forked from cai4cai/XCLThesisTemplate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSupplementary_material.tex
641 lines (622 loc) · 45.8 KB
/
Supplementary_material.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
% \appendix
% \appendix
% \chapter{Appendices}\label{chap:Appendices}
% \renewcommand{\thesection}{\Alph{section}}
% % \section{}\label{ap:MChyperparams}
% % \begin{table}[htb!]
% % \centering
% % \caption{Table displaying single layer model hyperparameters fitted to Monte Carlo datasets of each refractive index (black) with available literature values (blue).}
% % \begin{tabular}{|cc|cc|c|cc|}
% % \hline
% % \multirow{2}{*}{Model} & \multirow{2}{*}{Parameter} & \multicolumn{5}{c|}{Refractive index} \\
% % & & \multicolumn{2}{c|}{1.33} & 1.35 & \multicolumn{2}{c|}{1.44} \\
% % \hline
% % \multirow{6}{*}{Yudovsky 2009} & $M_1$ & \multicolumn{2}{c|}{-0.0253} & -0.0257 & -0.0254 & \textcolor{blue}{-0.0247} \\
% % & $M_2$ & \multicolumn{2}{c|}{0.0166} & 0.0159 & 0.0135 & \textcolor{blue}{0.0137} \\
% % & $M_3$ & \multicolumn{2}{c|}{2.873} & 2.873 & 2.873 & \textcolor{blue}{2.873} \\
% % & $M_4$ & \multicolumn{2}{c|}{1.64} & 1.64 & 1.64 & \textcolor{blue}{1.64} \\
% % & $M_5$ & \multicolumn{2}{c|}{0.0123} & 0.0124 & 0.0120 & \textcolor{blue}{0.0116} \\
% % & $M_6$ & \multicolumn{2}{c|}{1.02} & 1.02 & 1.02 & \textcolor{blue}{1.02} \\
% % \hline
% % \multirow{3}{*}{Jacques 1999} & $M_1$ & 7.0188 & \textcolor{blue}{6.3744} & 7.1185 & \multicolumn{2}{c|}{7.0438} \\
% % & $M_2$ & 0.2464 & \textcolor{blue}{0.35688} & 0.2750 & \multicolumn{2}{c|}{0.6902} \\
% % & $M_3$ & 4.2241 & \textcolor{blue}{3.4739} & 4.2571 & \multicolumn{2}{c|}{4.1449} \\
% % \hline
% % \multirow{3}{*}{Modified Beer-Lambert} & $M_1$ & \multicolumn{2}{c|}{0.283} & 0.308 & \multicolumn{2}{c|}{0.256} \\
% % & $M_2$ & \multicolumn{2}{c|}{0.009} & 0.008 & \multicolumn{2}{c|}{0.014} \\
% % & $M_3$ & \multicolumn{2}{c|}{0.203} & 0.311 & \multicolumn{2}{c|}{0.274} \\
% % \hline
% % \end{tabular}
% % \label{tb:fittedmodelparams}
% % \end{table}
% % \FloatBarrier
% %
% % \section{}\label{ap:badYudovsky}
% \section{Investigating single-layer models}
% \begin{figure}[htb!]
% \centering
% \includegraphics[width=0.65\textwidth]{Figure_A1}
% \caption{Example of difference in forwards model similarity to Monte Carlo simulation (blue solid) between the literature extensive Yudovsky 2009 (red dashed) and simplified Yudovsky 2009 (green dotted) models using ground truth variables for a refractive index of 1.44.}
% \label{fig:badYudovsky}
% \end{figure}
% \FloatBarrier
% % \section{}\label{ap:MCforwardsr}
% % \begin{figure}[htb!]
% % \centering
% % \includegraphics[width=0.7\textwidth]{forwards_v_MC_1.44.pdf}
% % \caption{Regression lines between the Monte Carlo simulated spectra and the analytical models: Yudovsky 2009 (green dotted), Jacques 1999 (red dashed), and Modified Beer-Lambert (orange dot-dashed) for a refractive index of 1.44.}
% % \label{fig:forwardsregressionMC}
% % \end{figure}
% % \FloatBarrier
% % \section{}\label{ap:MCfullinverseparams}
% \begin{table}[htb!]
% \centering
% \caption{The gradient $m$, offset $c$, Pearson $r$, and $p$ values of the linear regression line between the fitted tissue parameters and their ground truth displayed with their median (inter-quartile range) absolute percentage errors $APE$. This is shown for each variable and for each refractive index dataset when extracted by fitting Yudovsky 2009 (Y), Jacques 1999 (J), or Modified Beer-Lambert (BL) to the Monte-Carlo dataset. All presented to 3s.f.}
% \begin{tabular}{|ccc|ccccc|}
% \hline
% Parameter & Model & Refractive & $m$ & $c$ & $r$ & $p$ & $APE$ \\
% & & index & (ideal =1) & (ideal = 0) & (ideal = 1) & (ideal = 0) & (\%)\\
% \hline
% % \multicolumn{3}{|c|}{Ideal} & 1 & 0 & 1 & 0 & dependent on variable \\
% % \hline
% \multirow{9}{*}{$StO_2$} & \multirow{3}{*}{Y} & 1.33 & 1.00 & -0.373 & 1.00 & 2.39$\times 10^{-150}$ & 1.23 (3.01) \\
% & & 1.35 & 0.999 & 0.0672 & 1.00 & 4.93$\times 10^{-149}$ & 0.815 (2.10) \\
% & & 1.44 & 0.999 & -0.074 & 1.00 & 4.87$\times 10^{-153}$ & 0.913 (1.92) \\
% \cline{2-8}
% & \multirow{3}{*}{J} & 1.33 & 1.00 & 1.733 & 0.979 & 1.44$\times 10^{-69}$ & 3.40 (9.43) \\
% & & 1.35 & 1.03 & 1.03 & 0.980 & 2.18$\times 10^{-70}$ & 3.97 (12.9) \\
% & & 1.44 & 1.04 & 0.207 & 0.986 & 1.64$\times 10^{-77}$ & 2.21 (4.97) \\
% \cline{2-8}
% & \multirow{3}{*}{BL} & 1.33 & 0.712 & 1.56 & 0.855 & 1.17$\times 10^{-29}$ & 39.4 (38.5) \\
% & & 1.35 & 0.679 & 3.92 & 0.838 & 3.87$\times 10^{-30}$ & 33.3 (31.4) \\
% & & 1.44 & 0.766 & -2.73 & 0.838 & 1.70$\times 10^{-27}$ & 43.0 (49.8) \\
% \hline
% \multirow{9}{*}{$f_{blood}$} & \multirow{3}{*}{Y} & 1.33 & 0.976 & -0.0206 & 0.980 & 2.76$\times 10^{-70}$ & 5.74 (6.19) \\
% & & 1.35 & 0.962 & 0.0365 & 0.975 & 8.29$\times 10^{-66}$ & 4.58 (6.98) \\
% & & 1.44 & 0.927 & 0.152 & 0.982 & 3.60$\times 10^{-73}$ & 5.68 (6.08) \\
% \cline{2-8}
% & \multirow{3}{*}{J} & 1.33 & 1.17 & 0.187 & 0.915 & 2.21$\times 10^{-40}$ & 9.51 (28.7) \\
% & & 1.35 & 1.16 & 0.167 & 0.912 & 9.18$\times 10^{-40}$ & 11.0 (20.1) \\
% & & 1.44 & 1.15 & 0.141 & 0.928 & 1.10$\times 10^{-43}$ & 7.26 (16.2) \\
% \cline{2-8}
% & \multirow{3}{*}{BL} & 1.33 & 0.487 & 0.431 & 0.641 & 7.16$\times 10^{-13}$ & 46.4 (28.2) \\
% & & 1.35 & 0.461 & 0.478 & 0.575 & 3.99$\times 10^{-10}$ & 45.8 (41.8) \\
% & & 1.44 & 0.339 & 0.652 & 0.582 & 2.05$\times 10^{-10}$ & 49.6 (32.2) \\
% \hline
% \multirow{9}{*}{$a$} & \multirow{3}{*}{Y} & 1.33 & 0.948 & 0.145 & 0.993 & 2.58$\times 10^{-93}$ & 5.06 (5.92) \\
% & & 1.35 & 0.968 & -0.192 & 0.995 & 4.71$\times 10^{-102}$ & 4.05 (5.57) \\
% & & 1.44 & 1.05 & -2.59 & 0.992 & 1.67$\times 10^{-89}$ & 3.90 (4.73) \\
% \cline{2-8}
% & \multirow{3}{*}{J} & 1.33 & 0.909 & 7.23 & 0.952 & 4.13$\times 10^{-52}$ & 7.09 (22.0) \\
% & & 1.35 & 0.929 & 5.72 & 0.966 & 3.04$\times 10^{-59}$ & 9.16 (16.2) \\
