-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathrow_hash.rs
1183 lines (1065 loc) · 52.3 KB
/
row_hash.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Hash aggregation
use std::sync::Arc;
use std::task::{Context, Poll};
use std::vec;
use crate::aggregates::group_values::{new_group_values, GroupValues};
use crate::aggregates::order::GroupOrderingFull;
use crate::aggregates::{
create_schema, evaluate_group_by, evaluate_many, evaluate_optional, AggregateMode,
PhysicalGroupBy,
};
use crate::metrics::{BaselineMetrics, MetricBuilder, RecordOutput};
use crate::sorts::sort::sort_batch;
use crate::sorts::streaming_merge::StreamingMergeBuilder;
use crate::spill::{read_spill_as_stream, spill_record_batch_by_size};
use crate::stream::RecordBatchStreamAdapter;
use crate::{aggregates, metrics, ExecutionPlan, PhysicalExpr};
use crate::{RecordBatchStream, SendableRecordBatchStream};
use arrow::array::*;
use arrow::datatypes::SchemaRef;
use arrow_schema::SortOptions;
use datafusion_common::{internal_err, DataFusionError, Result};
use datafusion_execution::disk_manager::RefCountedTempFile;
use datafusion_execution::memory_pool::proxy::VecAllocExt;
use datafusion_execution::memory_pool::{MemoryConsumer, MemoryReservation};
use datafusion_execution::runtime_env::RuntimeEnv;
use datafusion_execution::TaskContext;
use datafusion_expr::{EmitTo, GroupsAccumulator};
use datafusion_physical_expr::expressions::Column;
use datafusion_physical_expr::{GroupsAccumulatorAdapter, PhysicalSortExpr};
use super::order::GroupOrdering;
use super::AggregateExec;
use datafusion_physical_expr::aggregate::AggregateFunctionExpr;
use datafusion_physical_expr_common::sort_expr::LexOrdering;
use futures::ready;
use futures::stream::{Stream, StreamExt};
use log::debug;
#[derive(Debug, Clone)]
/// This object tracks the aggregation phase (input/output)
pub(crate) enum ExecutionState {
ReadingInput,
/// When producing output, the remaining rows to output are stored
/// here and are sliced off as needed in batch_size chunks
ProducingOutput(RecordBatch),
/// Produce intermediate aggregate state for each input row without
/// aggregation.
///
/// See "partial aggregation" discussion on [`GroupedHashAggregateStream`]
SkippingAggregation,
/// All input has been consumed and all groups have been emitted
Done,
}
/// This encapsulates the spilling state
struct SpillState {
// ========================================================================
// PROPERTIES:
// These fields are initialized at the start and remain constant throughout
// the execution.
// ========================================================================
/// Sorting expression for spilling batches
spill_expr: LexOrdering,
/// Schema for spilling batches
spill_schema: SchemaRef,
/// aggregate_arguments for merging spilled data
merging_aggregate_arguments: Vec<Vec<Arc<dyn PhysicalExpr>>>,
/// GROUP BY expressions for merging spilled data
merging_group_by: PhysicalGroupBy,
// ========================================================================
// STATES:
// Fields changes during execution. Can be buffer, or state flags that
// influence the execution in parent `GroupedHashAggregateStream`
// ========================================================================
/// If data has previously been spilled, the locations of the
/// spill files (in Arrow IPC format)
spills: Vec<RefCountedTempFile>,
/// true when streaming merge is in progress
is_stream_merging: bool,
// ========================================================================
// METRICS:
// ========================================================================
/// Peak memory used for buffered data.
/// Calculated as sum of peak memory values across partitions
peak_mem_used: metrics::Gauge,
/// count of spill files during the execution of the operator
spill_count: metrics::Count,
/// total spilled bytes during the execution of the operator
spilled_bytes: metrics::Count,
/// total spilled rows during the execution of the operator
spilled_rows: metrics::Count,
}
/// Tracks if the aggregate should skip partial aggregations
///
/// See "partial aggregation" discussion on [`GroupedHashAggregateStream`]
struct SkipAggregationProbe {
// ========================================================================
// PROPERTIES:
// These fields are initialized at the start and remain constant throughout
// the execution.
