-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclassify.vgglike.py
133 lines (119 loc) · 4.93 KB
/
classify.vgglike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from Params import *
from load_data import *
from preprocess import *
from vgg_like_convnet import *
from alexnet import *
from vgg16_keras import *
from pretrained import *
import h5py
import keras
import theano
#for visualization:
from keras.utils.visualize_util import plot
from keras.optimizers import SGD, Adagrad, Adadelta
import pickle
import numpy as np
import sys
def main():
#load data
#X_train,Y_train,X_valid,Y_valid,X_test=load_data(training_dir,valid_dir,test_dir,labels,sample)
#preprocess data by mean subtraction and normalization
#X_train,X_valid,X_test=preprocess(X_train,X_valid,X_test)
#del X_train
#del X_test
#or load pre-processed data from a previously saved hdf5 file:
data=h5py.File('imagenet.hdf5','r')
X_train=np.asarray(data['X_train'])
Y_train=np.asarray(data['Y_train'])
X_valid=np.asarray(data['X_valid'])
Y_valid=np.asarray(data['Y_valid'])
X_test=np.asarray(data['X_test'])
print(Y_valid.shape)
print(X_valid.shape)
#print "loaded data from pickle"
#OPTIONAL: save loaded/pre-processed data to a pickle to save time in the future
'''
print "saving preprocessed data to hdf5 file"
f=h5py.File('imagenet.hdf5','w')
dset_xtrain=f.create_dataset("X_train",data=X_train)
dset_ytrain=f.create_dataset("Y_train",data=Y_train)
dset_xvalid=f.create_dataset("X_valid",data=X_valid)
dset_yvalid=f.create_dataset("Y_valid",data=Y_valid)
dset_xtest=f.create_dataset("X_test",data=X_test)
f.flush()
f.close()
print "done saving pre-processed data to hdf5 file!"
'''
#train a VGG-like convent
vgg_model,history=vgg_train(X_train,Y_train)
train_scores=vgg_evaluate(vgg_model,X_train,Y_train)
print "VGG-like net training scores:"+str(train_scores)
valid_scores=vgg_evaluate(vgg_model,X_valid,Y_valid)
print "VGG-like net validation scores:"+str(valid_scores)
#Visualize the pretty model
plot(vgg_model,to_file="vgg_like_convnet.png")
predictions=vgg_model.predict(X_test,verbose=1)
class_predictions=vgg_model.predict_classes(X_test)
#save all the outputs!
sys.setrecursionlimit(50000)
output=open('vgg_like_results.pkl','w')
pickle.dump(history,output)
pickle.dump(train_scores,output)
pickle.dump(valid_scores,output)
pickle.dump(predictions,output)
pickle.dump(class_predictions,output)
output.close()
#train a Keras version of the ConvNet implemented in Assignment#2 in class
#TODO
#train AlexNet
'''
alexnet_model=alexnet_train(X_train,Y_train)
train_scores=alexnet_evaluate(alexnet_model,X_train,Y_train)
print "AlexNet training scores:"+str(train_scores)
valid_scores=alexnet_evaluate(alexnet_model,X_valid,Y_valid)
print "AlexNet validation scores:"+str(valid_scores)
#Visualize the pretty model
plot(alexnet_model,to_file="alexnet_like_convnet.png")
#VGG-16 with pretrained weights
vgg16_model = VGG_16('vgg16_weights.h5')
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
vgg16_model.compile(optimizer=sgd, loss='categorical_crossentropy')
print "compiled vgg16"
train_scores=vgg16_evaluate(vgg16_model,X_train,Y_train)
print "vgg16 training scores:"+str(train_scores)
valid_scores=vgg16_evaluate(vgg16_model,X_valid,Y_valid)
print "vgg16 validation scores:"+str(valid_scores)
#Visualize the pretty model
plot(vgg16_model,to_file="vgg16_convnet.png")
#assignment 3 convnet with pre-trained weights
#pretrained_model = pretrained('pretrained_model.h5')
pretrained_model=pretrained_finetune('assignment3_weights.hdf5')
sgd = SGD(lr=1e-1)#, decay=1e-6, momentum=0.9, nesterov=True)
#adagrad=Adagrad()
pretrained_model.compile(optimizer='adadelta', loss='categorical_crossentropy')
#do some training!
print "compilation finished, fitting model"
history=pretrained_model.fit(X_train, Y_train, 128, 20,verbose=1,show_accuracy=True)
pretrained_model.save_weights("assignment3_weights.hdf5",overwrite=True)
train_scores=pretrained_evaluate(pretrained_model,X_train,Y_train)
print "pretrained model training scores:"+str(train_scores)
valid_scores=pretrained_evaluate(pretrained_model,X_valid,Y_valid)
print "pretrained validation scores:"+str(valid_scores)
#Visualize the pretty model
plot(pretrained_model,to_file="pretrained_convnet.png")
#run the model on our test data
print "getting predictions:"
predictions=pretrained_model.predict(X_test,verbose=1)
print "getting class predictions:"
class_predictions=pretrained_model.predict(X_test)
#save all the outputs!
output=open('pretrained_results.pkl','wb')
pickle.dump(history,output)
pickle.dump(train_scores,output)
pickle.dump(valid_scores,output)
pickle.dump(predictions,output)
pickle.dump(class_predictions,output)
output.close()
'''
if __name__=="__main__":
main()