% & & 1.44 & 0.934 & 5.88 & 0.959 & 1.05$\times 10^{-55}$ & 4.54 (15.3) \\
% \cline{2-8}
% & \multirow{3}{*}{BL} & 1.33 & -0.197 & 74.7 & -0.554 & 2.23$\times 10^{-9}$ & 63.8 (133) \\
% & & 1.35 & -0.142 & 73.1 & -0.448 & 2.89$\times 10^{-6}$ & 103 (206) \\
% & & 1.44 & -0.488 & 78.1 & -0.706 & 2.28$\times 10^{-16}$ & 40.0 (114) \\
% \hline
% \multirow{9}{*}{$b$} & \multirow{3}{*}{Y} & 1.33 & 0.978 & 0.0663 & 0.998 & 3.53$\times 10^{-121}$ & 1.38 (2.47) \\
% & & 1.35 & 0.989 & 0.0314 & 0.998 & 5.55$\times 10^{-125}$ & 1.82 (2.85) \\
% & & 1.44 & 0.991 & 0.0185 & 0.999 & 1.33$\times 10^{-140}$ & 1.50 (2.92) \\
% \cline{2-8}
% & \multirow{3}{*}{J} & 1.33 & 0.977 & 0.216 & 0.910 & 3.76$\times 10^{-39}$ & 3.45 (16.0) \\
% & & 1.35 & 1.01 & 0.212 & 0.906 & 2.35$\times 10^{-38}$ & 5.29 (25.2) \\
% & & 1.44 & 1.01 & 0.120 & 0.963 & 1.15$\times 10^{-57}$ & 2.86 (9.11) \\
% \cline{2-8}
% & \multirow{3}{*}{BL} & 1.33 & -0.104 & 0.360 & -0.413 & 1.92$\times 10^{-5}$ & 95.2 (4.85) \\
% & & 1.35 & -0.0888 & 0.303 & -0.394 & 5.02$\times 10^{-5}$ & 94.1 (5.60) \\
% & & 1.44 & -0.0859 & 0.327 & -0.446 & 3.38$\times 10^{-6}$ & 95.4 (5.68) \\
% \hline
% \end{tabular} \label{tb:singleparamtrendsfull}
% \end{table}
% \FloatBarrier
% % \section{}\label{ap:backgroundmua}
% % \section{}\label{ap:atrend}
% % \section{}\label{ap:regressionphantomforward}
% % \begin{figure}[htb!]
% % \centering
% % \begin{subfigure}{0.8\textwidth}
% % \includegraphics[width=\textwidth]{forwards_v_measured.pdf}
% % \caption{}
% % \label{fig:forwardsregressionphantomquant}
% % \end{subfigure}
% % \begin{subfigure}{0.8\textwidth}
% % \includegraphics[width=\textwidth]{forwards_v_measured_norm.pdf}
% % \caption{}
% % \label{fig:forwardsregressionphantomnorm}
% % \end{subfigure}
% % \caption{Regression lines between the measured spectra and the analytical models: Yudovsky 2009 (green
% % dotted), Jacques 1999 (red dashed), and Modified Beer-Lambert (orange dot-dashed) for quantitative (\ref{fig:forwardsregressionphantomquant}) or relative (\ref{fig:forwardsregressionphantomnorm}) spectra.}
% % \label{fig:forwardsregressionphantom}
% % \end{figure}
% % \FloatBarrier
% \begin{table}[htb!]
% \centering
% \caption{The regression gradient $m$, offset $c$, Pearson $r$, and $p$ values, and the median (inter-quartile range) absolute percentage errors $APE$ for each variable when extracted by fitting Yudovsky 2009 (Y), Jacques 1999 (J), or Modified Beer-Lambert (BL) to measured tissue phantom spectra for both quantitative and relative data. All presented to 3s.f.}
% \begin{tabular}{|ccc|ccccc|}
% \hline
% Parameter & Model & Quantitative (Q) & $m$ & $c$ & $r$ & $p$ & $APE$ \\
% & & or Relative (R) & (ideal =1) & (ideal = 0) & (ideal = 1) & (ideal = 0) & (\%)\\
% \hline
% \multirow{6}{*}{$AR1$} & \multirow{2}{*}{Y} & Q & 1.00 & 0.0132 & 0.997 & 5.75$\times 10^{-38}$ & 1.59 (11.0) \\
% & & R & 1.01 & -0.0166 & 0.998 & 6.72$\times 10^{-40}$ & 4.42 (8.31) \\
% \cline{2-8}
% & \multirow{2}{*}{J} & Q & 0.976 & 0.0481 & 0.989 & 6.16$\times 10^{-29}$ & 7.02 (20.2) \\
% & & R & 0.905 & 0.0442 & 0.934 & 2.67$\times 10^{-16}$ & 10.4 (23.7) \\
% \cline{2-8}
% & \multirow{2}{*}{BL} & Q & 0.850 & -0.148 & 0.756 & 1.50$\times 10^{-7}$ & 83.5 (57.0) \\
% & & R & 0.730 & -0.107 & 0.939 & 7.84$\times 10^{-17}$ & 50.0 (31.4)\\
% \hline
% \multirow{6}{*}{$AR14$} & \multirow{2}{*}{Y} & Q & 1.00 & -0.0140 & 0.997 & 5.75$\times 10^{-38}$ & 1.36 (8.69) \\
% & & R & 1.01 & 0.00675 & 0.998 & 6.72$\times 10^{-40}$ & 2.48 (5.76) \\
% \cline{2-8}
% & \multirow{2}{*}{J} & Q & 0.976 & -0.0244 & 0.989 & 6.16$\times 10^{-29}$ & 7.02 (16.3) \\
% & & R & 0.905 & 0.0508 & 0.934 & 2.67$\times 10^{-16}$ & 6.34 (10.0) \\
% \cline{2-8}
% & \multirow{2}{*}{BL} & Q & 0.850 & 0.297 & 0.756 & 1.50$\times 10^{-7}$ & 80.4 (72.1) \\
% & & R & 0.730 & 0.377 & 0.939 & 7.84$\times 10^{-17}$ & 37.5 (66.7) \\
% \hline
% \multirow{6}{*}{$I$} & \multirow{2}{*}{Y} & Q & 2.41 & 1.09 & 0.648 & 2.61$\times 10^{-5}$ & 125 (276) \\
% & & R & 0.998 & 1.37 & 0.310 & 6.96$\times 10^{-2}$ & 93.9 (30.0) \\
% \cline{2-8}
% & \multirow{2}{*}{J} & Q & 1.62 & 3.73 & 0.540 & 8.11$\times 10^{-4}$ & 122 (288) \\
% & & R & -0.767 & 4.76 & -0.451 & 6.61$\times 10^{-3}$ & 100 (55.7) \\
% \cline{2-8}
% & \multirow{2}{*}{BL} & Q & -1.75 & 11.8 & -0.705 & 2.29$\times 10^{-6}$ & 100 (172) \\
% & & R & -0.484 & 3.94 & -0.157 & 3.66$\times 10^{-1}$ & 100 (0.00) \\
% \hline
% \multirow{6}{*}{$c_{tot}$} & \multirow{2}{*}{Y} & Q & 1.46 & 9.25 & 0.500 & 2.23$\times 10^{-3}$ & 102 (226) \\
% & & R & 0.917 & 4.85 & 0.303 & 7.72$\times 10^{-2}$ & 66.1 (46.8) \\
% \cline{2-8}
% & \multirow{2}{*}{J} & Q & 2.00 & 6.76 & 0.684 & 5.95$\times 10^{-6}$ & 100 (260) \\
% & & R & -0.265 & 27.8 & -0.0959 & 5.84$\times 10^{-1}$ & 89.7 (267) \\
% \cline{2-8}
% & \multirow{2}{*}{BL} & Q & 0.356 & 3.02 & 0.721 & 1.01$\times 10^{-6}$ & 35.2 (21.6) \\
% & & R & 0.309 & 3.23 & 0.689 & 4.63$\times 10^{-6}$ & 44.6 (23.6) \\
% \hline
% \end{tabular}
% \label{tb:phantomparamsfull}
% \end{table}
% \FloatBarrier
% %
% % \section{}\label{ap:3dyefigures}
% %
% % \FloatBarrier
% % \section{}\label{ap:3dyetable}
% % \FloatBarrier
% % \begin{table}
% % \centering
% % \caption{The Pearson $r$ (bold if $p<0.05$) of the linear regression line between the fitted tissue parameters and their ground truth displayed with their median (inter-quartile range) absolute percentage errors. This is shown for each variable and for each refractive index dataset when extracted by fitting Yudovsky 2009 (Y), Jacques 1999 (J), or Modified Beer-Lambert (BL) to the Monte-Carlo dataset. All presented to 3s.f.}
% % \end{table}
% % The mismatch of the forwards model using literature hyperparameters and ground truth tissue parameters to a Monte Carlo simulation of refractive index 1.33 can be seen in an example spectrum in Figure \ref{fig:badJacques}, alongside the improved results from our refitted hyperparameters.