// ========================================================================
/// Aggregation ratio check performed when the number of input rows exceeds
/// this threshold (from `SessionConfig`)
probe_rows_threshold: usize,
/// Maximum ratio of `num_groups` to `input_rows` for continuing aggregation
/// (from `SessionConfig`). If the ratio exceeds this value, aggregation
/// is skipped and input rows are directly converted to output
probe_ratio_threshold: f64,
// ========================================================================
// STATES:
// Fields changes during execution. Can be buffer, or state flags that
// influence the execution in parent `GroupedHashAggregateStream`
// ========================================================================
/// Number of processed input rows (updated during probing)
input_rows: usize,
/// Number of total group values for `input_rows` (updated during probing)
num_groups: usize,
/// Flag indicating further data aggregation may be skipped (decision made
/// when probing complete)
should_skip: bool,
/// Flag indicating further updates of `SkipAggregationProbe` state won't
/// make any effect (set either while probing or on probing completion)
is_locked: bool,
// ========================================================================
// METRICS:
// ========================================================================
/// Number of rows where state was output without aggregation.
///
/// * If 0, all input rows were aggregated (should_skip was always false)
///
/// * if greater than zero, the number of rows which were output directly
/// without aggregation
skipped_aggregation_rows: metrics::Count,
}
impl SkipAggregationProbe {
fn new(
probe_rows_threshold: usize,
probe_ratio_threshold: f64,
skipped_aggregation_rows: metrics::Count,
) -> Self {
Self {
input_rows: 0,
num_groups: 0,
probe_rows_threshold,
probe_ratio_threshold,
should_skip: false,
is_locked: false,
skipped_aggregation_rows,
}
}
/// Updates `SkipAggregationProbe` state:
/// - increments the number of input rows
/// - replaces the number of groups with the new value
/// - on `probe_rows_threshold` exceeded calculates
/// aggregation ratio and sets `should_skip` flag
/// - if `should_skip` is set, locks further state updates
fn update_state(&mut self, input_rows: usize, num_groups: usize) {
if self.is_locked {
return;
}
self.input_rows += input_rows;
self.num_groups = num_groups;
if self.input_rows >= self.probe_rows_threshold {
self.should_skip = self.num_groups as f64 / self.input_rows as f64
>= self.probe_ratio_threshold;
self.is_locked = true;
}
}
fn should_skip(&self) -> bool {
self.should_skip
}
/// Record the number of rows that were output directly without aggregation
fn record_skipped(&mut self, batch: &RecordBatch) {
self.skipped_aggregation_rows.add(batch.num_rows());
}
}
/// HashTable based Grouping Aggregator
///
/// # Design Goals
///
/// This structure is designed so that updating the aggregates can be
/// vectorized (done in a tight loop) without allocations. The
/// accumulator state is *not* managed by this operator (e.g in the
/// hash table) and instead is delegated to the individual
/// accumulators which have type specialized inner loops that perform
/// the aggregation.
///
/// # Architecture
///
/// ```text
///
/// Assigns a consecutive group internally stores aggregate values
/// index for each unique set for all groups
/// of group values
///
/// ┌────────────┐ ┌──────────────┐ ┌──────────────┐
/// │ ┌────────┐ │ │┌────────────┐│ │┌────────────┐│
/// │ │ "A" │ │ ││accumulator ││ ││accumulator ││
/// │ ├────────┤ │ ││ 0 ││ ││ N ││
/// │ │ "Z" │ │ ││ ┌────────┐ ││ ││ ┌────────┐ ││
/// │ └────────┘ │ ││ │ state │ ││ ││ │ state │ ││
/// │ │ ││ │┌─────┐ │ ││ ... ││ │┌─────┐ │ ││
/// │ ... │ ││ │├─────┤ │ ││ ││ │├─────┤ │ ││
/// │ │ ││ │└─────┘ │ ││ ││ │└─────┘ │ ││
/// │ │ ││ │ │ ││ ││ │ │ ││
/// │ ┌────────┐ │ ││ │ ... │ ││ ││ │ ... │ ││
/// │ │ "Q" │ │ ││ │ │ ││ ││ │ │ ││
/// │ └────────┘ │ ││ │┌─────┐ │ ││ ││ │┌─────┐ │ ││
/// │ │ ││ │└─────┘ │ ││ ││ │└─────┘ │ ││
/// └────────────┘ ││ └────────┘ ││ ││ └────────┘ ││
/// │└────────────┘│ │└────────────┘│
/// └──────────────┘ └──────────────┘
///
/// group_values accumulators
///
/// ```
///
/// For example, given a query like `COUNT(x), SUM(y) ... GROUP BY z`,
/// [`group_values`] will store the distinct values of `z`. There will
/// be one accumulator for `COUNT(x)`, specialized for the data type
/// of `x` and one accumulator for `SUM(y)`, specialized for the data
/// type of `y`.
