-
Notifications
You must be signed in to change notification settings - Fork 2
/
DataSetCreator.py
43 lines (39 loc) · 1.34 KB
/
DataSetCreator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import cv2
import numpy as np
import sqlite3
FaceDetect=cv2.CascadeClassifier('C:\\Users\\Aniket\\PycharmProjects\\facedetection\\haarcascade_frontalface_default.xml');
true =FaceDetect.load('C:\\Users\\Aniket\\PycharmProjects\\facedetection\\haarcascade_frontalface_default.xml')
cam=cv2.VideoCapture(0);
def UpdateorInput(Id,name):
con=sqlite3.connect("facedatabase1.db")
cmd="SELECT * FROM people WHERE ID="+str(Id)
cursor=con.execute(cmd)
t=0
for row in cursor:
t=1
if (t==1):
cmd="UPDATE people SET Name =" + str(name)+" WHERE ID="+str(Id)
else:
cmd="INSERT INTO people(ID,Name) Values("+str(Id)+","+str(name)+")"
con.execute(cmd)
con.commit()
con.close()
id = input('enter your id')
NAme=input('enter your Name')
UpdateorInput(id,NAme)
sampleNum=0;
while(True):
ret,img=cam.read();
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces=FaceDetect.detectMultiScale(gray,1.3,5);
for(x,y,w,h) in faces:
sampleNum=sampleNum+1;
cv2.imwrite("C:\\Users\\Aniket\\PycharmProjects\\Face Recognition sqlite\\DataSet\\User."+str(id)+"."+str(sampleNum)+".jpg",gray[y:y+h,x:x+w])
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
cv2.waitKey(100);
cv2.imshow("Face",img);
cv2.waitKey(1);
if(sampleNum>20):
break;
cam.release()
cv2.destroyAllWindows()