-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmri_makeHeadmodel.m
122 lines (100 loc) · 4.37 KB
/
mri_makeHeadmodel.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
function [] = mri_makeHeadmodel(subjects)
% make single-sphere headmodels from individual MRI
% run this on UKE cluster
if ~isdeployed,
addpath('~/code/MEG');
addpath(genpath('~/code/Tools'));
addpath('~/Documents/fieldtrip');
ft_defaults; % ft_defaults should work in deployed app?
close all; warning off;
else
addpath('~/Documents/fieldtrip');
ft_defaults; % ft_defaults should work in deployed app?
warning off;
end
% for running on stopos
if ~exist('subjects', 'var'),
subjectdata = subjectspecifics('GAall');
subjects = subjectdata.clean;
end
% for stopos
if ischar(subjects), subjects = str2double(subjects); end
for sj = subjects,
tic;
subjectdata = subjectspecifics(sj);
% ==================================================================
% PREPARE HEADMODEL
% ==================================================================
% if ~exist(sprintf('%s/P%02d_mri.mat', subjectdata.mridir, sj), 'file'),
% V2 has the fiducials already placed at lpa, rpa, nasion
mrifiles = dir([subjectdata.mridir '/*_V2.mri']);
mrifile = sprintf('%s/%s', subjectdata.mridir, mrifiles.name);
% read in the individual
disp(mrifile);
mri = ft_read_mri(mrifile);
% reslice to isotropic voxels
cfg = [];
cfg.resolution = 1; % 1 mm
mri = ft_volumereslice(cfg, mri);
mri = ft_convert_units(mri, 'cm');
% ==================================================================
% segment the volume, this takes longest
% ==================================================================
cfg = [];
cfg.output = {'tpm'}; % brain or white/gray/csf separately?
cfg.spmversion = 'spm12';
cfg.spmmethod = 'old';
segmentedmri = ft_volumesegment(cfg, mri);
segmentedmri.anatomy = mri.anatomy; % keep this in
savefast(sprintf('%s/P%02d_mri.mat', subjectdata.mridir, sj), ...
'mri', 'segmentedmri');
% else
% load(sprintf('%s/P%02d_mri.mat', subjectdata.mridir, sj));
% end
% plot on top to check brain is in the right place
close all;
ft_sourceplot(struct('funparameter', 'gray', 'location', 'center', ...
'interactive', 'no', 'renderer', 'zbuffer'), segmentedmri);
drawnow; pause(0.1);
export_fig(gcf, sprintf('%s/P%02d_mrisegment.png', subjectdata.figsdir, sj));
% ==================================================================
% prepare headmodel
% ==================================================================
cfg = [];
cfg.method = 'singleshell'; % Guido's method
headmodel = ft_prepare_headmodel(cfg, segmentedmri);
% check if the head model is aligned with grad struct
load(sprintf('%s/P%02d-S%d_cleandata.mat', ...
subjectdata.preprocdir, sj, 1 ));
close all;
hold on
ft_plot_headmodel(headmodel, 'facealpha', 0.5)
ft_plot_sens(data.grad_avg, 'elecsize', 40, 'edgecolor', 'b');
view(18, 5);
export_fig(gcf, sprintf('%s/P%02d_headmodel.png', subjectdata.figsdir, sj));
% ==================================================================
% create the subject specific grid
% warp the individual positions to MNI space
% ==================================================================
disp('making individual grid');
cfg = [];
cfg.mri = mri;
cfg.warpmni = 'yes';
cfg.resolution = 4; % 4mm spacing
cfg.nonlinear = 'yes'; % from Joram
sourcemodel = ft_prepare_sourcemodel(cfg);
% plot the mesh that was created within the brain
close all;
hold on
ft_plot_headmodel(headmodel, 'facealpha', 0.5)
% ft_plot_sens(data.grad_avg, 'elecsize', 40, 'edgecolor', 'b');
ft_plot_mesh(sourcemodel.pos(sourcemodel.inside,:), 'vertexsize', 1, 'vertexcolor', 'red');
view(18, 5);
export_fig(gcf, sprintf('%s/P%02d_sourcemodel.png', subjectdata.figsdir, sj));
% save to disk
savefast(sprintf('%s/P%02d_headmodel.mat', subjectdata.mridir, sj), ...
'headmodel', 'sourcemodel');
fprintf('%s/P%02d_headmodel.mat \n', subjectdata.mridir, sj);
toc;
end % subjects
end % function