-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcorrcoef2.m
565 lines (491 loc) · 20.1 KB
/
corrcoef2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
function [R,sig,ci1,ci2] = corrcoef(X,Y,Mode);
% CORRCOEF calculates the correlation coefficient.
% X and Y can contain missing values encoded with NaN.
% NaN's are skipped, NaN do not result in a NaN output.
% It is garanteed that abs(R) is not larger than 1.
% A significance test to check the independence of NaN's
% is included.
% R = CORRCOEF(X [,Mode]);
% calculates the (auto-)correlation matrix of X
% R = CORRCOEF(X,Y [,Mode]);
% calculates the crosscorrelation between X and Y
%
% Mode='Pearson' or 'parametric' [default]
% gives the correlation coefficient
% also known as the "product-moment coefficient of correlation" or "Pearson's correlation" [1]
% Mode='Spearman' gives "Spearman's Rank Correlation Coefficient"
% This replaces SPEARMAN.M
% Mode='Rank' gives a nonparametric Rank Correlation Coefficient
% This replaces RANKCORR.M
%
% The result is only valid if the occurence of NaN's is uncorrelated.
% This can be checked with
% [nan_R,nan_sig]=corrcoef(X,isnan(X))
% or [nan_R,nan_sig]=corrcoef([X,Y],isnan([X,Y]))
% or [R,p,ci1,ci2,nan_sig] = CORRCOEF(...);
%
% [R,p,ci1,ci2,nansig] = CORRCOEF(...);
% R is the correlation matrix
% R(i,j) is the correlation coefficient r between X(:,i) and Y(:,j)
% p gives the significance of R
% It tests the null hypothesis that the product moment correlation coefficient is zero
% using Student's t-test on the statistic t = r sqrt(N-2)/sqrt(1-r^2)
% where N is the number of samples (Statistics, M. Spiegel, Schaum series).
% p > alpha: do not reject the Null hypothesis: "R is zero".
% p < alpha: The alternative hypothesis "R2 is larger than zero" is true with probability (1-alpha).
% ci1 lower 0.95 confidence interval
% ci2 upper 0.95 confidence interval
% nan_sig p-value whether H0: "NaN's are not correlated" could be correct
% if nan_sig < alpha, H1 ("NaNs are correlated") is very likely.
%
% Further recommandation related to the correlation coefficient
% + LOOK AT THE SCATTERPLOTS!
% + Correlation is not causation. The observed correlation between two variables
% might be due to the action of other, unobserved variables.
%
% see also: SUMSKIPNAN, COVM, COV, COR, SPEARMAN, RANKCORR, RANKS
%
% REFERENCES:
% on the correlation coefficient
% [ 1] http://mathworld.wolfram.com/CorrelationCoefficient.html
% [ 2] http://www.geography.btinternet.co.uk/spearman.htm
% [ 3] Hogg, R. V. and Craig, A. T. Introduction to Mathematical Statistics, 5th ed. New York: Macmillan, pp. 338 and 400, 1995.
% [ 4] Lehmann, E. L. and D'Abrera, H. J. M. Nonparametrics: Statistical Methods Based on Ranks, rev. ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 292, 300, and 323, 1998.
% [ 5] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 634-637, 1992
% [ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
% on the significance test of the correlation coefficient
% [11] http://www.met.rdg.ac.uk/cag/STATS/corr.html
% [12] http://www.janda.org/c10/Lectures/topic06/L24-significanceR.htm
% [13] http://faculty.vassar.edu/lowry/ch4apx.html
% [14] http://davidmlane.com/hyperstat/B134689.html
% others
% [20] http://www.tufts.edu/~gdallal/corr.htm
% $Revision: 1.28 $
% $Id: corrcoef.m,v 1.28 2004/01/30 11:03:19 schloegl Exp $
% Copyright (C) 2000-2003 by Alois Schloegl <[email protected]>
% This function is part of the NaN-toolbox
% http://www.dpmi.tu-graz.ac.at/~schloegl/matlab/NaN/
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% Features:
% + interprets NaN's as missing value
% + Pearson's correlation
% + Spearman's rank correlation
% + Rank correlation (non-parametric, non-Spearman)
% + is fast, using an efficient algorithm O(n.log(n)) for calculating the ranks
% + significance test for null-hypthesis: r=0
% + confidence interval included
% - rank correlation works for cell arrays, too (no check for missing values).
