-
Notifications
You must be signed in to change notification settings - Fork 4
/
IG_Madry.py
416 lines (339 loc) · 17.5 KB
/
IG_Madry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
################################################################################################################
## IG generates n number of samples along the straight line path between baseline image and the orig image.
## In our implementation, we put all these samples on the cuda. So assign this value as per the gpu memory.
## Default value is 50
################################################################################################################
from __future__ import print_function
import torch
from torch.autograd import Variable
from torchvision import models
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import transforms
import ipdb, skimage
import sys, glob, ipdb, time, os, cv2, argparse, warnings
import numpy as np
from PIL import Image
from tqdm import tqdm
from srblib import abs_path
import utils as eutils
import settings
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
text_file = abs_path(settings.paper_img_txt_file)
# text_file = f'/home/naman/CS231n/heatmap_tests/' \
# f'Madri/Madri_New/robustness_applications/img_name_files/' \
# f'time_15669152608009198_seed_0_' \
# f'common_correct_imgs_model_names_madry_ressnet50_googlenet.txt'
img_name_list = []
with open(text_file, 'r') as f:
for line in f:
img_name_list.append(line.split('\n')[0])
## For reproducebility
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_arguments():
# Initialize the parser
parser = argparse.ArgumentParser(description='Input paramters for IG')
parser.add_argument('-idp', '--img_dir_path', help='Path to the input image dir', metavar='DIR')
parser.add_argument('-op', '--out_path',
help=f'Path of the output directory (Default is ./img_name/)')
# ## IG wants gradients w.r.t probability
# parser.add_argument('-ifp', '--if_pre', type=int, choices=range(2),
# help='It is clear from name. Default: Post (0)', default=0,
# )
parser.add_argument('-n_mean', '--noise_mean', type=float,
help='Mean of gaussian noise. Default: 0', default=0,
)
parser.add_argument('-n_var', '--noise_var', type=float,
help='Variance of gaussian noise. Default: 0.1', default=0.1,
)
parser.add_argument('-n_seed', '--noise_seed', type=int,
help='Seed for the Gaussian noise. Default: 0', default=0,
)
parser.add_argument('-b_seed', '--baseline_seed', type=int,
help='Seed for the Gaussian noise. Default: 0', default=0,
)
parser.add_argument('-if_n', '--if_noise', type=int, choices=range(2),
help='Whether to add noise to the image or not. Default: 0', default=0,
)
parser.add_argument('-s_idx', '--start_idx', type=int,
help='Start index for selecting images. Default: 0', default=0,
)
parser.add_argument('-e_idx', '--end_idx', type=int,
help='End index for selecting images. Default: 1735', default=1735,
)
parser.add_argument('--idx_flag', type=int,
help=f'Flag whether to use some images in the folder (1) or all (0). '
f'This is just for testing purposes. '
f'Default=0', default=0,
)
parser.add_argument('-n_steps', '--num_steps', type=int,
help=f'Number of steps for SmoothGrad.'
f'Given our GPU memory, max value can be 100.'
f'Has to be positive integer.'
f' Default: 50',
default=50,
)
parser.add_argument('--num_rand_trials', type=int,
help=f'Number of random trials'
f' Default: 10',
default=10,
)
parser.add_argument('--baseline', choices=['random', 'zero', 'grey'],
help=f'Baseline image.'
f'If baseline is zero, num_rand_trails will be ignored and will be set to 1'
f' Default: random',
default='random',
)
parser.add_argument('-if_sp', '--if_save_plot', type=int, choices=range(2),
help='Whether save the plots. Default: No (0)', default=0,
)
parser.add_argument('-if_sn', '--if_save_npy', type=int, choices=range(2),
help='Whether save the plots. Default: Yes (1)', default=1,
)
# Parse the arguments
args = parser.parse_args()
args.if_pre = 0
if args.baseline == 'zero':
args.num_rand_trials = 1
print(f'Num of trails for all zero baseline is just 1')
print(f'Num of random trails - {args.num_rand_trials}')
if not args.num_rand_trials > 0:
print('\nnum_rand_trails has to be a positive integer.\nExiting')
sys.exit(0)
if not args.num_steps > 0:
print('\nnum_steps has to be a positive integer.\nExiting')
sys.exit(0)
# if args.noise_seed is not None:
# print(f'Setting the numpy seed with value: {args.noise_seed}')
# np.random.seed(args.noise_seed)
if args.baseline == 'random':
print(f'For the random baseline, Setting the numpy seed with value: {args.baseline_seed}')
np.random.seed(args.baseline_seed)
if args.img_dir_path is None:
print('Please provide path to image dir. Exiting')
sys.exit(1)
else:
args.img_dir_path = os.path.abspath(args.img_dir_path)
if args.out_path is None:
args.out_path = './'
args.out_path = os.path.abspath(args.out_path)
return args
########################################################################################################################
def integrated_gradients(
inp, # torch, (1, 3, 224, 224), [0-1]
model,
device,
target_label_index,
predictions_and_gradients,
baseline,
steps=50):
assert (baseline.shape == inp.shape)
# Scale input and compute gradients.
scaled_inputs = tuple(baseline + (float(i) / steps) * (inp - baseline) for i in range(0, steps + 1))
scaled_inputs = torch.cat(scaled_inputs, dim = 0)