///
/// # Discussion
///
/// [`group_values`] does not store any aggregate state inline. It only
/// assigns "group indices", one for each (distinct) group value. The
/// accumulators manage the in-progress aggregate state for each
/// group, with the group values themselves are stored in
/// [`group_values`] at the corresponding group index.
///
/// The accumulator state (e.g partial sums) is managed by and stored
/// by a [`GroupsAccumulator`] accumulator. There is one accumulator
/// per aggregate expression (COUNT, AVG, etc) in the
/// stream. Internally, each `GroupsAccumulator` manages the state for
/// multiple groups, and is passed `group_indexes` during update. Note
/// The accumulator state is not managed by this operator (e.g in the
/// hash table).
///
/// [`group_values`]: Self::group_values
///
/// # Partial Aggregate and multi-phase grouping
///
/// As described on [`Accumulator::state`], this operator is used in the context
/// "multi-phase" grouping when the mode is [`AggregateMode::Partial`].
///
/// An important optimization for multi-phase partial aggregation is to skip
/// partial aggregation when it is not effective enough to warrant the memory or
/// CPU cost, as is often the case for queries many distinct groups (high
/// cardinality group by). Memory is particularly important because each Partial
/// aggregator must store the intermediate state for each group.
///
/// If the ratio of the number of groups to the number of input rows exceeds a
/// threshold, and [`GroupsAccumulator::supports_convert_to_state`] is
/// supported, this operator will stop applying Partial aggregation and directly
/// pass the input rows to the next aggregation phase.
///
/// [`Accumulator::state`]: datafusion_expr::Accumulator::state
///
/// # Spilling (to disk)
///
/// The sizes of group values and accumulators can become large. Before that causes out of memory,
/// this hash aggregator outputs partial states early for partial aggregation or spills to local
/// disk using Arrow IPC format for final aggregation. For every input [`RecordBatch`], the memory
/// manager checks whether the new input size meets the memory configuration. If not, outputting or
/// spilling happens. For outputting, the final aggregation takes care of re-grouping. For spilling,
/// later stream-merge sort on reading back the spilled data does re-grouping. Note the rows cannot
/// be grouped once spilled onto disk, the read back data needs to be re-grouped again. In addition,
/// re-grouping may cause out of memory again. Thus, re-grouping has to be a sort based aggregation.
///
/// ```text
/// Partial Aggregation [batch_size = 2] (max memory = 3 rows)
///
/// INPUTS PARTIALLY AGGREGATED (UPDATE BATCH) OUTPUTS
/// ┌─────────┐ ┌─────────────────┐ ┌─────────────────┐
/// │ a │ b │ │ a │ AVG(b) │ │ a │ AVG(b) │
/// │---│-----│ │ │[count]│[sum]│ │ │[count]│[sum]│
/// │ 3 │ 3.0 │ ─▶ │---│-------│-----│ │---│-------│-----│
/// │ 2 │ 2.0 │ │ 2 │ 1 │ 2.0 │ ─▶ early emit ─▶ │ 2 │ 1 │ 2.0 │
/// └─────────┘ │ 3 │ 2 │ 7.0 │ │ │ 3 │ 2 │ 7.0 │
/// ┌─────────┐ ─▶ │ 4 │ 1 │ 8.0 │ │ └─────────────────┘
/// │ 3 │ 4.0 │ └─────────────────┘ └▶ ┌─────────────────┐
/// │ 4 │ 8.0 │ ┌─────────────────┐ │ 4 │ 1 │ 8.0 │
/// └─────────┘ │ a │ AVG(b) │ ┌▶ │ 1 │ 1 │ 1.0 │
/// ┌─────────┐ │---│-------│-----│ │ └─────────────────┘
/// │ 1 │ 1.0 │ ─▶ │ 1 │ 1 │ 1.0 │ ─▶ early emit ─▶ ┌─────────────────┐
/// │ 3 │ 2.0 │ │ 3 │ 1 │ 2.0 │ │ 3 │ 1 │ 2.0 │
/// └─────────┘ └─────────────────┘ └─────────────────┘
///
///
/// Final Aggregation [batch_size = 2] (max memory = 3 rows)
///
/// PARTIALLY INPUTS FINAL AGGREGATION (MERGE BATCH) RE-GROUPED (SORTED)
/// ┌─────────────────┐ [keep using the partial schema] [Real final aggregation
/// │ a │ AVG(b) │ ┌─────────────────┐ output]
/// │ │[count]│[sum]│ │ a │ AVG(b) │ ┌────────────┐
/// │---│-------│-----│ ─▶ │ │[count]│[sum]│ │ a │ AVG(b) │
/// │ 3 │ 3 │ 3.0 │ │---│-------│-----│ ─▶ spill ─┐ │---│--------│