% % \begin{figure}[h!]
% % \centering
% % \includegraphics[width=0.65\textwidth]{Jacques_Eg_litvfit}
% % \caption{Example of difference in forwards model similarity to Monte Carlo simulation (blue solid) between modelled spectra using literature Jacques 1999 hyperparameters (red dashed) and our refitted hyperparameters (green dotted) using ground truth variables for a refractive index of 1.33.}
% % \label{fig:badJacques}
% % \end{figure}
% %
% % \begin{figure}[h!]
% % \centering
% % \begin{subfigure}{0.25\textwidth}
% % \includegraphics[width=\textwidth]{DiffuseR_img}
% % \caption{}
% % \label{fig:spectrophotometer_dR_img}
% % \end{subfigure}
% % \begin{subfigure}{0.25\textwidth}
% % \includegraphics[width=\textwidth]{DiffuseT_img}
% % \caption{}
% % \label{fig:spectrophotometer_dT_img}
% % \end{subfigure}
% % \caption{Images of measurement set-up for diffuse reflectance measurements of 1cm depth gelatin based tissue phantoms (\ref{fig:spectrophotometer_dR_img}) and diffuse transmittance measurements of 5mm depth gelatin based tissue phantoms (\ref{fig:spectrophotometer_dT_img}).}
% % \label{fig:spectrophotometer_img}
% % \end{figure}
% % \begin{table}
% % \centering
% % \caption{The Pearson $r$ (bold if $p<0.05$) of the linear regression line between the fitted tissue parameters and their ground truth displayed with their median (inter-quartile range) absolute percentage errors. This is shown for each variable and for each refractive index dataset when extracted by fitting Yudovsky 2009 (Y), Jacques 1999 (J), or Modified Beer-Lambert (BL) to the Monte-Carlo dataset. All presented to 3s.f.}
% % \begin{tabular}{|ccc|cc|}
% % \hline
% % parameter & model & refractive & $r$ & median (inter-quartile range) \\
% % & & index & & absolute percentage error (\%)\\
% % \hline
% % \multirow{9}{*}{$StO_2$} & \multirow{3}{*}{Y} & 1.33 & \textbf{0.999} & 1.56 (2.56) \\
% % & & 1.35 & \textbf{0.999} & 1.95 (2.88) \\
% % & & 1.44 & \textbf{0.999} & 1.86 (3.32) \\
% % \cline{2-5}
% % & \multirow{3}{*}{J} & 1.33 & \textbf{0.964} & 5.39 (17.1) \\
% % & & 1.35 & \textbf{0.965} & 10.1 (21.2) \\
% % & & 1.44 & \textbf{0.963} & 5.22 (19.9) \\
% % \cline{2-5}
% % & \multirow{3}{*}{BL} & 1.33 & \textbf{0.648} & 52.4 (76.5) \\
% % & & 1.35 & \textbf{0.694} & 71.3 (57.6) \\
% % & & 1.44 & \textbf{0.735} & 54.2 (70.8) \\
% % \hline
% % \multirow{9}{*}{$f_{blood}$} & \multirow{3}{*}{Y} & 1.33 & \textbf{0.992} & 4.38 (6.30) \\
% % & & 1.35 & \textbf{0.985} & 4.13 (6.86) \\
% % & & 1.44 & \textbf{0.984} & 4.36 (5.98) \\
% % \cline{2-5}
% % & \multirow{3}{*}{J} & 1.33 & \textbf{0.947} & 9.79 (8.55) \\
% % & & 1.35 & \textbf{0.924} & 9.63 (11.68) \\
% % & & 1.44 & \textbf{0.930} & 8.04 (9.10) \\
% % \cline{2-5}
% % & \multirow{3}{*}{BL} & 1.33 & \textbf{0.745} & 28.2 (32.6) \\
% % & & 1.35 & \textbf{0.505} & 54.1 (31.0) \\
% % & & 1.44 & \textbf{0.710} & 27.8 (29.3) \\
% % \hline
% % \multirow{9}{*}{$a$} & \multirow{3}{*}{Y} & 1.33 & \textbf{0.996} & 4.61 (5.03) \\
% % & & 1.35 & \textbf{0.995} & 4.79 (5.23) \\
% % & & 1.44 & \textbf{0.992} & 3.46 (4.45) \\
% % \cline{2-5}
% % & \multirow{3}{*}{J} & 1.33 & \textbf{0.974} & 6.70 (7.15) \\
% % & & 1.35 & \textbf{0.965} & 7.32 (11.3) \\
% % & & 1.44 & \textbf{0.970} & 4.51 (8.94) \\
% % \cline{2-5}
% % & \multirow{3}{*}{BL} & 1.33 & \textbf{-0.686} & 88.0 (132) \\
% % & & 1.35 & \textbf{-0.455} & 96.4 (180) \\
% % & & 1.44 & \textbf{-0.747} & 86.6 (131) \\
% % \hline
% % \multirow{9}{*}{$b$} & \multirow{3}{*}{Y} & 1.33 & \textbf{0.994} & 2.08 (4.32) \\
% % & & 1.35 & \textbf{0.994} & 3.78 (7.52) \\
% % & & 1.44 & \textbf{0.997} & 3.24 (5.14) \\
% % \cline{2-5}
% % & \multirow{3}{*}{J} & 1.33 & \textbf{0.918} & 14.3 (33.9) \\
% % & & 1.35 & \textbf{0.948} & 18.7 (36.0) \\
% % & & 1.44 & \textbf{0.928} & 11.8 (31.6) \\
% % \cline{2-5}
% % & \multirow{3}{*}{BL} & 1.33 & \textbf{-0.345} & 96.0 (54.2) \\
% % & & 1.35 & \textbf{-0.354} & 94.6 (11.6) \\
% % & & 1.44 & \textbf{-0.341} & 94.3 (97.6) \\
% % \hline
% % \end{tabular}
% % \label{tb:singleparamtrends}
% % \end{table}
% \section{Investigating two layer model using uniform wavelength weighting}\label{ap:2layeruniform}
% This section presents a similar inverse problem fitting analysis to the results presented in Chapter \ref{chap:2layer}, however the wavelength weighting used here is uniform. There are limited changes to the conclusions so further discussion is not provided, however it should be noted that the visual fitting of the 525-585nm of the NIST spectra is worsened using this configuration.
