-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCpuMultiNodeMatrix3d.cpp
600 lines (526 loc) · 18.5 KB
/
CpuMultiNodeMatrix3d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#include <mpi.h>
#include <iostream>
#include <cassert>
#include <stdlib.h>
#include "mpi_utils.h"
#include "cpu_utils.h"
//#define use_onesided
#include "CpuMultiNodeMatrix3d.h"
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))
void get_inode_xyz(const int nnodex, const int nnodey, const int nnodez,
const int mynode, int &inodex, int &inodey, int &inodez) {
int mynode_tmp = mynode;
inodez = mynode_tmp/(nnodex*nnodey);
mynode_tmp -= inodez*nnodex*nnodey;
inodey = mynode_tmp/nnodex;
mynode_tmp -= inodey*nnodex;
inodex = mynode_tmp;
}
int get_xyz0(const int ntot, const int nnode, const int inode) {
return ntot*inode/nnode;
}
int get_xyz1(const int ntot, const int nnode, const int inode) {
return ntot*(inode+1)/nnode - 1;
}
int get_nx(const int nxtot, const int nnodex, const int nnodey, const int nnodez, const int mynode) {
int inodex, inodey, inodez;
get_inode_xyz(nnodex, nnodey, nnodez, mynode, inodex, inodey, inodez);
return get_xyz1(nxtot, nnodex, inodex) - get_xyz0(nxtot, nnodex, inodex) + 1;
}
int get_ny(const int nytot, const int nnodex, const int nnodey, const int nnodez, const int mynode) {
int inodex, inodey, inodez;
get_inode_xyz(nnodex, nnodey, nnodez, mynode, inodex, inodey, inodez);
return get_xyz1(nytot, nnodey, inodey) - get_xyz0(nytot, nnodey, inodey) + 1;
}
int get_nz(const int nztot, const int nnodex, const int nnodey, const int nnodez, const int mynode) {
int inodex, inodey, inodez;
get_inode_xyz(nnodex, nnodey, nnodez, mynode, inodex, inodey, inodez);
return get_xyz1(nztot, nnodez, inodez) - get_xyz0(nztot, nnodez, inodez) + 1;
}
template <typename T>
CpuMultiNodeMatrix3d<T>::CpuMultiNodeMatrix3d(const int nxtot, const int nytot, const int nztot,
const int nnodex, const int nnodey, const int nnodez,
const int mynode, const int tiledim,
const char *filename) :
nxtot(nxtot), nytot(nytot), nztot(nztot),
xsizetot(nxtot), ysizetot(nytot), zsizetot(nztot),
nnodex(nnodex), nnodey(nnodey), nnodez(nnodez), mynode(mynode), nnode(nnodex*nnodey*nnodez),
CpuMatrix3d<T>(get_nx(nxtot, nnodex, nnodey, nnodez, mynode),
get_ny(nytot, nnodex, nnodey, nnodez, mynode),
get_nz(nztot, nnodex, nnodey, nnodez, mynode), tiledim) {
x0 = new int[nnode];
x1 = new int[nnode];
y0 = new int[nnode];
y1 = new int[nnode];
z0 = new int[nnode];
z1 = new int[nnode];
nodeID = new int[nnode];
for (int order=0;order < 2;order++) {
mat_t[order] = NULL;
send[order] = NULL;
recv[order] = NULL;
#ifdef use_onesided
win_set[order] = false;
#else
send_req[order] = NULL;
recv_req[order] = NULL;
#endif
}
for (int inode=0;inode < nnode;inode++) {
int inodex, inodey, inodez;
get_inode_xyz(nnodex, nnodey, nnodez, inode, inodex, inodey, inodez);
x0[inode] = get_xyz0(nxtot, nnodex, inodex);
x1[inode] = get_xyz1(nxtot, nnodex, inodex);
