-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtfr_computeEvokedPow.m
122 lines (94 loc) · 4.29 KB
/
tfr_computeEvokedPow.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
function [] = tfr_computeEvokedPow(sj, sessions, n)
% time-frequency using multitapers
if ~isdeployed,
addpath(genpath('~/code/MEG'));
addpath(genpath('~/code/Tools'));
addpath('~/Documents/fieldtrip');
ft_defaults; % ft_defaults should work in deployed app?
end
warning off;
if ~exist('n', 'var'), n = [1:31]; end
if ~exist('sessions', 'var'), sessions = [1 2]; end
% for running on stopos
if ischar(sj), sj = str2double(sj);
end
if ischar(sessions), session = str2double(sessions);
end
if ischar(n), n = str2double(n);
end
tic;
subjectdata = subjectspecifics(sj);
% ==================================================================
% USE CONTRAST FILES FOR ERFs
% ==================================================================
locks = {'ref', 'stim', 'resp', 'fb'};
% Only small thing here: when normalizing the evoked TFRs, you should
% use the original baseline from the total power analysis that way you
% can compare the total power and evoked power quantitatively.
% email Tobi, 27.06.2017
for session = sessions,
fprintf('running sj %d, session %d \n', sj, session);
clearvars -except sj n subjectdata locks session
% for each the contrast, get the trls we need and save a new file
for c = n,
[~, name] = getContrastIdx([], c);
for l = 1:length(locks),
% skip if this exists
if exist(sprintf('%s/P%02d-S%d_evoked_%s_%s.mat', ...
subjectdata.tfrdir, sj, session, locks{l}, name), 'file'),
continue
else
fprintf('starting %s/P%02d-S%d_evoked_%s_%s.mat \n', ...
subjectdata.tfrdir, sj, session, locks{l}, name)
end
% get the for the baseline
if ~exist('commonbl', 'var'),
load(sprintf('%s/P%02d-S%d_all_ref.mat', subjectdata.tfrdir, sj, session));
try; freq = rmfield(freq, 'cfg'); end
% samples 5, 6 and 7 are -250ms, -200ms, -150ms
catbl = cat(1, freq.powspctrm(:, :, :, 5), ...
freq.powspctrm(:, :, :, 6), freq.powspctrm(:, :, :, 7));
commonbl = nanmean(catbl);
clear freq;
end
% get the data to work with
load(sprintf('%s/P%02d-S%d_%s.mat', subjectdata.lockdir, sj, session, locks{l}));
alldata = data;
% ==================================================================
% BASELINE CORRECT SINGLE TRIAL EVENT-RELATED FIELDS
% ==================================================================
[trls, name] = getContrastIdx(alldata.trialinfo, c);
% % average over trials in the time domain
% cfg = [];
% cfg.trials = trls;
% cfg.keeptrials = 'yes';
% cfg.feedback = 'none';
% data = ft_timelockanalysis(cfg, alldata);
% % run the frequency analysis, same as for induced power
% freq = tfr_runFreqAnalysis(data);
% average over trials in the time domain
cfg = [];
cfg.trials = trls;
cfg.keeptrials = 'no';
cfg.feedback = 'none';
data = ft_timelockanalysis(cfg, alldata);
% run the frequency analysis, same as for induced power
freq = tfr_runFreqAnalysis(data);
% ==================================================================
% BASELINE CORRECT frequency spectrum
% ==================================================================
percchange = @(pow, bl) 100 .* (pow - bl) ./ bl;
tic; freq.powspctrm = bsxfun(percchange, freq.powspctrm, commonbl); toc;
% ==================================================================
% remove trial dimension
% ==================================================================
freq = ft_freqdescriptives([], freq);
freq = rmfield(freq, 'cfg');
% save
savefast(sprintf('%s/P%02d-S%d_evoked_%s_%s.mat', ...
subjectdata.tfrdir, sj, session, locks{l}, name), 'freq');
end
end
end
toc;
end