% \subsection{Simulated data}
% \begin{figure}[htbp]
% \centering
% \begin{subfigure}{0.49\textwidth}
% \includegraphics[width=\textwidth]{StO2_twolayer_MC_uniform.pdf}
% \caption{Quantitative}
% \label{fig:egparamsStO2MCu}
% \end{subfigure}
% \begin{subfigure}{0.49\textwidth}
% \includegraphics[width=\textwidth]{StO2_twolayer_MC_norm_uniform.pdf}
% \caption{Relative}
% \label{fig:egparamsStO2MCnormu}
% \end{subfigure}
% \begin{subfigure}{0.49\textwidth}
% \includegraphics[width=\textwidth]{2layer_parameter_exploration_uniform.pdf}
% \caption{Quantitative}
% \label{fig:egparamsfailureMCu}
% \end{subfigure}
% \begin{subfigure}{0.49\textwidth}
% \includegraphics[width=\textwidth]{2layer_parameter_norm_uniform.pdf}
% \caption{Relative}
% \label{fig:egparamsfailureMCnormu}
% \end{subfigure}
% \caption{Top: Example $StO_2$ recovery from fitting Yudovsky 2009 two layer model to Monte Carlo simulated diffuse reflectance and the associated linear regression line between the extracted and ground truth parameters for quantitative (left) or relative (right) data. Bottom: a depiction of the impact of 3 key physiological parameters on success of $StO_2$ extraction by visualising the Pearson $r$ correlation coefficient for the extracted $StO_2$ compared to the ground-truth for simulations with this range of parameters extracted using Yudovsky 2009 two-layer model for quantitative (left) or relative (right) data.}
% \label{fig:MC2layeruniform}
% \end{figure}
% \begin{table}[h]
% \centering
% \caption{The regression gradient $m$, offset $c$, Pearson $r$ (bold if $p<0.05$), and the mean ($\pm$ standard deviation) absolute percentage errors for each variable when extracted by fitting Yudovsky 2009 two layer model to the quantitative or relative Monte-Carlo diffuse reflectance dataset with uniform weighting of wavelengths. All presented to 3s.f.}
% \begin{tabular}{|c|c|cccc|}
% \hline
% parameter & Quantitative & $m$ & $c$ & $r$ & mean ($\pm$ standard deviation) \\
% & or Relative & (ideal =1) & (ideal = 0) & (ideal = 1) & absolute percentage error (\%)\\
% \hline
% \multirow{2}{*}{$StO_2$} & Quantitative & 0.866 & 8.81 & \textbf{0.821} & 14.2($\pm$ 23.1) \\
% & Relative & 0.893 & 6.18 & \textbf{0.842} & 13.0($\pm$ 22.2) \\
% \hline
% \multirow{2}{*}{$f_{blood}$} & Quantitative & 0.956 & 0.160 & \textbf{0.856} & 25.1($\pm$ 25.3) \\
% & Relative & 0.839 & 3.35$\times 10^{-2}$ & \textbf{0.706} & 30.9($\pm$ 25.9) \\
% \hline
% \multirow{2}{*}{$f_{mel}$} & Quantitative & 0.838 & 1.17 & \textbf{0.875} & 23.9($\pm$ 18.6) \\
% & Relative & 0.497 & 5.45 & \textbf{0.531} & 35.4($\pm$ 25.0) \\
% \hline
% \multirow{2}{*}{$L_1$} & Quantitative & 0.840 & 31.3 & \textbf{0.824} & 37.1($\pm$ 39.1) \\
% & Relative & 0.827 & 34.9 & \textbf{0.805} & 39.0($\pm$ 36.6) \\
% \hline
% \multirow{2}{*}{$a$} & Quantitative & 0.682 & 13.3 & \textbf{0.586} & 19.4($\pm$ 14.6) \\
% & Relative & 0.515 & 20.5 & \textbf{0.389} & 26.1($\pm$ 22.3) \\
% \hline
% \multirow{2}{*}{$b$} & Quantitative & 0.804 & 0.338 & \textbf{0.781} & 14.2($\pm$ 16.4) \\
% & Relative & 0.729 & 0.521 & \textbf{0.586} & 25.1($\pm$ 26.7) \\
% \hline
% \end{tabular}
% \label{tb:doubleparamtrendsuniform}
% \end{table}
% \FloatBarrier
% \subsection{NIST}
% \begin{figure}[h]
% \centering
% \begin{subfigure}{0.49\textwidth}
% \includegraphics[width=\textwidth]{NIST_Eg_uniform.pdf}
% \caption{Quantitative}
% \label{fig:egspectraNISTu}
% \end{subfigure}
% \begin{subfigure}{0.49\textwidth}
% \includegraphics[width=\textwidth]{NIST_Eg_norm_uniform.pdf}
% \caption{Relative}
% \label{fig:egspectraNISTnormu}
% \end{subfigure}
% \begin{subfigure}{0.49\textwidth}
% \includegraphics[width=\textwidth]{StO2_boxplot_uniform.pdf}
% \caption{Quantitative}
% \label{fig:egparamStO2NISTu}
% \end{subfigure}
% \begin{subfigure}{0.49\textwidth}
% \includegraphics[width=\textwidth]{StO2_boxplot_norm_uniform.pdf}
% \caption{Relative}
% \label{fig:egparamStO2NISTnormu}
% \end{subfigure}
% \caption{Top: Examples of the Yudovsky 2009 two layer model fitted to NIST skin total reflectance spectra (\figref{fig:egspectraNIST}) for quantitative (left) or relative (right) data. Bottom: Box and violin plots displaying the retrieved $StO_2$ parameters from fitting the Yudovsky 2009 two layer model to the mean NIST skin spectra, where the triangle shows the mean of the fitted $StO_2$ and the circle shows a literature healthy dermis $StO_2$ value \cite{VanManen2021} for quantitative (left) or relative (right) data.}
% \label{fig:NISTuniform}
% \end{figure}
% \begin{table}[h]
% \centering
% \caption{The mean and standard deviation for each variable when extracted by fitting Yudovsky 2009 two layer model to the quantitative or relative NIST skin reflectance dataset, compared to literature parameters for healthy individuals. All presented to 3s.f.}
% \begin{tabular}{|c|ccc|ccc|}
% \hline
% \multirow{2}{*}{Parameter} & \multicolumn{3}{c}{Extracted from NIST dataset} & \multicolumn{3}{|c|}{Literature} \\
% \cline{2-7}
% & Quantitative & \multirow{2}{*}{Mean} & Standard & \multirow{2}{*}{Mean} & Standard & \multirow{2}{*}{Source} \\
% & or Relative & & deviation & & deviation & \\
% \hline
% \multirow{2}{*}{$StO_2$ (\%)} & Quantitative & 62.1 & 14.5 & \multirow{2}{*}{78.3, 71} & \multirow{2}{*}{12.9, 16} & \multirow{2}{*}{\cite{VanManen2021}, \cite{Nishidate2011}} \\ %van manen http://dx.doi.org/10.21037/qims-21-46
% & Relative & 41.7 & 11.0 & & & \\ %Noninvasive imaging of human skin hemodynamicsusing a digital red-green-blue camera
% \hline
% $f_{blood}$ (\%) & Quantitative & 0.875 & 0.443 & \multirow{2}{*}{1.1} & \multirow{2}{*}{0.4} & \multirow{2}{*}{\cite{Nishidate2011}} \\ %Noninvasive imaging of human skin hemodynamicsusing a digital red-green-blue camera
% & Relative & 1.66 & 0.996 & & & \\