y0[inode] = get_xyz0(nytot, nnodey, inodey);
y1[inode] = get_xyz1(nytot, nnodey, inodey);
z0[inode] = get_xyz0(nztot, nnodez, inodez);
z1[inode] = get_xyz1(nztot, nnodez, inodez);
nodeID[inode] = inode;
}
if (filename != NULL) {
this->load(x0[mynode], x1[mynode], nxtot,
y0[mynode], y1[mynode], nytot,
z0[mynode], z1[mynode], nztot,
filename);
}
}
//
// Class destructor
//
template <typename T>
CpuMultiNodeMatrix3d<T>::~CpuMultiNodeMatrix3d() {
delete [] x0;
delete [] x1;
delete [] y0;
delete [] y1;
delete [] z0;
delete [] z1;
delete [] nodeID;
for (int order=0;order < 2;order++) {
this->deallocate_transpose(order);
}
}
//
// De-allocates memory buffers used for tranpose
//
template <typename T>
void CpuMultiNodeMatrix3d<T>::deallocate_transpose(const int order) {
if (send[order] != NULL) delete [] send[order];
if (recv[order] != NULL) delete [] recv[order];
#ifdef use_onesided
if (win_set) MPICheck(MPI_Win_free(&win[order]));
#else
if (send_req[order] != NULL) delete [] send_req[order];
if (recv_req[order] != NULL) delete [] recv_req[order];
#endif
}
//
// Prints matrix size on screen
//
template <typename T>
void CpuMultiNodeMatrix3d<T>::print_info() {
std::cout << "mynode = " << mynode << std::endl;
std::cout << "nxtot nytot nztot = " << nxtot << " "<< nytot << " "<< nztot << std::endl;
std::cout << "xsizetot ysizetot zsizetot = " << xsizetot << " "<< ysizetot << " "<<zsizetot<<std::endl;
std::cout << "x0...x1 = " << x0[mynode] << " ... " << x1[mynode] << std::endl;
std::cout << "y0...y1 = " << y0[mynode] << " ... " << y1[mynode] << std::endl;
std::cout << "z0...z1 = " << z0[mynode] << " ... " << z1[mynode] << std::endl;
CpuMatrix3d<T>::print_info();
}
//
// Compares two matrices, returns true if the difference is within tolerance
// NOTE: Comparison is done in double precision
//
template <typename T>
bool CpuMultiNodeMatrix3d<T>::compare(CpuMatrix3d<T>& mat, const double tol, double& max_diff) {
assert(mat.get_nx() == nxtot);
assert(mat.get_ny() == nytot);
assert(mat.get_nz() == nztot);
int res = (int)false;
int loc_res = (int)false;
CpuMatrix3d<T> loc(x1[mynode]-x0[mynode]+1,
y1[mynode]-y0[mynode]+1,
z1[mynode]-z0[mynode]+1);
mat.copy(x0[mynode], y0[mynode], z0[mynode],
0, 0, 0,
x1[mynode]-x0[mynode]+1, y1[mynode]-y0[mynode]+1, z1[mynode]-z0[mynode]+1,
loc);
loc_res = (int)CpuMatrix3d<T>::compare(loc, tol, max_diff);
MPICheck(MPI_Allreduce(&loc_res, &res, 1, MPI_INT, MPI_LAND, MPI_COMM_WORLD));
return (bool)res;
}
//
// Set data element in the node where it belongs
//
template <typename T>
void CpuMultiNodeMatrix3d<T>::setData(const int x, const int y, const int z, const T val) {
assert(x >= 0 && x < nxtot);
assert(y >= 0 && y < nytot);
assert(z >= 0 && z < nztot);
if (x >= x0[mynode] && x <= x1[mynode] &&
y >= y0[mynode] && y <= y1[mynode] &&
z >= z0[mynode] && z <= z1[mynode]) {
this->data[x-x0[mynode] + (y-y0[mynode] + (z-z0[mynode])*this->ysize)*this->xsize] = val;
}
}
//
// Returns data element from the correct node.
