-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_pfnet.py
770 lines (668 loc) · 36.3 KB
/
train_pfnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
import open3d as o3
import os
import time
import argparse
import random
import torch
import torch.nn.parallel
import torch.utils.data
from torch.autograd import Variable
import utils
import shapenet_part_loader
from models.model_pfnet import _netlocalD, _netG
from tensorboardX import SummaryWriter
from shape_utils import random_occlude_pointcloud_v2 as crop_shape
from utils import IOStream
import shutil
import torch_nndistance as NND
import math
import numpy as np
silent_warn = o3
parser = argparse.ArgumentParser()
parser.add_argument('--workers', type=int, default=16, help='number of data loading workers')
parser.add_argument('--batchSize', type=int, default=32, help='input batch size')
parser.add_argument('--pnum', type=int, default=2048, help='the point number of a sample')
parser.add_argument('--niter', type=int, default=201, help='number of epochs to train for')
parser.add_argument('--weight_decay', type=float, default=0.001)
parser.add_argument('--learning_rate', default=0.0002, type=float, help='learning rate in training')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9')
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--D_choose', type=int, default=1, help='0 not use D-net,1 use D-net')
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--drop', type=float, default=0.2)
parser.add_argument('--num_scales', type=int, default=3, help='number of scales')
parser.add_argument('--point_scales_list', type=list, default=[2048, 1024, 512],
help='number of points in each scales')
parser.add_argument('--each_scales_size', type=int, default=1, help='each scales size')
parser.add_argument('--wtl2', type=float, default=0.95, help='0 means do not use else use with this weight')
# parser.add_argument('--cropmethod', default='random_center', help='random|center|random_center')
parser.add_argument('--checkpoints_dir', default='checkpoints', help='checkpoints dir')
parser.add_argument('--exp_name', default='exp', help='experiment name')
parser.add_argument('--data_root',
default='/home/alliegro/data/shapenetcore_partanno_segmentation_benchmark_v0/',
help='dataset path')
parser.add_argument('--class_choice',
default="Airplane,Bag,Cap,Car,Chair,Guitar,Lamp,Laptop,Motorbike,Mug,Pistol,Skateboard,Table",
help='Classes to train on: default is 13 classes used in PF-Net')
# crop params
parser.add_argument('--crop_point_num', type=int, default=512, help='0 means do not use else use with this weight')
parser.add_argument('--num_holes', type=int, default=1)
parser.add_argument('--fps_centers', '-FPS', action='store_true', help="farthest points as crop centroids")
opt = parser.parse_args()
# make experiment dirs
save_dir = os.path.join(opt.checkpoints_dir, opt.exp_name)
point_netG_saving = os.path.join(save_dir, 'models', 'point_netG')
point_netD_saving = os.path.join(save_dir, 'models', 'point_netD')
visz_folder = None
print('Experiment results and checkpoints stored in {}'.format(save_dir))
if not os.path.exists(os.path.join(save_dir, 'models')):
os.makedirs(os.path.join(save_dir, 'models'))
if not os.path.exists(point_netG_saving):
os.makedirs(point_netG_saving)
if not os.path.exists(point_netD_saving):
os.makedirs(point_netD_saving)
if not os.path.exists(os.path.join(save_dir, 'backup-code')):
os.makedirs(os.path.join(save_dir, 'backup-code'))
if not os.path.exists(os.path.join(save_dir, "train_visz")):
os.makedirs(os.path.join(save_dir, "train_visz"))
filename = os.path.abspath(__file__).split('/')[-1]
os.system(
'cp {} {}'.format(os.path.abspath(__file__), os.path.join(save_dir, 'backup-code', '{}.backup'.format(filename))))
io = IOStream(os.path.join(save_dir, 'log.txt'))
tb = SummaryWriter(logdir=save_dir)
io.cprint("PFNet training -\n num holes: %d, cropped points around each: %d" % (opt.num_holes, opt.crop_point_num))
io.cprint('-' * 30)
io.cprint('Arguments: ')
io.cprint(str(opt) + '\n')
USE_CUDA = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
point_netG = _netG(opt.num_scales, opt.each_scales_size, opt.point_scales_list, opt.crop_point_num * opt.num_holes)
if opt.D_choose == 1:
point_netD = _netlocalD(opt.crop_point_num * opt.num_holes)
resume_epoch = 0
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv2d") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("Conv1d") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find("BatchNorm1d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
if USE_CUDA:
print("Let's use", torch.cuda.device_count(), "GPUs!")