% \hline
% $f_{mel}$ (\%) & Quantitative & 2.57 & 3.95 & \multirow{2}{*}{4.3} & \multirow{2}{*}{1.2} & \multirow{2}{*}{\cite{Nishidate2011}} \\ %Noninvasive imaging of human skin hemodynamicsusing a digital red-green-blue camera
% & Relative & 3.03 & 2.18 & & & \\
% \hline
% $L_1$ ($\mu$m) & Quantitative & 66.2 & 20.5 & \multirow{2}{*}{75.5} & \multirow{2}{*}{N/A} & \multirow{2}{*}{\cite{Lintzeri2022}} \\ %https://www.webofscience.com/wos/woscc/full-record/WOS:000782026000001
% & Relative & 147 & 8.74 & & & \\
% \hline
% $a$ (\textrm{$cm^{-1}$}) & Quantitative & 70.0 & 2.29$\times 10^{-8}$ & \multirow{2}{*}{46.0} & \multirow{2}{*}{13.7} & \multirow{2}{*}{\cite{Jacques2013}} \\ %Jacques review
% & Relative & 45.7 & 11.4 & & & \\
% \hline
% $b$ (a.u.) & Quantitative & 1.01 & 0.382 & \multirow{2}{*}{1.421} & \multirow{2}{*}{0.517} & \multirow{2}{*}{\cite{Jacques2013}} \\ %Jacques review
% & Relative & 2.46 & 0.221 & & & \\
% \hline
% \end{tabular}
% \label{tb:NISTparamsuniform}
% \end{table}
%
% \section{Investigating simulated HSI camera data}
% \begin{table}[bhp]
% \centering
% \caption{Mean ($\pm$ standard deviation) $NRMSE$ (3.d.p.) between the simulated camera responses of each forwards spectrum from each model and each of 100 Monte Carlo simulated spectra using the same ground truth variable parameters for each refractive index dataset for quantitative data at a variety of noise levels (0, 1\%, 3\%). This is presented with the Pearson $r$ (bold if Pearson $p < 0.05$) for the linear regression between all forwards spectra against Monte Carlo simulated spectra for each refractive index dataset and each analytical model. All metrics are evaluated for the wavelength region of 450-600nm.}
% \begin{tabular}{|cc|c|ccc|ccc|}
% \hline
% Model & Layers & Refractive & \multicolumn{3}{|c}{$NRMSE$} & \multicolumn{3}{|c|}{$r$} \\
% & & index & 0 & 1\% & 3\% & 0 & 1\% & 3\% \\
% \hline
% \multirow{3}{*}{\shortstack{Yudovsky\\ 2009}} & \multirow{3}{*}{1} & 1.33 & \shortstack{0.012 \\($\pm$ 0.006)} & \shortstack{0.077 \\($\pm$ 0.054)} & \shortstack{0.204 \\($\pm$ 0.128)} & \textbf{1.000} & \textbf{0.996} & \textbf{0.959} \\
% & & 1.35 & \shortstack{0.011 \\($\pm$ 0.005)} & \shortstack{0.088 \\($\pm$ 0.063)} & \shortstack{0.241 \\($\pm$ 0.150)} & \textbf{1.000} & \textbf{0.993} & \textbf{0.944} \\
% & & 1.44 & \shortstack{0.009 \\($\pm$ 0.004)} & \shortstack{0.082 \\($\pm$ 0.057)} & \shortstack{0.224 \\($\pm$ 0.125)} & \textbf{1.000} & \textbf{0.993} & \textbf{0.942} \\
% \hline
% \multirow{3}{*}{\shortstack{Jacques\\ 1999}} & \multirow{3}{*}{1} & 1.33 & \shortstack{0.033 \\($\pm$ 0.063)} & \shortstack{0.086 \\($\pm$ 0.084)} & \shortstack{0.206 \\($\pm$ 0.137)} & \textbf{1.000} & \textbf{0.995} & \textbf{0.959} \\
% & & 1.35 & \shortstack{0.040 \\($\pm$ 0.071)} & \shortstack{0.100 \\($\pm$ 0.092)} & \shortstack{0.242 \\($\pm$ 0.153)} & \textbf{0.999} & \textbf{0.992} & \textbf{0.943} \\
% & & 1.44 & \shortstack{0.026 \\($\pm$ 0.046)} & \shortstack{0.089 \\($\pm$ 0.077)} & \shortstack{0.227 \\($\pm$ 0.130)} & \textbf{1.000} & \textbf{0.993} & \textbf{0.942} \\
% \hline
% \shortstack{Yudovsky\\ 2009} & 2 & 1.44 & \shortstack{0.166 \\($\pm$ 0.133)} & \shortstack{0.482 \\($\pm$ 0.289)} & \shortstack{0.738 \\($\pm$ 0.294)} & \textbf{0.992} & \textbf{0.971} & \textbf{0.829} \\
% \hline
% \end{tabular}
% \label{ap:forwardsHSIMCq}
% \end{table}
% \FloatBarrier
% \begin{table}[bhp]
% \centering
% \caption{Mean ($\pm$ standard deviation) $NRMSE$ (3.d.p.) between the simulated camera responses of each forwards spectrum from each model and each of 100 Monte Carlo simulated spectra using the same ground truth variable parameters for each refractive index dataset for relative data at a variety of noise levels (0, 1\%, 3\%). This is presented with the Pearson $r$ (bold if Pearson $p < 0.05$) for the linear regression between all forwards spectra against Monte Carlo simulated spectra for each refractive index dataset and each analytical model. All metrics are evaluated for the wavelength region of 450-600nm.}
% \begin{tabular}{|cc|c|ccc|ccc|}
% \hline
% Model & Layers & Refractive & \multicolumn{3}{|c}{$NRMSE$} & \multicolumn{3}{|c|}{$r$} \\
% & & index & 0 & 1\% & 3\% & 0 & 1\% & 3\% \\
% \hline
% \multirow{3}{*}{\shortstack{Yudovsky\\ 2009}} & \multirow{3}{*}{1} & 1.33 & \shortstack{0.004 \\($\pm$ 0.003)} & \shortstack{0.071 \\($\pm$ 0.057)} & \shortstack{0.203 \\($\pm$ 0.142)} & \textbf{1.000} & \textbf{0.908} & \textbf{0.559} \\
% & & 1.35 & \shortstack{0.003 \\($\pm$ 0.003)} & \shortstack{0.085 \\($\pm$ 0.063)} & \shortstack{0.237 \\($\pm$ 0.150)} & \textbf{1.000} & \textbf{0.886} & \textbf{0.530} \\
% & & 1.44 & \shortstack{0.003 \\($\pm$ 0.002)} & \shortstack{0.075 \\($\pm$ 0.044)} & \shortstack{0.212 \\($\pm$ 0.118)} & \textbf{1.000} & \textbf{0.916} & \textbf{0.602} \\
% \hline
% \multirow{3}{*}{\shortstack{Jacques\\ 1999}} & \multirow{3}{*}{1} & 1.33 & \shortstack{0.018 \\($\pm$ 0.026)} & \shortstack{0.073 \\($\pm$ 0.062)} & \shortstack{0.204 \\($\pm$ 0.144)} & \textbf{0.992} & \textbf{0.899} & \textbf{0.545} \\
% & & 1.35 & \shortstack{0.021 \\($\pm$ 0.029)} & \shortstack{0.087 \\($\pm$ 0.064)} & \shortstack{0.239 \\($\pm$ 0.152)} & \textbf{0.990} & \textbf{0.884} & \textbf{0.519} \\
% & & 1.44 & \shortstack{0.014 \\($\pm$ 0.021)} & \shortstack{0.076 \\($\pm$ 0.045)} & \shortstack{0.212 \\($\pm$ 0.117)} & \textbf{0.995} & \textbf{0.915} & \textbf{0.605} \\
% \hline
% \shortstack{Yudovsky\\ 2009} & 2 & 1.44 & \shortstack{0.033 \\($\pm$ 0.026)} & \shortstack{0.428 \\($\pm$ 0.286)} & \shortstack{0.684 \\($\pm$ 0.286)} & \textbf{0.991} & \textbf{0.270} & -0.007 \\
% \hline
% \end{tabular}
% \label{ap:forwardsHSIMCr}
% \end{table}
% \FloatBarrier
% \begin{table}[htb!]