% + compatible with Octave and Matlab
% + checks independence of missing values (NaNs)
if nargin==1
Y = [];
Mode='Pearson';
elseif nargin==0
fprintf(2,'Error CORRCOEF: Missing argument(s)\n');
elseif nargin==2
if ~isnumeric(Y)
Mode=Y;
Y=[];
else
Mode='Pearson';
end;
end;
Mode=[Mode,' '];
FLAG_WARNING = warning; % save warning status
warning('off');
[r1,c1]=size(X);
if ~isempty(Y)
[r2,c2]=size(Y);
if r1~=r2,
fprintf(2,'Error CORRCOEF: X and Y must have the same number of observations (rows).\n');
return;
end;
NN = real(~isnan(X)')*real(~isnan(Y));
else
[r2,c2]=size(X);
NN = real(~isnan(X)')*real(~isnan(X));
end;
%%%%% generate combinations using indices for pairwise calculation of the correlation
YESNAN = any(isnan(X(:))) | any(isnan(Y(:)));
if isempty(Y),
IX = ones(c1)-diag(ones(c1,1));
[jx, jy ] = find(IX);
[jxo,jyo] = find(IX);
R = eye(c1);
else
IX = zeros(c1+c2);
IX(1:c1,c1+(1:c2)) = 1;
[jx,jy] = find(IX);
IX = ones(c1,c2);
[jxo,jyo] = find(IX);
R = repmat(nan,c1,c2);
end;
if strcmp(lower(Mode(1:7)),'pearson');
% see http://mathworld.wolfram.com/CorrelationCoefficient.html
if ~YESNAN,
[S,N,SSQ] = sumskipnan(X,1);
if ~isempty(Y),
[S2,N2,SSQ2] = sumskipnan(Y,1);
CC = X'*Y;
M1 = S./N;
M2 = S2./N2;
cc = CC./NN - M1'*M2;
R = cc./sqrt((SSQ./N-M1.*M1)'*(SSQ2./N2-M2.*M2));
else
CC = X'*X;
M = S./N;
cc = CC./NN - M'*M;
v = SSQ./N - M.*M; %max(N-1,0);
R = cc./sqrt(v'*v);
end;
else
if ~isempty(Y),
X = [X,Y];
end;
for k = 1:length(jx),
%ik = ~any(isnan(X(:,[jx(k),jy(k)])),2);
ik = ~isnan(X(:,[jx(k)])) & ~isnan(X(:,[jy(k)]));
[s,n,s2] = sumskipnan(X(ik,[jx(k),jy(k)]),1);
v = (s2-s.*s./n)./n;
cc = X(ik,jx(k))'*X(ik,jy(k));
cc = cc/n(1) - prod(s./n);
%r(k) = cc./sqrt(prod(v));
R(jxo(k),jyo(k)) = cc./sqrt(prod(v));
end;
end
elseif strcmp(lower(Mode(1:4)),'rank');
% see [ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
if ~YESNAN,
if isempty(Y)
R = corrcoef(ranks(X));
else
R = corrcoef(ranks(X),ranks(Y));
end;
else
if ~isempty(Y),
X = [X,Y];
end;
for k = 1:length(jx),
%ik = ~any(isnan(X(:,[jx(k),jy(k)])),2);
ik = ~isnan(X(:,[jx(k)])) & ~isnan(X(:,[jy(k)]));
il = ranks(X(ik,[jx(k),jy(k)]));
R(jxo(k),jyo(k)) = corrcoef(il(:,1),il(:,2));
end;
X = ranks(X);
end;
elseif strcmp(lower(Mode(1:8)),'spearman');
% see [ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
if ~isempty(Y),
X = [X,Y];
end;
n = repmat(nan,c1,c2);
if ~YESNAN,
iy = ranks(X); % calculates ranks;
for k = 1:length(jx),
[R(jxo(k),jyo(k)),n(jxo(k),jyo(k))] = sumskipnan((iy(:,jx(k)) - iy(:,jy(k))).^2); % NN is the number of non-missing values
end;
else
for k = 1:length(jx),
%ik = ~any(isnan(X(:,[jx(k),jy(k)])),2);
ik = ~isnan(X(:,[jx(k)])) & ~isnan(X(:,[jy(k)]));