if opt.ngpu > 1:
io.cprint('Using DataParallel')
io.cprint('Num GPUs: %d' % torch.cuda.device_count())
point_netG = torch.nn.DataParallel(point_netG)
if opt.D_choose == 1: point_netD = torch.nn.DataParallel(point_netD)
point_netG.to(device)
point_netG.apply(weights_init_normal)
if opt.D_choose == 1:
point_netD.to(device)
point_netD.apply(weights_init_normal)
if opt.netG != '':
point_netG.load_state_dict(torch.load(opt.netG, map_location=lambda storage, location: storage)['state_dict'])
resume_epoch = torch.load(opt.netG)['epoch']
if opt.netD != '':
point_netD.load_state_dict(torch.load(opt.netD, map_location=lambda storage, location: storage)['state_dict'])
resume_epoch = torch.load(opt.netD)['epoch']
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
io.cprint("Random Seed: %d" % opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
""" Datasets and Loader """
if len(opt.class_choice) > 0:
class_choice = ''.join(
opt.class_choice.split()).split(",") # sanitize + split(",")
io.cprint("Class choice: {}\n".format(str(class_choice)))
else:
class_choice = None # iff. opt.class_choice=='' train on all classes
dset = shapenet_part_loader.PartDataset(
root=opt.data_root,
classification=True,
class_choice=class_choice,
npoints=opt.pnum,
split='train')
train_loader = torch.utils.data.DataLoader(
dset,
batch_size=opt.batchSize,
shuffle=True,
num_workers=int(opt.workers),
drop_last=True,
)
test_dset = shapenet_part_loader.PartDataset(
root=opt.data_root,
classification=True,
class_choice=class_choice,
npoints=opt.pnum,
split='test')
test_dataloader = torch.utils.data.DataLoader(
test_dset,
batch_size=int(opt.batchSize) * 2,
shuffle=False,
num_workers=int(opt.workers))
io.cprint("\nGenerator:")
io.cprint(str(point_netG))
criterion = torch.nn.BCEWithLogitsLoss().to(device) # used at Discriminator
# setup optimizer + schedulers
optimizerG = torch.optim.Adam(
point_netG.parameters(), lr=0.0001, betas=(0.9, 0.999), eps=1e-05, weight_decay=opt.weight_decay
)
schedulerG = torch.optim.lr_scheduler.StepLR(optimizerG, step_size=40, gamma=0.2)
if opt.D_choose == 1:
optimizerD = torch.optim.Adam(
point_netD.parameters(), lr=0.0001, betas=(0.9, 0.999), eps=1e-05, weight_decay=opt.weight_decay
)
schedulerD = torch.optim.lr_scheduler.StepLR(optimizerD, step_size=40, gamma=0.2)
io.cprint("\nDiscriminator:")
io.cprint(str(point_netD) + '\n')
real_label = 1
fake_label = 0
crop_point_num = int(opt.crop_point_num)
num_holes = int(opt.num_holes)
label = torch.FloatTensor(opt.batchSize)
num_batch = len(dset) / opt.batchSize
it = 0 # iteration counter
visz_folder = None
num_it = math.floor(len(train_loader.dataset) / opt.batchSize) \
if train_loader.drop_last else math.ceil(len(train_loader.dataset) / opt.batchSize)
# Viewpoints to crop around
# same as in PFNet
if not opt.fps_centers:
centroids = np.asarray(
[[1, 0, 0], [0, 0, 1], [1, 0, 1], [-1, 0, 0], [-1, 1, 0]])
else:
raise NotImplementedError('experimental')
io.cprint("Shape itself 10-FPS as centroids for crop", color="r")
centroids = None
# Overall train stats
best_test = 999999.0
best_ep = -1
if opt.D_choose == 1:
io.cprint("Train PFNet Generator + Discriminator\n")
for epoch in range(resume_epoch, opt.niter):
ep_start_time = time.time()
if epoch < 30:
alpha1 = 0.01
alpha2 = 0.02
elif epoch < 80:
alpha1 = 0.05
alpha2 = 0.1
else:
alpha1 = 0.1
alpha2 = 0.2
tot_loss, count = 0.0, 0.0 # for AVGin CD Loss per-epoch
for i, data in enumerate(train_loader, 0):
real_point, target = data
B, N, dim = real_point.size()
it += 1
count += B
partials = []
missing_gts = []
N_partial_points = N - (opt.crop_point_num * opt.num_holes)