/// │ 2 │ 2 │ 1.0 │ │ 2 │ 2 │ 1.0 │ │ │ 1 │ 4.0 │
/// └─────────────────┘ │ 3 │ 4 │ 8.0 │ ▼ │ 2 │ 1.0 │
/// ┌─────────────────┐ ─▶ │ 4 │ 1 │ 7.0 │ Streaming ─▶ └────────────┘
/// │ 3 │ 1 │ 5.0 │ └─────────────────┘ merge sort ─▶ ┌────────────┐
/// │ 4 │ 1 │ 7.0 │ ┌─────────────────┐ ▲ │ a │ AVG(b) │
/// └─────────────────┘ │ a │ AVG(b) │ │ │---│--------│
/// ┌─────────────────┐ │---│-------│-----│ ─▶ memory ─┘ │ 3 │ 2.0 │
/// │ 1 │ 2 │ 8.0 │ ─▶ │ 1 │ 2 │ 8.0 │ │ 4 │ 7.0 │
/// │ 2 │ 2 │ 3.0 │ │ 2 │ 2 │ 3.0 │ └────────────┘
/// └─────────────────┘ └─────────────────┘
/// ```
pub(crate) struct GroupedHashAggregateStream {
// ========================================================================
// PROPERTIES:
// These fields are initialized at the start and remain constant throughout
// the execution.
// ========================================================================
schema: SchemaRef,
input: SendableRecordBatchStream,
mode: AggregateMode,
/// Arguments to pass to each accumulator.
///
/// The arguments in `accumulator[i]` is passed `aggregate_arguments[i]`
///
/// The argument to each accumulator is itself a `Vec` because
/// some aggregates such as `CORR` can accept more than one
/// argument.
aggregate_arguments: Vec<Vec<Arc<dyn PhysicalExpr>>>,
/// Optional filter expression to evaluate, one for each for
/// accumulator. If present, only those rows for which the filter
/// evaluate to true should be included in the aggregate results.
///
/// For example, for an aggregate like `SUM(x) FILTER (WHERE x >= 100)`,
/// the filter expression is `x > 100`.
filter_expressions: Vec<Option<Arc<dyn PhysicalExpr>>>,
/// GROUP BY expressions
group_by: PhysicalGroupBy,
/// max rows in output RecordBatches
batch_size: usize,
/// Optional soft limit on the number of `group_values` in a batch
/// If the number of `group_values` in a single batch exceeds this value,
/// the `GroupedHashAggregateStream` operation immediately switches to
/// output mode and emits all groups.
group_values_soft_limit: Option<usize>,
// ========================================================================
// STATE FLAGS:
// These fields will be updated during the execution. And control the flow of
// the execution.
// ========================================================================
/// Tracks if this stream is generating input or output
exec_state: ExecutionState,
/// Have we seen the end of the input
input_done: bool,
// ========================================================================
// STATE BUFFERS:
// These fields will accumulate intermediate results during the execution.
// ========================================================================
/// An interning store of group keys
group_values: Box<dyn GroupValues>,
/// scratch space for the current input [`RecordBatch`] being
/// processed. Reused across batches here to avoid reallocations
current_group_indices: Vec<usize>,
/// Accumulators, one for each `AggregateFunctionExpr` in the query
///
/// For example, if the query has aggregates, `SUM(x)`,
/// `COUNT(y)`, there will be two accumulators, each one
/// specialized for that particular aggregate and its input types
accumulators: Vec<Box<dyn GroupsAccumulator>>,
// ========================================================================
// TASK-SPECIFIC STATES:
// Inner states groups together properties, states for a specific task.
// ========================================================================
/// Optional ordering information, that might allow groups to be
/// emitted from the hash table prior to seeing the end of the
/// input
group_ordering: GroupOrdering,
/// The spill state object
spill_state: SpillState,
/// Optional probe for skipping data aggregation, if supported by
/// current stream.
skip_aggregation_probe: Option<SkipAggregationProbe>,
// ========================================================================
// EXECUTION RESOURCES:
// Fields related to managing execution resources and monitoring performance.
