) = nothing
buildmetadata(x::AbstractDict) = x
function Base.iterate(
x::VectorIterator,
(columnidx, nodeidx, bufferidx)=(Int64(1), Int64(1), Int64(1)),
)
columnidx > length(x.schema.fields) && return nothing
field = x.schema.fields[columnidx]
@debugv 2 "building top-level column: field = $(field), columnidx = $columnidx, nodeidx = $nodeidx, bufferidx = $bufferidx"
A, nodeidx, bufferidx = build(
field,
x.batch,
x.batch.msg.header,
x.dictencodings,
nodeidx,
bufferidx,
x.convert,
)
@debugv 2 "built top-level column: A = $(typeof(A)), columnidx = $columnidx, nodeidx = $nodeidx, bufferidx = $bufferidx"
@debugv 3 A
return A, (columnidx + 1, nodeidx, bufferidx)
end
Base.length(x::VectorIterator) = length(x.schema.fields)
const ListTypes =
Union{Meta.Utf8,Meta.LargeUtf8,Meta.Binary,Meta.LargeBinary,Meta.List,Meta.LargeList}
const LargeLists = Union{Meta.LargeUtf8,Meta.LargeBinary,Meta.LargeList}
function build(field::Meta.Field, batch, rb, de, nodeidx, bufferidx, convert)
d = field.dictionary
if d !== nothing
validity = buildbitmap(batch, rb, nodeidx, bufferidx)
bufferidx += 1
buffer = rb.buffers[bufferidx]
S = d.indexType === nothing ? Int32 : juliaeltype(field, d.indexType, false)
bytes, indices = reinterp(S, batch, buffer, rb.compression)
encoding = de[d.id]
A = DictEncoded(
bytes,
validity,
indices,
encoding,
buildmetadata(field.custom_metadata),
)
nodeidx += 1
bufferidx += 1
else
A, nodeidx, bufferidx =
build(field, field.type, batch, rb, de, nodeidx, bufferidx, convert)
end
return A, nodeidx, bufferidx
end
function buildbitmap(batch, rb, nodeidx, bufferidx)
buffer = rb.buffers[bufferidx]
voff = batch.pos + buffer.offset
node = rb.nodes[nodeidx]
if rb.compression === nothing
return ValidityBitmap(batch.bytes, voff, node.length, node.null_count)
else
# compressed
ptr = pointer(batch.bytes, voff)
_, decodedbytes = uncompress(ptr, buffer, rb.compression)
return ValidityBitmap(decodedbytes, 1, node.length, node.null_count)
end
end
function uncompress(ptr::Ptr{UInt8}, buffer, compression)
buffer.length == 0 && return 0, UInt8[]
len = unsafe_load(convert(Ptr{Int64}, ptr))
len == 0 && return 0, UInt8[]
ptr += 8 # skip past uncompressed length as Int64
encodedbytes = unsafe_wrap(Array, ptr, buffer.length - 8)
if len == -1
# len = -1 means data is not compressed
# it's unclear why other language implementations allow this
# but we support to be able to read data produced as such
return length(encodedbytes), copy(encodedbytes)
end
decodedbytes = Vector{UInt8}(undef, len)
if compression.codec === Meta.CompressionType.LZ4_FRAME
comp = lz4_frame_decompressor()
Base.@lock comp begin
transcode(comp[], encodedbytes, decodedbytes)
end
elseif compression.codec === Meta.CompressionType.ZSTD
comp = zstd_decompressor()
Base.@lock comp begin
transcode(comp[], encodedbytes, decodedbytes)
end
else
error(
"unsupported compression type when reading arrow buffers: $(typeof(compression.codec))",
)
end
return len, decodedbytes
end
function reinterp(::Type{T}, batch, buf, compression) where {T}
ptr = pointer(batch.bytes, batch.pos + buf.offset)
bytes = batch.bytes
len = buf.length
if compression !== nothing
len, bytes = uncompress(ptr, buf, compression)
ptr = pointer(bytes)
end