% \centering
% \caption{The Pearson $r$ values (bold if $p<0.05$) of the linear regression line between the fitted tissue parameters and their ground truth displayed with their median (inter-quartile range) absolute percentage errors. This is shown for each variable and for each refractive index dataset when extracted by fitting Yudovsky 2009 single layer (Y1), Jacques 1999 (J), or Yudovsky 2009 double layer (Y2) to the quantitative Monte-Carlo datasets at each noise level (0, 1\%, 3\%). All presented to 3s.f.}
% \begin{tabular}{|ccc|ccc|ccc|}
% \hline
% Parameter & Model & Refractive & \multicolumn{3}{c}{$r$} & \multicolumn{3}{|c|}{median (inter-quartile range)} \\
% & & index & \multicolumn{3}{c}{} & \multicolumn{3}{|c|}{absolute percentage error (\%)} \\
% & & & 0 & 1\% & 3\% & 0 & 1\% & 3\% \\
% \hline
% \multirow{7}{*}{$StO_2$} & \multirow{3}{*}{Y1} & 1.33 & \textbf{0.999} & \textbf{0.794} & \textbf{0.403} & 2.25 (5.70) & 40.2 (74.5) & 79.5 (75.6) \\
% & & 1.35 & \textbf{0.999} & \textbf{0.668} & \textbf{0.628} & 1.41 (3.91) & 29.4 (27.4) & 54.4 (79.3) \\
% & & 1.44 & \textbf{0.999} & \textbf{0.825} & \textbf{0.369} & 1.90 (2.83) & 24.8 (60.7) & 85.2 (69.9) \\
% \cline{2-9}
% & \multirow{3}{*}{J} & 1.33 & \textbf{0.967} & \textbf{0.797} & \textbf{0.435} & 5.28 (19.1) & 30.7 (59.3) & 83.1 (71.2) \\
% & & 1.35 & \textbf{0.962} & \textbf{0.807} & \textbf{0.629} & 4.57 (24.0) & 31.2 (64.4) & 51.4 (81.4) \\
% & & 1.44 & \textbf{0.978} & \textbf{0.829} & \textbf{0.402} & 4.06 (11.3) & 22.5 (60.8) & 83.6 (77.7) \\
% \cline{2-9}
% & Y2 & 1.44 & \textbf{0.751} & 0.0612 & 0.0194 & 16.8 (25.5) & 66.5 (51.5) & 68.9 (55.3) \\
% \hline
% \multirow{7}{*}{$f_{blood}$} & \multirow{3}{*}{Y1} & 1.33 & \textbf{0.980} & \textbf{0.743} & \textbf{0.552} & 2.25 (5.70) & 27.1 (33.7) & 45.7 (43.5) \\
% & & 1.35 & \textbf{0.974} & \textbf{0.668} & \textbf{0.386} & 4.26 (7.53) & 29.4 (27.4) & 51.6 (52.5) \\
% & & 1.44 & \textbf{0.984} & \textbf{0.667} & \textbf{0.450} & 5.83 (6.97) & 23.7 (38.9) & 51.8 (44.3)\\
% \cline{2-9}
% & \multirow{3}{*}{J} & 1.33 & \textbf{0.918} & \textbf{0.768} & \textbf{0.604} & 8.68 (23.6) & 26.6 (35.3) & 42.6 (49.4) \\
% & & 1.35 & \textbf{0.912} & \textbf{0.736} & \textbf{0.432} & 11.3 (18.8) & 27.7 (34.8) & 48.2 (45.9) \\
% & & 1.44 & \textbf{0.924} & \textbf{0.719} & \textbf{0.498} & 7.14 (15.9) & 25.0 (39.4) & 46.7 (42.4) \\
% \cline{2-9}
% & Y2 & 1.44 & \textbf{0.872} & 0.147 & 0.0329 & 23.1 (25.4) & 115 (197) & 160 (291) \\
% \hline
% \multirow{7}{*}{$a$} & \multirow{3}{*}{Y1} & 1.33 & \textbf{0.993} & \textbf{0.828} & \textbf{0.677} & 5.34 (6.11) & 19.1 (25.1) & 29.0 (40.5) \\
% & & 1.35 & \textbf{0.995} & \textbf{0.824} & \textbf{0.627} & 3.61 (5.95) & 20.0 (25.5) & 36.7 (39.7) \\
% & & 1.44 & \textbf{0.992} & \textbf{0.773} & \textbf{0.558} & 3.85 (5.16) & 18.7 (34.7) & 35.1 (39.1) \\
% \cline{2-9}
% & \multirow{3}{*}{J} & 1.33 & \textbf{0.955} & \textbf{0.817} & \textbf{0.682} & 6.33 (20.5) & 19.5 (25.3) & 25.9 (37.6) \\
% & & 1.35 & \textbf{0.968} & \textbf{0.815} & \textbf{0.641} & 8.47 (17.0) & 20.0 (26.4) & 37.1 (38.6) \\
% & & 1.44 & \textbf{0.961} & \textbf{0.759} & \textbf{0.542} & 4.69 (14.0) & 17.1 (31.8) & 30.4 (39.9) \\
% \cline{2-9}
% & Y2 & 1.44 & \textbf{0.674} & 0.00365 & 0.0666 & 17.9 (13.8) & 37.8 (26.8) & 37.4 (26.1) \\
% \hline
% \multirow{9}{*}{$b$} & \multirow{3}{*}{Y1} & 1.33 & \textbf{0.996} & \textbf{0.689} & \textbf{0.370} & 2.28 (3.17) & 25.4 (54.9) & 55.5 (72.2) \\
% & & 1.35 & \textbf{0.996} & \textbf{0.682} & \textbf{0.426} & 2.24 (3.94) & 36.0 (75.1) & 58.2 (69.6) \\
% & & 1.44 & \textbf{0.998} & \textbf{0.751} & \textbf{0.516} & 2.63 (3.63) & 21.8 (46.8) & 52.0 (68.3) \\
% \cline{2-9}
% & \multirow{3}{*}{J} & 1.33 & \textbf{0.874} & \textbf{0.679} & \textbf{0.410} & 5.13 (12.8) & 30.0 (54.0) & 58.0 (74.6) \\
% & & 1.35 & \textbf{0.838} & \textbf{0.646} & \textbf{0.446} & 6.22 (34.2) & 40.4 (74.2) & 57.8 (71.4) \\
% & & 1.44 & \textbf{0.934} & \textbf{0.757} & \textbf{0.515} & 5.70 (16.5) & 23.7 (52.9) & 50.4 (71.4) \\
% \cline{2-9}
% & Y2 & 1.44 & \textbf{0.735} & 0.169 & -0.00249 & 16.8 (19.3) & 56.4 (48.2) & 61.3 (54.9) \\
% \hline
% $f_mel$ & Y2 & 1.44 & \textbf{0.852} & \textbf{0.622} & \textbf{0.477} & 28.0 (31.7) & 85.1 (128) & 90.1 (120) \\
% \hline
% $L_1$ & Y2 & 1.44 & \textbf{0.824} & \textbf{0.401} & 0.123 & 36.7 (40.9) & 69.5 (83.1) & 84.5 (96.0) \\
% \hline
% \end{tabular}
% \label{ap:backwardsHSIMCq}
% \end{table}
% \begin{table}[htb!]