il = ranks(X(ik,[jx(k),jy(k)]));
% NN is the number of non-missing values
[R(jxo(k),jyo(k)),n(jxo(k),jyo(k))] = sumskipnan((il(:,1) - il(:,2)).^2);
end;
X = ranks(X);
end;
R = 1 - 6 * R ./ (n.*(n.*n-1));
elseif strcmp(lower(Mode(1:7)),'partial');
fprintf(2,'Error CORRCOEF: use PARTCORRCOEF \n',Mode);
return;
elseif strcmp(lower(Mode(1:7)),'kendall');
fprintf(2,'Error CORRCOEF: mode ''%s'' not implemented yet.\n',Mode);
return;
else
fprintf(2,'Error CORRCOEF: unknown mode ''%s''\n',Mode);
end;
if nargout<2,
warning(FLAG_WARNING); % restore warning status
return;
end;
% CONFIDENCE INTERVAL
if exist('flag_implicit_significance')==2,
alpha = flag_implicit_significance;
else
alpha = 0.01;
end;
% fprintf(1,'CORRCOEF: confidence interval is based on alpha=%f\n',alpha);
% SIGNIFICANCE TEST
tmp = 1 - R.*R;
tmp(tmp<0) = 0; % prevent tmp<0 i.e. imag(t)~=0
t = R.*sqrt(max(NN-2,0)./tmp);
if exist('t_cdf')>1;
sig = t_cdf(t,NN-2);
elseif exist('tcdf')>1;
sig = tcdf(t,NN-2);
else
fprintf('CORRCOEF: significance test not completed because of missing TCDF-function\n')
sig = repmat(nan,size(R));
end;
sig = 2 * min(sig,1 - sig);
if nargout<3,
warning(FLAG_WARNING); % restore warning status
return;
end;
tmp = R;
%tmp(ix1 | ix2) = nan; % avoid division-by-zero warning
z = log((1+tmp)./(1-tmp))/2; % Fisher's z-transform;
%sz = 1./sqrt(NN-3); % standard error of z
sz = sqrt(2)*erfinv(1-2*alpha)./sqrt(NN-3); % confidence interval for alpha of z
ci1 = tanh(z-sz);
ci2 = tanh(z+sz);
%ci1(isnan(ci1))=R(isnan(ci1)); % in case of isnan(ci), the interval limits are exactly the R value
%ci2(isnan(ci2))=R(isnan(ci2));
if (nargout<5) | ~YESNAN,
sig_nan = [];
warning(FLAG_WARNING); % restore warning status
return;
end;
%%%%% ----- check independence of NaNs (missing values) -----
%[nan_R,nan_sig,nan_ci1,nan_ci2] = corrcoef(X,isnan(X))
[nan_R, nan_sig] = corrcoef(X,isnan(X));
% remove diagonal elements, because these have not any meaning %
nan_sig(isnan(nan_R)) = nan;
if any(nan_sig(:) < alpha),
tmp = nan_sig(:); % Hack to skip NaN's in MIN(X)
min_sig = min(tmp(~isnan(tmp))); % Necessary, because Octave returns NaN rather than min(X) for min(NaN,X)
fprintf(1,'CORRCOFF Warning: Missing Values (i.e. NaNs) are not independent of data (p-value=%f)\n', min_sig);
fprintf(1,' Its recommended to remove all samples with any missing value (NaN).\n');
fprintf(1,' In the following combinations the null-hypotheses (NaNs are uncorrelated) must be rejected.\n');
[ix,iy] = find(nan_sig < alpha);
disp([ix,iy])
end;
%%%%% ----- end of independence check ------
warning(FLAG_WARNING); % restore warning status
return;
end
function r = ranks(X,Mode);
% RANKS gives the rank of each element in a vector.