# it would be technically more correct to check that T.layout->alignment > 8
# but the datatype alignment isn't officially exported, so we're using
# primitive types w/ sizeof(T) >= 16 as a proxy for types that need 16-byte alignment
if sizeof(T) >= 16 && (UInt(ptr) & 15) != 0
# https://github.com/apache/arrow-julia/issues/345
# https://github.com/JuliaLang/julia/issues/42326
# need to ensure that the data/pointers are aligned to 16 bytes
# so we can't use unsafe_wrap here, but do an extra allocation
# to avoid the allocation, user needs to ensure input buffer is
# 16-byte aligned (somehow, it's not super straightforward how to ensure that)
A = Vector{T}(undef, div(len, sizeof(T)))
unsafe_copyto!(Ptr{UInt8}(pointer(A)), ptr, len)
return bytes, A
else
return bytes, unsafe_wrap(Array, convert(Ptr{T}, ptr), div(len, sizeof(T)))
end
end
const SubVector{T,P} = SubArray{T,1,P,Tuple{UnitRange{Int64}},true}
function build(f::Meta.Field, L::ListTypes, batch, rb, de, nodeidx, bufferidx, convert)
@debugv 2 "building array: L = $L"
validity = buildbitmap(batch, rb, nodeidx, bufferidx)
bufferidx += 1
buffer = rb.buffers[bufferidx]
ooff = batch.pos + buffer.offset
OT = L isa LargeLists ? Int64 : Int32
bytes, offs = reinterp(OT, batch, buffer, rb.compression)
offsets = Offsets(bytes, offs)
bufferidx += 1
len = rb.nodes[nodeidx].length
nodeidx += 1
meta = buildmetadata(f.custom_metadata)
T = juliaeltype(f, meta, convert)
if L isa Meta.Utf8 ||
L isa Meta.LargeUtf8 ||
L isa Meta.Binary ||
L isa Meta.LargeBinary
buffer = rb.buffers[bufferidx]
bytes, A = reinterp(UInt8, batch, buffer, rb.compression)
bufferidx += 1
else
bytes = UInt8[]
A, nodeidx, bufferidx =
build(f.children[1], batch, rb, de, nodeidx, bufferidx, convert)
# juliaeltype returns Vector for List, translate to SubArray
S = Base.nonmissingtype(T)
if S <: Vector
ST = SubVector{eltype(A),typeof(A)}
T = S == T ? ST : Union{Missing,ST}
end
end
return List{T,OT,typeof(A)}(bytes, validity, offsets, A, len, meta), nodeidx, bufferidx
end
function build(
f::Meta.Field,
L::Union{Meta.FixedSizeBinary,Meta.FixedSizeList},
batch,
rb,
de,
nodeidx,
bufferidx,
convert,
)
@debugv 2 "building array: L = $L"
validity = buildbitmap(batch, rb, nodeidx, bufferidx)
bufferidx += 1
len = rb.nodes[nodeidx].length
nodeidx += 1
if L isa Meta.FixedSizeBinary
buffer = rb.buffers[bufferidx]
bytes, A = reinterp(UInt8, batch, buffer, rb.compression)
bufferidx += 1
else
bytes = UInt8[]
A, nodeidx, bufferidx =
build(f.children[1], batch, rb, de, nodeidx, bufferidx, convert)
end
meta = buildmetadata(f.custom_metadata)
T = juliaeltype(f, meta, convert)
return FixedSizeList{T,typeof(A)}(bytes, validity, A, len, meta), nodeidx, bufferidx
end
function build(f::Meta.Field, L::Meta.Map, batch, rb, de, nodeidx, bufferidx, convert)
@debugv 2 "building array: L = $L"
validity = buildbitmap(batch, rb, nodeidx, bufferidx)
bufferidx += 1
buffer = rb.buffers[bufferidx]
ooff = batch.pos + buffer.offset
OT = Int32
bytes, offs = reinterp(OT, batch, buffer, rb.compression)
offsets = Offsets(bytes, offs)
bufferidx += 1
len = rb.nodes[nodeidx].length
nodeidx += 1
A, nodeidx, bufferidx = build(f.children[1], batch, rb, de, nodeidx, bufferidx, convert)
meta = buildmetadata(f.custom_metadata)
T = juliaeltype(f, meta, convert)
return Map{T,OT,typeof(A)}(validity, offsets, A, len, meta), nodeidx, bufferidx
end
function build(f::Meta.Field, L::Meta.Struct, batch, rb, de, nodeidx, bufferidx, convert)
