-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathstandardise.m
85 lines (80 loc) · 2.52 KB
/
standardise.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
function [x,mx,sx] = standardise(x,dim,lim)
% X = STANDARDISE(X, DIM) computes the zscore of a matrix along dimension dim
% has similar functionality as the stats-toolbox's zscore function
% Copyright (C) 2009, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: standardise.m 7123 2012-12-06 21:21:38Z roboos $
if nargin == 1,
dim = find(size(x)>1,1,'first');
end
if nargin == 3,
error('third input argument is not used');
end
switch dim
case 1
n = size(x,dim);
mx = mean(x,dim);
x = x-mx(ones(1,n),:,:,:,:,:,:,:);
sx = sqrt(sum(abs(x).^2,dim)./n);
x = x./sx(ones(1,n),:,:,:,:,:,:,:);
case 2
n = size(x,dim);
mx = mean(x,dim);
x = x-mx(:,ones(1,n),:,:,:,:,:,:);
sx = sqrt(sum(abs(x).^2,dim)./n);
x = x./sx(:,ones(1,n),:,:,:,:,:,:);
case 3
n = size(x,dim);
mx = mean(x,dim);
x = x-mx(:,:,ones(1,n),:,:,:,:,:);
sx = sqrt(sum(abs(x).^2,dim)./n);
x = x./sx(:,:,ones(1,n),:,:,:,:,:);
case 4
n = size(x,dim);
mx = mean(x,dim);
x = x-mx(:,:,:,ones(1,n),:,:,:,:);
sx = sqrt(sum(abs(x).^2,dim)./n);
x = x./sx(:,:,:,ones(1,n),:,:,:,:);
case 5
n = size(x,dim);
mx = mean(x,dim);
x = x-mx(:,:,:,:,ones(1,n),:,:,:);
sx = sqrt(sum(abs(x).^2,dim)./n);
x = x./sx(:,:,:,:,ones(1,n),:,:,:);
case 6
n = size(x,dim);
mx = mean(x,dim);
x = x-mx(:,:,:,:,:,ones(1,n),:,:);
sx = sqrt(sum(abs(x).^2,dim)./n);
x = x./sx(:,:,:,:,:,ones(1,n),:,:);
case 7
n = size(x,dim);
mx = mean(x,dim);
x = x-mx(:,:,:,:,:,:,ones(1,n),:);
sx = sqrt(sum(abs(x).^2,dim)./n);
x = x./sx(:,:,:,:,:,:,ones(1,n),:);
case 8
n = size(x,dim);
mx = mean(x,dim);
x = x-mx(:,:,:,:,:,:,:,ones(1,n));
sx = sqrt(sum(abs(x).^2,dim)./n);
x = x./sx(:,:,:,:,:,:,:,ones(1,n));
otherwise
error('dim too large, standardise currently supports dimensionality up to 8');
end