-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLangevinPiston.cpp
304 lines (287 loc) · 8.7 KB
/
LangevinPiston.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#include "LangevinPiston.h"
//
// Class creator
//
LangevinPiston::LangevinPiston() {
}
//
// Class destructor
//
LangevinPiston::~LangevinPiston() {
}
//
// Apply pressure
//
void LangevinPiston::applyPressure() {
// Calculate the volume at step n-1
double volume = domdec.get_boxx()*domdec.get_boxy()*domdec.get_boxz();
double REFKE = 0.5*NDEGF*KBOLTZ*REFT;
int NATOM3=NATOM*3;
double DELTA2=DELTA*DELTA;
double HALFD=0.5/DELTA;
double VCELL = 0.25*PATMOS/VOLUME/DELTA2;
// SFACT converts from dyne/cm to Atm*Angstroms
double SFACT = 98.6923;
// Copy the thermal piston velocity and acceleration at previous step
double PNHVP = PNHV;
double PNHFP = PNHF;
double SURFI = 0.5*XTLOLD(6)*(EPRESS(PIZZ)-0.5*(
EPRESS(PIYY)+EPRESS(PIXX)))/SFACT;
/*
!
IF(QCONZ) THEN
REFP(RPZZ) = EPRESS(PIZZ)
ENDIF
!
IF(QSURF) THEN
REFP(RPXX) = REFP(RPZZ) - SFACT*SURFT/XTLABC(6)
REFP(RPYY) = REFP(RPXX)
ENDIF
!
RVAL = ZERO
!
*/
// Compute pressure difference matrix.
double delpLocal[3][3];
calcDelpLocal(delpLocal);
/*
! put h at n-1 into a holding array
DO I=1,6
XTLOLD(I) = XTLABC(I)
HDOLD(I) = HDOT(I)
ENDDO
*/
//
// This loop does iterations to ensure than the corrected velocity is
// in agreement with the pressure. For starters we try 3 iterations.
// This should be replaced with a tolerance criterion.
//
for (int jit=1;jit <= PITER;jit++) {
DO I=1,6
XTLABC(I) = XTLOLD(I)
HDOT(I) = HDOLD(I)
ENDDO
!
! Compute inverse of h matrix.
! We have h at step n-1, this gives h inverse at step n-1
!
CALL INVT33S(XTLINV,XTLABC,OK)
CALL MULNXNFL(WRK1,DELP,XTLINV,3)
CALL LATTRN(XTLTYP,WRK1,DELPX,XTLREF)
!
! Update the HDOT matrix.
! This sets hdotp to hdot at step n-3/2, hdoti is hdot at n-1/2
! The force on the piston comes from P at step n-1
!
FACT=EPROP(VOLUME)*PBFACT*ATMOSP
!
DO I=1,XDIM
HDOTP(I)=HDOT(I)
HDOT(I) = PALPHA*HDOT(I) + &
PWINV(I)*DELPX(I)*FACT + &
PBFACT*BMGAUS(PRFWD(I),ISEED)
ENDDO
!
! Make sure that every process has exactly the same value
#if KEY_PARALLEL==1
CALL PSND8(HDOT,XDIM)
#endif
!
DO I=1,XDIM
HDAV(I) = (HDOTP(I)+HDOT(I))*PVFACT*DELTA
ENDDO
!
! Propogate the h matrix
! This calculates h at step n, using the h velocity we just found
CALL GETXTL(SF,XTLABC,XTLTYP,XTLREF)
!
DO I=1,XDIM
SF(I)=SF(I)+HDOT(I)
ENDDO
!
! Make sure that every process has exactly the same value
#if KEY_PARALLEL==1
CALL PSND8(SF,XDIM)
#endif
!
DO I=1,XDIM
SH(I)=SF(I)-HALF*HDOT(I)
ENDDO
!
IF(QCONZ) THEN
SF(XDIM) = XTLOLD(1)*XTLOLD(3)*XTLOLD(6)/SF(1)**2
ENDIF
!
! warning: the isotropic and constant volume options
! work for tetragonal and orhtorombic only
!
! this puts the new hvalues into the xtlabc matrix
CALL SETXTL(HDAV,AVABC,XTLTYP,XTLREF)
CALL MULNXNLL(WRK2,AVABC,XTLINV,3)
!
CALL SETXTL(HDOT,HDABC,XTLTYP,XTLREF)
CALL PUTXTL(SH,XTLABC,XTLTYP,XTLREF)
CALL INVT33S(XTLINV,XTLABC,OK)
CALL MULNXNLL(WRK3,HDABC,XTLINV,3)
CALL PUTXTL(SF,XTLABC,XTLTYP,XTLREF)
!
! Calculate the thermal piston velocity and position
IF(QNPT) THEN
RVAL=HALF*RVAL
PNHF = TWO*DELTA*(RVAL-REFKE)/TMASS
IF(PNHFP == ZERO) THEN
PNHFP = PNHF
ENDIF
PNHV = PNHVP + HALF*(PNHF + PNHFP)
! Make sure all processes have the same value
#if KEY_PARALLEL==1
CALL PSND8(PNHV,1)
#endif
!
RVAL = ZERO
ENDIF
!
!=======================================================================
! Scale the coordinates and velocities.
!