# Actually cropping + retrieving data!
for m in range(B):
cropped, missing = crop_shape(
real_point[m], centroids=centroids, n_drop=opt.crop_point_num, n_c=opt.num_holes)
if cropped.size(0) > N_partial_points:
assert opt.num_holes > 1, "Should be no need to resample if not multiple holes"
# sampling without replacement
choice = torch.randperm(cropped.size(0))[:N_partial_points]
cropped = cropped[choice]
# TODO: PFNet needs to take 2048 points as input!
# Method limitation, adding [0, 0, 0] fake vertices
fake_vertices = torch.zeros(opt.pnum - N_partial_points, 3).float()
new_partial = torch.cat((cropped, fake_vertices), dim=0)
new_partial = new_partial[torch.randperm(new_partial.size(0))] # shuffling
partials.append(new_partial)
missing_gts.append(missing)
# visualizations
if i == 1:
# iff. first epoch' it. : save visz of cropped + missing
visz_folder = os.path.join(save_dir, "train_visz", "epoch_{}".format(epoch))
if not os.path.exists(visz_folder):
os.makedirs(visz_folder)
# print("ep {} - Saving visualizations into: {}".format(epoch, visz_folder))
for jj in range(len(partials)):
np.savetxt(
X=partials[jj].numpy(), fname=os.path.join(visz_folder, '{}_cropped.txt'.format(jj)),
fmt='%.5f', delimiter=';')
np.savetxt(
X=missing_gts[jj].numpy(), fname=os.path.join(visz_folder, '{}_gt.txt'.format(jj)),
fmt='%.5f', delimiter=';')
input_cropped1 = torch.stack(partials) # [B, 2048, 3]
real_center = torch.stack(missing_gts) # [B, 512, 3]
# logic was: ..
# p_origin = [0, 0, 0]
#
# for m in range(B):
# index = random.sample(centroids, 1) # Random choose one of the viewpoint
# distance_list = []
# p_center = index[0]
# for n in range(opt.pnum):
# distance_list.append(distance_squre(real_point[m, 0, n], p_center))
#
# distance_order = sorted(enumerate(distance_list), key=lambda x: x[1])
# for sp in range(opt.crop_point_num):
# input_cropped1.data[m, 0, distance_order[sp][0]] = torch.FloatTensor([0, 0, 0])
# real_center.data[m, 0, sp] = real_point[m, 0, distance_order[sp][0]]
label.resize_([B, 1]).fill_(real_label) # [32, 1]
real_point = real_point.to(device) # [B, 2048, 3]
real_center = real_center.to(device) # [B, 512, 3]
input_cropped1 = input_cropped1.to(device) # [B, 2048, 3]: PFNet model needs 2048 points to work..
label = label.to(device) # [32, 1]
###########################
# (1) data prepare
###########################
real_center = Variable(real_center, requires_grad=True)
# real_center = torch.squeeze(real_center, 1) # [32, 512, 3] - Alli: done before
real_center_key1_idx = utils.farthest_point_sample(real_center, 64, RAN=False)
real_center_key1 = utils.index_points(real_center, real_center_key1_idx) # [32, 64, 3]
real_center_key1 = Variable(real_center_key1, requires_grad=True)
real_center_key2_idx = utils.farthest_point_sample(real_center, 128, RAN=True)
real_center_key2 = utils.index_points(real_center, real_center_key2_idx)
real_center_key2 = Variable(real_center_key2, requires_grad=True)
# input_cropped1 = torch.squeeze(input_cropped1, 1) # [32, 2048, 3] - Alli: done before
input_cropped2_idx = utils.farthest_point_sample(input_cropped1, opt.point_scales_list[1], RAN=True)
input_cropped2 = utils.index_points(input_cropped1, input_cropped2_idx) # [32, 1024, 3]
input_cropped3_idx = utils.farthest_point_sample(input_cropped1, opt.point_scales_list[2], RAN=False)