predictions, grads = predictions_and_gradients(scaled_inputs,
model,
target_label_index,
device) # shapes: <steps+1>, <steps+1, inp.shape>
# Use trapezoidal rule to approximate the integral.
# See Section 4 of the following paper for an accuracy comparison between
# left, right, and trapezoidal IG approximations:
# "Computing Linear Restrictions of Neural Networks", Matthew Sotoudeh, Aditya V. Thakur
# https://arxiv.org/abs/1908.06214
## grads - [51, 224, 224, 3]
grads = (grads[:-1] + grads[1:]) / 2.0 ## grads - [50, 224, 224, 3]
avg_grads = torch.mean(grads, dim=0) # (3, 224, 224)
integrated_gradients = ((inp[0] - baseline[0]) * avg_grads) * 255 # shape: (3, 224, 224)
return integrated_gradients, predictions # predictions - (51, 1000)
########################################################################################################################
def random_baseline_integrated_gradients(
inp, # torch, (1, 3, 224, 224), [0-1]
model,
target_label_index,
device,
predictions_and_gradients,
steps=50,
num_random_trials=10,
baseline_type='random'):
all_intgrads = []
for i in range(num_random_trials):
if baseline_type == 'random':
baseline=torch.rand_like(inp)
elif baseline_type == 'zero':
baseline = torch.zeros_like(inp)
elif baseline_type == 'grey':
baseline = 255*torch.ones_like(inp) ##(255 * 0.485, 255 * 0.456, 255 * 0.406)
baseline[:, 0] = baseline[:, 0] * 0.485
baseline[:, 1] = baseline[:, 1] * 0.456
baseline[:, 2] = baseline[:, 2] * 0.406
else:
print(f'This baseline has not been implemented\n.Exiting')
sys.exit(1)
intgrads, _ = integrated_gradients(
inp,
model,
device,
target_label_index=target_label_index,
predictions_and_gradients=predictions_and_gradients,
# baseline=255.0 * np.random.random([224, 224, 3]),
baseline=baseline,
steps=steps)
all_intgrads.append(intgrads)
all_intgrads = torch.stack(all_intgrads, dim=0) # [10, 3, 224, 224]
avg_intgrads = torch.mean(all_intgrads, dim=0) # [3, 224, 224]
return avg_intgrads
########################################################################################################################
def comp_probs_and_grad(pre_pro_flag, if_pre=0):
def calculate_outputs_and_gradients(inputs, model, target_label_idx, device):
#inputs = batch of torch array [n, 3, 224, 224], [0-1]
if pre_pro_flag:
#do the preprocessing
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
mean = torch.as_tensor(mean, dtype=torch.float32, device=inputs.device)
std = torch.as_tensor(std, dtype=torch.float32, device=inputs.device)
x_ch0 = (torch.unsqueeze(inputs[:, 0], 1) - mean[0]) / std[0]
x_ch1 = (torch.unsqueeze(inputs[:, 1], 1) - mean[1]) / std[1]
x_ch2 = (torch.unsqueeze(inputs[:, 2], 1) - mean[2]) / std[2]
inputs = torch.cat((x_ch0, x_ch1, x_ch2), 1)
## This is correct. Checked
inputs = inputs.to(device)
inputs = Variable(inputs, requires_grad=True)
probs = model(inputs)
## Gradients
model.zero_grad()
num_samples = inputs.shape[0]
repeated_targ_class = torch.cat(num_samples * [torch.tensor([target_label_idx])])
ones = torch.ones(repeated_targ_class.shape).to(device)
sel_nodes = probs[torch.arange(num_samples), repeated_targ_class]
sel_nodes.backward(ones)
probs = probs.cpu()
grads = inputs.grad.cpu() # [50, 3, 224, 224]
return probs, grads
return calculate_outputs_and_gradients
########################################################################################################################
if __name__ == '__main__':
s_time = time.time()
f_time = ''.join(str(s_time).split('.'))