// ========================================================================
/// The memory reservation for this grouping
reservation: MemoryReservation,
/// Execution metrics
baseline_metrics: BaselineMetrics,
/// The [`RuntimeEnv`] associated with the [`TaskContext`] argument
runtime: Arc<RuntimeEnv>,
}
impl GroupedHashAggregateStream {
/// Create a new GroupedHashAggregateStream
pub fn new(
agg: &AggregateExec,
context: Arc<TaskContext>,
partition: usize,
) -> Result<Self> {
debug!("Creating GroupedHashAggregateStream");
let agg_schema = Arc::clone(&agg.schema);
let agg_group_by = agg.group_by.clone();
let agg_filter_expr = agg.filter_expr.clone();
let batch_size = context.session_config().batch_size();
let input = agg.input.execute(partition, Arc::clone(&context))?;
let baseline_metrics = BaselineMetrics::new(&agg.metrics, partition);
let timer = baseline_metrics.elapsed_compute().timer();
let aggregate_exprs = agg.aggr_expr.clone();
// arguments for each aggregate, one vec of expressions per
// aggregate
let aggregate_arguments = aggregates::aggregate_expressions(
&agg.aggr_expr,
&agg.mode,
agg_group_by.num_group_exprs(),
)?;
// arguments for aggregating spilled data is the same as the one for final aggregation
let merging_aggregate_arguments = aggregates::aggregate_expressions(
&agg.aggr_expr,
&AggregateMode::Final,
agg_group_by.num_group_exprs(),
)?;
let filter_expressions = match agg.mode {
AggregateMode::Partial
| AggregateMode::Single
| AggregateMode::SinglePartitioned => agg_filter_expr,
AggregateMode::Final | AggregateMode::FinalPartitioned => {
vec![None; agg.aggr_expr.len()]
}
};
// Instantiate the accumulators
let accumulators: Vec<_> = aggregate_exprs
.iter()
.map(create_group_accumulator)
.collect::<Result<_>>()?;
let group_schema = agg_group_by.group_schema(&agg.input().schema())?;
// fix https://github.com/apache/datafusion/issues/13949
// Builds a **partial aggregation** schema by combining the group columns and
// the accumulator state columns produced by each aggregate expression.
//
// # Why Partial Aggregation Schema Is Needed
//
// In a multi-stage (partial/final) aggregation strategy, each partial-aggregate
// operator produces *intermediate* states (e.g., partial sums, counts) rather
// than final scalar values. These extra columns do **not** exist in the original
// input schema (which may be something like `[colA, colB, ...]`). Instead,
// each aggregator adds its own internal state columns (e.g., `[acc_state_1, acc_state_2, ...]`).
//
// Therefore, when we spill these intermediate states or pass them to another
// aggregation operator, we must use a schema that includes both the group
// columns **and** the partial-state columns.
let partial_agg_schema = create_schema(
&agg.input().schema(),
&agg_group_by,
&aggregate_exprs,
AggregateMode::Partial,
)?;
let partial_agg_schema = Arc::new(partial_agg_schema);
let spill_expr = group_schema
.fields
.into_iter()
.enumerate()
.map(|(idx, field)| PhysicalSortExpr {
expr: Arc::new(Column::new(field.name().as_str(), idx)) as _,
options: SortOptions::default(),
})
.collect();
let name = format!("GroupedHashAggregateStream[{partition}]");
let reservation = MemoryConsumer::new(name)
.with_can_spill(true)
.register(context.memory_pool());
let (ordering, _) = agg
.properties()
.equivalence_properties()
.find_longest_permutation(&agg_group_by.output_exprs());
let group_ordering = GroupOrdering::try_new(
&group_schema,
&agg.input_order_mode,
ordering.as_ref(),
)?;
let group_values = new_group_values(group_schema, &group_ordering)?;
timer.done();
let exec_state = ExecutionState::ReadingInput;
let spill_state = SpillState {
spills: vec![],
spill_expr,
spill_schema: partial_agg_schema,
is_stream_merging: false,
merging_aggregate_arguments,
merging_group_by: PhysicalGroupBy::new_single(agg_group_by.expr.clone()),
peak_mem_used: MetricBuilder::new(&agg.metrics)
.gauge("peak_mem_used", partition),
spill_count: MetricBuilder::new(&agg.metrics).spill_count(partition),