input_cropped3 = utils.index_points(input_cropped1, input_cropped3_idx) # [32, 512, 3]
input_cropped1 = Variable(input_cropped1, requires_grad=True) # [32, 2048, 3]
input_cropped2 = Variable(input_cropped2, requires_grad=True) # [32, 1024, 3]
input_cropped3 = Variable(input_cropped3, requires_grad=True) # [32, 512, 3]
input_cropped2 = input_cropped2.to(device)
input_cropped3 = input_cropped3.to(device)
if i == 0 and epoch == 0:
print("-" * 10)
print("DBG ep %d" % epoch)
print("cropped1: {};\n".format(str(input_cropped1.size())) +
"cropped2: {};\n".format(str(input_cropped2.size())) +
"cropped3: {}".format(str(input_cropped3.size())))
print("real_center: {}\n".format(str(real_center.size())) +
"real_center_key1: {}\n".format(str(real_center_key1.size())) +
"real_center_key2: {}\n".format(str(real_center_key2.size())))
print("-" * 10 + '\n')
input_cropped = [
input_cropped1, input_cropped2, input_cropped3]
# input_cropped: [ [B,2048,3], [B,1024,3], [B,512,3] ]
point_netG = point_netG.train()
point_netD = point_netD.train()
###########################
# (2) Update D network
###########################
point_netD.zero_grad()
real_center = torch.unsqueeze(real_center, 1) # [32, 1, 512, 3]
output = point_netD(real_center)
errD_real = criterion(output, label) # real points + real label: provided here
errD_real.backward()
fake_center1, fake_center2, fake = point_netG(input_cropped) # (input_cropped) has len==3
fake = torch.unsqueeze(fake, 1)
'''
fake: [32, 1, 512, 3]
fake_center1: [32, 64, 3]
fake_center2: [32, 128, 3]
'''
label.data.fill_(fake_label)
output = point_netD(fake.detach())
errD_fake = criterion(output, label)
errD_fake.backward()
errD = errD_real + errD_fake
optimizerD.step()
#######################################################
# (3) Update G network: maximize log(D(G(z)))
#######################################################
point_netG.zero_grad()
label.data.fill_(real_label) # foolish
output = point_netD(fake)
errG_D = criterion(output, label)
errG_l2 = 0
fake = fake.squeeze(1).contiguous() # [32, 1, 512, 3] -> [32, 512, 3]
real_center = real_center.squeeze(1).contiguous()
# print("dbg fake: ", fake.size())
# print("dbg real_center: ", real_center.size())
assert fake.size() == real_center.size(), "fail fake shape"
d1, d2, _, _ = NND.nnd(fake, real_center)
CD_LOSS = 100 * (0.5 * torch.mean(d1) + 0.5 * torch.mean(d2))
# computing also errG_l2
''' fake center 1 '''
fake_center1 = fake_center1.contiguous()
real_center_key1 = real_center_key1.contiguous()
# print("dbg fake_center1: ", fake_center1.size())
# print("dbg real_center_key1: ", real_center_key1.size())
assert fake_center1.size() == real_center_key1.size(), "fail fake 1 {}".format(str(fake_center1.size()))
d1, d2, _, _ = NND.nnd(fake_center1, real_center_key1)
cd_fake_1 = 100 * (0.5 * torch.mean(d1) + 0.5 * torch.mean(d2))
''' fake center 2 '''
fake_center2 = fake_center2.contiguous()
real_center_key2 = real_center_key2.contiguous()
# print("dbg fake_center2: ", fake_center2.size())
# print("dbg real_center_key2: ", real_center_key2.size())
assert fake_center2.size() == real_center_key2.size(), "fail fake 2 {}".format(str(fake_center2.size()))
d1, d2, _, _ = NND.nnd(fake_center2, real_center_key2)
cd_fake_2 = 100 * (0.5 * torch.mean(d1) + 0.5 * torch.mean(d2))
errG_l2 = CD_LOSS + alpha1 * cd_fake_1 + alpha2 * cd_fake_2 # same but more efficient!