@debugv 2 "building array: L = $L"
validity = buildbitmap(batch, rb, nodeidx, bufferidx)
bufferidx += 1
len = rb.nodes[nodeidx].length
vecs = []
nodeidx += 1
for child in f.children
A, nodeidx, bufferidx = build(child, batch, rb, de, nodeidx, bufferidx, convert)
push!(vecs, A)
end
data = Tuple(vecs)
meta = buildmetadata(f.custom_metadata)
T = juliaeltype(f, meta, convert)
fnames = ntuple(i -> Symbol(f.children[i].name), length(f.children))
return Struct{T,typeof(data),fnames}(validity, data, len, meta), nodeidx, bufferidx
end
function build(f::Meta.Field, L::Meta.Union, batch, rb, de, nodeidx, bufferidx, convert)
@debugv 2 "building array: L = $L"
buffer = rb.buffers[bufferidx]
bytes, typeIds = reinterp(UInt8, batch, buffer, rb.compression)
bufferidx += 1
if L.mode == Meta.UnionMode.Dense
buffer = rb.buffers[bufferidx]
bytes2, offsets = reinterp(Int32, batch, buffer, rb.compression)
bufferidx += 1
end
vecs = []
nodeidx += 1
for child in f.children
A, nodeidx, bufferidx = build(child, batch, rb, de, nodeidx, bufferidx, convert)
push!(vecs, A)
end
data = Tuple(vecs)
meta = buildmetadata(f.custom_metadata)
T = juliaeltype(f, meta, convert)
UT = UnionT(f, convert)
if L.mode == Meta.UnionMode.Dense
B = DenseUnion{T,UT,typeof(data)}(bytes, bytes2, typeIds, offsets, data, meta)
else
B = SparseUnion{T,UT,typeof(data)}(bytes, typeIds, data, meta)
end
return B, nodeidx, bufferidx
end
function build(f::Meta.Field, L::Meta.Null, batch, rb, de, nodeidx, bufferidx, convert)
@debugv 2 "building array: L = $L"
meta = buildmetadata(f.custom_metadata)
T = juliaeltype(f, meta, convert)
return NullVector{maybemissing(T)}(MissingVector(rb.nodes[nodeidx].length), meta),
nodeidx + 1,
bufferidx
end
# primitives
function build(f::Meta.Field, ::L, batch, rb, de, nodeidx, bufferidx, convert) where {L}
@debugv 2 "building array: L = $L"
validity = buildbitmap(batch, rb, nodeidx, bufferidx)
bufferidx += 1
buffer = rb.buffers[bufferidx]
meta = buildmetadata(f.custom_metadata)
# get storage type (non-converted)
T = juliaeltype(f, nothing, false)
@debugv 2 "storage type for primitive: T = $T"
bytes, A = reinterp(Base.nonmissingtype(T), batch, buffer, rb.compression)
len = rb.nodes[nodeidx].length
T = juliaeltype(f, meta, convert)
@debugv 2 "final julia type for primitive: T = $T"
return Primitive(T, bytes, validity, A, len, meta), nodeidx + 1, bufferidx + 1
end
function build(f::Meta.Field, L::Meta.Bool, batch, rb, de, nodeidx, bufferidx, convert)
@debugv 2 "building array: L = $L"
validity = buildbitmap(batch, rb, nodeidx, bufferidx)
bufferidx += 1
buffer = rb.buffers[bufferidx]
meta = buildmetadata(f.custom_metadata)
# get storage type (non-converted)
T = juliaeltype(f, nothing, false)
@debugv 2 "storage type for primitive: T = $T"
buffer = rb.buffers[bufferidx]
voff = batch.pos + buffer.offset
node = rb.nodes[nodeidx]
if rb.compression === nothing
decodedbytes = batch.bytes
pos = voff
# return ValidityBitmap(batch.bytes, voff, node.length, node.null_count)
else
# compressed
ptr = pointer(batch.bytes, voff)
_, decodedbytes = uncompress(ptr, buffer, rb.compression)
pos = 1
# return ValidityBitmap(decodedbytes, 1, node.length, node.null_count)
end
len = rb.nodes[nodeidx].length
T = juliaeltype(f, meta, convert)
return BoolVector{T}(decodedbytes, pos, validity, len, meta), nodeidx + 1, bufferidx + 1
end