// Returns undetermined if element not found
//
template <typename T>
T CpuMultiNodeMatrix3d<T>::getData(const int x, const int y, const int z) {
assert(x >= 0 && x < nxtot);
assert(y >= 0 && y < nytot);
assert(z >= 0 && z < nztot);
if (x >= x0[mynode] && x <= x1[mynode] &&
y >= y0[mynode] && y <= y1[mynode] &&
z >= z0[mynode] && z <= z1[mynode]) {
return this->data[x-x0[mynode] + (y-y0[mynode] + (z-z0[mynode])*this->ysize)*this->xsize];
}
return this->data[0];
}
//
// Returns true if this node had the element, false otherwise
//
template <typename T>
bool CpuMultiNodeMatrix3d<T>::hasData(const int x, const int y, const int z) {
assert(x >= 0 && x < nxtot);
assert(y >= 0 && y < nytot);
assert(z >= 0 && z < nztot);
if (x >= x0[mynode] && x <= x1[mynode] &&
y >= y0[mynode] && y <= y1[mynode] &&
z >= z0[mynode] && z <= z1[mynode]) {
return true;
}
return false;
}
//
// Returns the overlap between two 3d volumes
// Returns true if overlap, false otherwise
//
bool get_vol_overlap(int x0_a, int x1_a, int y0_a, int y1_a, int z0_a, int z1_a,
int x0_b, int x1_b, int y0_b, int y1_b, int z0_b, int z1_b,
int &x0_ab, int &x1_ab, int &y0_ab, int &y1_ab, int &z0_ab, int &z1_ab) {
x0_ab = max(x0_a, x0_b);
x1_ab = min(x1_a, x1_b);
y0_ab = max(y0_a, y0_b);
y1_ab = min(y1_a, y1_b);
z0_ab = max(z0_a, z0_b);
z1_ab = min(z1_a, z1_b);
return ((x0_ab <= x1_ab) && (y0_ab <= y1_ab) && (z0_ab <= z1_ab));
}
//
// Setups a transpose for multi-node 3d matrix out-of-place: data(x, y, z) -> data(y, z, x)
//
template <typename T>
void CpuMultiNodeMatrix3d<T>::setup_transpose_yzx(CpuMultiNodeMatrix3d<T>& mat) {
setup_transpose(mat, YZX);
}
//
// Setups a transpose for multi-node 3d matrix out-of-place: data(x, y, z) -> data(z, x, y)
//
template <typename T>
void CpuMultiNodeMatrix3d<T>::setup_transpose_zxy(CpuMultiNodeMatrix3d<T>& mat) {
setup_transpose(mat, ZXY);
}
//
// Setups a transpose for multi-node 3d matrix out-of-place
//
template <typename T>
void CpuMultiNodeMatrix3d<T>::setup_transpose(CpuMultiNodeMatrix3d<T>& mat, const int order) {
assert(order == YZX || order == ZXY);
if (mat_t[order] != NULL) this->deallocate_transpose(order);
mat_t[order] = &mat;
assert(mat.nnode == nnode);
if (order == YZX) {
assert(mat.nxtot == nytot);
assert(mat.nytot == nztot);
assert(mat.nztot == nxtot);
assert(mat.xsizetot == ysizetot);
assert(mat.ysizetot == zsizetot);
assert(mat.zsizetot == xsizetot);
} else {
assert(mat.nxtot == nztot);
assert(mat.nytot == nxtot);
assert(mat.nztot == nytot);
assert(mat.xsizetot == zsizetot);
assert(mat.ysizetot == xsizetot);
assert(mat.zsizetot == ysizetot);
}
// Limits on the transposed matrix of node "mynode"
int x0_t, y0_t, z0_t;
int x1_t, y1_t, z1_t;
if (order == YZX) {
x0_t = mat.z0[mynode];
x1_t = mat.z1[mynode];
y0_t = mat.x0[mynode];
y1_t = mat.x1[mynode];
z0_t = mat.y0[mynode];
z1_t = mat.y1[mynode];
} else {
x0_t = mat.y0[mynode];