# CD_LOSS = criterion_PointLoss(torch.squeeze(fake, 1), torch.squeeze(real_center, 1))
# errG_l2 = criterion_PointLoss(torch.squeeze(fake, 1), torch.squeeze(real_center, 1)) \
# + alpha1 * criterion_PointLoss(fake_center1, real_center_key1) \
# + alpha2 * criterion_PointLoss(fake_center2, real_center_key2)
errG = (1 - opt.wtl2) * errG_D + opt.wtl2 * errG_l2
errG.backward()
optimizerG.step()
if i == 1:
# curr. epoch first train it.
# save visz generated (fake) missing part
print("dbg fake: ", fake.size())
assert (visz_folder is not None and os.path.exists(visz_folder))
fake = fake.cpu().detach().data.numpy()
for jj in range(len(fake)):
np.savetxt(
X=fake[jj], fname=os.path.join(visz_folder, '{}_fake.txt'.format(jj)), fmt='%.5f', delimiter=';')
if it % 10 == 0:
io.cprint(
'[%d/%d][%d/%d] Loss_D: %.4f, errG_D: %.4f, errG_l2: %.4f, errG: %.4f, CD_LOSS: %.4f' %
(epoch, opt.niter, i, len(train_loader),
errD.data, errG_D.data, # discriminator part losses
errG_l2, errG, CD_LOSS # generator part losses
)
)
tot_loss += CD_LOSS.item() * B
schedulerD.step()
schedulerG.step()
print('[%d/%d] Epoch Train CD Loss: %.5f' % (epoch, opt.niter, tot_loss * 1.0 / count))
tb.add_scalar('Train/CD_LOSS', tot_loss * 1.0 / count, epoch)
if epoch % 10 == 0:
# checkpoint
torch.save(
{'epoch': epoch + 1,
'state_dict': point_netG.module.state_dict() if isinstance(point_netG, torch.nn.DataParallel) else point_netG.state_dict(),
'optimizer': optimizerG.state_dict(),
'scheduler': schedulerG.state_dict(),
},
os.path.join(point_netG_saving, 'gen_' + str(epoch) + '.pth')
)
torch.save(
{'epoch': epoch + 1,
'state_dict': point_netD.module.state_dict() if isinstance(point_netD, torch.nn.DataParallel) else point_netD.state_dict(),
'optimizer': optimizerD.state_dict(),
'scheduler': schedulerD.state_dict(),
},
os.path.join(point_netD_saving, 'discr_' + str(epoch) + '.pth'))
# Evaluate model on test set
sum_cd_test, count_test = 0.0, 0.0
for i, data in enumerate(test_dataloader, 0):
real_point, target = data
B, N, dim = real_point.size()
count_test += B
partials = []
missing_gts = []
N_partial_points = N - (opt.crop_point_num * opt.num_holes)
# Actually cropping + retrieving data!
for m in range(B):
cropped, missing = crop_shape(
real_point[m], centroids=centroids, n_drop=opt.crop_point_num, n_c=opt.num_holes)
if cropped.size(0) > N_partial_points:
assert opt.num_holes > 1, "No need to resample if not multiple holes"
# re-sampling WITHOUT replacement is needed!
choice = torch.randperm(cropped.size(0))[:N_partial_points]
cropped = cropped[choice]
# TODO: PFNet needs to take 2048 points as input! Method limitation! Adding [0, 0, 0] fake vertices
fake_vertices = torch.zeros(opt.pnum - N_partial_points, 3).float()
new_partial = torch.cat((cropped, fake_vertices), dim=0)
new_partial = new_partial[ # shuffling
torch.randperm(new_partial.size(0))]
partials.append(new_partial)
missing_gts.append(missing)
input_cropped1 = torch.stack(partials) # [B, 2048, 3]
real_center = torch.stack(missing_gts) # [B, 512, 3]
real_point = real_point.to(device) # [B, 2048, 3]
real_center = real_center.to(device) # [B, 512, 3]
input_cropped1 = input_cropped1.to(device) # [B, 2048, 3]: PFNet model needs 2048 points to work..