% This program uses an advanced algorithm with averge effort O(m.n.log(n))
% NaN in the input yields NaN in the output.
%
% r = ranks(X)
% if X is a vector, return the vector of ranks of X adjusted for ties.
% if X is matrix, the rank is calculated for each column.
% r = ranks(X,'traditional')
% implements the traditional algorithm with O(n^2) computational
% and O(n^2) memory effort
% r = ranks(X,'mtraditional')
% implements the traditional algorithm with O(n^2) computational
% and O(n) memory effort
% r = ranks(X,'advanced ')
% implements an advanced algorithm with O(n*log(n)) computational
% and O(n.log(n)) memory effort
%
% see also: CORRCOEF, SPEARMAN, RANKCORR
%
% REFERENCES:
% --
% Version 1.26 Date: 06 Sep 2002
% Copyright (C) 2000-2002 by Alois Schloegl <[email protected]>
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% Features:
% + is fast, uses an efficient algorithm for the rank correlation
% + computational effort is O(n.log(n)) instead of O(n^2)
% + memory effort is O(n.log(n)), instead of O(n^2).
% Now, the ranks of 8000 elements can be easily calculated
% + NaN's in the input yield NaN in the output
% + compatible with Octave and Matlab
% + traditional method is also implemented for comparison.
if nargin<2, Mode='advanced '; end;
[N,M]=size(X);
if (N==1) & (M>0)
X = X';
[N,M] = size(X);
end;
if strcmp(Mode(1:min(11,length(Mode))),'traditional'), % traditional, needs O(m.n^2)
% this method was originally implemented by: KH <[email protected]>
% Comment of KH: This code is rather ugly, but is there an easy way to get the ranks adjusted for ties from sort?
r = zeros(size(X));
for i = 1:M;
p = X(:, i(ones(1,N)));
r(:,i) = [(sum (p < p') + (sum (p == p') + 1) / 2)'];
end;
% r(r<1)=NaN;
elseif strcmp(Mode(1:min(12,length(Mode))),'mtraditional'), % advanced
% + memory effort is lower
r = zeros(size(X));
for k = 1:N;
for i = 1:M;
r(k,i) = [(sum (X(:,i) < X(k,i)) + (sum (X(:,i) == X(k,i)) + 1) / 2)];
end;
end;
% r(r<1)=NaN;
elseif strcmp(Mode(1:min(11,length(Mode))),'advanced '), % advanced
% + uses sorting, hence needs only O(m.n.log(n)) computations
% [tmp,ix] = sort([X,Y]);
% [tmp,r] = sort(ix); % r yields rank.
% but because sort does not work accordingly for cell arrays,
% and DIM argument not supported by Octave
% and DIM argument does not work for cell-arrays in Matlab
% we sort each column separately:
r = zeros(size(X));
n = N;
for k = 1:M,
[sX,ix] = sort(X(:,k));
[tmp,r(:,k)] = sort(ix); % r yields the rank of each element
% identify multiple occurences (not sure if this important, but implemented to be compatible with traditional version)
if isnumeric(X)
n=sum(~isnan(X(:,k)));
end;
x = [0;find(sX~=[sX(2:N);n])]; % for this reason, cells are not implemented yet.
d = find(diff(x)>1);
% correct rank of multiple occurring elements
for l = 1:length(d),
t = (x(d(l))+1:x(d(l)+1))';
r(ix(t),k) = mean(t);
end;
end;
tmp = version;
if str2num(tmp(1))*1000+str2num(tmp(3))*100+str2num(tmp(5:6))<=2018,
for k1=1:size(X,1),
for k2=1:size(X,2), % needed for 2.0.17
if isnan(X(k1,k2)),
r(k1,k2) = nan;
end;
end;
end;
else
r(isnan(X)) = nan;
end;
elseif strcmp(Mode,'=='),
% the results of both algorithms are compared for testing.