x1_t = mat.y1[mynode];
y0_t = mat.z0[mynode];
y1_t = mat.z1[mynode];
z0_t = mat.x0[mynode];
z1_t = mat.x1[mynode];
}
assert(nnodex == mat.nnodex);
assert(nnodey == mat.nnodey);
assert(nnodez == mat.nnodez);
loc_transpose[order] = false;
send[order] = new node_t<T>[nnode];
recv[order] = new node_t<T>[nnode];
nrecv[order] = 0;
nsend[order] = 0;
for (int inode=0;inode < nnode;inode++) {
//--------------------------------
// Data receiving
//--------------------------------
// Calculate overlap between:
// node "mynode" on the transposed matrix and node "inode" on the original matrix
int x0_ol, x1_ol;
int y0_ol, y1_ol;
int z0_ol, z1_ol;
bool overlap;
overlap = get_vol_overlap(x0_t, x1_t, y0_t, y1_t, z0_t, z1_t,
x0[inode], x1[inode], y0[inode], y1[inode], z0[inode], z1[inode],
x0_ol, x1_ol, y0_ol, y1_ol, z0_ol, z1_ol);
if (inode != mynode && overlap) {
recv[order][nrecv[order]].x0 = x0_ol;
recv[order][nrecv[order]].x1 = x1_ol;
recv[order][nrecv[order]].y0 = y0_ol;
recv[order][nrecv[order]].y1 = y1_ol;
recv[order][nrecv[order]].z0 = z0_ol;
recv[order][nrecv[order]].z1 = z1_ol;
recv[order][nrecv[order]].xsize = recv[order][nrecv[order]].x1-recv[order][nrecv[order]].x0+1;
recv[order][nrecv[order]].ysize = recv[order][nrecv[order]].y1-recv[order][nrecv[order]].y0+1;
recv[order][nrecv[order]].len = (recv[order][nrecv[order]].x1-recv[order][nrecv[order]].x0+1)*
(recv[order][nrecv[order]].y1-recv[order][nrecv[order]].y0+1)*
(recv[order][nrecv[order]].z1-recv[order][nrecv[order]].z0+1);
recv[order][nrecv[order]].allocate_data(recv[order][nrecv[order]].len);
recv[order][nrecv[order]].node = inode;
nrecv[order]++;
}
//--------------------------------
// Data sending & Local transpose
//--------------------------------
// Calculate overlap between:
// node "mynode" on the original matrix and node "inode" on the transposed matrix
int x0i_t, y0i_t, z0i_t;
int x1i_t, y1i_t, z1i_t;
if (order == YZX) {
x0i_t = mat.z0[inode];
x1i_t = mat.z1[inode];
y0i_t = mat.x0[inode];
y1i_t = mat.x1[inode];
z0i_t = mat.y0[inode];
z1i_t = mat.y1[inode];
} else {
x0i_t = mat.y0[inode];
x1i_t = mat.y1[inode];
y0i_t = mat.z0[inode];
y1i_t = mat.z1[inode];
z0i_t = mat.x0[inode];
z1i_t = mat.x1[inode];
}
overlap = get_vol_overlap(x0i_t, x1i_t, y0i_t, y1i_t, z0i_t, z1i_t,
x0[mynode], x1[mynode], y0[mynode], y1[mynode], z0[mynode], z1[mynode],
x0_ol, x1_ol, y0_ol, y1_ol, z0_ol, z1_ol);
/*
if (overlap && mynode == 1)
fprintf(stderr,"\n%d %d %d %d %d %d\n%d %d %d %d %d %d\n%d %d %d %d %d %d\n",
x0i_t, x1i_t, y0i_t, y1i_t, z0i_t, z1i_t,
x0[mynode], x1[mynode], y0[mynode], y1[mynode], z0[mynode], z1[mynode],
x0_ol, x1_ol, y0_ol, y1_ol, z0_ol, z1_ol);
*/
if (overlap) {
send[order][nsend[order]].x0 = x0_ol;
send[order][nsend[order]].x1 = x1_ol;
send[order][nsend[order]].y0 = y0_ol;
send[order][nsend[order]].y1 = y1_ol;
send[order][nsend[order]].z0 = z0_ol;
send[order][nsend[order]].z1 = z1_ol;