###########################
# (1) data prepare
###########################
input_cropped2_idx = utils.farthest_point_sample(input_cropped1, opt.point_scales_list[1], RAN=True)
input_cropped2 = utils.index_points(input_cropped1, input_cropped2_idx) # [32, 1024, 3]
input_cropped3_idx = utils.farthest_point_sample(input_cropped1, opt.point_scales_list[2], RAN=False)
input_cropped3 = utils.index_points(input_cropped1, input_cropped3_idx) # [32, 512, 3]
input_cropped1 = Variable(input_cropped1, requires_grad=False) # [32, 2048, 3]
input_cropped2 = Variable(input_cropped2, requires_grad=False) # [32, 1024, 3]
input_cropped3 = Variable(input_cropped3, requires_grad=False) # [32, 512, 3]
input_cropped2 = input_cropped2.to(device)
input_cropped3 = input_cropped3.to(device)
input_cropped = [input_cropped1, input_cropped2, input_cropped3]
point_netG.eval()
with torch.no_grad():
_, _, fake = point_netG(input_cropped)
assert fake.size() == real_center.size()
fake = fake.contiguous()
real_center = real_center.contiguous()
d1, d2, _, _ = NND.nnd(fake, real_center)
cd_test_loss = 100 * (0.5 * torch.mean(d1) + 0.5 * torch.mean(d2))
sum_cd_test += cd_test_loss * B
test_loss = sum_cd_test * 1.0 / count_test
io.cprint('Ep Test [%d/%d] Loss: %.5f ' % (
epoch, opt.niter, test_loss), color="b")
tb.add_scalar('Test/CD_LOSS', test_loss, epoch)
is_best = test_loss < best_test
best_test = min(best_test, test_loss)
if is_best:
# best model case
best_ep = epoch
io.cprint("New best test %.5f at epoch %d" % (best_test, best_ep))
shutil.copyfile(
src=os.path.join(point_netG_saving, 'gen_' + str(epoch) + '.pth'),
dst=os.path.join(point_netG_saving, 'best_gen.pth'),
)
io.cprint('[%d/%d] - Elapsed Time: {}\n'.format(
time.strftime("%M:%S", time.gmtime(time.time() - ep_start_time))) % (epoch, opt.niter))
else:
io.cprint("Train PFNet Generator (without Discriminator)\n")
for epoch in range(resume_epoch, opt.niter):
ep_start_time = time.time()
if epoch < 30:
alpha1 = 0.01
alpha2 = 0.02
elif epoch < 80:
alpha1 = 0.05
alpha2 = 0.1
else:
alpha1 = 0.1
alpha2 = 0.2
tot_loss, count = 0.0, 0.0 # for AVGin CD Loss per-epoch
for i, data in enumerate(train_loader, 0):
real_point, target = data
B, N, dim = real_point.size()
it += 1
count += B
partials = []
missing_gts = []
N_partial_points = N - (opt.crop_point_num * opt.num_holes)
# Actually cropping + retrieving data!
for m in range(B):
cropped, missing = crop_shape(
real_point[m], centroids=centroids, n_drop=opt.crop_point_num, n_c=opt.num_holes)
if cropped.size(0) > N_partial_points:
assert opt.num_holes > 1, "Should be no need to resample if not multiple holes"
# without replacement
choice = torch.randperm(cropped.size(0))[:N_partial_points]
cropped = cropped[choice]
# PFNet limitation: network must take 2048 points in input! Adding [0, 0, 0] fake vertices to fix
fake_vertices = torch.zeros(opt.pnum - N_partial_points, 3).float()
new_partial = torch.cat((cropped, fake_vertices), dim=0)
new_partial = new_partial[torch.randperm(new_partial.size(0))] # shuffling
partials.append(new_partial)
missing_gts.append(missing)
# visualizations
if i == 1 and epoch % 10 == 0:
visz_folder = os.path.join(save_dir, "train_visz", "epoch_{}".format(epoch))
if not os.path.exists(visz_folder):
os.makedirs(visz_folder)
for jj in range(len(partials)):
np.savetxt(
X=partials[jj].numpy(), fname=os.path.join(visz_folder, '{}_cropped.txt'.format(jj)),
fmt='%.5f', delimiter=';')
np.savetxt(
X=missing_gts[jj].numpy(), fname=os.path.join(visz_folder, '{}_gt.txt'.format(jj)),
fmt='%.5f', delimiter=';')
input_cropped1 = torch.stack(partials) # [B, 2048, 3]
real_center = torch.stack(missing_gts) # [B, 512, 3]
real_point = real_point.to(device) # [B, 2048, 3]
real_center = real_center.to(device) # [B, 512, 3]
input_cropped1 = input_cropped1.to(device) # [B, 2048, 3]: PFNet model needs 2048 points to work..