% \centering
% \caption{The Pearson $r$ values (bold if $p<0.05$) of the linear regression line between the fitted tissue parameters and their ground truth displayed with their median (inter-quartile range) absolute percentage errors. This is shown for each variable and for each refractive index dataset when extracted by fitting Yudovsky 2009 single layer (Y1), Jacques 1999 (J), or Yudovsky 2009 double layer (Y2) to the relative Monte-Carlo datasets at each noise level (0, 1\%, 3\%). All presented to 3s.f.}
% \begin{tabular}{|ccc|ccc|ccc|}
% \hline
% Parameter & Model & Refractive & \multicolumn{3}{c}{$r$} & \multicolumn{3}{|c|}{median (inter-quartile range)} \\
% & & index & \multicolumn{3}{c}{} & \multicolumn{3}{|c|}{absolute percentage error (\%)} \\
% & & & 0 & 1\% & 3\% & 0 & 1\% & 3\% \\
% \hline
% \multirow{7}{*}{$StO_2$} & \multirow{3}{*}{Y1} & 1.33 & \textbf{0.999} & \textbf{0.799} & \textbf{0.420} & 2.32 (5.27) & 28.3 (74.8) & 65.1 (70.9) \\
% & & 1.35 & \textbf{0.998} & \textbf{0.741} & \textbf{0.550} & 1.92 (2.93) & 40.6 (46.1) & 45.0 (77.2) \\
% & & 1.44 & \textbf{0.999} & \textbf{0.752} & \textbf{0.410} & 2.23 (3.06) & 41.4 (81.1) & 76.7 (77.6) \\
% \cline{2-9}
% & \multirow{3}{*}{J} & 1.33 & \textbf{0.968} & \textbf{0.809} & \textbf{0.444} & 6.44 (17.5) & 31.3 (55.6) & 64.3 (73.7) \\
% & & 1.35 & \textbf{0.959} & \textbf{0.758} & \textbf{0.568} & 4.41 (21.1) & 37.0 (51.8) & 59.6 (77.5) \\
% & & 1.44 & \textbf{0.977} & \textbf{0.755} & \textbf{0.447} & 4.77 (10.3) & 40.3 (82.5) & 76.7 (77.6) \\
% \cline{2-9}
% & Y2 & 1.44 & \textbf{0.679} & \textbf{0.198} & 0.0448 & 18.8 (30.9) & 63.0 (45.6) & 75.1 (62.5) \\
% \hline
% \multirow{7}{*}{$f_{blood}$} & \multirow{3}{*}{Y1} & 1.33 & \textbf{0.851} & \textbf{0.584} & \textbf{0.653} & 16.5 (27.3) & 36.3 (49.2) & 56.7 (42.7) \\
% & & 1.35 & \textbf{0.840} & \textbf{0.579} & \textbf{0.328} & 16.0 (22.1) & 46.9 (47.2) & 59.6 (50.8) \\
% & & 1.44 & \textbf{0.870} & \textbf{0.547} & \textbf{0.535} & 16.7 (23.9) & 47.5 (40.1) & 51.1 (42.7)\\
% \cline{2-9}
% & \multirow{3}{*}{J} & 1.33 & \textbf{0.854} & \textbf{0.707} & \textbf{0.723} & 24.2 (36.4) & 30.6 (47.2) & 47.1 (45.5) \\
% & & 1.35 & \textbf{0.836} & \textbf{0.727} & \textbf{0.386} & 20.3 (28.7) & 34.6 (47.0) & 55.1 (60.6) \\
% & & 1.44 & \textbf{0.859} & \textbf{0.681} & \textbf{0.644} & 24.1 (28.5) & 39.6 (50.6) & 45.0 (52.0) \\
% \cline{2-9}
% & Y2 & 1.44 & \textbf{0.609} & 0.189 & 0.0466 & 37.6 (56.2) & 97.7 (142) & 108 (152) \\
% \hline
% \multirow{7}{*}{$a$} & \multirow{3}{*}{Y1} & 1.33 & \textbf{0.695} & \textbf{0.213} & 0.181 & 23.0 (32.6) & 44.5 (60.6) & 71.1 (44.9) \\
% & & 1.35 & \textbf{0.774} & \textbf{0.213} & 0.0827 & 21.8 (29.6) & 60.9 (61.3) & 66.2 (54.2) \\
% & & 1.44 & \textbf{0.703} & 0.160 & \textbf{0.558} & 26.2 (29.5) & 62.3 (53.7) & 35.1 (39.1) \\
% \cline{2-9}
% & \multirow{3}{*}{J} & 1.33 & \textbf{0.524} & \textbf{0.493} & 0.144 & 29.2 (49.5) & 38.2 (60.8) & 56.9 (54.6) \\
% & & 1.35 & \textbf{0.677} & \textbf{0.261} & 0.00248 & 30.3 (52.5) & 45.7 (56.1) & 61.0 (60.6) \\
% & & 1.44 & \textbf{0.431} & -0.00356 & 0.166 & 27.7 (44.1) & 57.7 (58.9) & 51.7 (53.1) \\
% \cline{2-9}
% & Y2 & 1.44 & \textbf{0.333} & 0.0199 & -0.100 & 27.0 (24.6) & 36.7 (21.4) & 42.2 (28.7) \\
% \hline
% \multirow{9}{*}{$b$} & \multirow{3}{*}{Y1} & 1.33 & \textbf{0.993} & \textbf{0.633} & \textbf{0.380} & 3.66 (6.61) & 34.6 (50.6) & 65.1 (69.8) \\
% & & 1.35 & \textbf{0.992} & \textbf{0.591} & \textbf{0.426} & 3.38 (6.76) & 44.1 (67.5) & 58.2 (69.6) \\
% & & 1.44 & \textbf{0.996} & \textbf{0.607} & \textbf{0.426} & 3.31 (8.11) & 39.5 (60.6) & 51.2 (73.8) \\
% \cline{2-9}
% & \multirow{3}{*}{J} & 1.33 & \textbf{0.893} & \textbf{0.634} & \textbf{0.325} & 7.18 (22.1) & 34.3 (57.1) & 54.9 (70.5) \\
% & & 1.35 & \textbf{0.850} & \textbf{0.579} & \textbf{0.374} & 11.4 (29.4) & 53.4 (67.4) & 61.6 (72.8) \\
% & & 1.44 & \textbf{0.938} & \textbf{0.641} & \textbf{0.441} & 7.66 (16.6) & 32.6 (60.5) & 46.4 (76.5) \\
% \cline{2-9}
% & Y2 & 1.44 & \textbf{0.360} & 0.0441 & -0.0711 & 33.2 (34.3) & 61.7 (50.2) & 63.6 (47.3) \\
% \hline
% $f_mel$ & Y2 & 1.44 & \textbf{0.517} & 0.166 & \textbf{0.201} & 35.3 (26.4) & 108 (119) & 132 (210) \\
% \hline
% $L_1$ & Y2 & 1.44 & \textbf{0.806} & 0.0777 & -0.0675 & 38.1 (37.0) & 65.4 (54.8) & 76.6 (86.8) \\
% \hline
% \end{tabular}
% \label{ap:backwardsHSIMCr}
% \end{table}
% \FloatBarrier
% \section{Analysing HSI data examples}
% \begin{figure}[h!]