if (inode == mynode) {
// Local transpose
loc_x0[order] = send[order][nsend[order]].x0;
loc_x1[order] = send[order][nsend[order]].x1;
loc_y0[order] = send[order][nsend[order]].y0;
loc_y1[order] = send[order][nsend[order]].y1;
loc_z0[order] = send[order][nsend[order]].z0;
loc_z1[order] = send[order][nsend[order]].z1;
loc_transpose[order] = true;
} else {
send[order][nsend[order]].xsize = send[order][nsend[order]].x1-send[order][nsend[order]].x0+1;
send[order][nsend[order]].ysize = send[order][nsend[order]].y1-send[order][nsend[order]].y0+1;
send[order][nsend[order]].len = (send[order][nsend[order]].x1-send[order][nsend[order]].x0+1)*
(send[order][nsend[order]].y1-send[order][nsend[order]].y0+1)*
(send[order][nsend[order]].z1-send[order][nsend[order]].z0+1);
send[order][nsend[order]].allocate_data(send[order][nsend[order]].len);
send[order][nsend[order]].node = inode;
nsend[order]++;
}
}
}
#ifdef use_onesided
MPI_Win_create(recv[order][0].data, recv[order][0].len*sizeof(T), sizeof(T),
MPI_INFO_NULL, MPI_COMM_WORLD, &win);
win_set[order] = true;
#else
if (nrecv[order] > 0) {
recv_req[order] = new MPI_Request[nrecv[order]];
}
if (nsend[order] > 0) {
send_req[order] = new MPI_Request[nsend[order]];
}
#endif
}
//
// Transposes a 3d matrix out-of-place: data(x, y, z) -> data(y, z, x)
//
template <typename T>
void CpuMultiNodeMatrix3d<T>::transpose_yzx(CpuMultiNodeMatrix3d<T>& mat) {
transpose(mat, YZX);
}
//
// Transposes a 3d matrix out-of-place: data(x, y, z) -> data(z, x, y)
//
template <typename T>
void CpuMultiNodeMatrix3d<T>::transpose_zxy(CpuMultiNodeMatrix3d<T>& mat) {
transpose(mat, ZXY);
}
//
// Transposes a 3d matrix out-of-place
//
template <typename T>
void CpuMultiNodeMatrix3d<T>::transpose(CpuMultiNodeMatrix3d<T>& mat, const int order) {
assert(order == YZX || order == ZXY);
assert(&mat == mat_t[order]);
const int MPI_tag = 1;
#ifndef use_onesided
// Post receives
if (nrecv[order] > 0) {
for (int i=0;i < nrecv[order];i++) {
MPICheck(MPI_Irecv(recv[order][i].data, sizeof(T)*recv[order][i].len, MPI_BYTE,
recv[order][i].node, MPI_tag, MPI_COMM_WORLD, &recv_req[order][i]));
}
}
#endif
// Copy data to send buffer
if (nsend[order] > 0) {
for (int i=0;i < nsend[order];i++) {
copy3D_HtoH<T>(this->data, send[order][i].data,
send[order][i].x0 - x0[mynode],
send[order][i].y0 - y0[mynode],
send[order][i].z0 - z0[mynode],
this->xsize, this->ysize,
0,0,0,
send[order][i].x1 - send[order][i].x0 + 1,
send[order][i].y1 - send[order][i].y0 + 1,
send[order][i].z1 - send[order][i].z0 + 1,
send[order][i].xsize, send[order][i].ysize);
}
}
#ifdef use_onesided
MPICheck(MPI_Win_fence(0, win[order]));
if (nsend[order] > 0) {
for (int i=0;i < nsend[order];i++) {
MPICheck(MPI_Put(send[order][i].data, send[order][i].len, MPI_FLOAT, send[order][i].node,
0, send[order][i].len, MPI_FLOAT, win[order]));
}
}
#else
// Post sends
if (nsend[order] > 0) {