spilled_bytes: MetricBuilder::new(&agg.metrics).spilled_bytes(partition),
spilled_rows: MetricBuilder::new(&agg.metrics).spilled_rows(partition),
};
// Skip aggregation is supported if:
// - aggregation mode is Partial
// - input is not ordered by GROUP BY expressions,
// since Final mode expects unique group values as its input
// - all accumulators support input batch to intermediate
// aggregate state conversion
// - there is only one GROUP BY expressions set
let skip_aggregation_probe = if agg.mode == AggregateMode::Partial
&& matches!(group_ordering, GroupOrdering::None)
&& accumulators
.iter()
.all(|acc| acc.supports_convert_to_state())
&& agg_group_by.is_single()
{
let options = &context.session_config().options().execution;
let probe_rows_threshold =
options.skip_partial_aggregation_probe_rows_threshold;
let probe_ratio_threshold =
options.skip_partial_aggregation_probe_ratio_threshold;
let skipped_aggregation_rows = MetricBuilder::new(&agg.metrics)
.counter("skipped_aggregation_rows", partition);
Some(SkipAggregationProbe::new(
probe_rows_threshold,
probe_ratio_threshold,
skipped_aggregation_rows,
))
} else {
None
};
Ok(GroupedHashAggregateStream {
schema: agg_schema,
input,
mode: agg.mode,
accumulators,
aggregate_arguments,
filter_expressions,
group_by: agg_group_by,
reservation,
group_values,
current_group_indices: Default::default(),
exec_state,
baseline_metrics,
batch_size,
group_ordering,
input_done: false,
runtime: context.runtime_env(),
spill_state,
group_values_soft_limit: agg.limit,
skip_aggregation_probe,
})
}
}
/// Create an accumulator for `agg_expr` -- a [`GroupsAccumulator`] if
/// that is supported by the aggregate, or a
/// [`GroupsAccumulatorAdapter`] if not.
pub(crate) fn create_group_accumulator(
agg_expr: &Arc<AggregateFunctionExpr>,
) -> Result<Box<dyn GroupsAccumulator>> {
if agg_expr.groups_accumulator_supported() {
agg_expr.create_groups_accumulator()
} else {
// Note in the log when the slow path is used
debug!(
"Creating GroupsAccumulatorAdapter for {}: {agg_expr:?}",
agg_expr.name()
);
let agg_expr_captured = Arc::clone(agg_expr);
let factory = move || agg_expr_captured.create_accumulator();
Ok(Box::new(GroupsAccumulatorAdapter::new(factory)))
}
}
/// Extracts a successful Ok(_) or returns Poll::Ready(Some(Err(e))) with errors
macro_rules! extract_ok {
($RES: expr) => {{
match $RES {
Ok(v) => v,
Err(e) => return Poll::Ready(Some(Err(e))),
}
}};
}
impl Stream for GroupedHashAggregateStream {
type Item = Result<RecordBatch>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
let elapsed_compute = self.baseline_metrics.elapsed_compute().clone();
loop {
match &self.exec_state {
ExecutionState::ReadingInput => 'reading_input: {
match ready!(self.input.poll_next_unpin(cx)) {
// New batch to aggregate in partial aggregation operator
Some(Ok(batch)) if self.mode == AggregateMode::Partial => {
let timer = elapsed_compute.timer();
let input_rows = batch.num_rows();
// Do the grouping
extract_ok!(self.group_aggregate_batch(batch));
self.update_skip_aggregation_probe(input_rows);
// If we can begin emitting rows, do so,
// otherwise keep consuming input
assert!(!self.input_done);
// If the number of group values equals or exceeds the soft limit,
// emit all groups and switch to producing output
if self.hit_soft_group_limit() {
timer.done();
extract_ok!(self.set_input_done_and_produce_output());
// make sure the exec_state just set is not overwritten below
break 'reading_input;
}
if let Some(to_emit) = self.group_ordering.emit_to() {
timer.done();
if let Some(batch) =
extract_ok!(self.emit(to_emit, false))
{
self.exec_state =
ExecutionState::ProducingOutput(batch);
};
// make sure the exec_state just set is not overwritten below
break 'reading_input;
}
extract_ok!(self.emit_early_if_necessary());
extract_ok!(self.switch_to_skip_aggregation());
timer.done();
}
// New batch to aggregate in terminal aggregation operator
// (Final/FinalPartitioned/Single/SinglePartitioned)
Some(Ok(batch)) => {
let timer = elapsed_compute.timer();