args = get_arguments()
args.noise_mean = 0 ##Explicity set to zero
im_label_map = eutils.imagenet_label_mappings()
############################################
## #Data Loader
preprocessFn = transforms.Compose([transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225]),
])
data_loader, img_count = eutils.load_data(args.img_dir_path, preprocessFn, batch_size=1,
img_idxs=[args.start_idx, args.end_idx],
idx_flag=args.idx_flag, args=args)
print(f'Total number of images to be analyzed are {img_count}')
############################
model_names = []
model_names.append('pytorch') #ResNet
model_names.append('googlenet') #GoogleNet
model_names.append('madry') #ResNet_R
model_names.append('madry_googlenet') #GoogleNet_R
if not model_names:
print('Please provide at least one model to analyze.\nExiting')
sys.exit(1)
print(model_names)
parallel = True
print(f'Flag whether running code in parallel: {parallel}')
load_model_fns = {'pytorch': eval('eutils.load_orig_imagenet_model'),
'madry': eval('eutils.load_madry_model'),
'madry_googlenet': eval('eutils.load_madry_model'),
'googlenet': eval('eutils.load_orig_imagenet_model')}
im_sz_dict = {'pytorch': 224,
'madry': 224,
'madry_googlenet': 224,
'googlenet': 224}
load_model_args = {'pytorch': 'resnet50',
'madry': 'madry',
'madry_googlenet': 'madry_googlenet',
'googlenet': 'googlenet'}
preprocessing_flag_dict = {'pytorch': True,
'madry': False,
'madry_googlenet': False,
'googlenet': True}
############################
for idx, model_name in enumerate(model_names):
print(f'\nAnalyzing for model: {model_name}')
load_model = load_model_fns[model_name]
model_arg = load_model_args[model_name]
im_sz = im_sz_dict[model_name]
preprocessing_flag = preprocessing_flag_dict [model_name]
probs_and_grad_fun = comp_probs_and_grad(preprocessing_flag, if_pre=args.if_pre)
## Load Model
print(f'Loading model {model_arg}')
model = load_model(arch=model_arg, if_pre=args.if_pre, parallel=parallel) # Returns probs
par_name = f'baseline_{args.baseline[:4]}_num_steps_{args.num_steps:03d}_' \
f'num_rand_trails_{args.num_rand_trials:02d}_' \
f'start_idx_{args.start_idx}_' \
f'end_idx_{args.end_idx}_baseline_seed_{args.baseline_seed}_' \
f'noise_seed_{args.noise_seed}_' \
f'if_noise_{args.if_noise}_noise_mean_{args.noise_mean}_' \
f'noise_var_{args.noise_var}_model_name_{model_name}'
print(f'Par name is - {par_name}')
for i, (img, targ_class, img_path) in enumerate(data_loader):
# img - [1, 3, 224, 224], [0-1]
batch_time = time.time()
print(f'Analysing batch: {i} of size {len(targ_class)}')
## Creating the save path
img_name = img_path[0].split('/')[-1].split('.')[0]
print(f'Image Name is {img_name}')
out_dir = os.path.join(args.out_path, f'IG_{model_name}/{img_name}')
eutils.mkdir_p(out_dir)
# print(f'Saving results in {out_dir}')
targ_class = targ_class.cpu()
# ## Get grad function and prob value
# probs, gradients = probs_and_grad_fun(img, model, targ_class.item(), device)
## gradients - (1, 3, 224, 224)
probs, grads = probs_and_grad_fun(img, model, targ_class.item(), device)
grads = grads.cpu().data.numpy()[0]
grads = np.rollaxis(grads, 0, 3)
grads = np.mean(grads, axis=-1)
pred_prob = probs[0, targ_class.item()]
attributions = random_baseline_integrated_gradients(img, model, targ_class.item(),
device, probs_and_grad_fun,
steps=args.num_steps,
num_random_trials=args.num_rand_trials,
baseline_type=args.baseline
) # (3, 224, 224)
attributions = attributions.cpu().data.numpy() # (3, 224, 224)
attributions = np.rollaxis(attributions, 0, 3) # (224, 224, 3)
attributions = np.mean(attributions, axis=-1)
if args.if_save_npy == 1:
np.save(os.path.join(out_dir,
f'time_{f_time}_{img_name}_prob_{pred_prob:.3f}_'
f'heatmaps_num_steps_{args.num_steps}_{par_name}.npy'),
attributions)
## Only saving the Madry results
if args.if_save_plot == 1:
orig_img = img.cpu().data.numpy()[0]
orig_img = np.rollaxis(orig_img, 0, 3)
grid = []
grid.append([orig_img, grads, attributions])
col_labels = ['Orig Image', 'Grad', 'IG']
row_labels_left = []
row_labels_right = []
eutils.zero_out_plot_multiple_patch(grid,
out_dir,
row_labels_left,
row_labels_right,
col_labels,
file_name=f'time_{f_time}_{img_name}_'
f'heatmaps_'
f'{par_name}.jpeg',
dpi=224,
)
print(f'Time taken for batch is {time.time() - batch_time}')
##########################################
print(f'Time stamp is {f_time}')
print(f'Time taken is {time.time() - s_time}')
########################################################################################################################