-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreproc_readMEG.m
284 lines (235 loc) · 13.4 KB
/
preproc_readMEG.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
function [] = preproc_readMEG(sj)
% Read in and apply preprocessing to the data from one subject
% 1. read in continuous data, only the chans we need
% 2. downsample to 400 Hz
% 3. match eyelink files
% 4. epoch into trials
if ~isdeployed,
addpath(genpath('~/code/MEG'));
addpath(genpath('~/code/Tools'));
addpath('~/Documents/fieldtrip');
ft_defaults; warning off;
end
if ischar(sj), sj = str2double(sj); end
% ==================================================================
% LOAD IN SUBJECT SPECIFICS AND READ DATA
% ==================================================================
subjectdata = subjectspecifics(sj);
for session = 1:length(subjectdata.session),
disp(['Analysing subject ' num2str(sj) ', session ' num2str(session)]);
for rec = subjectdata.session(session).recsorder,
clearvars -except sj session subjectdata rec
if exist(sprintf('%s/P%02d-S%d_rec%d_data.mat', ...
subjectdata.preprocdir, sj, session, rec), 'file'),
% continue;
end
% ==================================================================
% READ IN CONTINUOUS DATA
% ==================================================================
% read in the dataset as a continuous segment
disp(subjectdata.session(session).rec(rec).dataset);
cfg = [];
cfg.dataset = sprintf('%s/%s', subjectdata.rawdir, ...
subjectdata.session(session).rec(rec).dataset);
cfg.continuous = 'yes'; % read in the data
cfg.precision = 'single'; % for speed and memory issues
cfg.sj = sj;
cfg.session = session;
cfg.rec = rec;
cfg.detrend = 'no';
cfg.demean = 'yes';
% preselect only those channels that are useful
% for testing, restrict the subset of MEG sensors
cfg.channel = {'M*', ...
'EEG001', 'EEG006', 'EEG012', 'EEG018', 'EEG024', 'EEG059', ...
'HLC*', 'UPPT*', 'UADC*'};
data = ft_preprocessing(cfg);
% ==================================================================
% RENAME AND REREF EEG CHANS
% ==================================================================
data.label = strrep(data.label, 'EEG001', 'EOGright');
data.label = strrep(data.label, 'EEG006', 'EOGleft');
data.label = strrep(data.label, 'EEG012', 'EOGtop');
data.label = strrep(data.label, 'EEG018', 'EOGbottom');
data.label = strrep(data.label, 'EEG024', 'POz');
data.label = strrep(data.label, 'EEG059', 'EKG');
data.label = strrep(data.label, 'UADC002', 'EYEH');
data.label = strrep(data.label, 'UADC003', 'EYEV');
data.label = strrep(data.label, 'UADC004', 'EYEPUPIL');
% rereference horizontal EOG chans
data.trial{1}(find(~cellfun(@isempty, strfind(data.label, 'EOGright'))), :) = ...
data.trial{1}(find(~cellfun(@isempty, strfind(data.label, 'EOGright'))), :) - ...
data.trial{1}(find(~cellfun(@isempty, strfind(data.label, 'EOGleft'))), :);
data.label = strrep(data.label, 'EOGright', 'EOGH'); % rename
% rereference vertical EOG chans
data.trial{1}(find(~cellfun(@isempty, strfind(data.label, 'EOGtop'))), :) = ...
data.trial{1}(find(~cellfun(@isempty, strfind(data.label, 'EOGtop'))), :) - ...