// Make sure we have enough capacity for `batch`, otherwise spill
extract_ok!(self.spill_previous_if_necessary(&batch));
// Do the grouping
extract_ok!(self.group_aggregate_batch(batch));
// If we can begin emitting rows, do so,
// otherwise keep consuming input
assert!(!self.input_done);
// If the number of group values equals or exceeds the soft limit,
// emit all groups and switch to producing output
if self.hit_soft_group_limit() {
timer.done();
extract_ok!(self.set_input_done_and_produce_output());
// make sure the exec_state just set is not overwritten below
break 'reading_input;
}
if let Some(to_emit) = self.group_ordering.emit_to() {
timer.done();
if let Some(batch) =
extract_ok!(self.emit(to_emit, false))
{
self.exec_state =
ExecutionState::ProducingOutput(batch);
};
// make sure the exec_state just set is not overwritten below
break 'reading_input;
}
timer.done();
}
// Found error from input stream
Some(Err(e)) => {
// inner had error, return to caller
return Poll::Ready(Some(Err(e)));
}
// Found end from input stream
None => {
// inner is done, emit all rows and switch to producing output
extract_ok!(self.set_input_done_and_produce_output());
}
}
}
ExecutionState::SkippingAggregation => {
match ready!(self.input.poll_next_unpin(cx)) {
Some(Ok(batch)) => {
let _timer = elapsed_compute.timer();
if let Some(probe) = self.skip_aggregation_probe.as_mut() {
probe.record_skipped(&batch);
}
let states = self.transform_to_states(batch)?;
return Poll::Ready(Some(Ok(
states.record_output(&self.baseline_metrics)
)));
}
Some(Err(e)) => {
// inner had error, return to caller
return Poll::Ready(Some(Err(e)));
}
None => {
// inner is done, switching to `Done` state
self.exec_state = ExecutionState::Done;
}
}
}
ExecutionState::ProducingOutput(batch) => {
// slice off a part of the batch, if needed
let output_batch;
let size = self.batch_size;
(self.exec_state, output_batch) = if batch.num_rows() <= size {
(
if self.input_done {
ExecutionState::Done
}
// In Partial aggregation, we also need to check
// if we should trigger partial skipping
else if self.mode == AggregateMode::Partial
&& self.should_skip_aggregation()
{
ExecutionState::SkippingAggregation
} else {
ExecutionState::ReadingInput
},
batch.clone(),
)
} else {
// output first batch_size rows
let size = self.batch_size;
let num_remaining = batch.num_rows() - size;
let remaining = batch.slice(size, num_remaining);
let output = batch.slice(0, size);
(ExecutionState::ProducingOutput(remaining), output)
};
// Empty record batches should not be emitted.
// They need to be treated as [`Option<RecordBatch>`]es and handled separately
debug_assert!(output_batch.num_rows() > 0);
return Poll::Ready(Some(Ok(
output_batch.record_output(&self.baseline_metrics)
)));
}
ExecutionState::Done => {
// release the memory reservation since sending back output batch itself needs
// some memory reservation, so make some room for it.
self.clear_all();
let _ = self.update_memory_reservation();
return Poll::Ready(None);
}
}
}
}
}
impl RecordBatchStream for GroupedHashAggregateStream {
fn schema(&self) -> SchemaRef {
Arc::clone(&self.schema)
}
}
impl GroupedHashAggregateStream {
/// Perform group-by aggregation for the given [`RecordBatch`].
fn group_aggregate_batch(&mut self, batch: RecordBatch) -> Result<()> {
// Evaluate the grouping expressions
let group_by_values = if self.spill_state.is_stream_merging {
evaluate_group_by(&self.spill_state.merging_group_by, &batch)?
} else {
evaluate_group_by(&self.group_by, &batch)?
};
// Evaluate the aggregation expressions.
let input_values = if self.spill_state.is_stream_merging {
evaluate_many(&self.spill_state.merging_aggregate_arguments, &batch)?
} else {
evaluate_many(&self.aggregate_arguments, &batch)?
};
// Evaluate the filter expressions, if any, against the inputs
let filter_values = if self.spill_state.is_stream_merging {
let filter_expressions = vec![None; self.accumulators.len()];
evaluate_optional(&filter_expressions, &batch)?
} else {
evaluate_optional(&self.filter_expressions, &batch)?