###########################
# (1) data prepare
###########################
real_center = Variable(real_center, requires_grad=True)
real_center_key1_idx = utils.farthest_point_sample(real_center, 64, RAN=False)
real_center_key1 = utils.index_points(real_center, real_center_key1_idx) # [32, 64, 3]
real_center_key1 = Variable(real_center_key1, requires_grad=True)
real_center_key2_idx = utils.farthest_point_sample(real_center, 128, RAN=True)
real_center_key2 = utils.index_points(real_center, real_center_key2_idx)
real_center_key2 = Variable(real_center_key2, requires_grad=True)
input_cropped2_idx = utils.farthest_point_sample(input_cropped1, opt.point_scales_list[1], RAN=True)
input_cropped2 = utils.index_points(input_cropped1, input_cropped2_idx) # [32, 1024, 3]
input_cropped3_idx = utils.farthest_point_sample(input_cropped1, opt.point_scales_list[2], RAN=False)
input_cropped3 = utils.index_points(input_cropped1, input_cropped3_idx) # [32, 512, 3]
input_cropped1 = Variable(input_cropped1, requires_grad=True) # [32, 2048, 3]
input_cropped2 = Variable(input_cropped2, requires_grad=True) # [32, 1024, 3]
input_cropped3 = Variable(input_cropped3, requires_grad=True) # [32, 512, 3]
input_cropped2 = input_cropped2.to(device)
input_cropped3 = input_cropped3.to(device)
if i == 0 and epoch == 0:
print("-" * 10)
print("DBG ep %d" % epoch)
print("cropped1: {};\n".format(str(input_cropped1.size())) +
"cropped2: {};\n".format(str(input_cropped2.size())) +
"cropped3: {}".format(str(input_cropped3.size())))
print("real_center: {}\n".format(str(real_center.size())) +
"real_center_key1: {}\n".format(str(real_center_key1.size())) +
"real_center_key2: {}\n".format(str(real_center_key2.size())))
print("-" * 10 + '\n')
input_cropped = [input_cropped1, input_cropped2, input_cropped3] # [ [32,2048,3], [32,1024,3], [32,512,3] ]
point_netG = point_netG.train()
point_netG.zero_grad()
fake_center1, fake_center2, fake = point_netG(input_cropped)
# compute chamfer on missing part final prediction
fake = fake.contiguous() # [32, 512, 3]
real_center = real_center.contiguous() # [32, 512, 3]
assert fake.size() == real_center.size(), "fail fake shape"
d1, d2, _, _ = NND.nnd(fake, real_center)
CD_LOSS = 100 * (0.5 * torch.mean(d1) + 0.5 * torch.mean(d2))
# computing also errG_l2
''' fake center 1 '''
fake_center1 = fake_center1.contiguous()
real_center_key1 = real_center_key1.contiguous()
assert fake_center1.size() == real_center_key1.size(), "fail fake 1 {}".format(str(fake_center1.size()))
d1, d2, _, _ = NND.nnd(fake_center1, real_center_key1)
cd_fake_1 = 100 * (0.5 * torch.mean(d1) + 0.5 * torch.mean(d2))
''' fake center 2 '''
fake_center2 = fake_center2.contiguous()
real_center_key2 = real_center_key2.contiguous()
assert fake_center2.size() == real_center_key2.size(), "fail fake 2 {}".format(str(fake_center2.size()))
d1, d2, _, _ = NND.nnd(fake_center2, real_center_key2)
cd_fake_2 = 100 * (0.5 * torch.mean(d1) + 0.5 * torch.mean(d2))
errG_l2 = CD_LOSS + alpha1 * cd_fake_1 + alpha2 * cd_fake_2
errG_l2.backward()
optimizerG.step()
if i == 1 and epoch % 10 == 0:
print("fake: ", fake.size())
assert (visz_folder is not None and os.path.exists(visz_folder))
fake = fake.cpu().detach().data.numpy()
for jj in range(len(fake)):
np.savetxt(
X=fake[jj], fname=os.path.join(visz_folder, '{}_fake.txt'.format(jj)), fmt='%.5f',
delimiter=';')
if it % 10 == 0:
io.cprint(
'[%d/%d][%d/%d] errG_l2: %.4f, CD_LOSS: %.4f' %
(epoch, opt.niter, i, len(train_loader), errG_l2, CD_LOSS))
tot_loss += CD_LOSS.item() * B
schedulerG.step()
print('[%d/%d] Epoch Train CD Loss: %.5f' % (epoch, opt.niter, tot_loss * 1.0 / count))
tb.add_scalar('Train/CD_LOSS', tot_loss * 1.0 / count, epoch)
if epoch % 10 == 0:
# checkpoint
torch.save(
{'epoch': epoch + 1,
'state_dict': point_netG.module.state_dict() if isinstance(point_netG,
torch.nn.DataParallel) else point_netG.state_dict(),
'optimizer': optimizerG.state_dict(),
'scheduler': schedulerG.state_dict(),
},
os.path.join(point_netG_saving, 'gen_' + str(epoch) + '.pth')
)
# Evaluate model on test set
sum_cd_test, count_test = 0.0, 0.0
for i, data in enumerate(test_dataloader, 0):
real_point, target = data
B, N, dim = real_point.size()
count_test += B
partials = []
missing_gts = []
N_partial_points = N - (opt.crop_point_num * opt.num_holes)