data.trial{1}(find(~cellfun(@isempty, strfind(data.label, 'EOGbottom'))), :);
data.label = strrep(data.label, 'EOGtop', 'EOGV'); % rename
% remove the chans we dont need anymore
cfg = [];
cfg.channel = {'all', '-EOGbottom', '-EOGleft'};
data = ft_preprocessing(cfg, data);
data = rmfield(data, 'cfg'); % keep it small
% ==================================================================
% DOWNSAMPLE
% ==================================================================
oldfs = 1200; % original sampling rate of all recordings
newfs = 400; % 1/3rd the MEG sampling rate, can still see up to 120 Hz gamma
assert(data.fsample == oldfs, 'MEG data not collected at 1200 Hz');
cfg = [];
cfg.resamplefs = newfs;
cfg.detrend = 'no'; % dont detrend if i want to look at cpp
cfg.demean = 'yes'; % will subtract the baseline = mean of all data
data = ft_resampledata(cfg, data);
% ==================================================================
% PARSE EVENTS
% ==================================================================
cfg = [];
cfg.dataset = sprintf('%s/%s', subjectdata.rawdir, ...
subjectdata.session(session).rec(rec).dataset);
cfg.trialfun = 'trialfun_allevents';
% workaround for the first recording day, not all
% triggers saved... load in from behav file
if ismember(sj, [2 3 4 5 27]) && session == 1,
cfg.trialfun = 'trialfun_allevents_retrievetimings';
end
cfg.trialdef.pre = 0.51; % before reference start (including fix)
cfg.trialdef.post = 2; % after feedback
cfg.sj = sj;
cfg.session = session;
cfg.rec = rec;
cfg = ft_definetrial(cfg); % define all trials
% check that this doesn't lead to overlapping trials
for t = 1:size(cfg.trl, 1)-1,
assert(cfg.trl(t, 2) < cfg.trl(t+1, 1), 'wrong');
end
% downsample the sample idx
newfs = 400;
samplerows = find(mean(cfg.trl) > 100);
cfg.trl(:,samplerows) = round(cfg.trl(:,samplerows) * (newfs/oldfs));
% add a unique idx at the end
% subject, session, block, trialnr
idx = sj * 1000000 + cfg.trl(:, 17) * 10000 ...
+ cfg.trl(:, 16) * 100 + cfg.trl(:, 15);
% make sure all idx are unique
assert(numel(unique(idx)) == length(idx), 'idx needs to be unique!');
cfg.trl(:, end+1) = idx;
% will use this to match EL and motionenergy
trialdefinition = cfg.trl;
% ==================================================================
% DO A CHECK ON THE BLOCK NRS
% ==================================================================
nrtrls = size(trialdefinition, 1);
nblocks = length(subjectdata.session(session).rec(rec).blocks);
% check if there are known missing trials from this dataset
missingtrials = [];
for b = subjectdata.session(session).rec(rec).blocks,
try % see if there are known missed trials
missingtrials = [missingtrials ...
subjectdata.session(session).rec(rec).block(b).missingtrials];
end
end
assert((nrtrls+length(missingtrials))/60 == nblocks, ...
'mistake in subjectspecifics');
% % ==================================================================
% % MATCH WITH EYELINK
% % ==================================================================
% recdate = regexp(subjectdata.session(session).rec(rec).dataset, '201\d*', 'match');
% recdate = datenum(recdate{1}, 'yyyymmdd');
% % when no eyelink was recorded, fill those chans with zeros
% if recdate < datenum('20140515', 'yyyymmdd') || ...
% (sj == 6 && session == 1) || ...
% (sj == 31 && session == 2 && rec == 2),
% % zeros may mess up the statistics!
