-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathUserInputFunctions.py
211 lines (187 loc) · 6.83 KB
/
UserInputFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding: utf-8 -*-
"""
Created on Wed May 20 16:52:03 2015
@author: John
"""
import matplotlib.pyplot as plt
import numpy as np
import ctypes
import cPickle as pkl
#Custom modules
import Functions as Fun
import ImageProcessingFunctions as IPF
import VideoFunctions as VF
def define_outer_edge(image,shapeType,message=''):
"""
Displays image for user to outline the edge of a shape. Tracks clicks as
points on the image. If shapeType is "polygon", the points will be
connected by lines to show the polygon shape. If the shapeType is "circle",
the points will be fit to a circle after 4 points have been selected,
after which point the user can continue to click more points to improve
the fit.
Possible "shapeType"s:
'polygon': Returns array of tuples of xy-values of vertices
'circle': Returns radius and center of circle
'ellipse': Returns radius1, radius2, center, and angle of rotation
"""
# Parse input parameters
if shapeType == 'circle':
shapeAdj = 'Circular'
guess = np.shape(image)
guess = (guess[1]/2,guess[0]/2)
elif shapeType == 'ellipse':
shapeAdj = 'Ellipsular'
elif shapeType == 'polygon':
shapeAdj = 'Polygonal'
else:
print "Please enter a valid shape type (\"circle\",\"ellipse\"" + \
"or \"polygon\")."
return
# Initialize point lists and show image
x = []; y = []
figName = 'Define %s Edge - Center click when satisfied' %shapeAdj
plt.figure(figName)
plt.rcParams.update({'figure.autolayout': True})
plt.set_cmap('gray')
fig.imshow(image)
plt.axis('image')
plt.axis('off')
plt.title(message)
# Get data points until the user closes the figure or center-clicks
while True:
pp = get_points(1)
lims = plt.axis()
if len(pp) < 1:
break
else:
pp = pp[0]
# Reset the plot
plt.cla()
Fun.plt_show_image(image)
plt.title(message)
plt.axis(lims)
# Add the new point to the list of points and plot them
x += [pp[0]]; y += [pp[1]]
plt.plot(x,y,'r.',alpha=0.5)
# Perform fitting and drawing of fitted shape
if shapeType == 'circle':
if len(x) > 2:
xp = np.array(x)
yp = np.array(y)
R,center,temp = Fun.fit_circle(xp,yp,guess)
guess = center
X,Y = Fun.generate_circle(R,center)
plt.plot(X,Y,'y-',alpha=0.5)
plt.plot(center[0],center[1],'yx',alpha=0.5)
elif shapeType == 'ellipse':
if len(x) > 3:
xp = np.array(x)
yp = np.array(y)
R1,R2,center,theta = Fun.fit_ellipse(xp,yp)
X,Y = Fun.generate_ellipse(R1,R2,center,theta)
plt.plot(X,Y,'y-',alpha=0.5)
plt.plot(center[0],center[1],'yx',alpha=0.5)
elif shapeType == 'polygon':
plt.plot(x,y,'y-',alpha=0.5)
plt.close()
if shapeType == "circle":
return R,center
elif shapeType == 'ellipse':
return R1,R2,center,theta
elif shapeType == "polygon":
xyVals = [(x[i],y[i]) for i in range(len(x))]
return xyVals
def get_mask_data(maskFile,vid,hMatrix=None,check=False):
"""
Shows user masks overlayed on given image and asks through a dialog box
if they are acceptable. Returns True for 'yes' and False for 'no'.
"""
# Parse input parameters
image = VF.extract_frame(vid,1,hMatrix=hMatrix)
try:
with open(maskFile) as f:
maskData = pkl.load(f)
except:
print 'Mask file not found, please create it now.'
maskData = IPF.create_mask_data(image,maskFile)
while check:
plt.figure('Evaluate accuracy of predrawn masks for your video')
maskedImage = IPF.mask_image(image,maskData['mask'])
temp = np.dstack((maskedImage,image,image))
plt.imshow(temp)
center = maskData['diskCenter']
plt.plot(center[0],center[1],'bx')
plt.axis('image')
response = ctypes.windll.user32.MessageBoxA(0, 'Do you wish to keep' + \
' the current mask?','User Input Required', 4)
plt.close()
if response == 6: # 6 means yes
return maskData
else: # 7 means no
print 'Existing mask rejected, please create new one now.'
maskData = IPF.create_mask_data(image,maskFile)
return maskData
def get_points(Npoints=1,im=None):
""" Alter the built in ginput function in matplotlib.pyplot for custom use.
This version switches the function of the left and right mouse buttons so
that the user can pan/zoom without adding points. NOTE: the left mouse
button still removes existing points.
INPUT:
Npoints = int - number of points to get from user clicks.
OUTPUT:
pp = list of tuples of (x,y) coordinates on image
"""
if im is not None:
plt.imshow(im)
plt.axis('image')
pp = plt.ginput(n=Npoints,mouse_add=3, mouse_pop=1, mouse_stop=2,
timeout=0)
return pp
def get_homography_matrix(fileName,vid):
"""
Load the homography matrix from file or create it if it does not exist.
"""
# Handle homography data file
if fileName is not None:
try:
with open(fileName,'rb') as f:
hMatrix = pkl.load(f)
except:
image = VF.extract_frame(vid,0)
else:
hMatrix = None
return hMatrix
#def get_mask_data(fileName,vid,hMatrix,check=False):
# """
# Load the mask data from file or create if it does not exist.
# """
#
# try:
# with open(fileName,'rb') as f:
# maskData = pkl.load(f)
# except:
# check = True
# if check:
# maskData = check_mask(fileName,vid,hMatrix)
#
# return maskData
def get_intensity_region(fileName,vid):
"""
Identify a region of the video frames to use for monitoring light
intensity.
"""
try:
with open(fileName,'rb') as f:
mask = pkl.load(f)
except:
image = VF.extract_frame(vid,0)
plt.gray()
plt.close()
points = define_outer_edge(image,'polygon','Define a region for \n' +
'monitoring light intensity.')
mask,points = IPF.create_polygon_mask(image,points)
with open(fileName,'wb') as f:
pkl.dump(mask,f)
return mask
if __name__ == '__main__':
pass