% \centering
% \includegraphics[width=\textwidth]{7_350_Y_OFF_AR1.pdf}
% \caption{Top left shows an sRGB reconstruction of the a gelatin-based phantom where $AR1=0.5$ and $I=3.50\%$ taken with a snapshot HSI camera, where the regions beyond thresholds are shown as white. Top right shows an annotation of the same image. Middle left shows the fitted $StO_2$ on a pixel-by-pixel basis of the quantitative data using the Yudovsky 2009 single-layer model. Middle right shows the $APE$ of the fitted $AR1$ of each pixel in the annotated region compared to the ground truth value (0.5). Bottom shows the mean annotated spectrum ($\pm$ standard deviation) plotted with the modelled spectrum using ground-truth parameters or parameters fitted to the mean annotated spectrum.}
% \label{ap:gelatinpbpegQY}
% \end{figure}
% \begin{figure}[h!]
% \centering
% \includegraphics[width=\textwidth]{7_350_J_ON_AR1.pdf}
% \caption{Top left shows an sRGB reconstruction of the a gelatin-based phantom where $AR1=0.5$ and $I=3.50\%$ taken with a snapshot HSI camera, where the regions beyond thresholds are shown as white. Top right shows an annotation of the same image. Middle left shows the fitted $StO_2$ on a pixel-by-pixel basis of the relative data using the Jacques 1999 single-layer model. Middle right shows the $APE$ of the fitted $AR1$ of each pixel in the annotated region compared to the ground truth value (0.5). Bottom shows the mean annotated spectrum ($\pm$ standard deviation) plotted with the modelled spectrum using ground-truth parameters or parameters fitted to the mean annotated spectrum.}
% \label{ap:gelatinpbpegRJ}
% \end{figure}
% \begin{figure}[h!]
% \centering
% \includegraphics[width=\textwidth]{7_350_J_OFF_AR1.pdf}
% \caption{Top left shows an sRGB reconstruction of the a gelatin-based phantom where $AR1=0.5$ and $I=3.50\%$ taken with a snapshot HSI camera, where the regions beyond thresholds are shown as white. Top right shows an annotation of the same image. Middle left shows the fitted $StO_2$ on a pixel-by-pixel basis of the quantitative data using the Jacques 1999 single-layer model. Middle right shows the $APE$ of the fitted $AR1$ of each pixel in the annotated region compared to the ground truth value (0.5). Bottom shows the mean annotated spectrum ($\pm$ standard deviation) plotted with the modelled spectrum using ground-truth parameters or parameters fitted to the mean annotated spectrum.}
% \label{ap:gelatinpbpegQJ}
% \end{figure}
% \begin{figure}[h!]
% \centering
% \includegraphics[width=\textwidth]{012-02_StO2_J.pdf}
% \caption{Top left shows an sRGB reconstruction of the HELICoiD image 012-02 with the regions beyond thresholds shown as white. Top right shows an annotation of the same image. Middle left shows the fitted $StO_2$ on a pixel-by-pixel basis using the Jacques 1999 single-layer model and method 4 (from \ref{sec:NeuroHSIdata}). Middle right shows the $APE$ of the fitted $StO_2$ of each pixel in each annotated region compared to the fitted $StO_2$ from the mean spectrum of the annotated region. Bottom shows the mean annotated spectra of each tissue type ($\pm$ standard deviation) plotted with the modelled spectra using parameters fitted to the mean annotated spectrum.}
% \label{ap:HELICoiDpixelJ}
% \end{figure}
% \FloatBarrier
% \section{Fitting Neurosurgical HSI data with uniform weighting on wavelengths}\label{ap:Chapter5uniform}
% \begin{table}[h!]
% \centering
% \caption{The mean (standard deviation) of the fitted physiological parameters when extracted by fitting Yudovsky 2009 single layer (Y) or Jacques 1999 (J) to the relative mean annotated spectra for each tissue type of each image from the HELICoiD dataset using literature (L) or shifted (S) extinction coefficients with uniform weighting of the wavelengths and $n=1.44$. All presented to 3s.f.}
% \begin{tabular}{|ccc|cccc|}
% \hline
% \multirow{2}{*}{Tissue type} & \multirow{2}{*}{Model} & \multirow{2}{*}{Method} & $StO_2$ & $f_{blood}$ & $a$ & $b$ \\
% & & & (\%) & (\%) & ($cm^{-1}$) & (a.u.) \\
% \hline
% \multirow{4}{*}{\shortstack{Hyper-\\vascularised}} & \multirow{2}{*}{Y} & L & 84.0 (20.3) & 2.39 (2.08) & 48.9 (28.9) & 1.72 (1.24) \\
% & & S & 66.7 (27.5) & 3.67 (3.43) & 61.9 (14.8) & 1.50 (0.975) \\
% \cline{2-7}
% & \multirow{2}{*}{J} & L & 78.0 (20.8) & 6.64 (10.7) & 25.9 (27.2) & 1.76 (1.27) \\
% & & S & 55.2 (23.3) & 3.59 (4.42) & 16.0 (21.1) & 1.61 (1.05) \\
% \hline
% \multirow{4}{*}{Normal} & \multirow{2}{*}{Y} & L & 81.9 (22.7) & 0.782 (0.428) & 8.33 (1.85) & 0.318 (0.799) \\
% & & S & 78.0 (23.5) & 0.759 (0.388) & 8.32 (1.80) & 0.327 (0.800) \\
% \cline{2-7}
% & \multirow{2}{*}{J} & L & 84.0 (22.1) & 0.933 (0.701) & 8.46 (2.27) & 0.311 (0.798) \\
% & & S & 80.5 (23.2) & 0.855 (0.553) & 8.52 (2.27) & 0.323 (0.800) \\
% \hline
% \multirow{4}{*}{Tumour} & \multirow{2}{*}{Y} & L & 74.6 (23.6) & 1.06 (0.870) & 13.6 (18.7) & 0.282 (0.377) \\
% & & S & 78.0 (20.3) & 1.85 (2.01) & 26.3 (26.9) & 0.273 (0.324) \\
% \cline{2-7}
% & \multirow{2}{*}{J} & L & 73.9 (24.3) & 1.04 (0.655) & 8.00 (5.24$\times 10^{-15}$) & 0.205 (0.284) \\
% & & S & 75.7 (19.8) & 0.973 (0.545) & 9.94 (4.85) & 0.395 (0.368) \\
% \hline
% \end{tabular}
% \label{tb:HELICoiDuniform}
% \end{table}
% \begin{figure}[h!]
% \centering
% \begin{subfigure}{0.49\textwidth}
% \includegraphics[width=\textwidth]{012-02Normal_spectra_Y_u.pdf}
% \caption{}
% \label{fig:backwardsHSIHeliYuniform}
% \end{subfigure}
% \begin{subfigure}{0.49\textwidth}
% \includegraphics[width=\textwidth]{012-02Normal_spectra_J_u.pdf}
% \caption{}
% \label{fig:backwardsHSIHeliJuniform}
% \end{subfigure}
% \begin{subfigure}{\textwidth}
% \includegraphics[width=\textwidth]{boxplotsHeli_u.pdf}
% \caption{}
% \label{fig:boxplotsHeliuniform}
% \end{subfigure}
% \caption{An example of the visual fitting quality of the Yudovsky 2009 (\ref{fig:backwardsHSIHeliY}) and Jacques 1999 (\ref{fig:backwardsHSIHeliJ}) single layer models when fitting to the relative mean annotated spectrum ($\pm$1 standard deviation, \textcolor{blue}{blue solid}) of the normal tissue class of HELICoiD image 12-02 using literature (L) or shifted (S) extinction coefficients and a uniform wavelength weighting. The distribution of the fitted physiological parameters retrieved by fitting each model to each relative mean annotated spectrum of the tissue classes of each HELICoiD image is shown in \ref{fig:boxplotsHeli}.}
% \label{fig:HELICoiDannuniform}
% \end{figure}