% disp('No EyeLink recorded, filling with NaNs');
% eyechans = find(~cellfun(@isempty, strfind(data.label, 'EYE')));
% for e = 1:length(eyechans),
% data.trial{1}(eyechans(e), :) = nan(1, size(data.trial{1}, 2));
% end
% else
% % ==================================================================
% % GET DATA FROM EYELINK
% % ==================================================================
% % on 13-07-2015, we installed the analogue link so afterwards
% % the eyelink channels are already there
% if recdate < datenum('20150713', 'yyyymmdd'), replace = 1;
% else replace = 0; end
% for b = subjectdata.session(session).rec(rec).blocks,
% % get the right session nr
% if session == 2, thissession = 5;
% elseif session == 1, thissession = 1; end
% % convert edf to asc if needed
% ascFile = dir(sprintf('%s/EL_P%d_s%d_b%d_*.asc', subjectdata.eyedir, sj, thissession, b));
% if isempty(ascFile),
% edfFile = dir(sprintf('%s/EL_P%d_s%d_b%d_*.edf', subjectdata.eyedir, sj, thissession, b));
% edfFile = sprintf('%s/%s', subjectdata.eyedir, edfFile.name);
% system(sprintf('%s %s -input -failsafe', '~/code/Tools/eye/edf2asc-linux', edfFile)); % failsafe mode for corrupted edfs
% ascFile = dir(sprintf('%s/EL_P%d_s%d_b%d_*.asc', subjectdata.eyedir, sj, thissession, b));
% end
% % read in asc file from disk
% assert(length(ascFile) == 1);
% asc = read_eyelink_ascNK_AU([subjectdata.eyedir '/' ascFile.name]);
% % workaround for lost messages: retrieved from fixtime and ref timestamp
% if sj == 10 && session == 1 && b == 1,
% timestamp = round(15889758 - 0.6380*1000);
% asc.msg{77} = ['MSG ' num2str(timestamp) ' block1_trial6_fix'];
% elseif sj == 10 && session == 1 && b == 5,
% timestamp = round(19429421 - 0.8162*1000);
% asc.msg{37} = ['MSG ' num2str(timestamp) ' block5_trial1_fix'];
% elseif sj == 11 && session == 1 && b == 1,
% timestamp = round(2179361 - 0.8530*1000);
% asc.msg{57} = ['MSG ' num2str(timestamp) ' block1_trial4_fix'];
% elseif sj == 19 && session == 1 && b == 1,
% timestamp = round(10810223 - 0.5788*1000);
% asc.msg{45} = ['MSG ' num2str(timestamp) ' block1_trial2_fix'];
% end
% % match to MEG data
% cfg = [];
% cfg.sj = sj;
% cfg.session = session;
% cfg.rec = rec;
% cfg.block = b;
% data = pupil_syncEyeMEG(cfg, data, trialdefinition, asc, replace, 0);
% end
% % ==================================================================
% % show the resulting pupil signal for the whole recording
% % ==================================================================
% clf;
% xlimrange = linspace(data.time{1}(1), data.time{1}(end), ...
% length(subjectdata.session(session).rec(rec).blocks)+1);
% for sp = 1:length(xlimrange)-1,
% subplot(7,1,sp);
% plot(data.time{1}, (data.trial{1}(find(~cellfun(@isempty, ...
% strfind(lower(data.label), 'eyepupil'))), :)));
% % define range
% xlim([xlimrange(sp) xlimrange(sp+1)]);
% ylim([-4 4]); box off; % zscored, so plot plausible range
% set(gca, 'tickdir', 'out');
% if sp == 1, title(sprintf('P%02d-S%d_rec%d', sj, session, rec), 'interpreter', 'none'); end
% end
% suplabel('Pupil signal (z)', 'y');
% print(gcf, '-dpdf', ...
% sprintf('%s/P%02d-S%d_rec%d_finalpupil.pdf', subjectdata.figsdir, ...
% sj, session, rec));
% end
% ==================================================================
% EPOCH INTO TRIALS
% ==================================================================
% load(sprintf('%s/P%02d-S%d_rec%d_contdata.mat', ...
% subjectdata.preprocdir, sj, session, rec));
assert(data.fsample == newfs, 'sampling rate error');
cfg = [];
cfg.trl = trialdefinition;
data = ft_redefinetrial(cfg, data);
% ==================================================================
% SAVE FILE
% ==================================================================
data = rmfield(data, 'cfg'); % keep the data file as small as possible
savefast(sprintf('%s/P%02d-S%d_rec%d_data.mat', ...
subjectdata.preprocdir, sj, session, rec), 'data', 'trialdefinition');
fprintf('\n\n SAVED %s/P%02d-S%d_rec%d_data.mat \n\n', ...
subjectdata.preprocdir, sj, session, rec);
end % recordings
end % session
end