IF(.NOT.PTYPE) THEN
! Calculate corrected pressure difference for next iteration
DELP(1,1) = ZERO
DELP(1,2) = ZERO
DELP(1,3) = ZERO
DELP(2,1) = ZERO
DELP(2,2) = ZERO
DELP(2,3) = ZERO
DELP(3,1) = ZERO
DELP(3,2) = ZERO
DELP(3,3) = ZERO
#if KEY_DOMDEC==1
if (q_domdec) then
i00 = 1
i01 = natoml
else
#endif
i00=1
i01=natom
#if KEY_PARALLEL==1
#if KEY_PARAFULL==1
I00 = 1 + IPARPT(MYNOD)
i01 = IPARPT(MYNODP)
#endif
#endif
#if KEY_DOMDEC==1
endif
#endif
!$omp parallel do schedule(static) &
!$omp& private(ia, i, vxf, vyf, vzf, sfxx, sfyy, sfzz, svxx, svyy, svzz, rvc) &
!$omp& reduction(+:rval, delp)
do ia=i00,i01
#if KEY_DOMDEC==1 /*domdec*/
if (q_domdec) then
i = atoml(ia)
else
#endif /* (domdec)*/
i = ia
#if KEY_DOMDEC==1
endif
#endif
#if KEY_PARALLEL==1
#if KEY_PARASCAL==1
IF(JPBLOCK(I) /= MYNOD) cycle
#endif
#endif
! Modify the forward half step velocity by -(v+f)*hdot/h
!
VXF = (XOLD(I) + VX(I)) * HALFD
VYF = (YOLD(I) + VY(I)) * HALFD
VZF = (ZOLD(I) + VZ(I)) * HALFD
!
SFXX = WRK2(1,1)*VXF &
+ WRK2(1,2)*VYF &
+ WRK2(1,3)*VZF
SFYY = WRK2(2,1)*VXF &
+ WRK2(2,2)*VYF &
+ WRK2(2,3)*VZF
SFZZ = WRK2(3,1)*VXF &
+ WRK2(3,2)*VYF &
+ WRK2(3,3)*VZF
!
IF(QCONZ) THEN
SFZZ = -( WRK2(1,1) + WRK2(2,2) )*VZF
ENDIF
!
VX(I) = XNEW(I) - DELTA*SFXX
VY(I) = YNEW(I) - DELTA*SFYY
VZ(I) = ZNEW(I) - DELTA*SFZZ
!
IF(QNPT) THEN
VX(I) = VX(I) - DELTA2*VXF*PNHV
VY(I) = VY(I) - DELTA2*VYF*PNHV
VZ(I) = VZ(I) - DELTA2*VZF*PNHV
!brb VXF = VXF - HALF*(SFXX + VXF*PNHV*DELTA)
!brb VYF = VYF - HALF*(SFYY + VYF*PNHV*DELTA)
!brb VZF = VZF - HALF*(SFZZ + VZF*PNHV*DELTA)
RVAL = RVAL + AMASS(I)*(VXF**2 + VYF**2 + VZF**2)
ENDIF
!
VXF = (XCOMP(I) + X(I)) * HALF
VYF = (YCOMP(I) + Y(I)) * HALF
VZF = (ZCOMP(I) + Z(I)) * HALF
!
SVXX = WRK3(1,1)*VXF &
+ WRK3(1,2)*VYF &
+ WRK3(1,3)*VZF
SVYY = WRK3(2,1)*VXF &
+ WRK3(2,2)*VYF &
+ WRK3(2,3)*VZF
SVZZ = WRK3(3,1)*VXF &
+ WRK3(3,2)*VYF &
+ WRK3(3,3)*VZF
!
IF(QCONZ) THEN
SVZZ = -(WRK3(1,1) + WRK3(2,2))*VZF
ENDIF
!
X(I) = VX(I) + SVXX + XCOMP(I)
Y(I) = VY(I) + SVYY + YCOMP(I)
Z(I) = VZ(I) + SVZZ + ZCOMP(I)
!
! Calculate positive of the velocity contribution to the pressure
! to get new corrected pressure
RVC=VCELL*AMASS(I)
DELP(1,1)=DELP(1,1) + RVC*VX(I)**2
DELP(1,2)=DELP(1,2) + RVC*VX(I)*VY(I)
DELP(1,3)=DELP(1,3) + RVC*VX(I)*VZ(I)
DELP(2,1)=DELP(2,1) + RVC*VY(I)*VX(I)
DELP(2,2)=DELP(2,2) + RVC*VY(I)**2
DELP(2,3)=DELP(2,3) + RVC*VY(I)*VZ(I)
DELP(3,1)=DELP(3,1) + RVC*VZ(I)*VX(I)
DELP(3,2)=DELP(3,2) + RVC*VZ(I)*VY(I)
DELP(3,3)=DELP(3,3) + RVC*VZ(I)**2
ENDDO
!$omp end parallel do
#if KEY_PARALLEL==1
!!$ CALL GCOMB(DELP,9)
!!$ CALL GCOMB(RVAL,1)
gcarr(1:3) = delp(1:3,1)
gcarr(4:6) = delp(1:3,2)
gcarr(7:9) = delp(1:3,3)
gcarr(10) = rval
call gcomb(gcarr, 10)
delp(1:3,1) = gcarr(1:3)
delp(1:3,2) = gcarr(4:6)
delp(1:3,3) = gcarr(7:9)
rval = gcarr(10)
#endif
DELP(1,1) = DELPR(1,1) + DELP(1,1)
DELP(1,2) = DELPR(1,2) + DELP(1,2)
DELP(1,3) = DELPR(1,3) + DELP(1,3)
DELP(2,1) = DELPR(2,1) + DELP(2,1)
DELP(2,2) = DELPR(2,2) + DELP(2,2)
DELP(2,3) = DELPR(2,3) + DELP(2,3)
DELP(3,1) = DELPR(3,1) + DELP(3,1)
DELP(3,2) = DELPR(3,2) + DELP(3,2)
DELP(3,3) = DELPR(3,3) + DELP(3,3)
ENDIF
ENDDO jit_loop
}