for (int i=0;i < nsend[order];i++) {
// Send via MPI
MPICheck(MPI_Isend(send[order][i].data, sizeof(T)*send[order][i].len, MPI_BYTE,
send[order][i].node, MPI_tag, MPI_COMM_WORLD, &send_req[order][i]));
}
}
#endif
// Perform local matrix transpose on a sub block:
// (loc_x0...loc_x1) x (loc_y0...loc_y1) x (loc_z0...loc_z1)
if (loc_transpose[order]) {
int dstloc_x0, dstloc_y0, dstloc_z0;
if (order == YZX) {
dstloc_x0 = loc_y0[order];
dstloc_y0 = loc_z0[order];
dstloc_z0 = loc_x0[order];
} else {
dstloc_x0 = loc_z0[order];
dstloc_y0 = loc_x0[order];
dstloc_z0 = loc_y0[order];
}
/*
fprintf(stderr,"\n loc0 = %d %d %d\n loc1 = %d %d %d\n xyz0 = %d %d %d\n xyz0 = %d %d %d\n",
loc_x0[order],loc_y0[order],loc_z0[order],
loc_x1[order],loc_y1[order],loc_z1[order],
this->x0[mynode],this->y0[mynode],this->z0[mynode],
dstloc_x0, dstloc_y0, dstloc_z0);
MPICheck(MPI_Barrier(MPI_COMM_WORLD));
//exit(1);
*/
CpuMatrix3d<T>::transpose(loc_x0[order] - this->x0[mynode], // src_x0
loc_y0[order] - this->y0[mynode], // src_y0
loc_z0[order] - this->z0[mynode], // src_z0
dstloc_x0 - mat_t[order]->x0[mynode], // dst_x0
dstloc_y0 - mat_t[order]->y0[mynode], // dst_y0
dstloc_z0 - mat_t[order]->z0[mynode], // dst_z0
loc_x1[order]-loc_x0[order]+1, // xlen
loc_y1[order]-loc_y0[order]+1, // ylen
loc_z1[order]-loc_z0[order]+1, // zlen
*mat_t[order], order);
}
#ifdef use_onesided
MPICheck(MPI_Win_fence(0, win[order]));
#else
// Wait for sends to finish
if (nsend[order] > 0) {
MPICheck(MPI_Waitall(nsend[order], send_req[order], MPI_STATUSES_IGNORE));
}
if (nrecv[order] > 0) {
MPICheck(MPI_Waitall(nrecv[order], recv_req[order], MPI_STATUSES_IGNORE));
}
#endif
// Wait for receives
if (nrecv[order] > 0) {
for (int i=0;i < nrecv[order];i++) {
int k=i;
//MPICheck(MPI_Waitany(nrecv, (MPI_Request *)recv_req, &k, (MPI_Status *)recv_stat));
CpuMatrix3d<T> loc(recv[order][k].x1-recv[order][k].x0+1,
recv[order][k].y1-recv[order][k].y0+1,
recv[order][k].z1-recv[order][k].z0+1,
recv[order][k].xsize, recv[order][k].ysize,
recv[order][k].z1-recv[order][k].z0+1,
this->tiledim, recv[order][k].data);
int srcloc_x0, srcloc_y0, srcloc_z0;
if (order == YZX) {
srcloc_x0 = recv[order][k].y0;
srcloc_y0 = recv[order][k].z0;
srcloc_z0 = recv[order][k].x0;
} else {
srcloc_x0 = recv[order][k].z0;
srcloc_y0 = recv[order][k].x0;
srcloc_z0 = recv[order][k].y0;
}
loc.transpose(0,0,0,
srcloc_x0 - mat_t[order]->x0[mynode],
srcloc_y0 - mat_t[order]->y0[mynode],
srcloc_z0 - mat_t[order]->z0[mynode],
recv[order][k].x1-recv[order][k].x0+1,
recv[order][k].y1-recv[order][k].y0+1,
recv[order][k].z1-recv[order][k].z0+1,
*mat_t[order], order);
}
}
}
//
// Explicit instances of CpuMultiNodeMatrix3d
//
template class CpuMultiNodeMatrix3d<float>;
template class CpuMultiNodeMatrix3d<double>;
template class CpuMultiNodeMatrix3d<float2>;
template class CpuMultiNodeMatrix3d<double2>;
template class CpuMultiNodeMatrix3d<long long int>;