# Actually cropping + retrieving data!
for m in range(B):
cropped, missing = crop_shape(
real_point[m], centroids=centroids, n_drop=opt.crop_point_num, n_c=opt.num_holes)
if cropped.size(0) > N_partial_points:
assert opt.num_holes > 1
choice = torch.randperm(cropped.size(0))[:N_partial_points]
cropped = cropped[choice]
fake_vertices = torch.zeros(opt.pnum - N_partial_points, 3).float()
new_partial = torch.cat((cropped, fake_vertices), dim=0)
new_partial = new_partial[ # shuffling
torch.randperm(new_partial.size(0))]
partials.append(new_partial)
missing_gts.append(missing)
input_cropped1 = torch.stack(partials) # [B, 2048, 3]
real_center = torch.stack(missing_gts) # [B, 512, 3]
real_point = real_point.to(device) # [B, 2048, 3]
real_center = real_center.to(device) # [B, 512, 3]
input_cropped1 = input_cropped1.to(device) # [B, 2048, 3]: PFNet model needs 2048 points to work..
###########################
# (1) data prepare
###########################
input_cropped2_idx = utils.farthest_point_sample(input_cropped1, opt.point_scales_list[1], RAN=True)
input_cropped2 = utils.index_points(input_cropped1, input_cropped2_idx) # [32, 1024, 3]
input_cropped3_idx = utils.farthest_point_sample(input_cropped1, opt.point_scales_list[2], RAN=False)
input_cropped3 = utils.index_points(input_cropped1, input_cropped3_idx) # [32, 512, 3]
input_cropped1 = Variable(input_cropped1, requires_grad=False) # [32, 2048, 3]
input_cropped2 = Variable(input_cropped2, requires_grad=False) # [32, 1024, 3]
input_cropped3 = Variable(input_cropped3, requires_grad=False) # [32, 512, 3]
input_cropped2 = input_cropped2.to(device)
input_cropped3 = input_cropped3.to(device)
input_cropped = [input_cropped1, input_cropped2, input_cropped3]
point_netG.eval()
with torch.no_grad():
_, _, fake = point_netG(input_cropped)
assert fake.size() == real_center.size()
fake = fake.contiguous()
real_center = real_center.contiguous()
d1, d2, _, _ = NND.nnd(fake, real_center)
cd_test_loss = 100 * (0.5 * torch.mean(d1) + 0.5 * torch.mean(d2))
sum_cd_test += cd_test_loss * B
test_loss = sum_cd_test * 1.0 / count_test
io.cprint('Ep Test [%d/%d] Loss: %.5f ' % (epoch, opt.niter, test_loss), color="b")
tb.add_scalar('Test/CD_LOSS', test_loss, epoch)
is_best = test_loss < best_test
best_test = min(best_test, test_loss)
# TODO: here assuming that test it. is same of save it.
if is_best:
best_ep = epoch
io.cprint("New best test %.5f at epoch %d" % (best_test, best_ep))
shutil.copyfile(
src=os.path.join(point_netG_saving, 'gen_' + str(epoch) + '.pth'),
dst=os.path.join(point_netG_saving, 'best_gen.pth')
)
io.cprint('[%d/%d] - Elapsed Time: {}\n'.format(
time.strftime("%M:%S", time.gmtime(time.time() - ep_start_time))) % (epoch, opt.niter))
io.cprint("Best test %.6f at epoch %d " % (best_test, best_ep))
io.cprint('-'*30)