%
% if the Mode-argument is omitted, both methods are applied and
% the results are compared. Once the advanced algorithm is confirmed,
% it will become the default Mode.
r = ranks(X,'advanced ');
r(isnan(r)) = 1/2;
if N>100,
r1 = ranks(X,'mtraditional'); % Memory effort is lower
else
r1 = ranks(X,'traditional');
end;
if ~all(all(r==r1)),
fprintf(2,'WARNING RANKS: advanced algorithm does not agree with traditional one\n Please report to <[email protected]>\n');
r = r1;
end;
r(isnan(X)) = nan;
end;
end
function [o,count,SSQ,S4M] = sumskipnan(i,DIM)
% SUMSKIPNAN adds all non-NaN values.
%
% All NaN's are skipped; NaN's are considered as missing values.
% SUMSKIPNAN of NaN's only gives O; and the number of valid elements is return.
% SUMSKIPNAN is also the elementary function for calculating
% various statistics (e.g. MEAN, STD, VAR, RMS, MEANSQ, SKEWNESS,
% KURTOSIS, MOMENT, STATISTIC etc.) from data with missing values.
% SUMSKIPNAN implements the DIMENSION-argument for data with missing values.
% Also the second output argument return the number of valid elements (not NaNs)
%
% Y = sumskipnan(x [,DIM])
% [Y,N,SSQ] = sumskipnan(x [,DIM])
%
% DIM dimension
% 1 sum of columns
% 2 sum of rows
% default or []: first DIMENSION with more than 1 element
%
% Y resulting sum
% N number of valid (not missing) elements
% SSQ sum of squares
%
% The mean & standard error of the mean and
% Y./N & sqrt((SSQ-Y.*Y./N)./(N.*max(N-1,0)));
% the mean square & the standard error of the mean square and
% SSQ./N & sqrt((S4M-SSQ.^2./N)./(N.*max(N-1,0)))
%
% features:
% - can deal with NaN's (missing values)
% - implements dimension argument.
% - compatible with Matlab and Octave
%
% see also: SUM, NANSUM, MEAN, STD, VAR, RMS, MEANSQ,
% SSQ, MOMENT, SKEWNESS, KURTOSIS, SEM
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% $Revision: 1.23 $
% $Id: sumskipnan.m,v 1.23 2003/10/31 18:15:38 schloegl Exp $
% Copyright (C) 2000-2003 by Alois Schloegl <[email protected]>
if nargin<2,
DIM = [];
end;
% an efficient implementation in C of the following lines
% could significantly increase performance
% only one loop and only one check for isnan is needed
% An MEX-Implementation is available in sumskipnan.cpp
%
% Outline of the algorithm:
% for { k=1,o=0,count=0; k++; k<N}
% if ~isnan(i(k))
% { o += i(k);
% count += 1;
% tmp = i(k)*i(k)
% o2 += tmp;
% o3 += tmp.*tmp;
% };
if isempty(DIM),
DIM=min(find(size(i)>1));
if isempty(DIM), DIM = 1; end;
end;
if nargout>1,
count = sum(~isnan(i),DIM);
end;
%if flag_implicit_skip_nan, %%% skip always NaN's
i(isnan(i)) = 0;
%end;
o = sum(i,DIM);
if nargout>2,
i = real(i).^2 + imag(i).^2;
SSQ = sum(i,DIM);
if nargout>3,
S4M = sum(i.^2,DIM);
end;
end;
end