};
for group_values in &group_by_values {
// calculate the group indices for each input row
let starting_num_groups = self.group_values.len();
self.group_values
.intern(group_values, &mut self.current_group_indices)?;
let group_indices = &self.current_group_indices;
// Update ordering information if necessary
let total_num_groups = self.group_values.len();
if total_num_groups > starting_num_groups {
self.group_ordering.new_groups(
group_values,
group_indices,
total_num_groups,
)?;
}
// Gather the inputs to call the actual accumulator
let t = self
.accumulators
.iter_mut()
.zip(input_values.iter())
.zip(filter_values.iter());
for ((acc, values), opt_filter) in t {
let opt_filter = opt_filter.as_ref().map(|filter| filter.as_boolean());
// Call the appropriate method on each aggregator with
// the entire input row and the relevant group indexes
match self.mode {
AggregateMode::Partial
| AggregateMode::Single
| AggregateMode::SinglePartitioned
if !self.spill_state.is_stream_merging =>
{
acc.update_batch(
values,
group_indices,
opt_filter,
total_num_groups,
)?;
}
_ => {
if opt_filter.is_some() {
return internal_err!("aggregate filter should be applied in partial stage, there should be no filter in final stage");
}
// if aggregation is over intermediate states,
// use merge
acc.merge_batch(values, group_indices, None, total_num_groups)?;
}
}
}
}
match self.update_memory_reservation() {
// Here we can ignore `insufficient_capacity_err` because we will spill later,
// but at least one batch should fit in the memory
Err(DataFusionError::ResourcesExhausted(_))
if self.group_values.len() >= self.batch_size =>
{
Ok(())
}
other => other,
}
}
fn update_memory_reservation(&mut self) -> Result<()> {
let acc = self.accumulators.iter().map(|x| x.size()).sum::<usize>();
let reservation_result = self.reservation.try_resize(
acc + self.group_values.size()
+ self.group_ordering.size()
+ self.current_group_indices.allocated_size(),
);
if reservation_result.is_ok() {
self.spill_state
.peak_mem_used
.set_max(self.reservation.size());
}
reservation_result
}
/// Create an output RecordBatch with the group keys and
/// accumulator states/values specified in emit_to
fn emit(&mut self, emit_to: EmitTo, spilling: bool) -> Result<Option<RecordBatch>> {
let schema = if spilling {
Arc::clone(&self.spill_state.spill_schema)
} else {
self.schema()
};
if self.group_values.is_empty() {
return Ok(None);
}
let mut output = self.group_values.emit(emit_to)?;
if let EmitTo::First(n) = emit_to {
self.group_ordering.remove_groups(n);
}
// Next output each aggregate value
for acc in self.accumulators.iter_mut() {
match self.mode {
AggregateMode::Partial => output.extend(acc.state(emit_to)?),
_ if spilling => {
// If spilling, output partial state because the spilled data will be
// merged and re-evaluated later.
output.extend(acc.state(emit_to)?)
}
AggregateMode::Final
| AggregateMode::FinalPartitioned
| AggregateMode::Single
| AggregateMode::SinglePartitioned => output.push(acc.evaluate(emit_to)?),
}
}
// emit reduces the memory usage. Ignore Err from update_memory_reservation. Even if it is
// over the target memory size after emission, we can emit again rather than returning Err.
let _ = self.update_memory_reservation();
let batch = RecordBatch::try_new(schema, output)?;
debug_assert!(batch.num_rows() > 0);
Ok(Some(batch))
}
/// Optimistically, [`Self::group_aggregate_batch`] allows to exceed the memory target slightly
/// (~ 1 [`RecordBatch`]) for simplicity. In such cases, spill the data to disk and clear the
/// memory. Currently only [`GroupOrdering::None`] is supported for spilling.
fn spill_previous_if_necessary(&mut self, batch: &RecordBatch) -> Result<()> {
// TODO: support group_ordering for spilling
if self.group_values.len() > 0
&& batch.num_rows() > 0
&& matches!(self.group_ordering, GroupOrdering::None)
&& !self.spill_state.is_stream_merging
&& self.update_memory_reservation().is_err()
{
assert_ne!(self.mode, AggregateMode::Partial);
self.spill()?;
self.clear_shrink(batch);
}
Ok(())
}
/// Emit all rows, sort them, and store them on disk.
fn spill(&mut self) -> Result<()> {
let Some(emit) = self.emit(EmitTo::All, true)? else {